
Chapter 5: JavaCC and JTB

127



The Java Compiler Compiler

� Can be thought of as “Lex and Yacc for Java.”

� It is based on LL(k) rather than LALR(1).

� Grammars are written in EBNF.

� The Java Compiler Compiler transforms an EBNF grammar into an

LL(k) parser.

� The JavaCC grammar can have embedded action code written in Java,

just like a Yacc grammar can have embedded action code written in C.

� The lookahead can be changed by writing

✎ ✟ ✟✄ ✠✏ ✁ ✠ ✒ ✂
� � �

✆

.

� The whole input is given in just one file (not two).

128



The JavaCC input format

One file:

� header

� token specifications for lexical analysis

� grammar

129



The JavaCC input format

Example of a token specification:

✂ ✟✄ ✁ ✁ ✄

�

✁ � ✁✂ ✁ ✄ ✁☎
✂

✎ � ✂ ✁ ☎ ✠✎ ✄ ✂ �✄ ✁ ✄ ✞ ✄ ✓ ✄ ✁ ✂ �✄ ✝ ✄ ✞ ✄ ✓ ✄ ✁ ✆ ✟ ☎ ✄ ✝ ✄ ✆ ✆

✝

Example of a production:

✞ ☛ ✄ ✡ ✂ ✁ ✁ ✁ ✌ ✁ ✌✍ ✁ ✎ ✄ ✂ ✁ ☎ ✌ ✁ �✂ ✍ ✂ ✆ ✄

� ✝
�

✂ ✂ ✁ ✁ ✁ ✌ ✁ ✌✍ ✁ ✂ ✆ ✆ ✟ ✄ ✂ ✌ ✁ �✂ ✍ ✄ ✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ ✂ ✆ ✄ ☎ ✄

✝

130



Generating a parser with JavaCC

� ✁ ✞✁ � � � ☛ ✂ ✁ ✂ ✁ ✍ �
� � ✠ ✠ ✟ ✌✍ ✌✂ ✁ ✁ ✌ ✂ ✁ �✁ ✂ ✂ ✌✂ ✄ ✄ ✁ ✁ ✁ ✂ � ✌ � ✄ � ✄ ✌ ✡ ✍ ✁ ✁ ✌

� ✁ ✞✁ � ☛ ✁ ✄ ✍ �
� ✁ ✞✁ ✠ ✠ ☛ ✁ ✄ ✍ �
� ✁ ✞✁ � ☛ ✍ ✁ ✁ ✄ ✍ ✂ ✁ � ✁ ✎ ✎ ☛ � ✁ ✁ ✌ �✁ ✂ ✂ ✌✂

� ✁ ✞✁ ☛ ✁ ✄ ✍ ✁ �✂ ☛ ✟ �
� ✠ ✠ �✁ ✂ ✂ ✌ ✂ ✁ ✁ ✌ �✂ ☛ ✟ ✂ ✁ ✁ �✂ ☛ ✟ �
�

131



The Visitor Pattern

For object-oriented programming,

the Visitor pattern enables

the definition of a new operation

on an object structure

without changing the classes

of the objects.

Gamma, Helm, Johnson, Vlissides:

Design Patterns, 1995.

132



Sneak Preview

When using the Visitor pattern,

� the set of classes must be fixed in advance, and

� each class must have an accept method.

133



First Approach: Instanceof and Type Casts

The running Java example: summing an integer list.

✄ ✍ ✁ ✌✂ � ✁ � ✌ ✎ ✄ ✂ ✁ � ✝

� ✎ ✁ ✂ ✂ ✁ ✄ ✎ ✄ ✁ � ✎ ✌ ✁ ✌✍ ✁ ✂ ✎ ✄ ✂ ✁ � ✝

� ✎ ✁ ✂ ✂ ✞ ☛ ✍ ✂ ✄ ✁ � ✎ ✌ ✁ ✌✍ ✁ ✂ ✎ ✄ ✂ ✁ �

✄ ✍ ✁ ✁ ✌ ✁ ✡☎

✎ ✄ ✂ ✁ ✁ ✁ ✄ ✎ ☎

✝

134



First Approach: Instanceof and Type Casts

✎ ✄ ✂ ✁ ✎ ☎ ✠ ✠ ✂ ✁ ✌ ✎ ✄ ✂ ✁ ✞ ☛ � � ✌ � ✁

✄ ✍ ✁ ✂ � ✁ ✁ ✝ ☎

� ☛ ☛ ✎ ✌ ✁ ✍ �✂ ☛ � ✌ ✌ ✡ ✁ ✁ ✂ � ✌ ☎

✄ ✁ ✄ ✎ ✌ ✂ �✂ ☛ � ✌ ✌ ✡ ✆ �

✄ � ✂ ✎ ✄ ✍ ✂ ✁ ✁ ✍ � ✌ ☛ � ✁ ✄ ✎ ✆

�✂ ☛ � ✌ ✌ ✡ ✁ � ✁ ✎ ✂ ✌ ☎

✌ ✎ ✂ ✌ ✄ � ✂ ✎ ✄ ✍ ✂ ✁ ✁ ✍ � ✌ ☛ � ✞ ☛ ✍ ✂ ✆ �

✂ � ✁ ✁ ✂ � ✁ ✂ ✂ ✂ ✞ ☛ ✍ ✂ ✆ ✎ ✆
�

✁ ✌ ✁ ✡☎

✎ ✁ ✂ ✂ ✞ ☛ ✍ ✂ ✆ ✎ ✆
�

✁ ✁ ✄ ✎ ☎

✠ ✠ ✁ ☛ ✁ ✄ � ✌ ✁ ✁ ✌ ✁ ✄ ☛ ✁ ✄ � ✌ � ✁ ✂ ✁ ✂ �

✝

✝

Advantage: The code is written without touching the classes

✁ ✄ ✎

and

✞ ☛ ✍ ✂ .

Drawback: The code constantly uses type casts and

✄ ✍ ✂ ✁ ✁ ✍ � ✌ ☛ �

to

determine what class of object it is considering.

135



Second Approach: Dedicated Methods

The first approach is not object-oriented!

To access parts of an object, the classical approach is to use dedicated

methods which both access and act on the subobjects.

✄ ✍ ✁ ✌✂ � ✁ � ✌ ✎ ✄ ✂ ✁ �

✄ ✍ ✁ ✂ � ✁ ✂ ✆ ☎

✝

We can now compute the sum of all components of a given

✎ ✄ ✂ ✁

-object

✎

by writing

✎
� ✂ � ✁ ✂ ✆

.

136



Second Approach: Dedicated Methods

� ✎ ✁ ✂ ✂ ✁ ✄ ✎ ✄ ✁ � ✎ ✌ ✁ ✌✍ ✁ ✂ ✎ ✄ ✂ ✁ �

� � � ✎ ✄ � ✄ ✍ ✁ ✂ � ✁ ✂ ✆ �

✂ ✌ ✁ �✂ ✍ ✝ ☎

✝

✝
� ✎ ✁ ✂ ✂ ✞ ☛ ✍ ✂ ✄ ✁ � ✎ ✌ ✁ ✌✍ ✁ ✂ ✎ ✄ ✂ ✁ �

✄ ✍ ✁ ✁ ✌ ✁ ✡☎

✎ ✄ ✂ ✁ ✁ ✁ ✄ ✎ ☎

� � � ✎ ✄ � ✄ ✍ ✁ ✂ � ✁ ✂ ✆ �

✂ ✌ ✁ �✂ ✍ ✁ ✌ ✁ ✡ ✂ ✁ ✁ ✄ ✎
� ✂ � ✁ ✂ ✆ ☎

✝

✝

Advantage: The type casts and
✄ ✍ ✂ ✁ ✁ ✍ � ✌ ☛ �

operations have disappeared,

and the code can be written in a systematic way.

Disadvantage: For each new operation on

✎ ✄ ✂ ✁

-objects, new dedicated

methods have to be written, and all classes must be recompiled.

137



Third Approach: The Visitor Pattern

The Idea:

� Divide the code into an object structure and a Visitor (akin to Func-

tional Programming!)

� Insert an ✁ � � ✌ � ✁

method in each class. Each accept method takes a

Visitor as argument.

� A Visitor contains a ✞ ✄ ✂ ✄ ✁

method for each class (overloading!) A

method for a class C takes an argument of type C.

✄ ✍ ✁ ✌✂ � ✁ � ✌ ✎ ✄ ✂ ✁ �

✞ ☛ ✄ ✡ ✁ � � ✌ � ✁ ✂ � ✄ ✂ ✄ ✁ ☛ ✂ ✞ ✆ ☎

✝
✄ ✍ ✁ ✌✂ � ✁ � ✌ � ✄ ✂ ✄ ✁ ☛ ✂ �

✞ ☛ ✄ ✡ ✞ ✄ ✂ ✄ ✁ ✂ ✁ ✄ ✎ � ✆ ☎

✞ ☛ ✄ ✡ ✞ ✄ ✂ ✄ ✁ ✂ ✞ ☛ ✍ ✂ � ✆ ☎

✝

138



Third Approach: The Visitor Pattern

� The purpose of the ✁ � � ✌ � ✁

methods is to

invoke the ✞ ✄ ✂ ✄ ✁

method in the Visitor which can handle the current

object.

� ✎ ✁ ✂ ✂ ✁ ✄ ✎ ✄ ✁ � ✎ ✌ ✁ ✌✍ ✁ ✂ ✎ ✄ ✂ ✁ �

� � � ✎ ✄ � ✞ ☛ ✄ ✡ ✁ � � ✌ � ✁ ✂ � ✄ ✂ ✄ ✁ ☛ ✂ ✞ ✆ �

✞ � ✞ ✄ ✂ ✄ ✁ ✂ ✁ ✁ ✄ ✂ ✆ ☎

✝

✝
� ✎ ✁ ✂ ✂ ✞ ☛ ✍ ✂ ✄ ✁ � ✎ ✌ ✁ ✌✍ ✁ ✂ ✎ ✄ ✂ ✁ �

✄ ✍ ✁ ✁ ✌ ✁ ✡☎

✎ ✄ ✂ ✁ ✁ ✁ ✄ ✎ ☎

� � � ✎ ✄ � ✞ ☛ ✄ ✡ ✁ � � ✌ � ✁ ✂ � ✄ ✂ ✄ ✁ ☛ ✂ ✞ ✆ �

✞ � ✞ ✄ ✂ ✄ ✁ ✂ ✁ ✁ ✄ ✂ ✆ ☎

✝

✝

139



Third Approach: The Visitor Pattern

� The control flow goes back and forth between the ✞ ✄ ✂ ✄ ✁

methods in

the Visitor and the ✁ � � ✌ � ✁

methods in the object structure.

� ✎ ✁ ✂ ✂ ✂ � ✁� ✄ ✂ ✄ ✁ ☛ ✂ ✄ ✁ � ✎ ✌ ✁ ✌✍ ✁ ✂ � ✄ ✂ ✄ ✁ ☛ ✂ �

✄ ✍ ✁ ✂ � ✁ ✁ ✝ ☎

� � � ✎ ✄ � ✞ ☛ ✄ ✡ ✞ ✄ ✂ ✄ ✁ ✂ ✁ ✄ ✎ � ✆ � ✝

� � � ✎ ✄ � ✞ ☛ ✄ ✡ ✞ ✄ ✂ ✄ ✁ ✂ ✞ ☛ ✍ ✂ � ✆ �

✂ � ✁ ✁ ✂ � ✁ ✂ � �
✁ ✌ ✁ ✡☎

� �
✁ ✁ ✄ ✎

� ✁ � � ✌ � ✁ ✂ ✁ ✁ ✄ ✂ ✆ ☎

✝

✝
� � � � �

✂ � ✁� ✄ ✂ ✄ ✁ ☛ ✂ ✂ ✞ ✁ ✍ ✌ ✄ ✂ � ✁� ✄ ✂ ✄ ✁ ☛ ✂ ✂ ✆ ☎

✎
� ✁ � � ✌ � ✁ ✂ ✂ ✞ ✆ ☎

✂ ✄ ✂ ✁ ✌ ✁ � ☛ � ✁
� �✂ ✄ ✍ ✁ ✎✍ ✂ ✂ ✞ � ✂ � ✁ ✆ ☎

Notice: The ✞ ✄ ✂ ✄ ✁

methods describe both

1) actions, and 2) access of subobjects.

140



Comparison

The Visitor pattern combines the advantages of the two other approaches.

Frequent Frequent

type casts? recompilation?

Instanceof and type casts Yes No

Dedicated methods No Yes

The Visitor pattern No No

The advantage of Visitors: New methods without recompilation!

Requirement for using Visitors: All classes must have an accept method.

Tools that use the Visitor pattern:

� JJTree (from Sun Microsystems) and the Java Tree Builder (from Pur-

due University), both frontends for The Java Compiler Compiler from

Sun Microsystems.

141



Visitors: Summary

� Visitor makes adding new operations easy. Simply write a new

visitor.

� A visitor gathers related operations. It also separates unrelated

ones.

� Adding new classes to the object structure is hard. Key consid-

eration: are you most likely to change the algorithm applied over an

object structure, or are you most like to change the classes of objects

that make up the structure.

� Visitors can accumulate state.

� Visitor can break encapsulation. Visitor’s approach assumes that

the interface of the data structure classes is powerful enough to let

visitors do their job. As a result, the pattern often forces you to provide

public operations that access internal state, which may compromise

its encapsulation.

142



The Java Tree Builder

The Java Tree Builder (JTB) has been developed here at Purdue in my

group.

JTB is a frontend for The Java Compiler Compiler.

JTB supports the building of syntax trees which can be traversed using

visitors.

JTB transforms a bare JavaCC grammar into three components:

� a JavaCC grammar with embedded Java code for building a syntax

tree;

� one class for every form of syntax tree node; and

� a default visitor which can do a depth-first traversal of a syntax tree.

143



The Java Tree Builder

The produced JavaCC grammar can then be processed by the Java Com-

piler Compiler to give a parser which produces syntax trees.

The produced syntax trees can now be traversed by a Java program by

writing subclasses of the default visitor.

�
�

✁ ✁
✁

✁

✁ ✁

JavaCC
grammar

JTB JavaCC grammar
with embedded
Java code

Java Compiler
Compiler

Parser

Program

Syntax tree
with accept methods

Syntax-tree-node
classes

Default visitor

144



Using JTB

� ✁ � � ☛ ✂ ✁ ✂ ✁ ✍ �
� � ✠ ✠ ✟ ✌✍ ✌✂ ✁ ✁ ✌ ✂ � ✁ �

� ☛ � ✁
�

� �

� ✁ ✞✁ � � � ✁ �
� ☛ � ✁
�

� � ✠ ✠ ✟ ✌✍ ✌✂ ✁ ✁ ✌ ✂ ✁ �✁ ✂ ✂ ✌✂ ✄ ✄ ✁ ✁ ✁ ✂ � ✌ � ✄ � ✄ ✌ ✡ ✍ ✁ ✁ ✌

� ✁ ✞✁ � ☛ ✁ ✄ ✍ �
� ✁ ✞✁ ✠ ✠ ☛ ✁ ✄ ✍ �
� ✁ ✞✁ � ☛ ✍ ✁ ✁ ✄ ✍ ✂ ✁ � ✁ ✎ ✎ ☛ � ✁ ✁ ✌ �✁ ✂ ✂ ✌✂

✁ ✍ ✡ � ✁ ✎ ✎ ✂ ✁ ☛ ✞ ✄ ✂ ✄ ✁ ☛ ✂ ✂

� ✁ ✞✁ ☛ ✁ ✄ ✍ ✁ �✂ ☛ ✟ �
� ✠ ✠ � � ✄ ✎ ✡ ✂ ✁ ✂ ✄✍ ✁ ✁ � ✁ ✂ ✌ ✌ � ☛ ✂ �✂ ☛ ✟ �
�

✄ ✁ ✍ ✡

✌ � ✌ � � ✁ ✌ ✂ ✁ ✁ ✌ ✞ ✄ ✂ ✄ ✁ ☛ ✂ ✂

145



Example (simplified)

For example, consider the Java 1.1 production

✞ ☛ ✄ ✡ ✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✂ ✆ ✄ � ✝

� ✡✂ ✄ ✁✁ ✂ ✄ ✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ ✂ ✆ ✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✟ � ✌✂ ✁ ✁ ☛ ✂ ✂ ✆

✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ ✂ ✆ ✝

JTB produces:

✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✂ ✆ ✄

� ✡✂ ✄ ✁✁ ✂ ✄ ✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ ✍ ✝ ☎

✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✟ � ✌✂ ✁ ✁ ☛ ✂ ✍ ✁ ☎

✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ ✍ � ☎ � ✝ ✝

� ✍ ✝ ✁ ✡✂ ✄ ✁✁ ✂ ✄ ✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ ✂ ✆

✍ ✁ ✁ ✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✟ � ✌✂ ✁ ✁ ☛ ✂ ✂ ✆

✍ � ✁ ✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ ✂ ✆

� ✂ ✌ ✁ �✂ ✍ ✍ ✌ ✄ ✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✂ ✍ ✝
✄ ✍ ✁
✄ ✍ � ✆ ☎ ✝

✝

Notice that the production returns a syntax tree represented as an

✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁

object.

146



Example (simplified)

JTB produces a syntax-tree-node class for

✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁

:

� � � ✎ ✄ � � ✎ ✁ ✂ ✂ ✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✄ ✁ � ✎ ✌ ✁ ✌✍ ✁ ✂ ✁ ☛ ✡ ✌ �

✡✂ ✄ ✁✁ ✂ ✄ ✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ � ✝ ☎ ✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✟ � ✌✂ ✁ ✁ ☛ ✂ � ✁ ☎

✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ � � ☎

� � � ✎ ✄ � ✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✂ ✡✂ ✄ ✁✁ ✂ ✄ ✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ ✍ ✝
✄

✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✟ � ✌✂ ✁ ✁ ☛ ✂ ✍ ✁
✄

✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ ✍ � ✆

� � ✝ ✁ ✍ ✝ ☎ � ✁ ✁ ✍ ✁ ☎ � � ✁ ✍ � ☎ ✝

� � � ✎ ✄ � ✞ ☛ ✄ ✡ ✁ � � ✌ � ✁ ✂ ✞ ✄ ✂ ✄ ✁ ☛ ✂ �
� ✄ ✂ ✄ ✁ ☛ ✂ ✞ ✆ �

✞ � ✞ ✄ ✂ ✄ ✁ ✂ ✁ ✁ ✄ ✂ ✆ ☎

✝

✝

Notice the ✁ � � ✌ � ✁

method; it invokes the method ✞ ✄ ✂ ✄ ✁

for

✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁

in

the default visitor.

147



Example (simplified)

The default visitor looks like this:

� � � ✎ ✄ � � ✎ ✁ ✂ ✂ ✒ ✌ � ✁ ✁ ✆ ✄ ✂ ✂ ✁� ✄ ✂ ✄ ✁ ☛ ✂ ✄ ✁ � ✎ ✌ ✁ ✌✍ ✁ ✂ � ✄ ✂ ✄ ✁ ☛ ✂ �

� � �
✠ ✠

✠ ✠ � ✝ ✞ ✆ ✡✂ ✄ ✁✁ ✂ ✄ ✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ ✂ ✆

✠ ✠ � ✁ ✞ ✆ ✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✟ � ✌✂ ✁ ✁ ☛ ✂ ✂ ✆

✠ ✠ � � ✞ ✆ ✁ � �✂ ✌ ✂ ✂ ✄ ☛ ✍ ✂ ✆

✠ ✠
� � � ✎ ✄ � ✞ ☛ ✄ ✡ ✞ ✄ ✂ ✄ ✁ ✂ ✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✍ ✆ �

✍ �
� ✝

� ✁ � � ✌ � ✁ ✂ ✁ ✁ ✄ ✂ ✆ ☎

✍ �
� ✁

� ✁ � � ✌ � ✁ ✂ ✁ ✁ ✄ ✂ ✆ ☎

✍ �
� �

� ✁ � � ✌ � ✁ ✂ ✁ ✁ ✄ ✂ ✆ ☎

✝

✝

Notice the body of the method which visits each of the three subtrees of

the

✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁

node.

148



Example (simplified)

Here is an example of a program which operates on syntax trees for Java

1.1 programs. The program prints the right-hand side of every assignment.

The entire program is six lines:

� � � ✎ ✄ � � ✎ ✁ ✂ ✂ � �✂ ✄ ✍ ✁ ✠ ✂ ✂ ✄ ✟ ✍ ☎ ✏ ✂ ✌ � ✁ ✌✍ ✡ ✂ ✒ ✌ � ✁ ✁ ✆ ✄ ✂ ✂ ✁� ✄ ✂ ✄ ✁ ☛ ✂ �

✞ ☛ ✄ ✡ ✞ ✄ ✂ ✄ ✁ ✂ ✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁ ✍ ✆ �

� ✡✂ ✌ ✁ ✁ ✄ ✡✂ ✄ ✍ ✁ ✌✂ ✞ ✁ ✍ ✌ ✄ � ✡✂ ✌ ✁ ✁ ✄ ✡✂ ✄ ✍ ✁ ✌✂ ✂ ✆ ☎

✍ �
� �

� ✁ � � ✌ � ✁ ✂ ✞ ✆ ☎ ✞ � ☛ � ✁
� �✂ ✄ ✍ ✁ ✎✍ ✂ ✆ ☎

✍ �
� �

� ✁ � � ✌ � ✁ ✂ ✁ ✁ ✄ ✂ ✆ ☎

✝

✝

When this visitor is passed to the root of the syntax tree, the depth-first

traversal will begin, and when

✠ ✂ ✂ ✄ ✟ ✍ ✁ ✌✍ ✁
nodes are reached, the method

✞ ✄ ✂ ✄ ✁

in

� �✂ ✄ ✍ ✁ ✠ ✂ ✂ ✄ ✟ ✍ ☎ ✏ ✂

is executed.

Notice the use of

� ✡✂ ✌ ✁ ✁ ✄ ✡✂ ✄ ✍ ✁ ✌✂ . It is a visitor which pretty prints Java

1.1 programs.

JTB is bootstrapped.

149


