Chapter 5: JavaCC and JTB

127

The Java Compiler Compiler

e Can be thought of as “Lex and Yacc for Java.’

e It is based on LL(k) rather than LALR(1).

e Grammars are written in EBNF.

e The Java Compiler Compiler transforms an EBNF grammar into an
LL(k) parser.

e The JavaCC grammar can have embedded action code written in Java,
just like a Yacc grammar can have embedded action code written in C.

e The lookahead can be changed by writing LOOKAHEADC. . .).

e The whole input is given in just one file (not two).

128

The JavaCC input format

One file:

e header
e token specifications for lexical analysis

e grammar

129

The JavaCC input format

Example of a token specification:

TOKEN :

{
< INTEGER_LITERAL: (["1i"-"9"] (["0"-"9"1)x | "O0") >

Example of a production:

void StatementListReturn() :

{}
{

(Statement())* "return" Expression() ";"

}

130

Generating a parser with JavaCC

javacc fortran.jj // generates a parser with a specified name
javac Main. java // Main.java contains a call of the parser

java Main < prog.f // parses the program prog.f

131

The Visitor Pattern

For object-oriented programming,
the Visitor pattern enables

the definition of a new operation
on an object structure

without changing the classes

of the objects.

Gamma, Helm, Johnson, Vlissides:
Design Patterns, 1995.
132

Sneak Preview

When using the Visitor pattern,

e the set of classes must be fixed in advance, and

e each class must have an accept method.

133

First Approach: Instanceof and Type Casts

The running Java example: summing an integer list.

interface List {}
class Nil implements List {}

class Cons implements List {
int head;
List tail;

134

First Approach: Instanceof and Type Casts

List 1; // The List-object
int sum = O;
boolean proceed = true;
while (proceed) {
if (1 instanceof Nil)
proceed = false;
else if (1 instanceof Cons) {
sum = sum + ((Cons) 1) .head;
1 = ((Cons) 1) .tail;
// Notice the two type casts!

Advantage: The code is written without touching the classes Nil and

Cons.

Drawback: The code constantly uses type casts and instanceof to
determine what class of object it is considering.
135

Second Approach: Dedicated Methods

The first approach is not object-oriented!

To access parts of an object, the classical approach is to use dedicated
methods which both access and act on the subobjects.

interface List {

int sum();

}

We can now compute the sum of all components of a given List-object 1
by writing 1. sum().

136

Second Approach: Dedicated Methods

class Nil implements List {
public int sum() {
return O;

}
}

class Cons implements List {
int head;
List tail;
public int sum() {
return head + tail.sum();

}
}

Advantage: The type casts and instanceof operations have disappeared,
and the code can be written in a systematic way.

Disadvantage: For each new operation on List-objects, new dedicated
methods have to be written, and all classes must be recompiled.

137

Third Approach: The Visitor Pattern

The Idea:

e Divide the code into an object structure and a Visitor (akin to Func-
tional Programming!)

e Insert an accept method in each class. Each accept method takes a
Visitor as argument.

e A Visitor contains a visit method for each class (overloading!) A
method for a class C takes an argument of type C.

interface List {
void accept(Visitor v);

}

interface Visitor {
void visit(Nil x);
void visit(Cons x);
+

138

Third Approach: The Visitor Pattern

e The purpose of the accept methods is to
invoke the visit method in the Visitor which can handle the current

object.

class Nil implements List {
public void accept(Visitor v) {
v.visit(this);
}
}

class Cons implements List {
int head;
List tail;
public void accept(Visitor v) {
v.visit(this);
t

}
139

Third Approach: The Visitor Pattern

e The control flow goes back and forth between the visit methods in
the Visitor and the accept methods in the object structure.

class SumVisitor implements Visitor {
int sum = O;
public void visit(Nil x) {}
public void visit(Cons x) {
sum = sum + X.head;
x.tail.accept(this);

SumVisitor sv = new SumVisitor();
1l.accept(sv);
System.out.println(sv.sum) ;

Notice: The visit methods describe both
1) actions, and 2) access of subobjects.

140

Comparison

The Visitor pattern combines the advantages of the two other approaches.

Frequent Frequent
type casts? | recompilation?
Instanceof and type casts Yes No
Dedicated methods No Yes
The Visitor pattern No No

The advantage of Visitors: New methods without recompilation!
Requirement for using Visitors: All classes must have an accept method.

Tools that use the Visitor pattern:

e JJTree (from Sun Microsystems) and the Java Tree Builder (from Pur-
due University), both frontends for The Java Compiler Compiler from
Sun Microsystems.

141

Visitors: Summary

e Visitor makes adding new operations easy. Simply write a new
visitor.

e A visitor gathers related operations. It also separates unrelated
ones.

e Adding new classes to the object structure is hard. Key consid-
eration: are you most likely to change the algorithm applied over an
object structure, or are you most like to change the classes of objects
that make up the structure.

e Visitors can accumulate state.

e Visitor can break encapsulation. Visitor's approach assumes that
the interface of the data structure classes is powerful enough to let
visitors do their job. As a result, the pattern often forces you to provide
public operations that access internal state, which may compromise
its encapsulation.

142

The Java Tree Builder

JTB is a frontend for The Java Compiler Compiler.

JTB supports the building of syntax trees which can be traversed using
visitors.

JTB transforms a bare JavaCC grammar into three components:

e a JavaCC grammar with embedded Java code for building a syntax
tree;

e one class for every form of syntax tree node; and

e a default visitor which can do a depth-first traversal of a syntax tree.

143

The Java Tree Builder

The produced JavaCC grammar can then be processed by the Java Com-
piler Compiler to give a parser which produces syntax trees.

The produced syntax trees can now be traversed by a Java program by
writing subclasses of the default visitor.

Program

\

JavaCC — JTB — JavaCC grammar— Java Compiler — Parser

grammar with embedded Compiler
Java code
Syntax-tree-node Syntax tree
classes with accept methods

> Default visitor

144

Using JTB

jtb fortran.jj // generates jtb.out.jj

javacc jtb.out.jj // generates a parser with a specified name

javac Main. java // Main.java contains a call of the parser
and calls to visitors

java Main < prog.f // builds a syntax tree for prog.f, and

executes the visitors

145

Example (simplified)

For example, consider the Java 1.1 production

void Assignment() : {}
{ PrimaryExpression() AssignmentOperator ()
Expression() }

JTB produces:

Assignment Assignment ()

{ PrimaryExpression nO;
AssignmentOperator nil;

Expression n2; {} }

{ nO=PrimaryExpression()
nl=AssignmentOperator ()
n2=Expression()

{ return new Assignment(nO,nl1,n2); }

}

Notice that the production returns a syntax tree represented as an
Assignment object.

146

Example (simplified)

JTB produces a syntax-tree-node class for Assignment:

public class Assignment implements Node {
PrimaryExpression f0; AssignmentOperator f1;
Expression f2;

public Assignment(PrimaryExpression nO,
AssignmentOperator nil,
Expression n2)

{ fO = n0; f1 = n1; f2 = n2; }

public void accept(visitor.Visitor v) {
v.visit(this);

Notice the accept method; it invokes the method visit for Assignment in
the default visitor.
147

Example (simplified)

The default visitor looks like this:

public class DepthFirstVisitor implements Visitor {

//

// £0 -> PrimaryExpression()

// £1 -> AssignmentOperator ()

// £2 -> Expression()

//

public void visit(Assignment n) {
n.f0.accept(this);

n.fl.accept(this);
n.f2.accept (this);

Notice the body of the method which visits each of the three subtrees of
the Assignment node.

148

Example (simplified)

Here is an example of a program which operates on syntax trees for Java
1.1 programs. The program prints the right-hand side of every assignment.
The entire program is six lines:

public class VprintAssignRHS extends DepthFirstVisitor {
void visit(Assignment n) A
VPrettyPrinter v = new VPrettyPrinter();
n.f2.accept(v); v.out.println();
n.f2.accept(this);

}

When this visitor is passed to the root of the syntax tree, the depth-first
traversal will begin, and when Assignment nodes are reached, the method
visit in VprintAssignRHS is executed.

Notice the use of VPrettyPrinter. It is a visitor which pretty prints Java
1.1 programs.

JTB is bootstrapped.
149

