CS 247: Principles of Distributed Computing
Time: 80 mins

Name and ID:

Instructor’s name:

1. (20 points) Explain whether the following statements are True or False.

(a) The eventual leader detector can be implemented in a partially synchronous system.
Answer:
True

(b) The total-order broadcast abstraction can be implemented in an asynchronous system where pro-
cesses can crash.
Answer:
False due to FLP result

(c) The total-order broadcast abstraction preserves causal ordering as well.
Answer:
False, tob only guarantees same order across nodes

(d) The total-order broadcast abstraction is computationally more powerful that the consensus in sys-
tems with reliable channels.
Answer:
False

2. (20 points) Consider the following leader-based epoch change protocol with the following properties:

e Monotonicity
If a correct process starts an epoch (ts, 1) and later starts an epoch (ts’, 1), then ts’ > ts.

o Consistency
If a correct process starts an epoch (ts, 1) and another correct process starts an epoch (ts’, 1)
with ts = ts’, then 1 =1'.

e Fventual leadership
There is a time after which every correct process has started some epoch and starts no further
epoch, such that the last epoch started at correct processes is epoch (ts, 1) and process 1 is
correct.

Implements:
EpochChange, instance ec.

Uses:
PerfectPointToPointLinks, instance p/;
BestEffortBroadcast, instance beb;
EventualLeaderDetector, instance (2.

upon event { ec, Init) do
trusted ;= {y;
lastts :=0;
ts := rank(self);

upon event { 2, Trust | p) do

trusted ;= p:
if p = self then
15 :=1ts - N:

trigger (beb, Broadcast | NEWEPOCH, ts]);

upon event { beb, Deliver | {, NEWEPOCH, newts|) do
if ¢ = frusted N newts > lastts then
lastts := newts;
trigger (ec. StartEpoch | newts, £);
else
trigger (pl, Send | £, [NACK]);

upon event { pl, Deliver | p, [NACK]) do
if trusted = self then
ts:=ts+ N;
trigger (beb, Broadcast | NEWEPOCH, ts]);

Figure 1: Epoch change protocol

Explain why the timestamp for each epoch (ts) is incremented by N (marked code location) and what
happens if we replace that line with ts :=ts+1 7

Answer:

To maintain consistency property timestamps at different nodes need to be partitioned. If it is incre-
mented, the consistency property can be violated.

3. (20 points) Consider the uniform consensus III covered in the class. What happens if the eventual perfect
failure detector is replaced with an unreliable failure detector which can output anything? Discuss the
safety and liveness properties.

Answer:
Safety is never violated, but liveness can be violated. (5 points each) Need to explain each separately (5
points each)

Page 2

4. (20 points) Use the indistinguishability argument to show that a Terminating Reliable Broadcast (TRB)
abstraction cannot be implemented with an eventually perfect failure-detector (¢P) even if only one
process can crash.

Answer:

Consider an execution E1, in which process s crashes initially and observe the possible actions for some
correct process p: due to the termination property of TRB, there must be a time T at which p trb-
delivers 0. Consider a second execution E2 that is similar to E1 up to time T, except that the sender s is
correct and trb-broadcasts some message m, but all communication messages to and from s are delayed
until after time T. The failure detector behaves in E2 as in E1 until after time T. This is possible because
the failure detector is only eventually perfect. Up to time T, process p cannot distinguish E1 from E2
and trb-delivers §. According to the agreement property of TRB, process s must trb-deliver § as well,
and s delivers exactly one message due to the termination property. But this contradicts the validity
property of TRB, since s is correct, has trb-broadcast some message m = ¢, and must trb-deliver m. (It
is ok to draw executions instead

5. (20 points) Consider the view synchronous communication interface and protocol below:

Page 3

Module:

Name: UniformViewSynchronousCommunication, instance uvs.

Events:

Request: (uvs, Broadcast | m): Broadcasts a message m to all processes.

Indication: (uvs, Deliver | p, m): Delivers a message m broadcast by process p.

Indication: (uvs, View | V'): Installs a new view V'
identifier ¢d and membership M.

Indication: (uvs, Block)
Request: (uvs, BlockOk)

= (id, M) with view

Algorithm : TRB-Based View-Synchronous Communication

Implements:
ViewSynchronousCommunication, instance vs.

Uses:
UniformTerminatingReliableBroadcast (multiple instances):
GroupMembership, instance gn;
BestEffortBroadcast, instance beb.

upon event (vs, Init) do

(vid, M) :=(0,0);

Sflushing = FALSE; blocked := TRUE;

inview := (),
delivered :=(;
pendingviews := [;
trbdone := ();

upon event (vs, Broadcast | m) such that blocked = FALSE do
inview := inview U {(self, m)}:
lelivered := delivered U {m}; <:I
trigger (vs, Deliver | self, m)
trigger (beb. Broadcast | [DATA, vid, m]);

upon event (beb, Deliver | p, [DATA, id, m]) do
if id = vid A blocked = FALSE A m ¢ delivered then
inview := inview U {(p, m)}:
delivered := delivered U {m};
trigger (vs, Deliver | p, m);

upon event (gm, View | V') do
if V/ = (0, M") for some M’ then
{wid, NEY = (0, M*);
blocked = FALSE;
else
append(pendingviews,V');

upon pendingviews # [| A flushing = FALSE do
Slushing := TRUE;
trigger (vs, Block);

upon event (vs, BlockOk) do
blocked := TRUE;
forall p € M do
Initialize a new instance utrb.vid.p of uniform
terminating reliable broadcast with sender p;
if p = self then
trigger (utrb.vid.p, Broadcast | inview):

upon event (utrb.id.p, Deliver | p, iv) such that id = vid do
trbdone := trbdone U {p}.
if iv # A then
forall (s, m) € v such that m ¢ delivered do
delivered := delivered U {m};
trigger (vs, Deliver | s, m);

upon trbdone = M A blocked = TRUE do
V := head(pendingviews); remove(pendingviews, V');

(vid, M) =V,

correct := correct N M;
flushing := FALSE; blocked := FALSE;

inview := ();
trbdone := ();

trigger (vs, View | (vid, M));

Figure 2: View Synchronous Communication Interface and Protocol

Page 4

(a)

(b)

Explain the purpose of Block request and BlockOK indication.
Answer:
In the sildes.

When broadcasting a message using this abstraction, can we postpone the delivery of the message
to the current process (self)? In other words, can we remove the lines marked with an arrow in the
Broadcast event? If yes, explain why. If no, describe an execution where this causes problem.
Answer:

It can violate the validity property if a view change is started right after brodcasting the message to
others. A message that is broadcasted by p is not delivered by p itself (any example that indicates
this is correct. Also, agreement can be violated and is an acceptable answer)

Page 5

