
Terminating Reliable Broadcast

Mohsen Lesani



Terminating Reliable Broadcast

m

m
𝜑

deliver

deliver

broadcast
𝜑

m



(Uniform) Reliable Broadcast

• P1

• P2

broadcast (m)

X
Crash!

deliver (m)

• P3

deliver (m)



(Uniform) Reliable Broadcast

• P1

• P2

broadcast (m)

X
Crash!

?

• P3
?

The processes p1 and p3 are never sure whether a message will arrive.



Terminating Reliable Broadcast

• In RB, a process p has no means to distinguish the case where 
some process q has delivered m (and by agreement p can 
indeed wait for m), from the case where no process will ever 
deliver m (and p should definitely not keep waiting for m).


• TRB ensures that every process p either delivers the message 
m from the sender or some failure indication, denoting that 
m will never be delivered (by any process).


• TRB is however strictly stronger than (U)RB.



Terminating Reliable Broadcast

• Like reliable broadcast, agreement: correct processes in 
TRB agree on the set of messages they deliver.


• Like (uniform) reliable broadcast, uniform agreement: if a 
(correct or incorrect) process delivers a message, then 
every correct process delivers it.


• Unlike reliable broadcast, every correct process delivers a 
message, even if the broadcaster crashes.



(Uniform) Reliable Broadcast

• P1

• P2

broadcast (m)

X
Crash!

deliver (m)

• P3

deliver (m)



Terminating Reliable Broadcast

• P1

• P2

broadcast (m)

X
Crash!

deliver ( )𝜑

• P3

deliver ( )𝜑



Terminating Reliable Broadcast

• The problem is defined for a specific broadcaster process 
src (known by all processes).


• Process src is supposed to broadcast a message m 
(distinct from ).


• The other processes need to deliver m if src is correct but 
may deliver  if src crashes.

𝜑

𝜑



Terminating Reliable Broadcast

• Events

• Request: <broadcast, m>

• Indication: <deliver, p, m>


• Properties:

• TRB1, TRB2, TRB3, TRB4



Terminating Reliable Broadcast

• TRB1. Validity: If the sender src is correct and broadcasts a 
message m, then every correct process eventually delivers m.


• TRB2. Termination: Every correct process eventually delivers 
exactly one message.


• TRB3. Integrity: If a process delivers a message m, then either 
m is , or m was broadcast by src.


• TRB4. (Uniform) Agreement: For any message m, if a correct 
(any) process delivers m, then every correct process delivers m.

𝜑

Integrity is similar to RB No creation, and Termination includes RB No duplication.



Terminating Reliable Broadcast

Idea:

• Wait to either receive the message, or hear that the src has 

crashed. Accordingly, propose either the message m or none  to 
consensus.

𝜑



TRB

Implements: broadcast (trb). 

Uses:


BestEffortBroadcast (beb)

PerfectFailureDetector (P)

Consensus (cons)


upon event < Init > do

prop := 

correct := S


upon event < broadcast(m) >

trigger < beb, broadcast(m) > 

⊥



TRB

upon event < P, crash(src) > ∧ (prop = ) do 

prop := 


upon event < beb, deliver(src, m) > do 

prop := m


upon event (prop ≠ ⊥) do

trigger < cons, propose(prop) >


upon event < decide (decision) > do

trigger < deliver (src, decision) >

⊥
𝜑

To propose either m or  
and prefer m over .

𝜑
𝜑



Algorithm (trb); src = p2

• P1

• P2

broadcast (m)

X
Crash!

deliver ( )𝜑

• P3

deliver ( )𝜑

X
ucons(m): 𝜑

ucons( ): 𝜑 𝜑

crash(p2)

crash(p2)



Algorithm (trb); src = p2

• P1

• P2

broadcast (m)

X
Crash!

deliver (m)

• P3

deliver (m)

X
ucons(m): m

ucons( ): m𝜑

crash(p2)



Synchrony

• Our TRB algorithm uses the perfect failure detector P (i.e., 
P is sufficient)


• Is P also necessary? 

• Is there an algorithm that implements TRB with a failure 

detector that is strictly weaker than P? (this would mean that P 
is not necessary)


• Is there an algorithm that uses TRB to implement P? (this would 
mean that P is necessary)



Synchrony

TRB cannot be implemented by <>P.


Proof by contradiction: <>P → TRB

From the next slide, we have TRB → P.

Thus, we have <>P → P, that is a contradiction. 



Synchrony

We give an algorithm that implements P using TRB.

• We let every process pi use an infinite number of instances of TRB 

where pi is the sender.

• Every process pi keeps on trb broadcasting messages mi1, mi2, etc


• If a process pk delivers  instead of an mi, pk suspects pi.

• The algorithm needs only non-uniform TRB.

𝜑



Synchrony

Completeness

Termination and Integrity of TRB imply completeness of P:

We show that if src crashes, it is eventually suspected. By termination, each 
TRB in the sequence will eventually deliver a message. The message will be 
eventually  because otherwise by integrity, src has been broadcasting 
messages and has not crashed. 

When  is received, src is suspected.


Accuracy

Validity and Termination of TRB implies Accuracy of P:

We show that if  is delivered, src has crashed. By contradiction, if src is 
correct, by validity, a message m≠  will be delivered, and by termination, at 
most one message is delivered.

𝜑

𝜑

𝜑
𝜑



Original slides adopted from R. Guerraoui


