Terminating Reliable Broadcast

Mohsen Lesani



Terminating Reliable Broadcast

Node 2

v &

Node 3

broadcast
/ N

deliver



(Uniform) Reliable Broadcast

deliver (m)

. P1 T

broadcasy'
" X
\ deliver (m)

e P3



(Uniform) Reliable Broadcast

e P1

broadcast (m)

o P2

. P3

[The processes pl and p3 are never sure whether a message will arrive.




Terminating Reliable Broadcast

 In RB, a process p has no means to distinguish the case where
some process g has delivered m (and by agreement p can
indeed wait for m), from the case where no process will ever
deliver m (and p should definitely not keep waiting for m).

« TRB ensures that every process p either delivers the message
m from the sender or some failure indication, denoting that
m will never be delivered (by any process).

« TRB is however strictly stronger than (U)RB.



Terminating Reliable Broadcast

o Like reliable broadcast, agreement: correct processes in
TRB agree on the set of messages they deliver.

e Like (uniform) reliable broadcast, uniform agreement: if a
(correct or incorrect) process delivers a message, then
every correct process delivers it.

e Unlike reliable broadcast, every correct process delivers a
message, even if the broadcaster crashes.



(Uniform) Reliable Broadcast

deliver (m)

. P1 T

broadcasy'
" X
\ deliver (m)

e P3



Terminating Reliable Broadcast

deliver (@)

T

. P1

broadcast (m)
X deliver (@)

. P2

. P3 T



Terminating Reliable Broadcast

e The problem is defined for a specific broadcaster process
src (known by all processes).

 Process src is supposed to broadcast a message m
(distinct from @).

e The other processes need to deliver m if src is correct but
may deliver @ if src crashes.



Terminating Reliable Broadcast

e Events
o Request: <broadcast, m>
o Indication: <deliver, p, m>

e Properties:
- TRB1, TRB2, TRB3, TRB4



Terminating Reliable Broadcast

« TRB1. Validity: If the sender src is correct and broadcasts a
message m, then every correct process eventually delivers m.

« TRB2. Termination: Every correct process eventually delivers
exactly one message.

e TRB3. Integrity: If a process delivers a message m, then either
m is @, or m was broadcast by src.

« TRB4. (Uniform) Agreement: For any message m, if a correct
(any) process delivers m, then every correct process delivers m.

Integrity is similar to RB No creation, and Termination includes RB No duplication.



Terminating Reliable Broadcast

|dea:

« Wait to either receive the message, or hear that the src has

crashed. Accordingly, propose either the message m or none @ to
consensus.



TRB

Implements: broadcast (trb).

Uses:
BestEffortBroadcast (beb)
PerfectFailureDetector (P)
Consensus (cons)

upon event < Init > do
prop .= L1
correct :=S

upon event < broadcast(m) >
trigger < beb, broadcast(m) >



TRB

upon event < P, crash(src) > A (prop = 1) do
prop =@

upon event < beb, deliver(src, m) > do
prop :=m

upon event (prop # L) do
trigger < cons, propose(prop) >

upon event < decide (decision) > do
trigger < deliver (src, decision) >

To propose either m or @
and prefer m over @.



Algorithm (trb); src = p2

ucons(@): @ deliver (@)

e P1 T I

broadcast (m)
l ﬂ crash(p2)
X
\ ucons(m): @ de“VeTr (@)

e P3 T |

crash(p2)



Algorithm (trb); src = p2

ucons(@): m deliver (m)
e P1 T I T
broadcast (m)
l ﬂ crash(p2)
. P2 X
ucons(m): m deliver (m)

| !

e P3 - |



Synchrony

e Our TRB algorithm uses the perfect failure detector P (i.e.,
P is sufficient)

e Is P also necessary?

o Is there an algorithm that implements TRB with a failure
detector that is strictly weaker than P? (this would mean that P
is not necessary)

e Is there an algorithm that uses TRB to implement P? (this would
mean that P is necessary)



Synchrony

TRB cannot be implemented by <>P.

Proof by contradiction: <>P - TRB
From the next slide, we have TRB - P.

Thus, we have <>P - P, that is a contradiction.



Synchrony

We give an algorithm that implements P using TRB.

« We let every process pi use an infinite number of instances of TRB
where pi is the sender.

e Every process pi keeps on trb broadcasting messages mil, mi2, etc

* If a process pk delivers @ instead of an mi, pk suspects pi.
e The algorithm needs only non-uniform TRB.



Synchrony

Completeness

Termination and Integrity of TRB imply completeness of P:

We show that if src crashes, it is eventually suspected. By termination, each
TRB in the sequence will eventually deliver a message. The message will be

eventually ¢ because otherwise by integrity, src has been broadcasting
messages and has not crashed.

When @ is received, src is suspected.

Accuracy
Validity and Termination of TRB implies Accuracy of P:

We show that if @ is delivered, src has crashed. By contradiction, if src is

correct, by validity, a message mz@ will be delivered, and by termination, at
most one message is delivered.



Original slides adopted from R. Guerraoui



