
 Randomized Consensus

Mohsen Lesani

1

FLP Theorem

2

There is no deterministic consensus protocol for asynchronous
distributed systems when even one process crashes.

Common Coin

3

Random values from a domain D

• Request: ⟨ coin, release ⟩:

Releases the coin.

• Indication: ⟨ coin, output(v) ⟩:

Outputs the coin value v ∈ D.

Common Coin Example

P1

P2

P3

release output(2)

4

release

release

output(1)

output(4)

Common Coin Example, Eventually

P1

P2

P3

release output(3)

5

release

release

output(3)

output(3)

We say that the coin eventually matches.

Common Coin Specification

6

• Matching:  
With probability at least δ, every correct process outputs the
same coin value.

• No bias:  
In the event that all correct processes output the same coin
value, the distribution of the coin is uniform over D (i.e., a
matching coin outputs any value in D with probability 1/|D|).

• Termination:  
Every correct process eventually outputs a coin value.

• Other properties …

Common Coin Implementation

7

Independent Choice Coin: 
Upon releasing the coin, every process simply outputs a value
locally at random from D according to the uniform
distribution.  
 
If the domain is one bit then this realizes a δ = matching
common coin, because the probability that every process
selects some b is , for two bits .

2−N+1

2−N b = {0, 1}

Common Coin Implementation

8

Beacon Coin: 
An external trusted process, called the beacon, periodically
chooses an unpredictable random value and broadcasts it at
predefined times.  
When an algorithm uses a sequence of common coin
abstractions, then for the k-th coin, every process outputs the
k-th random value received from the beacon.

 
This coin always matches but it’s difficult to use it in an
asynchronous system.

Randomized Consensus

9

• Agreement

• Integrity

• Validity

• Probabilistic Termination: 

Every correct process eventually decides some value with probability 1.

Observation

10

The common coin will eventually output the same value for all
processes.

 
We need to design a consensus protocol that decides when all
processes propose the same value.

Broadcast and wait for a quorum

Eventually all the proposals are the same.

Broadcast and wait for a quorum

• P1

• P2

propose (0)

• P3

propose (0)

propose (0)

(0)

(0)

(0)

Eventually all the proposals are the same.

Broadcast and wait for a quorum

• P1

• P2

propose (0)

• P3

decide (0)

propose (0)

propose (0)

decide (0)

(0)

(0)

(0)

decide (0)

Eventually all the proposals are the same.

Broadcast and wait for a quorum

• P1

• P2

propose (0)

• P3

decide (0)

propose (0)

propose (0)

decide (0)

(0)

(0)

(0)

decide (0)

Eventually all the proposals are the same.

Does it have safety and liveness when proposals are different?

Broadcast and wait for a quorum

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(0)

(0)

The proposals are different.

Broadcast and wait for a quorum

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

A majority (quorum) of processes are correct.

Can wait for at most a
majority of processes

(⊥)

(0)

(0)

The proposals are different.

Broadcast and wait for a quorum

• P1

• P2

propose (0)

• P3

decide (0)

propose (1)

propose (0)

decide (0)

A majority (quorum) of processes are correct.

Can wait for at most a
majority of processes

(⊥)

(0)

(0)

Agreement in this round

since quorums intersect.

The proposals are different.

Broadcast and wait for a quorum

• P1

• P2

propose (0)

• P3

decide (0)

propose (1)

propose (0)

decide (0)

A majority (quorum) of processes are correct.

Can wait for at most a
majority of processes

(⊥)

(0)

(0)

Agreement in this round

since quorums intersect.

Need another round for termination

What about agreement across rounds?

The proposals are different.

Adopt the decided value for next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(0)

(0)

Second round to make others adopt

Adopt the decided value for next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(0)

(0)

Second round to make others adopt

Adopt the decided value for next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(0)

(0)

Second round to make others adopt

decide (0)

decide (0)
Decide if received a
quorum q₁ of non-⊥ values

Adopt the decided value for next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(0)

(0)

Second round to make others adopt

(0)

decide (0)

decide (0)
Decide if received a
quorum q₁ of non-⊥ values

Wait for a quorum q₂
Adopt any non-⊥ value

Adopt the decided value for next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(0)

(0)

Second round to make others adopt

(0)

decide (0)

decide (0)
Decide if received a
quorum q₁ of non-⊥ values

Wait for a quorum q₂
Adopt any non-⊥ value

Phase 2 messages are the same since
there’s quorum intersection in phase 1.

Adopt the decided value for next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(0)

(0)

Second round to make others adopt

(0)

decide (0)

decide (0)
Decide if received a
quorum q₁ of non-⊥ values

Wait for a quorum q₂
Adopt any non-⊥ value

Phase 2 messages are the same since
there’s quorum intersection in phase 1.

Quorums q₁ and q₂ intersect

Adopt the decided value for next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(0)

(0)

Second round to make others adopt

(0)

decide (0)

decide (0)
Decide if received a
quorum q₁ of non-⊥ values

Wait for a quorum q₂
Adopt any non-⊥ value

Phase 2 messages are the same since
there’s quorum intersection in phase 1.

Quorums q₁ and q₂ intersect
So P1 will adopt the value.

Next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(0)

(0)

(0)

decide (0)

decide (0)

Next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(0)

(0)

(0)

decide (0)

decide (0) propose (0)

propose (0)

propose (0)

Next round

• P1

• P2

propose (0)

• P3

propose (0)

propose (0)

(0)

(0)

(0)

decide (0)

Already decided

Already decided

Next round

• P1

• P2

propose (0)

• P3

propose (0)

propose (0)

(0)

(0)

(0)

decide (0)

Already decided

Already decided

In the next round, all the remaining
correct processes decide.

If not received non-⊥ value, get value from the coin for the next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(⊥)

(0)

If not received non-⊥ value, get value from the coin for the next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(⊥)

(0)

If not received non-⊥ value, get value from the coin for the next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(⊥)

(0) (0)

(0)

If not received non-⊥ value, get value from the coin for the next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(⊥)

(0)

get value from coin

(0)

(0)

If not received non-⊥ value, get value from the coin for the next round

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(⊥)

(0)

get value from coin

(0)

(0)

In Phase 2, ⊥ is sent only when there are different
proposals. So any binary value from the coin is valid.

Deterministic choice would lead to non-termination

• P1

• P2

propose (0)

• P3

propose (1)

propose (0)

(⊥)

(⊥)

(0) (0)

(0)

(1)

Deterministic choice of 1 for P1
takes the configuration to the
initial state, and this can repeat.

Randomized Binary Consensus (1/3)

18

Implements: RandomizedConsensus, with domain {0, 1}.

Uses: BestEffortBroadcast, instance beb;

 CommonCoin (multiple instances).

upon event ⟨ Init ⟩ do

round := 0; phase := 0; proposal := ⊥; decided := ⊥;

val := [⊥]n

upon event ⟨ propose(v) ⟩ do

proposal := v; round := 1; phase := 1

trigger ⟨ beb, broadcast (Phase1(round, proposal)) ⟩

Randomized Binary Consensus (2/3)

19

upon event ⟨ beb, deliver(p, Phase1(r, v) ⟩ such that phase = 1 ∧ r = round do

val[p] := v

if decided ≠⊥ then

trigger ⟨ beb, broadcast(Phase2(round, decided)) ⟩

else if #(val) > n/2 do

if ∃v such that val[p] for all p then

proposal := v

else

proposal := ⊥

val := [⊥]n; phase := 2

trigger ⟨ beb, broadcast(Phase2(round, proposal)) ⟩

Randomized Binary Consensus (3/3)

20

upon event ⟨ beb, deliver(p, Phase2(r, v) ⟩ such that phase = 2 ∧ r = round do

val[p] := v

if #(val) ≥ n/2 ∧ coin[round] is not initialized then

Initialize a new instance coin[round] of CommonCoin with domain {0, 1}

trigger ⟨ coin[round], release ⟩

upon event ⟨ coin[round], output(c) ⟩ do

if decided ≠⊥ then

proposal := decided

else if ∃v ≠⊥ such that #{p∈Π | val[p]=v} > n/2 then

decided := proposal := v

trigger ⟨ decide(v) ⟩

else if ∃p ∈ Π, v ≠⊥ such that val[p] = v then

proposal := v

else

proposal := c

val := [⊥]n; round := round + 1; phase := 1

trigger ⟨ beb, broadcast(Phase1(round, proposal)) ⟩

Add code to stop one round after decision.

Optimization: After decision, send the value
to others by a reliable broadcast and stop.

Proof of Properties

21

• Agreement: 
Case 1. Decisions in the same round: because of quorum intersection in phase 1. 
Case 2. Decisions in two rounds: The value decided in the first round is adopted by all
correct processes for the second round.

• Integrity: 
The handler issues decision only if no decision is already made.

• Validity: 
A decided value in a round was proposed by a majority in that round. We show by
induction on the rounds that a proposal in every round is a proposal from the first
round. A process adopts its proposal for the next round either from this round which is
proposed by a majority in this round, or from the coin. A value is taken from the coin
only when the process receives ⊥ from a majority in phase 2. A process sends ⊥ for
phase 2 after receiving different binary proposals in phase 1. So any binary value from
the coin is a proposed value.

• Probabilistic Termination: 
The proposals adopted from the previous round are the same because of quorum
intersection in phase 1. The coin takes values uniformly at random. It will eventually
match the adopted value if any, and all processes decide in that round.

Randomized Consensus for General Domains

22

• Common coin with a domain

• In order to satisfy validity, the coin should output only proposed

values. The domain of the coin should be a subset of proposed values.

• In each round, each process broadcasts its proposal.

• Processes collect the set of proposals, and instantiate the coin with it.

• This set grows and processes eventually converge.

• Correct processes eventually invoke the coin with the same set.

• In the meanwhile, the coin provides termination so that the protocol

makes progress.

Get value from the coin for the next round

• P1

• P2

propose (3)

• P3

propose (2)

propose (3)

(⊥)

(⊥)

(3)

get value from coin

(3)

(3)

The coin should return either 2 or 3.

Randomized Consensus for General Domains

24

Implements: RandomizedConsensus.

Uses: …; ReliableBroadcast, instance rb

upon event ⟨ Init ⟩ do

...

values := ∅

upon event ⟨ propose(v) ⟩ do

...

values := values ∪ {v}

trigger ⟨ rb, broadcast(Proposal(v) ⟩

upon event ⟨ rb, deliver(p, Proposal(v) ⟩ do

values := values ∪ {v};

upon #(val) > N/2 ∧ phase = 2 ∧ decision = ⊥ do

Initialize a new instance coin[round] of CommonCoin with domain values;

…

