
Atomic registers

Mohsen Lesani

Atomic register specification

The application model

Registers

Sequential execution

• P1

• P2

 R()	

 W(5) W(6)

 R()	

Sequential execution

• P1

• P2

 R():5

 W(5) W(6)

 R():6

Concurrent execution

• P1

• P2

 R1(): ?

 W(5) W(6)

 R2(): ? R3(): ?

Execution with failures

• P1

• P2 W(5) W(6)

 R(): ?

X
Crash!

Execution 1

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 0 R3(): 25

Just a so-called safe execution. Not a regular execution. Not an atomic execution.

R2 does not return the value of a previous or concurrent write.

No matter where W(6) is linearized, the return value of R2 cannot be justified.

Execution 2

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6 R3(): 5

A regular execution. Not an atomic execution.

R2 returns the value of the concurrent write W(6). R3 returns the value of the lates write W(5).

W(6) can be linearized before R2 to justify its return value. However, the return value of R3 cannot be
justified.

Regular vs Atomic

• The regular register might in this case allow the first
Read() to obtain the new value and the second Read() to
obtain the old value.

• The atomic register does not allow that.

Execution 3

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 5 R3(): 5

Execution 4

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6 R3(): 6

Safety

• An atomic register provides strong guarantees even when
there is concurrency and failures

• Every operation appears to be executed at some instant
between its invocation and response events.

• The execution is equivalent to a sequential and failure-
free execution (called the linearization).

Execution 3

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 5 R3(): 5

An atomic execution. W(6) can be linearized after both
R2 and R3. And the return value of both can be justified.

Execution 3

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 5 R3(): 5

An atomic execution. W(6) can be linearized after both
R2 and R3. And the return value of both can be justified.

Execution 4

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6 R3(): 6

An atomic execution. W(6) can be linearized before both
R2 and R3. And the return value of both can be justified.

Execution 4

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6 R3(): 6

An atomic execution. W(6) can be linearized before both
R2 and R3. And the return value of both can be justified.

Revisit Execution 2

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6 R3(): 5

A regular execution. Not an atomic execution.

R2 returns the value of the concurrent write W(6). R3 returns the value of the latest write W(5).

W(6) can be linearized before R2 to justify its return value. However, the return value of R3 cannot be
justified.

Revisit Execution 2

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6 R3(): 5

A regular execution. Not an atomic execution.

R2 returns the value of the concurrent write W(6). R3 returns the value of the latest write W(5).

W(6) can be linearized before R2 to justify its return value. However, the return value of R3 cannot be
justified.

Atomic register

Every failed (write) operation appears to be either complete
or not to have been invoked at all.

Execution 5

• P1

• P2 W(5) W(6)

 R(): 5

X
Crash!

An atomic execution. W(6) is
considered as not executed at all.

Execution 5

• P1

• P2 W(5) W(6)

 R(): 5

X
Crash!

An atomic execution. W(6) is
considered as not executed at all.

Execution 6

• P1

• P2 W(5) W(6)

 R1(): 5

X
Crash!

An atomic execution. W(6) can be linearized after R1 and
before R2. And the return value of both can be justified.

 R2(): 6

Execution 6

• P1

• P2 W(5) W(6)

 R1(): 5

X
Crash!

An atomic execution. W(6) can be linearized after R1 and
before R2. And the return value of both can be justified.

 R2(): 6

Execution 7

• P1

• P2 W(5) W(6)

 R1(): 6

X
Crash!

A regular execution. Not an atomic execution.

R1 is returning the value of the concurrent write W(6). R2 is returning the value of the latest write W(5).

W(6) can be linearized before R1 to justify the return value of R1 but then the return value of R2 cannot
be justified.

 R2(): 5

Execution 7

• P1

• P2 W(5) W(6)

 R1(): 6

X
Crash!

A regular execution. Not an atomic execution.

R1 is returning the value of the concurrent write W(6). R2 is returning the value of the latest write W(5).

W(6) can be linearized before R1 to justify the return value of R1 but then the return value of R2 cannot
be justified.

 R2(): 5

Atomic register Algorithms

Overview of this lecture

1. A 1-1 atomic fail-stop algorithm

2. From regular to atomic

3. A 1-N atomic fail-stop algorithm

4. A N-N atomic fail-stop algorithm

5. From fail-stop to fail-silent

Fail-stop algorithms

• We first assume a fail-stop model:

• any number of processes can fail by crashing (no recovery)

• failure detection is perfect

• channels are reliable

A fail-stop 1-1 atomic algorithm

upon Write(v) at p1

send [W,v] to p2

wait until either:

deliver [ack] from p2

suspect [p2]

trigger ok

At p2 :

upon receive [W,v] from p1

 v2 := v

 trigger send [ack] to p2

upon Read() at p2

trigger Ret(v2)

Atomicity?

• P1

• P2

 R1(): 5

 W(6)

 R2(): 5
 v1=5 v1=5

 W(5)

Atomicity?

• P1

• P2

 R1(): 5

 W(6)

 R2(): 5
 v1=5 v1=5

 W(5)

Atomicity?

• P1

• P2

 R1(): 5

 W(6)

 R2(): 5
 v1=5 v1=5

 W(5)

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6

 v1=5 v1=6

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6

 v1=5 v1=6

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6

 v1=5 v1=6

Overview of this lecture

1. A 1-1 atomic fail-stop algorithm

2. From regular to atomic

3. A 1-N atomic fail-stop algorithm

4. A N-N atomic fail-stop algorithm

5. From fail-stop to fail-silent

The regular algorithm

• Consider our fail-stop regular register algorithm

• Every process has a local copy of the register value

• Every process reads locally

• The writer writes globally, i.e., at all (non-crashed) processes

The regular algorithm

upon Write(v) at pi

trigger send [W,v] to all

foreach pj, wait until either:

deliver [ack] or

suspect [pj]

trigger ok

At pi :

upon receive [W,v] from pj

 vi := v

 trigger send [ack] to pj

Read() at pi

trigger Ret(vi)

Atomicity?

• P1

• P2
 W(5)

• P3

Atomicity?

• P1

• P2
 W(5)

• P3

Atomicity?

• P1

• P2

 R1(): 5

 W(5)

 v1=5

• P3

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 v1=5

• P3

 v1=6

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 v1=5

• P3

W(6) has updated P1 but not P3 yet.

 v1=6

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6

 v1=5

• P3

W(6) has updated P1 but not P3 yet.

 v1=6

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6

 v1=5

• P3 R3(): 5
 v3=5

W(6) has updated P1 but not P3 yet.

 v1=6

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6

 v1=5

• P3 R3(): 5
 v3=5

W(6) has updated P1 but not P3 yet.

 v1=6

R3 should return 6.

Fix? Reads write.

upon Read() at pi

trigger send [W,vi] to all

foreach pj, wait until either:

deliver [ack] or

suspect [pj]

trigger Ret(vi)

Reads update the other processes before
returning the value.

Atomicity?

• P1

• P2

 R1(): 5

 W(5)

 v1=5

• P3

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 v1=5

• P3

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 v1=5

• P3

 v1=6

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6

 v1=5

• P3

 v1=6

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6

 v1=5

• P3
 v3=6

R2 that is returning the new value 6 makes sure that the
other processes are updated.

 v1=6

Atomicity?

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6

 v1=5

• P3 R3(): 6
 v3=6

R2 that is returning the new value 6 makes sure that the
other processes are updated.

 v1=6

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3
 v3=6

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3

The updates by R1 overwrite the updates by W(6).

This is not linearizable. R2 should be linearized after W2.

 v3=6 v3=5

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3
 R2(): 5

The updates by R1 overwrite the updates by W(6).

This is not linearizable. R2 should be linearized after W2.

 v3=6 v3=5

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3
 R2(): 5

The updates by R1 overwrite the updates by W(6).

This is not linearizable. R2 should be linearized after W2.

R3 should return 6.

 v3=6 v3=5

A fail-stop 1-N algorithm

Idea:

• Write only newer values.

• The writer, p1 maintains and propagates a timestamp ts1

• Every process maintains a sequence number in addition to the
local value of the register.

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3

 ts=2

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3
 v3=6
 sn=2

 ts=2

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3
 v3=6
 sn=2

 sn=1 ts=2

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3
 v3=6

The updates by R1 cannot overwrite the updates by W2.

 sn=2

 sn=1

 —

 ts=2

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3
 R2(): 6

 v3=6

The updates by R1 cannot overwrite the updates by W2.

 sn=2

 sn=1

 —

 ts=2

Still a problem?

• P1

• P2

 R1(): 5

 W1(5) W2(6)

• P3
 R2(): 6

 v3=6

The updates by R1 cannot overwrite the updates by W2.

 sn=2

 sn=1

 —

 ts=2

Overview of this lecture

1. A 1-1 atomic fail-stop algorithm

2. From regular to atomic

3. A 1-N atomic fail-stop algorithm

4. A N-N atomic fail-stop algorithm

5. From fail-stop to fail-silent

A fail-stop 1-N algorithm

upon Write(v) at p1

 ts1 = ts1 + 1

 trigger send [W,ts1,v] to all

 foreach pi, wait until either:

deliver [ack] or

suspect [pi]

 trigger ok

 upon deliver [W,ts,v] from pj

 if ts > sni then

 vi := v

 sni := ts

 trigger send [ack] to pj

upon Read() at pi

 trigger send [W,sni,vi] to all

 foreach pj, wait until either:

 deliver [ack] or

 suspect [pj]

 trigger Ret(vi)

From fail-stop to fail-silent

• We assume a majority of correct processes.

• In the 1-N algorithm,

• the writer writes in a majority using a timestamp stored locally and

• the reader retrieves the value with the highest timestamp from a majority

and then imposes this value on a majority

Timestamp not enough for N-N?

• P1

• P2

 W(X)

• P3

 W(Y)

• P4

Timestamp not enough for N-N?

• P1

• P2

 W(X)

• P3

latest sn1=1

 W(Y)

• P4

latest sn1=1

Timestamp not enough for N-N?

• P1

• P2

 W(X)

• P3

latest sn1=1

 W(Y)

• P4

latest sn1=1

Timestamp not enough for N-N?

• P1

• P2

 W(X)

• P3

latest sn1=1

 W(Y)

• P4

Y X ignored

latest sn1=1

Timestamp not enough for N-N?

• P1

• P2

 W(X)

• P3

latest sn1=1

 W(Y)

• P4

Y X ignored

X Y ignored

latest sn1=1

Timestamp not enough for N-N?

• P1

• P2

 W(X)

• P3

latest sn1=1

 W(Y)

• P4 R1(): X

Y X ignored

X Y ignored

latest sn1=1

Timestamp not enough for N-N?

• P1

• P2

 W(X)

• P3

R2 should return X but is returning Y. Not linearizable.

latest sn1=1

 W(Y)

• P4 R1(): X

 R2(): Y

Y X ignored

X Y ignored

latest sn1=1

Timestamp not enough for N-N?

• P1

• P2

 W(X)

• P3

R2 should return X but is returning Y. Not linearizable.

latest sn1=1

 W(Y)

• P4 R1(): X

 R2(): Y

Y X ignored

X Y ignored

latest sn1=1

A fail-stop N-N algorithm

Two writer processes might get the same timestamp at the same
time. If their messages are delivered in two different orders to two
processes, those processes end up with different values. Then, later
reads in them are not linearizable.

A fail-stop N-N algorithm

Idea:

• To write, first collect the largest timestamp, and increment it.

• Use unique write ids: (ts, pid)

• First timestamps and then a fixed order between processes
determine the order.

Unique identifiers

• P1

• P2

 W(X)

• P3

 W(Y)

• P4

lastest sn1=1

latest sn1=1

Unique identifiers

• P1

• P2

 W(X)

• P3

 W(Y)

• P4

Y,(1,P2) X,(1,P1) ignored

lastest sn1=1

latest sn1=1

Unique identifiers

• P1

• P2

 W(X)

• P3

 W(Y)

• P4

Y,(1,P2) X,(1,P1) ignored

X,(1,P1) Y,(1,P2)

lastest sn1=1

latest sn1=1

Unique identifiers

• P1

• P2

 W(X)

• P3

R1 and R2 should both return Y. Linearizable.

 W(Y)

• P4 R1(): Y

Y,(1,P2) X,(1,P1) ignored

X,(1,P1) Y,(1,P2)

lastest sn1=1

latest sn1=1

Unique identifiers

• P1

• P2

 W(X)

• P3

R1 and R2 should both return Y. Linearizable.

 W(Y)

• P4 R1(): Y

 R2(): Y

Y,(1,P2) X,(1,P1) ignored

X,(1,P1) Y,(1,P2)

lastest sn1=1

latest sn1=1

Unique identifiers

• P1

• P2

 W(X)

• P3

R1 and R2 should both return Y. Linearizable.

 W(Y)

• P4 R1(): Y

 R2(): Y

Y,(1,P2) X,(1,P1) ignored

X,(1,P1) Y,(1,P2)

lastest sn1=1

latest sn1=1

Overview of this lecture

1. A 1-1 atomic fail-stop algorithm

2. From regular to atomic

3. A 1-N atomic fail-stop algorithm

4. A N-N atomic fail-stop algorithm

5. From fail-stop to fail-silent

N-N atomic fail-stop, Write()

upon Write(v) at pi

 trigger send [W,(sni+1,idi),v] to all

 foreach pj, wait until either:

 deliver [W,(sni+1,idi),ack] or

 suspect [pj]

 trigger ok

At pi :

 upon deliver [W,(snj,idj),v] from pj

 if (snj,idj) > (sni,idi) then

 vi := v

 (sni,idi) := (snj,idj)

 trigger send [W,(snj,idj),ack] to pj

N-N atomic fail-stop, Read()

upon Read(v) at pi

trigger send [W,(sni,idi),v] to all

foreach pj, wait until either:

deliver [W,(sni+1,idi),ack] or

suspect [pj]

trigger Ret(v)

At pi :

upon deliver [W,(snj,idj),v] from pj

 if (snj,idj) > (sni,idi) then

 vi := v

 (sni,idi) := (snj,idj)

 trigger send [W,(snj,idj),ack] to pj

Reads still try to update other processes with their
value before returning it.

From fail-stop to fail-silent

• We assume a majority of correct processes.

• In the 1-N algorithm,

• the writer writes in a majority using a timestamp stored locally and

• the reader retrieves the value with the highest timestamp from a majority

• In the N-N algorithm,

• ?

Why not N-N?

• P1

• P2 W(X)

• P3

The updates from W(Z) have timestamp 1. The updates from
W(Y) have timestamp 2. In P1, Z cannot overwrite Y.

 W(Y)

 R():Y

 W(Z)

 ts=2 ts=1

 —
 v1=Y
 sn=2

From fail-stop to fail-silent

• We assume a majority of correct processes.

• In the 1-N algorithm,

• the writer writes in a majority using a timestamp stored locally and

• the reader retrieves the value with the highest timestamp from a majority

• In the N-N algorithm,

• in addition, the writers first collect the timestamp from a majority, and

increment it.

Now N-N?

• P1

• P2
 W(X)

• P3

W(Z) collects the largest timestamp 2 and sends updates with
timestamp 3.

 W(Y)

 R():Z

 W(Z)

 sn1=1 sn1=2

 sn1=3

Y, 2 Z, 3

 sn1=2

Unique identifiers

• P1

• P2
 W(X)

• P3

W(Z) collects the largest timestamp 2 and sends updates with
timestamp 3.

 W(Y)

 R():Z

 W(Z)

 sn1=1 sn1=2

 sn1=3

Y, (2,P2) Z, (3,P3)

Parts of slides adopted from R. Guerraoui

