
Atomic Commit
Mohsen Lesani

Atomic Commit: An Agreement Problem

Commit/Abort

Commit/Abort
Commit/Abort

Transactions (Gray)

• A transaction is a program describing a sequence of
accesses to shared and distributed information

• A transaction should be executed atomically. It can be
terminated either by committing or aborting.

Transactions

beginTransaction
alice.withdraw(1.000.000)
bob.deposit(1.000.000)
outcome := commitTransaction
if (outcome = abort) then …

ACID properties

• Atomicity: a transaction either performs entirely or not at all.
• Consistency: a transaction transforms a consistent state into

another consistent state.
• Isolation: a transaction appears to be executed in isolation,

not exposing intermediate states.
• Durability: the effects of a transaction that commits are

permanent.

The programmer should write transactions that assuming consistent state,
return consistent state.

The Consistency Contract

If the programmer preserves the consistency locally, then
the system deals with concurrency to preserve the
consistency globally.

Distributed Transaction

Abort/Commit
0/1

Abort/Commit
0/1

Abort/Commit
0/1

Atomic Commit Events

• As in consensus, every process has an initial value 0 (no)
or 1 (yes) and must decide on a final value 0 (abort) or 1
(commit).

• The proposition means the ability to commit the
transaction.

• Unlike consensus, processes seek to decide 1 but every
process has a veto right.

Atomic Commit

• Events
• Request: <propose, v>
• Indication: <pecide, v’>
• v, v’ ∈ {Commit, Abort}

• Properties:
• NBAC1, NBAC2, NBAC3, NBAC4

Atomic Commit Specification

• NBAC1. Termination: Every correct process eventually
decides.

• NBAC2. Abort-Validity: 0 can only be decided if some
process crashes or votes 0.

• NBAC3. Commit-Validity: 1 can only be decided if all
processes propose 1.

• NBAC4. Integrity: No process decides twice.
• NBAC5. Uniform Agreement: No two processes decide

differently.

Abort-validity is the non-triviality property. Otherwise the decision could be always 0.

Atomic Commit Example 1

• P1

• P2

propose (1)

• P3

decide (0)

propose (0)

propose (0)

decide (0)

decide (0)

Atomic Commit Example 2

• P1

• P2

propose (1)

• P3

decide (0)

propose (1)

propose (1)

decide (0)

X
Crash!

Atomic Commit Example 3

• P1

• P2

propose (1)

• P3

decide (1)

propose (1)

propose (1)

decide (1)

X
Crash!

2-Phase Commit Protocol

• P1

• P2

propose (1)

• P3

decide (1)

propose (1)

propose (1)

decide (1)

decide (1)

request vote decision

The request phase can be skipped if the leader is previously known.

2-Phase Commit Protocol

• P1

• P2

propose (1)

• P3

decide (0)

propose (1)

propose (1)

decide (0)

2PC uses the perfect failure detector P.

X
crash (p2)

2-Phase Commit Protocol

• P1

• P2

propose (1)

• P3

propose (1)

propose (1)

Week termination: If the leader crashes
then the processes are blocked.

X

Non-Blocking Atomic Commit

Idea:
• There cannot be just one leader. The leader should be

distributed. Each process should act as a leader.

Broadcast?

• P1

• P2

propose (1)

• P3

decide (1)

propose (1)

propose (1)

decide (1)

decide (1)

Broadcast?

• P1

• P2

• P3

decide (1)

Very weak termination: Even if one process crashes, others can be blocked.

X
propose (1)

propose (1)

propose (1)

Broadcast?

• P1

• P2

• P3

decide (1)

If a failure detector is used, the issue is that agreement can be violated.

decide (0)?

crash(p2)

X
propose (1)

propose (1)

propose (1)

Non-Blocking Atomic Commit

Idea:
• There cannot be just one leader. The leader should be

distributed. Each process should act as a leader.
• Processes broadcast their proposals. Each process arrives at a

value based on the delivered proposals or crash of other
processes. Processes may disagree because of unreliable
broadcast by crashed processes. They use consensus to agree.

• By validity of consensus, the decided value is proposed.
• The value 1 is proposed only when the process receives the

proposal 1 from all processes. This leads to commit-validity.
• The value 0 is proposed only when the process receives the

proposal 0 from a process or its crash notification. This leads to
abort-validity.

NBAC

Implements: NonBlockingAtomicCommit (nbac).
Uses:

BestEffortBroadcast (beb).
PerfectFailureDetector (P).
UniformConsensus (uc).

upon event < Init > do
prop = 1;
delivered = ; correct = ∅ 𝛱

NBAC

upon event <propose(v)> do
trigger <beb, broadcast(v)>

upon event <beb, deliver(pi, v)> do
delivered = delivered U {pi}
prop = prop * v

upon event <P, crash(pi)> do
correct = correct \ {pi}
Prop = 0

A crashed process or delivery of a zero proposal vetoes the current proposal.

NBAC

upon event delivered = or correct do
trigger <uc, propose(prop)>

upon event <uc, decide(dec)> do
trigger <decide (dec)>

𝛱 ≠ 𝛱

 NBAC with UCons

• P1

• P2

• P3

decide (1)

decide (1)

decide (1)

UCons (1) : 1

UCons (1) : 1

UCons (1) : 1

propose (1)

propose (1)

propose (1)

 NBAC with UCons

• P1

• P2

• P3

UCons (0) : 0

UCons (0) : 0

X
Crash!

propose (1)

propose (1)

propose (1) decide (0)

decide (0)

 NBAC with UCons

• P1

• P2

• P3

UCons (1) : 1

UCons (1) : 1

X

decide (1)

decide (1)propose (1)

propose (1)

propose (1)

NBAC with UCons

• P1

• P2

• P3

UCons (0) : 0

UCons (1) : 0

X
propose (1)

propose (1)

propose (1) decide (0)

decide (0)

crash (p1)

Non-Blocking Atomic Commit

• Do we need the perfect failure detector P?

• We show that <>P is not enough.
• Let’s assume there is an atomic commit protocol that uses

only <>P.
• We arrive at a contradiction by an indistinguishability

argument.

Run 1

• P1

• P2

• P3

decide (0)

decide (0)

X
Crash!

The process p1 is proposing 0. Therefore, according to the commit-validity and
termination properties, other processes eventually decide 0.

propose (1)

propose (0)

propose (1)
crash (p1)

crash (p1)

Run 2

• P1

• P2

• P3

X
Crash!

The process p1 is now proposing 1. However, p1 did not send any message in the previous
and this execution. Thus, this execution should have the same decision as the previous one.

propose (1)

propose (1)

propose (1) decide (0)

decide (0)

crash (p1)

crash (p1)

Run 3

• P1

• P2

• P3

Now, the process p1 does not crash anymore. Only its messages are slow. Thus, it is
still suspected. So the algorithm still decides 0 but now that violates abort-validity.

<>P becomes
accurate

propose (1)

propose (1)

propose (1) decide (0)

decide (0)

crash (p1)

crash (p1)

restore (p1)

restore (p1)

Original slides adopted from R. Guerraoui

