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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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calls have maintained the invariant, the call is applied to a state that satis�es the invariant as well.
Permissibility implies that the call preserves the invariant. Similar to consistency, permissibility is
simply lifted to executions and replicated executions. For brevity, we elide this to the appendix § 1
[Appendix 2018].
Well-coordination requires each call to be permissible in its originating replica. If a call is

requested at a replica but is not permissible in its current state, the call should be aborted (and
maybe retried later).

D��������� 10 (L������ �����������). A replicated execution xs of a context c is locally permissible
i� every request r is permissible in the execution of its originating replica origc (r ).

Although permissibility is directly checked only locally at the originating replicas, we will show
that well-coordination conditions ensure the global permissibility of calls at every replica.
As we saw in Fig. 2.(b), we say that two method calls S-commute (state-commute) if starting

from every pre-state, the post-state is the same if the calls are reordered.

D��������� 11 (S�����C������������ ��� S�����C�������). Two method calls c1 and c2 S-
commute, written as c1 ⌧S c2 i� for every state� , update(c2) (update(c1) (� )) = update(c1) (update(c2) (� )).
Otherwise, they S-con�ict, written as c1 ./S c2.

S-con�icting calls need synchronization since we saw in Fig. 2.(a) that they cause state divergence.
We note that S-commutativity and the following properties are de�ned on (dynamic) method

calls; however, they are simply lifted to (static) methods. For instance, we say that two methods
S-commute i� all calls on the two S-commute. In § 4, we consider these properties on methods.

There are calls such as deposit on a bank account that are always permissible as far as they are
applied to a state that satis�es the invariant. We call these calls invariant-su�cient.

D��������� 12 (I���������S���������). A call c is invariant-su�cient i� for every state � if
I (� ) then P (� ,c ).

Every call is checked to be permissible in its originating replica. However, as we saw in Fig. 2.(c),
if a call is simply broadcast, when it arrives at other replicas, other calls may have been executed at
the destination replicas that were not executed at the originating replica. These extra calls maymake
the arrived call impermissible. As we saw in Fig. 2.(d), we say that a method call P-R-commutes
(permissible-right-commutes) another if starting from any state where the former is permissible,
moving it right after the latter does not violate permissibility.

D��������� 13 (P�����������R�����C������������). The call c1 P-R-commutes with the call c2
written as c1 !P c2 i� for every state � , if P (� ,c1) then P (update(c2) (� ),c1).

If a call is invariant-su�cient or P-R-commutes another call, we say that the former P-concurs
(permissible-concurs) with the latter. Otherwise, we say that the former P-con�icts (permissible-
con�icts) with the latter.

D��������� 14 (P�����������C����� ��� P�����������C�������). A call c1 P-concurs with a
call c2 i� c1 is invariant-su�cient or c1 !P c2. Otherwise, c1 P-con�icts with c2.

A pair of calls can avoid synchronization only if they both S-commute and P-concur with
respect to each other.

D��������� 15 (C����� ��� C�������). A pair of calls c1 and c2 concur i� they S-commute and
P-concur with each other. Otherwise, they con�ict written as c1 ./ c2.
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Concur and con�ict relations are symmetric. The con�ict relation on methods can be represented
as the con�ict graph G./ : an undirected graph where the vertices are the set of methods and the
edges are the pairs of con�icting methods. A replicated execution is con�ict-synchronizing if every
pair of con�icting calls have the same order across replicas.

D��������� 16 (C���������������������). A replicated execution xs of a context c is con�ict-
synchronizing i� for every pair of requests r and r 0 in Rc such that callc (r ) ./ callc (r 0), for every pair
of replicas n and n0, if r �xs(n) r 0 then r �xs(n0) r 0.
Similar to con�ict-synchronizing, S-con�ict-synchronizing and P-con�ict-synchronizing are

similarly de�ned with respect to S-con�ict and P-con�ict. (We elide them to the appendix).
As we saw in Fig. 2.(e), when a call arrives at other replicas, other calls that were executed

at the originating replica may have not arrived and executed at destination replicas. However,
permissibility of the call may be dependent on the missing calls. As we saw in Fig. 2.(f), we say
that a method call P-L-commutes (permissible-left-commutes) with another if moving the former
left before the latter does not render the former impermissible.

D��������� 17 (P�����������L����C����������). A call c2 P-L-commutes a call c1, written as
c2  P c1 i� for every state � , if P (update(c1) (� ),c2) then P (� ,c2).

A call can avoid tracking dependencies to another call if the former is invariant-su�cient or
P-L-commutes with the latter.

D��������� 18 (I���������� ��� D��������). A call c2 is independent of c1, written as c2 ?? c1,
i� either c2 is invariant-su�cient or c2  P c1. Otherwise, c2 is dependent on c1, written as c2 6?? c1.

The dependency relation between methods can be represented as a directed graph that we call the
dependency graph. A replicated execution is dependency-preserving if for every call, its preceding
dependencies in its originating replica precede it in the other replicas as well.

D��������� 19 (D����������P���������). A replicated execution xs of a context c is dependency-
preserving i� for every pair of requests r and r 0 in Rc, such that callc (r 0) 6?? callc (r ), if r �xs(origc (r 0)) r 0,
then for every replica n, r �xs(n) r 0.

We note that in Def. 16, call orders in any replica necessitates the same orders in other replicas.
In contrast, in Def. 19, only orders between a call and its preceding calls in its originating replica
necessitates the same order in other replicas.
A replicated execution is well-coordinated if the permissibility of calls are checked at the orig-

inating replicas, con�icting calls are synchronized and the dependencies are preserved. Well-
coordination is a su�cient condition for the correctness of replicated executions.

D��������� 20 (W����������������). A replicated execution is well-coordinated i� it is locally
permissible, con�ict-synchronizing, and dependency-preserving.

T������ 1. Every well-coordinated replicated execution is correct.

The full proof is available in the appendix § 1. It follows from the de�nition of well-coordination
and correct (Def. 20 and Def. 8) and the following two lemmas. We present the high-level ideas.

L���� 1. Every S-con�ict-synchronizing replicated execution is convergent.

Consider two executions x and x0 from the replicated execution (with the same set of requests
possibly in di�erent orders). Assume that x and x0 are S-con�ict-synchronizing with respect to
each other. We prove that these two executions result in the same post-state. By induction, x0 can
be incrementally converted to x from left to right without changing its �nal post-state. Assume
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to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Coordination 
Analysis

74:10 Farzin Houshmand and Mohsen Lesani

calls have maintained the invariant, the call is applied to a state that satis�es the invariant as well.
Permissibility implies that the call preserves the invariant. Similar to consistency, permissibility is
simply lifted to executions and replicated executions. For brevity, we elide this to the appendix § 1
[Appendix 2018].
Well-coordination requires each call to be permissible in its originating replica. If a call is

requested at a replica but is not permissible in its current state, the call should be aborted (and
maybe retried later).

D��������� 10 (L������ �����������). A replicated execution xs of a context c is locally permissible
i� every request r is permissible in the execution of its originating replica origc (r ).

Although permissibility is directly checked only locally at the originating replicas, we will show
that well-coordination conditions ensure the global permissibility of calls at every replica.
As we saw in Fig. 2.(b), we say that two method calls S-commute (state-commute) if starting

from every pre-state, the post-state is the same if the calls are reordered.

D��������� 11 (S�����C������������ ��� S�����C�������). Two method calls c1 and c2 S-
commute, written as c1 ⌧S c2 i� for every state� , update(c2) (update(c1) (� )) = update(c1) (update(c2) (� )).
Otherwise, they S-con�ict, written as c1 ./S c2.

S-con�icting calls need synchronization since we saw in Fig. 2.(a) that they cause state divergence.
We note that S-commutativity and the following properties are de�ned on (dynamic) method

calls; however, they are simply lifted to (static) methods. For instance, we say that two methods
S-commute i� all calls on the two S-commute. In § 4, we consider these properties on methods.

There are calls such as deposit on a bank account that are always permissible as far as they are
applied to a state that satis�es the invariant. We call these calls invariant-su�cient.

D��������� 12 (I���������S���������). A call c is invariant-su�cient i� for every state � if
I (� ) then P (� ,c ).

Every call is checked to be permissible in its originating replica. However, as we saw in Fig. 2.(c),
if a call is simply broadcast, when it arrives at other replicas, other calls may have been executed at
the destination replicas that were not executed at the originating replica. These extra calls maymake
the arrived call impermissible. As we saw in Fig. 2.(d), we say that a method call P-R-commutes
(permissible-right-commutes) another if starting from any state where the former is permissible,
moving it right after the latter does not violate permissibility.

D��������� 13 (P�����������R�����C������������). The call c1 P-R-commutes with the call c2
written as c1 !P c2 i� for every state � , if P (� ,c1) then P (update(c2) (� ),c1).

If a call is invariant-su�cient or P-R-commutes another call, we say that the former P-concurs
(permissible-concurs) with the latter. Otherwise, we say that the former P-con�icts (permissible-
con�icts) with the latter.

D��������� 14 (P�����������C����� ��� P�����������C�������). A call c1 P-concurs with a
call c2 i� c1 is invariant-su�cient or c1 !P c2. Otherwise, c1 P-con�icts with c2.

A pair of calls can avoid synchronization only if they both S-commute and P-concur with
respect to each other.

D��������� 15 (C����� ��� C�������). A pair of calls c1 and c2 concur i� they S-commute and
P-concur with each other. Otherwise, they con�ict written as c1 ./ c2.
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Concur and con�ict relations are symmetric. The con�ict relation on methods can be represented
as the con�ict graph G./ : an undirected graph where the vertices are the set of methods and the
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similarly de�ned with respect to S-con�ict and P-con�ict. (We elide them to the appendix).
As we saw in Fig. 2.(e), when a call arrives at other replicas, other calls that were executed

at the originating replica may have not arrived and executed at destination replicas. However,
permissibility of the call may be dependent on the missing calls. As we saw in Fig. 2.(f), we say
that a method call P-L-commutes (permissible-left-commutes) with another if moving the former
left before the latter does not render the former impermissible.
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c2  P c1 i� for every state � , if P (update(c1) (� ),c2) then P (� ,c2).

A call can avoid tracking dependencies to another call if the former is invariant-su�cient or
P-L-commutes with the latter.

D��������� 18 (I���������� ��� D��������). A call c2 is independent of c1, written as c2 ?? c1,
i� either c2 is invariant-su�cient or c2  P c1. Otherwise, c2 is dependent on c1, written as c2 6?? c1.

The dependency relation between methods can be represented as a directed graph that we call the
dependency graph. A replicated execution is dependency-preserving if for every call, its preceding
dependencies in its originating replica precede it in the other replicas as well.

D��������� 19 (D����������P���������). A replicated execution xs of a context c is dependency-
preserving i� for every pair of requests r and r 0 in Rc, such that callc (r 0) 6?? callc (r ), if r �xs(origc (r 0)) r 0,
then for every replica n, r �xs(n) r 0.

We note that in Def. 16, call orders in any replica necessitates the same orders in other replicas.
In contrast, in Def. 19, only orders between a call and its preceding calls in its originating replica
necessitates the same order in other replicas.
A replicated execution is well-coordinated if the permissibility of calls are checked at the orig-

inating replicas, con�icting calls are synchronized and the dependencies are preserved. Well-
coordination is a su�cient condition for the correctness of replicated executions.

D��������� 20 (W����������������). A replicated execution is well-coordinated i� it is locally
permissible, con�ict-synchronizing, and dependency-preserving.

T������ 1. Every well-coordinated replicated execution is correct.

The full proof is available in the appendix § 1. It follows from the de�nition of well-coordination
and correct (Def. 20 and Def. 8) and the following two lemmas. We present the high-level ideas.

L���� 1. Every S-con�ict-synchronizing replicated execution is convergent.

Consider two executions x and x0 from the replicated execution (with the same set of requests
possibly in di�erent orders). Assume that x and x0 are S-con�ict-synchronizing with respect to
each other. We prove that these two executions result in the same post-state. By induction, x0 can
be incrementally converted to x from left to right without changing its �nal post-state. Assume
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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calls have maintained the invariant, the call is applied to a state that satis�es the invariant as well.
Permissibility implies that the call preserves the invariant. Similar to consistency, permissibility is
simply lifted to executions and replicated executions. For brevity, we elide this to the appendix § 1
[Appendix 2018].
Well-coordination requires each call to be permissible in its originating replica. If a call is

requested at a replica but is not permissible in its current state, the call should be aborted (and
maybe retried later).

D��������� 10 (L������ �����������). A replicated execution xs of a context c is locally permissible
i� every request r is permissible in the execution of its originating replica origc (r ).

Although permissibility is directly checked only locally at the originating replicas, we will show
that well-coordination conditions ensure the global permissibility of calls at every replica.
As we saw in Fig. 2.(b), we say that two method calls S-commute (state-commute) if starting

from every pre-state, the post-state is the same if the calls are reordered.

D��������� 11 (S�����C������������ ��� S�����C�������). Two method calls c1 and c2 S-
commute, written as c1 ⌧S c2 i� for every state� , update(c2) (update(c1) (� )) = update(c1) (update(c2) (� )).
Otherwise, they S-con�ict, written as c1 ./S c2.

S-con�icting calls need synchronization since we saw in Fig. 2.(a) that they cause state divergence.
We note that S-commutativity and the following properties are de�ned on (dynamic) method

calls; however, they are simply lifted to (static) methods. For instance, we say that two methods
S-commute i� all calls on the two S-commute. In § 4, we consider these properties on methods.

There are calls such as deposit on a bank account that are always permissible as far as they are
applied to a state that satis�es the invariant. We call these calls invariant-su�cient.

D��������� 12 (I���������S���������). A call c is invariant-su�cient i� for every state � if
I (� ) then P (� ,c ).

Every call is checked to be permissible in its originating replica. However, as we saw in Fig. 2.(c),
if a call is simply broadcast, when it arrives at other replicas, other calls may have been executed at
the destination replicas that were not executed at the originating replica. These extra calls maymake
the arrived call impermissible. As we saw in Fig. 2.(d), we say that a method call P-R-commutes
(permissible-right-commutes) another if starting from any state where the former is permissible,
moving it right after the latter does not violate permissibility.

D��������� 13 (P�����������R�����C������������). The call c1 P-R-commutes with the call c2
written as c1 !P c2 i� for every state � , if P (� ,c1) then P (update(c2) (� ),c1).

If a call is invariant-su�cient or P-R-commutes another call, we say that the former P-concurs
(permissible-concurs) with the latter. Otherwise, we say that the former P-con�icts (permissible-
con�icts) with the latter.

D��������� 14 (P�����������C����� ��� P�����������C�������). A call c1 P-concurs with a
call c2 i� c1 is invariant-su�cient or c1 !P c2. Otherwise, c1 P-con�icts with c2.

A pair of calls can avoid synchronization only if they both S-commute and P-concur with
respect to each other.

D��������� 15 (C����� ��� C�������). A pair of calls c1 and c2 concur i� they S-commute and
P-concur with each other. Otherwise, they con�ict written as c1 ./ c2.
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Concur and con�ict relations are symmetric. The con�ict relation on methods can be represented
as the con�ict graph G./ : an undirected graph where the vertices are the set of methods and the
edges are the pairs of con�icting methods. A replicated execution is con�ict-synchronizing if every
pair of con�icting calls have the same order across replicas.

D��������� 16 (C���������������������). A replicated execution xs of a context c is con�ict-
synchronizing i� for every pair of requests r and r 0 in Rc such that callc (r ) ./ callc (r 0), for every pair
of replicas n and n0, if r �xs(n) r 0 then r �xs(n0) r 0.
Similar to con�ict-synchronizing, S-con�ict-synchronizing and P-con�ict-synchronizing are

similarly de�ned with respect to S-con�ict and P-con�ict. (We elide them to the appendix).
As we saw in Fig. 2.(e), when a call arrives at other replicas, other calls that were executed

at the originating replica may have not arrived and executed at destination replicas. However,
permissibility of the call may be dependent on the missing calls. As we saw in Fig. 2.(f), we say
that a method call P-L-commutes (permissible-left-commutes) with another if moving the former
left before the latter does not render the former impermissible.

D��������� 17 (P�����������L����C����������). A call c2 P-L-commutes a call c1, written as
c2  P c1 i� for every state � , if P (update(c1) (� ),c2) then P (� ,c2).

A call can avoid tracking dependencies to another call if the former is invariant-su�cient or
P-L-commutes with the latter.

D��������� 18 (I���������� ��� D��������). A call c2 is independent of c1, written as c2 ?? c1,
i� either c2 is invariant-su�cient or c2  P c1. Otherwise, c2 is dependent on c1, written as c2 6?? c1.

The dependency relation between methods can be represented as a directed graph that we call the
dependency graph. A replicated execution is dependency-preserving if for every call, its preceding
dependencies in its originating replica precede it in the other replicas as well.

D��������� 19 (D����������P���������). A replicated execution xs of a context c is dependency-
preserving i� for every pair of requests r and r 0 in Rc, such that callc (r 0) 6?? callc (r ), if r �xs(origc (r 0)) r 0,
then for every replica n, r �xs(n) r 0.

We note that in Def. 16, call orders in any replica necessitates the same orders in other replicas.
In contrast, in Def. 19, only orders between a call and its preceding calls in its originating replica
necessitates the same order in other replicas.
A replicated execution is well-coordinated if the permissibility of calls are checked at the orig-

inating replicas, con�icting calls are synchronized and the dependencies are preserved. Well-
coordination is a su�cient condition for the correctness of replicated executions.

D��������� 20 (W����������������). A replicated execution is well-coordinated i� it is locally
permissible, con�ict-synchronizing, and dependency-preserving.

T������ 1. Every well-coordinated replicated execution is correct.

The full proof is available in the appendix § 1. It follows from the de�nition of well-coordination
and correct (Def. 20 and Def. 8) and the following two lemmas. We present the high-level ideas.

L���� 1. Every S-con�ict-synchronizing replicated execution is convergent.

Consider two executions x and x0 from the replicated execution (with the same set of requests
possibly in di�erent orders). Assume that x and x0 are S-con�ict-synchronizing with respect to
each other. We prove that these two executions result in the same post-state. By induction, x0 can
be incrementally converted to x from left to right without changing its �nal post-state. Assume
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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calls have maintained the invariant, the call is applied to a state that satis�es the invariant as well.
Permissibility implies that the call preserves the invariant. Similar to consistency, permissibility is
simply lifted to executions and replicated executions. For brevity, we elide this to the appendix § 1
[Appendix 2018].
Well-coordination requires each call to be permissible in its originating replica. If a call is

requested at a replica but is not permissible in its current state, the call should be aborted (and
maybe retried later).

D��������� 10 (L������ �����������). A replicated execution xs of a context c is locally permissible
i� every request r is permissible in the execution of its originating replica origc (r ).

Although permissibility is directly checked only locally at the originating replicas, we will show
that well-coordination conditions ensure the global permissibility of calls at every replica.
As we saw in Fig. 2.(b), we say that two method calls S-commute (state-commute) if starting

from every pre-state, the post-state is the same if the calls are reordered.

D��������� 11 (S�����C������������ ��� S�����C�������). Two method calls c1 and c2 S-
commute, written as c1 ⌧S c2 i� for every state� , update(c2) (update(c1) (� )) = update(c1) (update(c2) (� )).
Otherwise, they S-con�ict, written as c1 ./S c2.

S-con�icting calls need synchronization since we saw in Fig. 2.(a) that they cause state divergence.
We note that S-commutativity and the following properties are de�ned on (dynamic) method

calls; however, they are simply lifted to (static) methods. For instance, we say that two methods
S-commute i� all calls on the two S-commute. In § 4, we consider these properties on methods.

There are calls such as deposit on a bank account that are always permissible as far as they are
applied to a state that satis�es the invariant. We call these calls invariant-su�cient.

D��������� 12 (I���������S���������). A call c is invariant-su�cient i� for every state � if
I (� ) then P (� ,c ).

Every call is checked to be permissible in its originating replica. However, as we saw in Fig. 2.(c),
if a call is simply broadcast, when it arrives at other replicas, other calls may have been executed at
the destination replicas that were not executed at the originating replica. These extra calls maymake
the arrived call impermissible. As we saw in Fig. 2.(d), we say that a method call P-R-commutes
(permissible-right-commutes) another if starting from any state where the former is permissible,
moving it right after the latter does not violate permissibility.

D��������� 13 (P�����������R�����C������������). The call c1 P-R-commutes with the call c2
written as c1 !P c2 i� for every state � , if P (� ,c1) then P (update(c2) (� ),c1).

If a call is invariant-su�cient or P-R-commutes another call, we say that the former P-concurs
(permissible-concurs) with the latter. Otherwise, we say that the former P-con�icts (permissible-
con�icts) with the latter.

D��������� 14 (P�����������C����� ��� P�����������C�������). A call c1 P-concurs with a
call c2 i� c1 is invariant-su�cient or c1 !P c2. Otherwise, c1 P-con�icts with c2.

A pair of calls can avoid synchronization only if they both S-commute and P-concur with
respect to each other.

D��������� 15 (C����� ��� C�������). A pair of calls c1 and c2 concur i� they S-commute and
P-concur with each other. Otherwise, they con�ict written as c1 ./ c2.
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Concur and con�ict relations are symmetric. The con�ict relation on methods can be represented
as the con�ict graph G./ : an undirected graph where the vertices are the set of methods and the
edges are the pairs of con�icting methods. A replicated execution is con�ict-synchronizing if every
pair of con�icting calls have the same order across replicas.

D��������� 16 (C���������������������). A replicated execution xs of a context c is con�ict-
synchronizing i� for every pair of requests r and r 0 in Rc such that callc (r ) ./ callc (r 0), for every pair
of replicas n and n0, if r �xs(n) r 0 then r �xs(n0) r 0.
Similar to con�ict-synchronizing, S-con�ict-synchronizing and P-con�ict-synchronizing are

similarly de�ned with respect to S-con�ict and P-con�ict. (We elide them to the appendix).
As we saw in Fig. 2.(e), when a call arrives at other replicas, other calls that were executed

at the originating replica may have not arrived and executed at destination replicas. However,
permissibility of the call may be dependent on the missing calls. As we saw in Fig. 2.(f), we say
that a method call P-L-commutes (permissible-left-commutes) with another if moving the former
left before the latter does not render the former impermissible.

D��������� 17 (P�����������L����C����������). A call c2 P-L-commutes a call c1, written as
c2  P c1 i� for every state � , if P (update(c1) (� ),c2) then P (� ,c2).

A call can avoid tracking dependencies to another call if the former is invariant-su�cient or
P-L-commutes with the latter.

D��������� 18 (I���������� ��� D��������). A call c2 is independent of c1, written as c2 ?? c1,
i� either c2 is invariant-su�cient or c2  P c1. Otherwise, c2 is dependent on c1, written as c2 6?? c1.

The dependency relation between methods can be represented as a directed graph that we call the
dependency graph. A replicated execution is dependency-preserving if for every call, its preceding
dependencies in its originating replica precede it in the other replicas as well.

D��������� 19 (D����������P���������). A replicated execution xs of a context c is dependency-
preserving i� for every pair of requests r and r 0 in Rc, such that callc (r 0) 6?? callc (r ), if r �xs(origc (r 0)) r 0,
then for every replica n, r �xs(n) r 0.

We note that in Def. 16, call orders in any replica necessitates the same orders in other replicas.
In contrast, in Def. 19, only orders between a call and its preceding calls in its originating replica
necessitates the same order in other replicas.
A replicated execution is well-coordinated if the permissibility of calls are checked at the orig-

inating replicas, con�icting calls are synchronized and the dependencies are preserved. Well-
coordination is a su�cient condition for the correctness of replicated executions.

D��������� 20 (W����������������). A replicated execution is well-coordinated i� it is locally
permissible, con�ict-synchronizing, and dependency-preserving.

T������ 1. Every well-coordinated replicated execution is correct.

The full proof is available in the appendix § 1. It follows from the de�nition of well-coordination
and correct (Def. 20 and Def. 8) and the following two lemmas. We present the high-level ideas.

L���� 1. Every S-con�ict-synchronizing replicated execution is convergent.

Consider two executions x and x0 from the replicated execution (with the same set of requests
possibly in di�erent orders). Assume that x and x0 are S-con�ict-synchronizing with respect to
each other. We prove that these two executions result in the same post-state. By induction, x0 can
be incrementally converted to x from left to right without changing its �nal post-state. Assume
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph
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to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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refIntegrity predicate (de�ned in the caption). For example, refIntegrity(es,ecid,ss,sid) states that
for every record r in the relation es , there exists a record r 0 in the relation ss such that esid of r is
equal to sid of r 0 that is esid(r ) = sid(r 0) where the �eld names esid and sid are used as functions
on the corresponding records. Methods represent transactions on the object state. A method is a
functionm from the method parameter(s) and the pre-state � to a record of hguard,update, retvi,
where guard is the boolean precondition of the method, update is the post-state, and retv is the
return value. The courseware object has �ve methods: register to register a student, addCourse to
add a course, enroll to enroll a student in a course, deleteCourse to delete a course and query to
obtain the current state of the object. The guard of a method captures the semantic preconditions
of the method and not the conditions that preserve the invariant. (We present the conditions that
preserve the invariant in § 3.) For simplicity, the guards in this example are all T. (A guard for
the deleteCourse method could be that the input course should exist in the course relation to be
deleted.) All but the querymethod return no value ?. A method call c is the application of a method
to its arguments i.e. a function from the pre-state to a record of hguard,update, retvi.
Given the de�nition of a sequential object, the goal is to automatically synthesize a replicated

object. The state of the object is replicated across replicas. Clients can call methods at every replica
and the calls are communicated between replicas. The replicated object is expected to satisfy
both consistency and convergence. Consistency is the safety property that every method call is
executed only when the guard of the method and the invariant are satis�ed. Convergence is the
safety property that when no call is in transit, all replicas converge to the same state. We want to
perform coordination only when necessary to preserve these properties. We say that a method call c
is permissible in a state � , written as P (� ,c ), if the guard of c is satis�ed in � and c results in a post-
state � 0 that satis�es the invariant I that is I (� 0). The post-state of a method call is the pre-state
of the next in a replica. The initial state is assumed to satisfy the invariant. Therefore, if every call
is permissible in its pre-state, then every call is consistent. To execute a method call, we check that
it is permissible in its originating replica. Thus, we say that each method call is locally permissible.
Otherwise, the call is aborted. Still, if the call is simply broadcast, it is not necessarily permissible
when it arrives at other replicas. Some calls need coordination. We now present representative
incorrect executions to showcase the conditions that necessitate coordination.

Well-coordination. Method calls such as adding a course and enrolling a student result in the
same state if their order of execution is swapped. However, the resulting state of some pairs of
methods calls is dependent on their execution order. Fig. 2.(a) shows an execution where a course
c is added and deleted concurrently at two replicas. The two method calls are executed without
coordination and are broadcast to other replicas and executed on arrival. Thus, the two replicas
execute the two method calls in two di�erent orders and their �nal states diverge. Reordering the
execution of adding and removing a value from a set does not result in the same state. (As we will see
in § 5, particular CRDT sets can converge even when their operations reorder [Shapiro et al. 2011].)
As Fig. 2.(b) shows, we say that two method calls S-commute (state-commute) written as c1 ⌧S c2,
i� starting from the same pre-state, executing them in either of the two orders results in the same
post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
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condition for course identi�ers is similar. We represent referential integrity properties using the
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to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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refIntegrity predicate (de�ned in the caption). For example, refIntegrity(es,ecid,ss,sid) states that
for every record r in the relation es , there exists a record r 0 in the relation ss such that esid of r is
equal to sid of r 0 that is esid(r ) = sid(r 0) where the �eld names esid and sid are used as functions
on the corresponding records. Methods represent transactions on the object state. A method is a
functionm from the method parameter(s) and the pre-state � to a record of hguard,update, retvi,
where guard is the boolean precondition of the method, update is the post-state, and retv is the
return value. The courseware object has �ve methods: register to register a student, addCourse to
add a course, enroll to enroll a student in a course, deleteCourse to delete a course and query to
obtain the current state of the object. The guard of a method captures the semantic preconditions
of the method and not the conditions that preserve the invariant. (We present the conditions that
preserve the invariant in § 3.) For simplicity, the guards in this example are all T. (A guard for
the deleteCourse method could be that the input course should exist in the course relation to be
deleted.) All but the querymethod return no value ?. A method call c is the application of a method
to its arguments i.e. a function from the pre-state to a record of hguard,update, retvi.
Given the de�nition of a sequential object, the goal is to automatically synthesize a replicated

object. The state of the object is replicated across replicas. Clients can call methods at every replica
and the calls are communicated between replicas. The replicated object is expected to satisfy
both consistency and convergence. Consistency is the safety property that every method call is
executed only when the guard of the method and the invariant are satis�ed. Convergence is the
safety property that when no call is in transit, all replicas converge to the same state. We want to
perform coordination only when necessary to preserve these properties. We say that a method call c
is permissible in a state � , written as P (� ,c ), if the guard of c is satis�ed in � and c results in a post-
state � 0 that satis�es the invariant I that is I (� 0). The post-state of a method call is the pre-state
of the next in a replica. The initial state is assumed to satisfy the invariant. Therefore, if every call
is permissible in its pre-state, then every call is consistent. To execute a method call, we check that
it is permissible in its originating replica. Thus, we say that each method call is locally permissible.
Otherwise, the call is aborted. Still, if the call is simply broadcast, it is not necessarily permissible
when it arrives at other replicas. Some calls need coordination. We now present representative
incorrect executions to showcase the conditions that necessitate coordination.

Well-coordination. Method calls such as adding a course and enrolling a student result in the
same state if their order of execution is swapped. However, the resulting state of some pairs of
methods calls is dependent on their execution order. Fig. 2.(a) shows an execution where a course
c is added and deleted concurrently at two replicas. The two method calls are executed without
coordination and are broadcast to other replicas and executed on arrival. Thus, the two replicas
execute the two method calls in two di�erent orders and their �nal states diverge. Reordering the
execution of adding and removing a value from a set does not result in the same state. (As we will see
in § 5, particular CRDT sets can converge even when their operations reorder [Shapiro et al. 2011].)
As Fig. 2.(b) shows, we say that two method calls S-commute (state-commute) written as c1 ⌧S c2,
i� starting from the same pre-state, executing them in either of the two orders results in the same
post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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refIntegrity predicate (de�ned in the caption). For example, refIntegrity(es,ecid,ss,sid) states that
for every record r in the relation es , there exists a record r 0 in the relation ss such that esid of r is
equal to sid of r 0 that is esid(r ) = sid(r 0) where the �eld names esid and sid are used as functions
on the corresponding records. Methods represent transactions on the object state. A method is a
functionm from the method parameter(s) and the pre-state � to a record of hguard,update, retvi,
where guard is the boolean precondition of the method, update is the post-state, and retv is the
return value. The courseware object has �ve methods: register to register a student, addCourse to
add a course, enroll to enroll a student in a course, deleteCourse to delete a course and query to
obtain the current state of the object. The guard of a method captures the semantic preconditions
of the method and not the conditions that preserve the invariant. (We present the conditions that
preserve the invariant in § 3.) For simplicity, the guards in this example are all T. (A guard for
the deleteCourse method could be that the input course should exist in the course relation to be
deleted.) All but the querymethod return no value ?. A method call c is the application of a method
to its arguments i.e. a function from the pre-state to a record of hguard,update, retvi.
Given the de�nition of a sequential object, the goal is to automatically synthesize a replicated

object. The state of the object is replicated across replicas. Clients can call methods at every replica
and the calls are communicated between replicas. The replicated object is expected to satisfy
both consistency and convergence. Consistency is the safety property that every method call is
executed only when the guard of the method and the invariant are satis�ed. Convergence is the
safety property that when no call is in transit, all replicas converge to the same state. We want to
perform coordination only when necessary to preserve these properties. We say that a method call c
is permissible in a state � , written as P (� ,c ), if the guard of c is satis�ed in � and c results in a post-
state � 0 that satis�es the invariant I that is I (� 0). The post-state of a method call is the pre-state
of the next in a replica. The initial state is assumed to satisfy the invariant. Therefore, if every call
is permissible in its pre-state, then every call is consistent. To execute a method call, we check that
it is permissible in its originating replica. Thus, we say that each method call is locally permissible.
Otherwise, the call is aborted. Still, if the call is simply broadcast, it is not necessarily permissible
when it arrives at other replicas. Some calls need coordination. We now present representative
incorrect executions to showcase the conditions that necessitate coordination.

Well-coordination. Method calls such as adding a course and enrolling a student result in the
same state if their order of execution is swapped. However, the resulting state of some pairs of
methods calls is dependent on their execution order. Fig. 2.(a) shows an execution where a course
c is added and deleted concurrently at two replicas. The two method calls are executed without
coordination and are broadcast to other replicas and executed on arrival. Thus, the two replicas
execute the two method calls in two di�erent orders and their �nal states diverge. Reordering the
execution of adding and removing a value from a set does not result in the same state. (As we will see
in § 5, particular CRDT sets can converge even when their operations reorder [Shapiro et al. 2011].)
As Fig. 2.(b) shows, we say that two method calls S-commute (state-commute) written as c1 ⌧S c2,
i� starting from the same pre-state, executing them in either of the two orders results in the same
post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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refIntegrity predicate (de�ned in the caption). For example, refIntegrity(es,ecid,ss,sid) states that
for every record r in the relation es , there exists a record r 0 in the relation ss such that esid of r is
equal to sid of r 0 that is esid(r ) = sid(r 0) where the �eld names esid and sid are used as functions
on the corresponding records. Methods represent transactions on the object state. A method is a
functionm from the method parameter(s) and the pre-state � to a record of hguard,update, retvi,
where guard is the boolean precondition of the method, update is the post-state, and retv is the
return value. The courseware object has �ve methods: register to register a student, addCourse to
add a course, enroll to enroll a student in a course, deleteCourse to delete a course and query to
obtain the current state of the object. The guard of a method captures the semantic preconditions
of the method and not the conditions that preserve the invariant. (We present the conditions that
preserve the invariant in § 3.) For simplicity, the guards in this example are all T. (A guard for
the deleteCourse method could be that the input course should exist in the course relation to be
deleted.) All but the querymethod return no value ?. A method call c is the application of a method
to its arguments i.e. a function from the pre-state to a record of hguard,update, retvi.
Given the de�nition of a sequential object, the goal is to automatically synthesize a replicated

object. The state of the object is replicated across replicas. Clients can call methods at every replica
and the calls are communicated between replicas. The replicated object is expected to satisfy
both consistency and convergence. Consistency is the safety property that every method call is
executed only when the guard of the method and the invariant are satis�ed. Convergence is the
safety property that when no call is in transit, all replicas converge to the same state. We want to
perform coordination only when necessary to preserve these properties. We say that a method call c
is permissible in a state � , written as P (� ,c ), if the guard of c is satis�ed in � and c results in a post-
state � 0 that satis�es the invariant I that is I (� 0). The post-state of a method call is the pre-state
of the next in a replica. The initial state is assumed to satisfy the invariant. Therefore, if every call
is permissible in its pre-state, then every call is consistent. To execute a method call, we check that
it is permissible in its originating replica. Thus, we say that each method call is locally permissible.
Otherwise, the call is aborted. Still, if the call is simply broadcast, it is not necessarily permissible
when it arrives at other replicas. Some calls need coordination. We now present representative
incorrect executions to showcase the conditions that necessitate coordination.

Well-coordination. Method calls such as adding a course and enrolling a student result in the
same state if their order of execution is swapped. However, the resulting state of some pairs of
methods calls is dependent on their execution order. Fig. 2.(a) shows an execution where a course
c is added and deleted concurrently at two replicas. The two method calls are executed without
coordination and are broadcast to other replicas and executed on arrival. Thus, the two replicas
execute the two method calls in two di�erent orders and their �nal states diverge. Reordering the
execution of adding and removing a value from a set does not result in the same state. (As we will see
in § 5, particular CRDT sets can converge even when their operations reorder [Shapiro et al. 2011].)
As Fig. 2.(b) shows, we say that two method calls S-commute (state-commute) written as c1 ⌧S c2,
i� starting from the same pre-state, executing them in either of the two orders results in the same
post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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refIntegrity predicate (de�ned in the caption). For example, refIntegrity(es,ecid,ss,sid) states that
for every record r in the relation es , there exists a record r 0 in the relation ss such that esid of r is
equal to sid of r 0 that is esid(r ) = sid(r 0) where the �eld names esid and sid are used as functions
on the corresponding records. Methods represent transactions on the object state. A method is a
functionm from the method parameter(s) and the pre-state � to a record of hguard,update, retvi,
where guard is the boolean precondition of the method, update is the post-state, and retv is the
return value. The courseware object has �ve methods: register to register a student, addCourse to
add a course, enroll to enroll a student in a course, deleteCourse to delete a course and query to
obtain the current state of the object. The guard of a method captures the semantic preconditions
of the method and not the conditions that preserve the invariant. (We present the conditions that
preserve the invariant in § 3.) For simplicity, the guards in this example are all T. (A guard for
the deleteCourse method could be that the input course should exist in the course relation to be
deleted.) All but the querymethod return no value ?. A method call c is the application of a method
to its arguments i.e. a function from the pre-state to a record of hguard,update, retvi.
Given the de�nition of a sequential object, the goal is to automatically synthesize a replicated

object. The state of the object is replicated across replicas. Clients can call methods at every replica
and the calls are communicated between replicas. The replicated object is expected to satisfy
both consistency and convergence. Consistency is the safety property that every method call is
executed only when the guard of the method and the invariant are satis�ed. Convergence is the
safety property that when no call is in transit, all replicas converge to the same state. We want to
perform coordination only when necessary to preserve these properties. We say that a method call c
is permissible in a state � , written as P (� ,c ), if the guard of c is satis�ed in � and c results in a post-
state � 0 that satis�es the invariant I that is I (� 0). The post-state of a method call is the pre-state
of the next in a replica. The initial state is assumed to satisfy the invariant. Therefore, if every call
is permissible in its pre-state, then every call is consistent. To execute a method call, we check that
it is permissible in its originating replica. Thus, we say that each method call is locally permissible.
Otherwise, the call is aborted. Still, if the call is simply broadcast, it is not necessarily permissible
when it arrives at other replicas. Some calls need coordination. We now present representative
incorrect executions to showcase the conditions that necessitate coordination.

Well-coordination. Method calls such as adding a course and enrolling a student result in the
same state if their order of execution is swapped. However, the resulting state of some pairs of
methods calls is dependent on their execution order. Fig. 2.(a) shows an execution where a course
c is added and deleted concurrently at two replicas. The two method calls are executed without
coordination and are broadcast to other replicas and executed on arrival. Thus, the two replicas
execute the two method calls in two di�erent orders and their �nal states diverge. Reordering the
execution of adding and removing a value from a set does not result in the same state. (As we will see
in § 5, particular CRDT sets can converge even when their operations reorder [Shapiro et al. 2011].)
As Fig. 2.(b) shows, we say that two method calls S-commute (state-commute) written as c1 ⌧S c2,
i� starting from the same pre-state, executing them in either of the two orders results in the same
post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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refIntegrity predicate (de�ned in the caption). For example, refIntegrity(es,ecid,ss,sid) states that
for every record r in the relation es , there exists a record r 0 in the relation ss such that esid of r is
equal to sid of r 0 that is esid(r ) = sid(r 0) where the �eld names esid and sid are used as functions
on the corresponding records. Methods represent transactions on the object state. A method is a
functionm from the method parameter(s) and the pre-state � to a record of hguard,update, retvi,
where guard is the boolean precondition of the method, update is the post-state, and retv is the
return value. The courseware object has �ve methods: register to register a student, addCourse to
add a course, enroll to enroll a student in a course, deleteCourse to delete a course and query to
obtain the current state of the object. The guard of a method captures the semantic preconditions
of the method and not the conditions that preserve the invariant. (We present the conditions that
preserve the invariant in § 3.) For simplicity, the guards in this example are all T. (A guard for
the deleteCourse method could be that the input course should exist in the course relation to be
deleted.) All but the querymethod return no value ?. A method call c is the application of a method
to its arguments i.e. a function from the pre-state to a record of hguard,update, retvi.
Given the de�nition of a sequential object, the goal is to automatically synthesize a replicated

object. The state of the object is replicated across replicas. Clients can call methods at every replica
and the calls are communicated between replicas. The replicated object is expected to satisfy
both consistency and convergence. Consistency is the safety property that every method call is
executed only when the guard of the method and the invariant are satis�ed. Convergence is the
safety property that when no call is in transit, all replicas converge to the same state. We want to
perform coordination only when necessary to preserve these properties. We say that a method call c
is permissible in a state � , written as P (� ,c ), if the guard of c is satis�ed in � and c results in a post-
state � 0 that satis�es the invariant I that is I (� 0). The post-state of a method call is the pre-state
of the next in a replica. The initial state is assumed to satisfy the invariant. Therefore, if every call
is permissible in its pre-state, then every call is consistent. To execute a method call, we check that
it is permissible in its originating replica. Thus, we say that each method call is locally permissible.
Otherwise, the call is aborted. Still, if the call is simply broadcast, it is not necessarily permissible
when it arrives at other replicas. Some calls need coordination. We now present representative
incorrect executions to showcase the conditions that necessitate coordination.

Well-coordination. Method calls such as adding a course and enrolling a student result in the
same state if their order of execution is swapped. However, the resulting state of some pairs of
methods calls is dependent on their execution order. Fig. 2.(a) shows an execution where a course
c is added and deleted concurrently at two replicas. The two method calls are executed without
coordination and are broadcast to other replicas and executed on arrival. Thus, the two replicas
execute the two method calls in two di�erent orders and their �nal states diverge. Reordering the
execution of adding and removing a value from a set does not result in the same state. (As we will see
in § 5, particular CRDT sets can converge even when their operations reorder [Shapiro et al. 2011].)
As Fig. 2.(b) shows, we say that two method calls S-commute (state-commute) written as c1 ⌧S c2,
i� starting from the same pre-state, executing them in either of the two orders results in the same
post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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refIntegrity predicate (de�ned in the caption). For example, refIntegrity(es,ecid,ss,sid) states that
for every record r in the relation es , there exists a record r 0 in the relation ss such that esid of r is
equal to sid of r 0 that is esid(r ) = sid(r 0) where the �eld names esid and sid are used as functions
on the corresponding records. Methods represent transactions on the object state. A method is a
functionm from the method parameter(s) and the pre-state � to a record of hguard,update, retvi,
where guard is the boolean precondition of the method, update is the post-state, and retv is the
return value. The courseware object has �ve methods: register to register a student, addCourse to
add a course, enroll to enroll a student in a course, deleteCourse to delete a course and query to
obtain the current state of the object. The guard of a method captures the semantic preconditions
of the method and not the conditions that preserve the invariant. (We present the conditions that
preserve the invariant in § 3.) For simplicity, the guards in this example are all T. (A guard for
the deleteCourse method could be that the input course should exist in the course relation to be
deleted.) All but the querymethod return no value ?. A method call c is the application of a method
to its arguments i.e. a function from the pre-state to a record of hguard,update, retvi.
Given the de�nition of a sequential object, the goal is to automatically synthesize a replicated

object. The state of the object is replicated across replicas. Clients can call methods at every replica
and the calls are communicated between replicas. The replicated object is expected to satisfy
both consistency and convergence. Consistency is the safety property that every method call is
executed only when the guard of the method and the invariant are satis�ed. Convergence is the
safety property that when no call is in transit, all replicas converge to the same state. We want to
perform coordination only when necessary to preserve these properties. We say that a method call c
is permissible in a state � , written as P (� ,c ), if the guard of c is satis�ed in � and c results in a post-
state � 0 that satis�es the invariant I that is I (� 0). The post-state of a method call is the pre-state
of the next in a replica. The initial state is assumed to satisfy the invariant. Therefore, if every call
is permissible in its pre-state, then every call is consistent. To execute a method call, we check that
it is permissible in its originating replica. Thus, we say that each method call is locally permissible.
Otherwise, the call is aborted. Still, if the call is simply broadcast, it is not necessarily permissible
when it arrives at other replicas. Some calls need coordination. We now present representative
incorrect executions to showcase the conditions that necessitate coordination.

Well-coordination. Method calls such as adding a course and enrolling a student result in the
same state if their order of execution is swapped. However, the resulting state of some pairs of
methods calls is dependent on their execution order. Fig. 2.(a) shows an execution where a course
c is added and deleted concurrently at two replicas. The two method calls are executed without
coordination and are broadcast to other replicas and executed on arrival. Thus, the two replicas
execute the two method calls in two di�erent orders and their �nal states diverge. Reordering the
execution of adding and removing a value from a set does not result in the same state. (As we will see
in § 5, particular CRDT sets can converge even when their operations reorder [Shapiro et al. 2011].)
As Fig. 2.(b) shows, we say that two method calls S-commute (state-commute) written as c1 ⌧S c2,
i� starting from the same pre-state, executing them in either of the two orders results in the same
post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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refIntegrity predicate (de�ned in the caption). For example, refIntegrity(es,ecid,ss,sid) states that
for every record r in the relation es , there exists a record r 0 in the relation ss such that esid of r is
equal to sid of r 0 that is esid(r ) = sid(r 0) where the �eld names esid and sid are used as functions
on the corresponding records. Methods represent transactions on the object state. A method is a
functionm from the method parameter(s) and the pre-state � to a record of hguard,update, retvi,
where guard is the boolean precondition of the method, update is the post-state, and retv is the
return value. The courseware object has �ve methods: register to register a student, addCourse to
add a course, enroll to enroll a student in a course, deleteCourse to delete a course and query to
obtain the current state of the object. The guard of a method captures the semantic preconditions
of the method and not the conditions that preserve the invariant. (We present the conditions that
preserve the invariant in § 3.) For simplicity, the guards in this example are all T. (A guard for
the deleteCourse method could be that the input course should exist in the course relation to be
deleted.) All but the querymethod return no value ?. A method call c is the application of a method
to its arguments i.e. a function from the pre-state to a record of hguard,update, retvi.
Given the de�nition of a sequential object, the goal is to automatically synthesize a replicated

object. The state of the object is replicated across replicas. Clients can call methods at every replica
and the calls are communicated between replicas. The replicated object is expected to satisfy
both consistency and convergence. Consistency is the safety property that every method call is
executed only when the guard of the method and the invariant are satis�ed. Convergence is the
safety property that when no call is in transit, all replicas converge to the same state. We want to
perform coordination only when necessary to preserve these properties. We say that a method call c
is permissible in a state � , written as P (� ,c ), if the guard of c is satis�ed in � and c results in a post-
state � 0 that satis�es the invariant I that is I (� 0). The post-state of a method call is the pre-state
of the next in a replica. The initial state is assumed to satisfy the invariant. Therefore, if every call
is permissible in its pre-state, then every call is consistent. To execute a method call, we check that
it is permissible in its originating replica. Thus, we say that each method call is locally permissible.
Otherwise, the call is aborted. Still, if the call is simply broadcast, it is not necessarily permissible
when it arrives at other replicas. Some calls need coordination. We now present representative
incorrect executions to showcase the conditions that necessitate coordination.

Well-coordination. Method calls such as adding a course and enrolling a student result in the
same state if their order of execution is swapped. However, the resulting state of some pairs of
methods calls is dependent on their execution order. Fig. 2.(a) shows an execution where a course
c is added and deleted concurrently at two replicas. The two method calls are executed without
coordination and are broadcast to other replicas and executed on arrival. Thus, the two replicas
execute the two method calls in two di�erent orders and their �nal states diverge. Reordering the
execution of adding and removing a value from a set does not result in the same state. (As we will see
in § 5, particular CRDT sets can converge even when their operations reorder [Shapiro et al. 2011].)
As Fig. 2.(b) shows, we say that two method calls S-commute (state-commute) written as c1 ⌧S c2,
i� starting from the same pre-state, executing them in either of the two orders results in the same
post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
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S-con�ict S-Commutativity: c1 ⌧S c2

P-con�ict P-R-Commutativity: c1 !P c2

Dependence
P-L-Commutativity: c2  P c1

Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:5

S-con�ict S-Commutativity: c1 ⌧S c2

P-con�ict P-R-Commutativity: c1 !P c2

Dependence
P-L-Commutativity: c2  P c1

Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
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in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,
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shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
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P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,
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method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
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call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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1 INTRODUCTION
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Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
and Raft [Ongaro and Ousterhout 2014] protocols) guarantees the same total order of operations
across all replicas. Therefore, if an operation is checked to preserve the integrity properties [Bailis
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object to decide its con�icting and dependent methods and use this information to avoid coordination. We
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1 INTRODUCTION
I-Su�cient
I (� ) ! P (� ,c )
Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
and Raft [Ongaro and Ousterhout 2014] protocols) guarantees the same total order of operations
across all replicas. Therefore, if an operation is checked to preserve the integrity properties [Bailis
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Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
and Raft [Ongaro and Ousterhout 2014] protocols) guarantees the same total order of operations
across all replicas. Therefore, if an operation is checked to preserve the integrity properties [Bailis
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
and Raft [Ongaro and Ousterhout 2014] protocols) guarantees the same total order of operations
across all replicas. Therefore, if an operation is checked to preserve the integrity properties [Bailis
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
and Raft [Ongaro and Ousterhout 2014] protocols) guarantees the same total order of operations
across all replicas. Therefore, if an operation is checked to preserve the integrity properties [Bailis
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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1 INTRODUCTION
I-Su�cient
I (� ) ! P (� ,c )
Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
and Raft [Ongaro and Ousterhout 2014] protocols) guarantees the same total order of operations
across all replicas. Therefore, if an operation is checked to preserve the integrity properties [Bailis
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Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
and Raft [Ongaro and Ousterhout 2014] protocols) guarantees the same total order of operations
across all replicas. Therefore, if an operation is checked to preserve the integrity properties [Bailis
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Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
and Raft [Ongaro and Ousterhout 2014] protocols) guarantees the same total order of operations
across all replicas. Therefore, if an operation is checked to preserve the integrity properties [Bailis
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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1 INTRODUCTION
I-Su�cient
I (� ) ! P (� ,c )
P-concur
I-Su�cient _ P-R-commute
Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./
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r X X X X X
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e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
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courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
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1 INTRODUCTION
I-Su�cient
I (� ) ! P (� ,c )
P-concur
I-Su�cient _ P-R-commute
S-commute ^ P-concur
Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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1 INTRODUCTION
P-L-commute
I-Su�cient
I (� ) ! P (� ,c )
P-concur
I-Su�cient _ P-R-commute
I-Su�cient _ P-L-commute
S-commute ^ P-concur
¬ Concur ¬ Independent
Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
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present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
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1 INTRODUCTION
I-Su�cient
I (� ) ! P (� ,c )
P-concur
I-Su�cient _ P-R-commute
Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X
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r X X X X X
a X X X X X
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d X X ⇥ X X
q X X X X X
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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1 INTRODUCTION
I-Su�cient
I (� ) ! P (� ,c )
P-concur
I-Su�cient _ P-R-commute
S-commute ^ P-concur
Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
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r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
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a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur
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r a e d q
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Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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1 INTRODUCTION
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S-commute ^ P-concur
¬ Concur ¬ Independent
Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
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present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
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1 INTRODUCTION
I-Su�cient
I (� ) ! P (� ,c )
P-concur
I-Su�cient _ P-R-commute
Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]

Authors’ addresses: Farzin Houshmand, University of California, Riverside, USA, fhous001@cs.ucr.edu; Mohsen Lesani,
University of California, Riverside, USA, lesani@cs.ucr.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
2475-1421/2019/1-ART74
https://doi.org/10.1145/3290387

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:3

Class Courseware
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let Course := Set hcid : CIdi in
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
integrity of the two foreign keys of the enrolment relation es . Every student identi�er esid in the
enrolment relation es must refer to an existing student identi�er sid in the student relation ss . The
condition for course identi�ers is similar. We represent referential integrity properties using the
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minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
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We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
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of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
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1 INTRODUCTION
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S-commute ^ P-concur
Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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S-con�ict S-Commutativity: c1 ⌧S c2

P-con�ict P-R-Commutativity: c1 !P c2

Dependence
P-L-Commutativity: c2  P c1

Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.



Dependence

15

74:5

S-con�ict S-Commutativity: c1 ⌧S c2

P-con�ict P-R-Commutativity: c1 !P c2

Dependence
P-L-Commutativity: c2  P c1

Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
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need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
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Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen

et al. 1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control
systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services
rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li
et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data
and hand-held devices replicate data for o�-line use. There has been a known dilemma [Abadi 2012;
Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated
objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]
and Raft [Ongaro and Ousterhout 2014] protocols) guarantees the same total order of operations
across all replicas. Therefore, if an operation is checked to preserve the integrity properties [Bailis
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

the given sequential object and its integrity property, and infer the pairs of con�icting methods
(represented as the con�ict graph) and dependent methods. We present two novel distributed
protocols that provide the well-coordination requirements. The protocols are parametric for the
analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

the given sequential object and its integrity property, and infer the pairs of con�icting methods
(represented as the con�ict graph) and dependent methods. We present two novel distributed
protocols that provide the well-coordination requirements. The protocols are parametric for the
analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
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de�ne notions of con�icting and dependent pairs of methods. Well-coordination requires synchro-
nization between con�icting and causality between dependent operations. We statically analyze
the given sequential object and its integrity property, and infer the pairs of con�icting methods
(represented as the con�ict graph) and dependent methods. We present two novel distributed
protocols that provide the well-coordination requirements. The protocols are parametric for the
analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
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S-con�ict S-Commutativity: c1 ⌧S c2

P-con�ict P-R-Commutativity: c1 !P c2

Dependence
P-L-Commutativity: c2  P c1

Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
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hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
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(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.



Well-coordination

19

c2 c1ʹc3c1 c* c2ʹʹ c1ʹʹ

c3 c2 c1ʹʹ c2ʹʹc1 c4 c* c1ʹ c2ʹ

c4 c2ʹ

74:3

Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.



Well-coordination

19

c2 c1ʹc3c1 c* c2ʹʹ c1ʹʹ

c3 c2 c1ʹʹ c2ʹʹc1 c4 c* c1ʹ c2ʹ

c4 c2ʹ

74:3

Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
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does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
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the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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enroll(s,c ) := � hss,cs,esi.
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(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.



Well-coordination

19

c2 c1ʹc3c1 c* c2ʹʹ c1ʹʹ

c3 c2 c1ʹʹ c2ʹʹc1 c4 c* c1ʹ c2ʹ

c4 c2ʹ

74:3

Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
from the other two relations. The desired invariant I for the courseware object is the referential

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

σ

σʹ

74:5

S-con�ict S-Commutativity: c1 ⌧S c2

P-con�ict P-R-Commutativity: c1 !P c2

Dependence
P-L-Commutativity: c2  P c1

Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
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corresponding relations. A method call that deletes the course c is executed concurrently in the
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We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:5

S-con�ict S-Commutativity: c1 ⌧S c2

P-con�ict P-R-Commutativity: c1 !P c2

Dependence
P-L-Commutativity: c2  P c1

Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
shows the con�ict graph where edges connect pairs of con�icting methods. In our running example,
deleting a course con�icts with adding a course and enrolment.
As explained above, invariant-su�cient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before
them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently
enrolled in a course. The method calls are broadcast, reordered during transmission and executed
in the opposite order in the second replica. The invariant holds after the enrolment in the �rst
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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post-state. Otherwise, we say that they S-con�ict (state-con�ict) and need synchronization; they
should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and
cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and
executed on a replica whose state satis�es the invariant, it preserves the invariant. We call such
method calls invariant-su�cient. However, not all method calls are invariant-su�cient. Fig. 2.(c)
shows an execution where the enrolment of a student s in a course c is executed in the �rst replica.
This method call preserves the invariant as both the student s and the course c belong to the
corresponding relations. A method call that deletes the course c is executed concurrently in the
second replica. The enroll call is broadcast and received at the second replica after the delete call. It
does not preserve the invariant at the second replica as it is enrolling in a missing course. These
two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method
calls such as enrolling in a course and adding the course do not need synchronization. We say that
the call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 !P c2, i� c1
stays permissible if it is moved right after c2. More precisely, as Fig. 2.(d) shows, for every state � ,
if c1 is permissible in � , then it is permissible after applying c2 to � as well. We say that a method
call c1 P-concurs (permissible-concurs) with another call c2 i� either c1 is invariant-su�cient or c1
P-R-commutes with c2. Otherwise, we say that c1 P-con�icts (permissible-con�ict) with c2 and they
need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling
in a course P-con�icts with deleting the course, therefore; they should synchronize.
We say that two method calls concur i� they both S-commute and P-concur with each other.

Otherwise, we say they con�ict and need synchronization. We statically analyze methods of the
object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the
analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)
shows the concur relation. The con�ict relation is the complement of the concur relation. Fig. 1.(e)
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 12. (a) Response time for Courseware with the Non-Blocking and SC protocols. (b) Response time for
Courseware with the Blocking protocol. (c) Response time for BankAccount. (d) The e�ect of workload on
response time for Courseware.

targets fully-replicated stores, exploits weak consistency and guarantees convergence. Further, the
analysis is static and the protocols do not calculate conditions at runtime.
Sieve [Li et al. 2014, 2012] de�nes a consistency model called RedBlue and applies static and

dynamic analysis to determine whether an operation can be executed under causal consistency
(blue) or needs strong consistency (red) to preserve the invariant. However, the analysis does not
check that the result will indeed validate the invariant. In contrast, we prove the su�ciency of
well-coordination. Further, causal consistency is the weakest possible notion in the RedBlue model
while our model allows operations to execute with no synchronization and dependency.

Quelea [Sivaramakrishnan et al. 2015] lets the programmer declare consistency contracts for
operations of a replicated object using primitive consistency relations such as visibility and session
orders. It de�nes axiomatic semantics for consistency notions using the same primitives. It then
automatically maps a contract to the weakest consistency notion that satis�es the contract. However,
these contracts are lower-level than integrity invariants and translating invariants to contracts is
non-trivial. Inspired by weak memory models, a similar work [Bernardi and Gotsman 2016; Cerone
et al. 2015] presented a framework for speci�cation of weak consistency models that have atomic
visibility and de�ned dynamic and static checks for serializability of applications that choose to use
weak consistency. Later, [Brutschy et al. 2017] de�ned a generalization of con�ict serializability
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.



Asymmetric Synchronization

22

74:3

Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Hampa: Solver-aided Recency-Aware Replication 5

Class MovieBooking
⌃ := let rs := Set N⇥ N in . Reservation: user identifier and movie identifier

let ms := Set N⇥ N in .Movie: movie identifier and available space
hrs,msi

I := �hrs,msi. unique (ms,�hm, ai. m) ^
refIntegrity (rs,�hu,mi. m,ms,�hm, ai. m) ^
rowIntegrity (ms,�hm, ai. a � 0)

book(hu,mi) := 0 �hrs,msi.
hhu,mi /2 rs, hrs [ hu,mi, U�hm0,ai. hm0=m,hm,a�1ii msi, ?i

cancelBook(hu,mi) := 0 �hrs,msi.
hTrue, hrs \ hu,mi, U�hm0,ai. hm0=m,hm,a+1ii msi, ?i

o↵Screen(m) := 0 �hrs,msi.
hTrue, hrs, ms \ ��hm0,ai.m0=m msi, ?i

specialReserve(hm,ni) := 0 �hrs,msi.
hn > 0, hrs, U�hm0,ai. hm0=m,hm,a�nii msi, ?i

increaseSpace(hm,ni) := 0 �hrs,msi.
hn > 0, hrs, U�hm0,ai. hm0=m,hm,a+nii msi, ?i

querySpace(m) := ✏1 �hrs,msi.
hTrue, hrs,msi, ⇧�hm0,ai. hai (��hm0,ai.m0=m ms)i

queryReservations(u) := ✏2 �hrs,msi.
hTrue, hrs,msi, ⇧�hu0,mi. hmi (��hu0,mi. u0=u rs)i

querySpaces(u) := ✏3 � hrs,msi.
hTrue, hrs,msi, ⇧�hu,m,m0,ai hm,ai (rs ./�hu,mi,hm0,ai.m=m0 ms)i

Fig. 2: Movie Booking Use-case

c, the weight weight(c) is a bound on the di↵erence that the execution of c
can make on the state of the object. In other words, for every call c, we have
8�. Let h ,�0, i := c(�) in �(�0,�) < weight(c).

Running Use-case. Fig. 2 shows the movie booking use-case. The state
of the object is the two relations reservation rs and movie ms. The reservation
relation rs stores the movies that the users have booked; it is the pairs of users u
and movies m. The movie relation ms stores the number of available spaces for
each movie; it is the pairs of movies m and spaces a. The integrity property I is
a conjunction of three conditions: (1) The movie in ms should be unique. (2) The
referential integrity requires that every movie in rs exists in ms . (3) The number
of available spaces for every movie should be non-negative. The object provides
five update methods and three query methods. Given a user u and a movie m, the
method book adds the pair to rs and decrements the available spaces for m in ms .
Similarly, the method cancelBook removes a reservation and increments available
spaces. Given a movie m, the method o↵Screen removes the corresponding tuple
from ms . Given a movie m and a number n, the method specialReserve subtracts
n from the available spaces for m in ms . The dual method increaseSpace adds n
to the spaces for m. Given a movie m, the method querySpace returns the number
of available spaces for m. The method queryReservations returns the set of movies
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can make on the state of the object. In other words, for every call c, we have
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Running Use-case. Fig. 2 shows the movie booking use-case. The state
of the object is the two relations reservation rs and movie ms. The reservation
relation rs stores the movies that the users have booked; it is the pairs of users u
and movies m. The movie relation ms stores the number of available spaces for
each movie; it is the pairs of movies m and spaces a. The integrity property I is
a conjunction of three conditions: (1) The movie in ms should be unique. (2) The
referential integrity requires that every movie in rs exists in ms . (3) The number
of available spaces for every movie should be non-negative. The object provides
five update methods and three query methods. Given a user u and a movie m, the
method book adds the pair to rs and decrements the available spaces for m in ms .
Similarly, the method cancelBook removes a reservation and increments available
spaces. Given a movie m, the method o↵Screen removes the corresponding tuple
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Bank account

Movie booking

As the recency bound increases,  
the coordination overhead and response time decrease.
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• Synthesis of replicated objects that  
preserve integrity, convergence and recency, and  
minimize coordination 

• Coordination conditions sufficient for these properties  
that are captured as commutativity conditions 

• Reduced coordination minimization to classical graph optimization 

• Coordination protocols that preserve these conditions
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74:7

(a)

(b)

Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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Class Courseware
let Student := Set hsid : SIdi in
let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.
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protocol is derived from the termination property of TOB when a majority of nodes are correct.
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executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.
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deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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Class Courseware
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let Course := Set hcid : CIdi in
let Enrolment :=

Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)

register(s ) := � hss,cs,esi.
hT, hss [ {s},cs,esi, ?i

addCourse(c ) := � hss,cs,esi.
hT, hss,cs [ {c},esi, ?i

enroll(s,c ) := � hss,cs,esi.
hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
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a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X
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a X X X ⇥ X
e X X X ⇥ X
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q X X X X X

(d) Concur
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Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
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the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
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respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
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with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
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student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

TOB1

TOB2



Non-blocking Protocol

32

74:7

(a)

(b)

Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

TOB1

TOB2



Non-blocking Protocol

32

74:7

(a)

(b)

Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.
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In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
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r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X
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q X X X X X
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d X X X X X
q X X X X X
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(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

TOB1

TOB2



Blocking Protocol

33

74:7

(a)

(b)

Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.
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an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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hT, hss,cs,es [ {(s,c )}i, ?i

deleteCourse(c ) := � hss,cs,esi.
hT, hss,cs \ {c},esi, ?i

query := � � . hT, � , � i
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Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)

analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.
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In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.
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to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
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synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.
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to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
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to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.
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an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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protocol is derived from the termination property of TOB when a majority of nodes are correct.
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decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
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that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
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In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination
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are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.
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an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
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of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
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the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
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with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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analysis results. We present a non-blocking synchronization protocol based on a novel variant
of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.

We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.



Blocking Protocol

33

74:7

(a)

(b)

Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the maximal clique problem on the con�ict graph. We also
present a synchronization protocol that is blocking but allows some of the con�icting methods
to execute without synchronization. The protocol parameters are decided by a reduction of the
minimum synchronization problem to the vertex cover problem on the con�ict graph.
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with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.
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methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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We present a tool called Hamsaz that given an object de�nition, uses o�-the-shelf SMT solvers
to decide the pairs of con�icting and dependent methods. It then uses the analysis results to
avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully
synthesized replicated objects for a suite of use-cases that we have adopted from the previous
works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments
show that compared to the strongly consistent baseline, the synthesized replicated objects are
signi�cantly more responsive.
In the rest of the paper, we �rst present an overview in § 2. We de�ne the well-coordination

condition and prove its su�ciency for correctness in § 3. We present the static analysis and apply it
to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation
are presented in § 7 and 8 before we conclude with related works and �nal remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We de�ne an object as a record h�,I,Mi that includes the state type �,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
three relations for students ss , courses cs and enrolments es of students in courses. A relation is a set
of records of �elds. The student and course relations ss and cs are simply a set of records of one �eld,
student identi�ers sid and course identi�ers cid respectively. The enrolment relation es is a set of
records of two �elds: the student identi�er esid and the course identi�er ecid, that are foreign keys
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Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols # and " show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ¨ and ≠ represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
# and " show requests to and responses from the protocols. Diagonal arrows show message transmission.

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is
executed only when it is ordered and delivered by all of them. The non-blocking property of the
protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three
methods are called at three replicas: adding a a course c , enrolling e a student s in the course c and
deleting d the course c . The call a is broadcast using tob1, and the call e is broadcast using tob2. The
call d has to be broadcast to both tob1 and tob2. It is �rst broadcast to tob1. The sub-protocol tob1
decides to order and deliver a before d . Thus, a is delivered �rst and executed at the three replicas.
The sub-protocol tob2 independently delivers e . It is notable that the execution order of e and a
that belong to distinct cliques and are broadcast to distinct TOB instances are di�erent in the �rst
and the second replica. Once d is delivered by tob1, it is broadcast to tob2. It is �nally delivered by
tob2 as well and executed. Thus, the call d is �nally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned a particular
place in the total order of calls in the �rst clique. However, it cannot execute on delivery from
tob1 and should be broadcast by tob2. To keep the place of d , other calls delivered by tob1 should
wait for d to �nish its synchronization in the second clique. Therefore, we use a queue per TOB.
Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should
wait and can be executed only when it appears at the head of the queues of all TOBs that it is
broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting
and deadlocks. For example, two calls on d can be ordered di�erently by tob1 and tob2 and wait for
each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of
TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.
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Class Courseware
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Set hesid : SId,ecid : CIdi in
� := Student ⇥ Course ⇥ Enrolment
I := � hss,cs,esi.

refIntegrity(es,esid,ss,sid) ^
refIntegrity(es,ecid,cs,cid)
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hT, hss [ {s},cs,esi, ?i
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hT, hss,cs,es [ {(s,c )}i, ?i
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query := � � . hT, � , � i
(a) User Speci�cation

r a e d q
r X X X X X
a X X X ⇥ X
e X X X X X
d X ⇥ X X X
q X X X X X

(b) S-commute
r a e d q

r X X X X X
a X X X X X
e X X X ⇥ X
d X X ⇥ X X
q X X X X X

(c) P-concur
r a e d q

r X X X X X
a X X X ⇥ X
e X X X ⇥ X
d X ⇥ ⇥ X X
q X X X X X

(d) Concur

(e) Con�ict Graph G./

r a e d q
r X X X X X
a X X X X X
e ⇥ ⇥ X X X
d X X X X X
q X X X X X

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(R, f ,R0, f 0) := 8r . r 2 R ! 9r 0. r 0 2 R0 ^ f (r ) = f 0(r 0)
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an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the
courseware object that we have adopted from [Gotsman et al. 2016]. The state type � is the tuple of
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Fig. 12. (a) Response time for Courseware with the Non-Blocking and SC protocols. (b) Response time for
Courseware with the Blocking protocol. (c) Response time for BankAccount. (d) The e�ect of workload on
response time for Courseware.

targets fully-replicated stores, exploits weak consistency and guarantees convergence. Further, the
analysis is static and the protocols do not calculate conditions at runtime.
Sieve [Li et al. 2014, 2012] de�nes a consistency model called RedBlue and applies static and

dynamic analysis to determine whether an operation can be executed under causal consistency
(blue) or needs strong consistency (red) to preserve the invariant. However, the analysis does not
check that the result will indeed validate the invariant. In contrast, we prove the su�ciency of
well-coordination. Further, causal consistency is the weakest possible notion in the RedBlue model
while our model allows operations to execute with no synchronization and dependency.

Quelea [Sivaramakrishnan et al. 2015] lets the programmer declare consistency contracts for
operations of a replicated object using primitive consistency relations such as visibility and session
orders. It de�nes axiomatic semantics for consistency notions using the same primitives. It then
automatically maps a contract to the weakest consistency notion that satis�es the contract. However,
these contracts are lower-level than integrity invariants and translating invariants to contracts is
non-trivial. Inspired by weak memory models, a similar work [Bernardi and Gotsman 2016; Cerone
et al. 2015] presented a framework for speci�cation of weak consistency models that have atomic
visibility and de�ned dynamic and static checks for serializability of applications that choose to use
weak consistency. Later, [Brutschy et al. 2017] de�ned a generalization of con�ict serializability
to be used together with weak consistency notions. It presented a dynamic checker to determine
whether an execution of an application that uses weak consistency is serializable. In contrast, our

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

We execute 500 calls evenly distributed on the methods.  
We issue one call per millisecond and measure the average response time of the 
calls on each method.
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targets fully-replicated stores, exploits weak consistency and guarantees convergence. Further, the
analysis is static and the protocols do not calculate conditions at runtime.
Sieve [Li et al. 2014, 2012] de�nes a consistency model called RedBlue and applies static and

dynamic analysis to determine whether an operation can be executed under causal consistency
(blue) or needs strong consistency (red) to preserve the invariant. However, the analysis does not
check that the result will indeed validate the invariant. In contrast, we prove the su�ciency of
well-coordination. Further, causal consistency is the weakest possible notion in the RedBlue model
while our model allows operations to execute with no synchronization and dependency.

Quelea [Sivaramakrishnan et al. 2015] lets the programmer declare consistency contracts for
operations of a replicated object using primitive consistency relations such as visibility and session
orders. It de�nes axiomatic semantics for consistency notions using the same primitives. It then
automatically maps a contract to the weakest consistency notion that satis�es the contract. However,
these contracts are lower-level than integrity invariants and translating invariants to contracts is
non-trivial. Inspired by weak memory models, a similar work [Bernardi and Gotsman 2016; Cerone
et al. 2015] presented a framework for speci�cation of weak consistency models that have atomic
visibility and de�ned dynamic and static checks for serializability of applications that choose to use
weak consistency. Later, [Brutschy et al. 2017] de�ned a generalization of con�ict serializability
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We execute 500 calls evenly distributed on the methods.  
We increase the workload from 10 to 800 calls per second and measure the 
average response time over all the calls.
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Hampa: Solver-aided Recency-Aware Replication 5

Class MovieBooking
⌃ := let rs := Set N⇥ N in . Reservation: user identifier and movie identifier

let ms := Set N⇥ N in .Movie: movie identifier and available space
hrs,msi

I := �hrs,msi. unique (ms,�hm, ai. m) ^
refIntegrity (rs,�hu,mi. m,ms,�hm, ai. m) ^
rowIntegrity (ms,�hm, ai. a � 0)

book(hu,mi) := 0 �hrs,msi.
hhu,mi /2 rs, hrs [ hu,mi, U�hm0,ai. hm0=m,hm,a�1ii msi, ?i

cancelBook(hu,mi) := 0 �hrs,msi.
hTrue, hrs \ hu,mi, U�hm0,ai. hm0=m,hm,a+1ii msi, ?i

o↵Screen(m) := 0 �hrs,msi.
hTrue, hrs, ms \ ��hm0,ai.m0=m msi, ?i

specialReserve(hm,ni) := 0 �hrs,msi.
hn > 0, hrs, U�hm0,ai. hm0=m,hm,a�nii msi, ?i

increaseSpace(hm,ni) := 0 �hrs,msi.
hn > 0, hrs, U�hm0,ai. hm0=m,hm,a+nii msi, ?i

querySpace(m) := ✏1 �hrs,msi.
hTrue, hrs,msi, ⇧�hm0,ai. hai (��hm0,ai.m0=m ms)i

queryReservations(u) := ✏2 �hrs,msi.
hTrue, hrs,msi, ⇧�hu0,mi. hmi (��hu0,mi. u0=u rs)i

querySpaces(u) := ✏3 � hrs,msi.
hTrue, hrs,msi, ⇧�hu,m,m0,ai hm,ai (rs ./�hu,mi,hm0,ai.m=m0 ms)i

Fig. 2: Movie Booking Use-case

c, the weight weight(c) is a bound on the di↵erence that the execution of c
can make on the state of the object. In other words, for every call c, we have
8�. Let h ,�0, i := c(�) in �(�0,�) < weight(c).

Running Use-case. Fig. 2 shows the movie booking use-case. The state
of the object is the two relations reservation rs and movie ms. The reservation
relation rs stores the movies that the users have booked; it is the pairs of users u
and movies m. The movie relation ms stores the number of available spaces for
each movie; it is the pairs of movies m and spaces a. The integrity property I is
a conjunction of three conditions: (1) The movie in ms should be unique. (2) The
referential integrity requires that every movie in rs exists in ms . (3) The number
of available spaces for every movie should be non-negative. The object provides
five update methods and three query methods. Given a user u and a movie m, the
method book adds the pair to rs and decrements the available spaces for m in ms .
Similarly, the method cancelBook removes a reservation and increments available
spaces. Given a movie m, the method o↵Screen removes the corresponding tuple
from ms . Given a movie m and a number n, the method specialReserve subtracts
n from the available spaces for m in ms . The dual method increaseSpace adds n
to the spaces for m. Given a movie m, the method querySpace returns the number
of available spaces for m. The method queryReservations returns the set of movies
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