
Byzantine Consensus
Mohsen Lesani

(Strong) Byzantine Consensus

Module:

• ByzantineConsensus, instance bc.

Events:

• Request: < propose(v) >:

Proposes value v.

• Indication: < decide(v) >:

Outputs the decided value v.

(Strong) Byzantine Consensus

Properties

• WBC1: Termination:  

Every correct process eventually decides some
value.

• BC2: Strong Validity:  
A correct process may only decide a value that was
proposed by some correct process or the special
value ☐. Further, if all correct processes propose the
same value v, then no correct process decides a
value different from v.

• WBC3: Integrity:  
No correct process decides twice.

• WBC4: Agreement:  
No two correct processes decide differently.

The only way to know that a
value is from a correct process
is that we show that it is from
f+1 processes. That’s why
when we cannot, we have to
decide the special ☐ value.

The total order broadcast

abstraction that uses
consensus first has a round
where processes exchange
their messages so that they
propose the same value.

Weak Byzantine Consensus

Module:

• WeakByzantineConsensus, instance wbc.

Events:

• Request: < propose(v) >:

Proposes value v.

• Indication: < decide(v) >:

Outputs a decided value v.

Weak Byzantine Consensus

Properties

• WBC1: Termination:  

Every correct process eventually decides some value.

• WBC2: Weak validity:  

A correct process may only decide a value that was
proposed by some process.

• WBC3: Integrity: 
No correct process decides twice.

• WBC4: Agreement:  
No two correct processes decide differently.

From Weak to Strong Consensus

Idea:

We want only a value from a correct process to be decided. Weak
consensus can decide a value proposed from a Byzantine process.

A process proposes a value to week consensus only if it can get
the same value from more than f processes, and collect
signatures from them. There is at least one correct process in that
set. Otherwise, the process proposes the special ☐ value.

When weak consensus decides a value, we check that it has
either f signatures, or it is the ☐ value.

From Weak to Strong Consensus

proposebroadcast

p1

p2

p3

Collect a value v from
more than f processes

with signatures.

Validated Consensus:

Check Signatures.

Validating the Proposal

function valid-proposal((v,))

if #({p ∈ π | verify-sig(p, v, [p]) = true}) > f then

return true;

else if v = ☐ then

return true

else

return false

Σ
Σ

A predicate on values.

Update the weak consensus protocol so that a process that receives a value that does
not satisfy the predicate halts.

Here, a proposal is valid if it is signed by at least f processes or it is the special ☐ value.

From Weak to Strong Consensus

Implements:

ByzantineConsensus, instance bc.

Uses:

AuthPerfectPointToPointLinks, instance al

WeakByzantineConsensus (Validated), instance wc

upon event < init > do

proposals := []N

 := []N

⊥
Σ ⊥

From Weak to Strong Consensus

upon event < propose(v) > do

 := sign(self, v)

forall q ∈ π do

trigger < al, send(q, Proposal(v,)) >

upon event < al, deliver(p, Proposal(v,)) > do

if proposals[p] = verify-sig(p, v,) then

proposals[p] := v

[p] :=

σ

σ

σ
⊥ ∧ σ

Σ σ

From Weak to Strong Consensus

upon exists v ≠ ⊥ such that #({p ∈ π|proposals[p] = v}) > f do

proposals := []N

trigger < wc, propose((v,)) >

upon (#proposals N − f) do

proposals := []N

trigger < wc, propose((☐,)) >

upon event < wc, decide((v’, ’)) > do

trigger < decide(v’) >

⊥
Σ

≥
⊥

Σ

Σ

Collect signatures from more
than f processes for the same
value and propose it.

When there is no hope that it
happens, propose the special ☐
value. The remaining f
processes may be Byzantine
and may never respond.

From Weak to Strong Validity

Because of validation of signatures from f+1 processes, if a
Byzantine process wants to propose a value that is accepted, it
must propose a value that was initially proposed by at least one
correct process (or propose ☐).

By weak validity of weak consensus, a correct process may decide
only a value proposed by some process.

Thus, a correct process may finally decide only a value that was
proposed by some correct process or the special value ☐.

Leader-driven Consensus

Similar to the protocol for the fail-noisy environment

Eventual Leader

Detector

Byzantine Consensus

Epoch Consensus

[ts, l]

start-epoch(ts, l) complain

propose decide

decide

abort
aborted

Epoch Consensus

[ts, l]

propose

Byzantine Eventual Leader Detector

• We cannot rely on the timeliness of simple responses for detecting
arbitrary faults. A Byzantine process can be responsive to a process
and not the other.

• If the leader performs wrongly or exceeds the allocated time before
reaching the goal, then other processes detect this and complain to
their local leader detector component.

• The leader detector component gets input from the higher-level
Byzantine consensus component as complain requests.

upon event (timeout)

trigger <bld, complain(l) >

Eventual Byzantine Leader Detector

Module:

ByzantineLeaderDetector, instance bld.

Events:

• Request: 

< complain(p) > 
Receives a complaint about process p.

• Indication: 
< trust(p) > 
Indicates that process p is trusted to be leader.

Eventual Byzantine Leader Detector

Properties:

• BLD1: Eventual succession: 

If more than f correct processes (that trust some process p)
complain about p, then every correct process eventually trusts
a different process than p.

• BLD2: Putsch resistance: 
A correct process does not trust a new leader unless at least
one correct process has complained against the current leader.

• BLD3: Eventual agreement: 
There is a time after which no two correct processes trust
different processes.

Eventual Byzantine Leader Detector

• By properties 1 and 3, every correct process eventually
trusts some process that appears to perform its task in
the high-level component.

• In contrast to the crash model, one cannot require that
every correct process eventually trusts a correct process
because a Byzantine process may behave just like a
correct process.

Rotating Byzantine Leader Detector

Idea:

• Round robin: the round number deterministically derives the

leader of the round.

• A process considers complain about the current leader seriously

only if it receives a complain from more than f processes. It then
broadcasts a complain itself if it has not already. This amplifies the
complain.

• A process moves to the next round and its leader only if it receives
the complain from more than 2f processes. This ensures that after
it moves to the next round, there are enough correct processes
complaining that can push all correct processes to the next round.

• This is similar to the last phase of Bracha Byzantine broadcast: the
complain message is like the ready message.

• It is assumed that n > 3f.

Protocol: Rotating Byzantine Leader Detector

Implements:

ByzantineLeaderDetector, instance bld.

Uses:

AuthPerfectPointToPointLinks, instance al.

upon event < init > do

round := 1

complains := []N

complained := false

trigger < trust(leader(round)) >

upon event < complain(p) > such that

 p = leader(round) and complained = false do

complained := true

forall q ∈ π do

trigger < al, send(q, Complain(round)) >

⊥

A complain from the higher-
level component.

Protocol: Rotating Byzantine leader detector

upon event < al, deliver(p, Complain(r)) > such that

r = round and complains[p] = do

complains[p] := true

if #(complains) > f ∧ complained = false then

complained := true

forall q ∈ π do

trigger < al, send(q, Complain(round)) >

else if #(complains) > 2f then

round := round + 1

complains := []N

complained := false

trigger < trust(leader(round)) >

⊥

⊥

Byzantine Epoch-Change

Module:

• Name: ByzantineEpochChange, instance bec.

Events:

• Indication: < start-epoch(ts, l) > 

Starts the epoch identified by timestamp ts with leader l.

Properties:

• EC1: Monotonicity: 
If a correct process starts an epoch (ts, l) and later starts an epoch (ts’, l’)
then ts’ > ts.

• EC2: Consistency: 
If a correct process starts an epoch (ts, l) and another correct process
starts an epoch (ts, l’) then l = l’.

• EC3: Eventual Leadership:  
There is a time after which every correct process has started some epoch
(ts, l) and starts no further epoch, and the process l is correct.

It does not
lead to f+1
complaints

Protocol: Byzantine Epoch-Change

The same as the previous protocol. Just output the round
number as the timestamp in addition to the leader.

Byzantine Epoch Consensus

StateRead Collected Write Accept
Conditional Collect

q q
ℓ

Conditional Collect

StateRead Collected
Conditional Collect

ℓ

The Leader should read the state of all
processes and determine the value to be
written, and send it to all processes to write.
But processes cannot trust a single sender
with the value that it sends. Thus, the leader
collects signed values and forwards them to
all processes. They themselves determine
the value from the collection.

Conditional Collect

A leader collects messages from others such that the collection satisfies a predicate.

Module:

ConditionalCollect, instance cc, with leader l and output predicate C.

Events:

• Request: 

< input(m) > 
Inputs a message m.

• Indication: 
< collected(M) >: 
Outputs a vector M of collected messages.

Protocol: Signed ConditionalCollect

Implements:

ConditionalCollect, instance cc, with leader l and output predicate C.

Uses:

AuthPerfectPointToPointLinks, instance al.

upon event < init > do

states := [⊥]N; Σ := [⊥]N

collected := false

upon event < input(s) > do

 := sign(self, s)

trigger < al, send(l, State(s,)) >

upon event < al, deliver(p, State(s,)) > do // only leader l

if verify-sig(p, s,) then

states[p] := s; Σ[p] :=

𝜎
𝜎

𝜎
𝜎

𝜎
To prevent storing wrong messages in the
leader, the signature is checked although
the checks are done in followers as well.

Protocol: Signed Conditional Collect

upon C(states) ∨ #(states) N-f do 	 // only leader l

forall q ∈ π do

trigger <al, send(q, Collected(states, Σ)) >

states := [⊥]N; Σ := []N 

upon event < al, deliver(l, Collected(S, Σ)) > do

if collected = false ∧ C(S)

 ∀p ∈ π. M[p] ⊥ ⇒ verify-sig(p, S[p], Σ[p]) then

collected := true;

trigger < collected(S) >

≥

⊥

∧
≠

Byzantine Epoch Consensus

Module:

ByzantineEpochConsensus, instance bep, with timestamp ts and leader l.

Events:

• Request: < propose(v) > 

Proposes value v. Executed only by the leader l.

• Indication: < decide(v) >:  

Outputs the decided value v.

• Request: < abort >:  

Aborts epoch consensus.

• Indication: < aborted(state) >: 

Signals that epoch consensus has completed abortion, and outputs the
internal state.

Protocol State

State:

(valts, val, cert)

The current timestamp and value pair, and

a certificate that shows they are the result of a valid write.

Retrieving Previously Decided Values

In a collection S with a Byzantine quorum (more than 2f processes) that have valid
certs,

the consensus is either

• unbound, unbound(S):

• The largest timestamp is the initial 0.

• Adopt the proposal of leader.

• bound to a value v, binds(v, S)

• The largest timestamp is positive.

• The value v of that timestamp is already locked-in. Adopt it.

The predicate for Conditional Collect is that

S is at least a quorum, and

cert is valid for each entry of S.

Write Phase

StateRead Collected Write
Conditional Collect

q
ℓ

Write Phase

A Byzantine leader may send different values as his own proposal.

Thus, processes should receive the same value from a Byzantine quorum.

To make sure that no two correct processes decide different values
(agreement), this round needs an all-to-all communication, similar to
Byzantine consistent broadcast.

Accept Phase

StateRead Collected Write Accept
Conditional Collect

q q
ℓ

Accept Phase

• The accept round makes sure that before deciding a value, it is already
written to a Byzantine quorum.

• It ensures the lock-in property.

Protocol: Byzantine Epoch Consensus

Implements ep,

with timestamp ets and leader L

Uses al, abeb, cc (N = 3f + 1)

upon < init (ts, v) > do

written := []N

accepted := []N

(valts, val) := (ts, v)

cert :=

upon < propose (v) > do ▹ At the leader L

if val = then val := v

trigger <abeb, broadcast(Read)>

⊥
⊥

⊥

⊥
When val = , ts = 0. Thus, the proposal
of the leader, val, does not make the
collection bound. The value val is passed
in the collection to be used when the
collection is unbound.

⊥

Protocol: Byzantine Epoch Consensus

upon < abeb, deliver(L, Read) > do

trigger <cc, input(State(valts, val, cert))>

upon < cc, collected(S) > do

if ∃v. binds(v, S) then

cv := v

else if unbound(S) ∧ S[L]=State(_, v, _) then

cv := v

trigger <abeb, broadcast(Write(ets, cv))>

For each p:  
S[p] = State(ts, v, cert) or ⊥

Protocol: Byzantine Epoch Consensus
upon < abeb, deliver(p, Write(ts, v)σ) > where ts = ets do

written[p] := vσ

if ∃v. #{p | written[p] = v} ≥ 2f+1 then

(valts, val) := (ets, v)

cert := written

written := [⊥]N

trigger <abeb, broadcast(Accept(v))>

upon < abeb, deliver(p, Accept(v)σ) > do

accepted[p] := vσ

if ∃v. #{p | accepted[p] = v} ≥ f+1 then

(valts, val) := (ets, v)

cert := accepted

trigger <abeb, broadcast(Accept(v))>

if ∃v. #{p | accepted[p] = v} ≥ 2f+1 then

accepted := [⊥]N

trigger < decide(v) >

upon < abort > do

trigger < aborted(valts, val, cert) >

 Amplification

Superscript is the signature.

Amplification and Termination

Without amplification, consider the following scenario:

The leader is Byzantine. The f byzantine processes communicate in
the Write and Accept rounds with only f+1 out of 2f+1 correct
processes. The communicating processes f + f + 1 = 2f + 1 are enough
to make each other decide. However, the remaining f correct
processes are left undecided. Since their number is less than f, their
complaints cannot start a new epoch.

Optimizations

First, the Read message may be omitted. Upon initializing the new epoch
consensus instance, every process simply invokes conditional collect with its
State message.

Accept Phase

StateRead Collected Write Accept
Conditional Collect

q q
ℓ

Optimizations

Second, in the first epoch consensus instance, the conditional collect
primitive for reading the state of all processes may be skipped because all
processes store the default state initially. 
Therefore, the algorithm involves an initial message from the leader to all
processes and two rounds of echoing the message among all processes. This
is the same communication pattern as first used in the Byzantine reliable
broadcast algorithm of Bracha, and it is also used during the normal-case
operation of a view in the PBFT algorithm.

Accept Phase

StateRead Collected Write Accept
Conditional Collect

q q
ℓ

Byzantine epoch consensus
Properties:

• EP1: Validity:  
If a correct process decides v, then v was proposed by the leader ℓ’ of some epoch
consensus with timestamp ts’ ≤ ts and leader ℓ’.

• BEP2: Agreement: 
No two correct processes decide differently.

• EP3: Integrity: 
Every correct process decides at most once.

• EP4: Lock-in: 
If a correct process has decided v in an epoch consensus with timestamp ts’ < ts, then no
correct process decides a value different from v.

• EP5: Termination: 
If the leader ℓ is correct, has proposed a value, and no correct process aborts this epoch
consensus, then every correct process eventually decides some value.

• EP6: Abort behavior: 
When a correct process requests abort, it will eventually receive an aborted response;
moreover, a correct process receives an aborted response only if some correct process has
requested abort.

Correctness

EP1: Validity:  
If a correct process decides v, then v was proposed by the leader ℓ’ of some epoch
consensus with timestamp ts’ ≤ ts and leader ℓ’.

The decided value is either bound or unbound.

• If it is unbound, it is proposed by the leader of this round.

• If it is bound, by induction, it is proposed by the leader of a previous round.

Correctness

BEP2: Agreement: 
No two correct processes decide differently.

Immediate from a quorum of Accept messages.

Every two 2f+1 processes intersect in a correct process.

Correctness

EP3: Integrity: 
Every correct process decides at most once.

Before issuing decide, the accepted array is nullified, and cannot be populated by a
quorum again.

Correctness

EP4: Lock-in: 
If a correct process has decided v in an epoch consensus with timestamp ts’ < ts,
then no correct process decides a value different from v.

A quorum (more than 2f processes) stored v before sending an Accept message in
the previous epoch ts' < ts.

Processes passed it in state to subsequent epochs.

In later epochs, every quorum (more than 2f processes) in the collection intersects
with the write quorum above, and retrieves the value v.

Correctness

EP5: Termination: 
If the leader ℓ is correct, has proposed a value, and no correct process aborts this
epoch consensus, then every correct process eventually decides some value.

Progress in Send and Collected rounds by the termination of conditional collect.

Progress in Write and Accept rounds as the 2f+1 correct processes can help each
other.

Correctness

EP6: Abort behavior: 
When a correct process requests abort, it will eventually receive an aborted
response; moreover, a correct process receives an aborted response only if some
correct process has requested abort.

Immediate from algorithm.

