
Byzantine Reliable Broadcast
Mohsen Lesani

Byzantine reliable broadcast

• Almost the same primitive as the fail-silent model. It
needs to reach agreement on delivered messages.

• To simplify the protocol, a Byzantine reliable broadcast
instance is used to deliver one message.

• A priori declares a sender process for the instance

Authenticated communication primitives

• Recall modules in model with crash failures

• Perfect Links (pl)

• Best-effort Broadcast (beb)

• Authenticated versions can be defined that tolerate network subject to attacks

• Authenticated Perfect Links (al)

• Authenticated Best-effort Broadcast (abeb)

• Implemented using cryptographic authentication (MACs or digital signatures)

Byzantine broadcast variants

• Byzantine consistent broadcast

• Byzantine reliable broadcast

Byzantine Consistent Broadcast (bcb)

Events

• Request <broadcast (m)>

Broadcasts a message m to all processes

• Indication <deliver (p, m)>

Delivers a message m from sender p

Byzantine Consistent Broadcast (bcb)

Properties:

• BCB1 (Validity) = BEB1:

Every message broadcast by a correct process is eventually delivered
by every correct process.

• BCB2 (No duplication):

Every correct process delivers at most one message.

• BCB3 (Integrity):

If a correct process delivers m with sender p, and p is correct, then p
has broadcast m.

• BCB4 (Consistency):

If a correct process delivers message m and another correct process
delivers message m', then m=m'.

• Note: some correct process may not deliver any message (agreement is
not required yet)

Example

• p

• q

broadcast

X
Byzantine

Failure!

• r

• s
Send

m

m

m

m’

• Faulty sender p sends two different message m and m’.

• Processes q and s deliver the message m.
• Process r does not deliver any message. It does not

receive a quorum.

• 2 rounds, O(n2) messages 

O(n2 |m|) communicated data

Example

• p

• q

broadcast

X
Byzantine

Failure!

• r

• s
Send

m

m

m

m’

Echo

• Faulty sender p sends two different message m and m’.

• Processes q and s deliver the message m.
• Process r does not deliver any message. It does not

receive a quorum.

• 2 rounds, O(n2) messages 

O(n2 |m|) communicated data

Example

• p

• q

broadcast

X
Byzantine

Failure!

• r

• s

deliver(m)

deliver(m)

Send

m

m

m

m’

Echo

• Faulty sender p sends two different message m and m’.

• Processes q and s deliver the message m.
• Process r does not deliver any message. It does not

receive a quorum.

• 2 rounds, O(n2) messages 

O(n2 |m|) communicated data

Authenticated Echo Broadcast

Implements bcb, uses abeb, with sender s (where N = 3f + 1) 

upon <bcb, broadcast (m)> do

trigger <abeb, broadcast(Send(m))> 

upon <abeb, deliver(s, Send(m))> do

trigger <abeb, broadcast(Echo(m))>

upon <abeb, deliver(p, Echo(m))> do

echo[p] := m

if ∃m : #{p | echo[p]=m} ≥ 2f + 1 then

trigger <deliver(s, m)>

Note: The code to prevent duplicate execution is omitted.

Using Byzantine Quorums

• System of N > 3f processes, f are faulty.

• Let’s have N = 3f + 1 for simplicity.

• Every subset with size larger than or equal to 2f+1 processes is a quorum.

• The collection of all quorums is a quorum system.

• Two distinct quorums together contain more than 4f+2 processes.

• Thus, they overlap in at least f + 1 processes.

• At least one of them is a correct process.

Proof of the consistency property:

• This correct process has beb broadcast the same message Echo[m] to all processes.

• Therefore, the two processes deliver the same message m.

Byzantine Reliable Broadcast (brb)

Events

• Request <broadcast(m)>

• Indication <deliver(p, m)>

Properties

• BRB1 (Validity) = BCB1

• BRB2 (No duplication) = BCB2

• BRB3 (Integrity) = BCB3

• BRB4 (Consistency) = BCB4

• BRB5 (Totality):

If some correct process delivers a message, then every correct process
eventually delivers a message.

By totality, either all or none of the correct processes deliver a message. By
consistency, they deliver the same message.

Example

• p
broadcast(m)

Send(m)

3 rounds; O(n2) messages; O(n2 |m|) communication

• q

• r

• s

Example

• p
broadcast(m)

Send(m)

3 rounds; O(n2) messages; O(n2 |m|) communication

• q

• r

• s
Echo(m)

Example

• p
broadcast(m)

Send(m) Ready(m)

3 rounds; O(n2) messages; O(n2 |m|) communication

• q

• r

• s
Echo(m)

Example

• p
broadcast(m) deliver(m)

Send(m) Ready(m)

3 rounds; O(n2) messages; O(n2 |m|) communication

• q

deliver(m)

• r

deliver(m)

• s

deliver(m)

Echo(m)

Example

• p

• q

 broadcast

X
Byzantine

Failure!

• r

• s
Send

m

m

m

m’

Example

• p

• q

 broadcast

X
Byzantine

Failure!

• r

• s
Send

m

m

m

m’

Echo

Example

• p

• q

 broadcast

X
Byzantine

Failure!

• r

• s
Send

m

m

m

m’

Echo Ready

Example

• p

• q

 broadcast

X
Byzantine

Failure!

• r

• s
Send

m

m

m

m’

Echo Ready Ready

Example

• p

• q

 broadcast

X
Byzantine

Failure!

• r

• s

deliver(m)

deliver(m)

Send

m

m

m

m’

Echo Ready Ready

deliver(m)

Amplification

Authenticated Double-Echo Broadcast (Bracha)

Implements brb, uses abeb, with sender s (N>3f)

sent-ready := false

upon <brb, broadcast(m)> do

trigger <abeb, broadcast(Send[m])>

upon <abeb, deliver(s, Send(m))> do

trigger <abeb, broadcast(Echo[m])>

upon <abeb, deliver(p, Echo(m))> do

echo[p] := m

if ∃m : #{p | echo[p]=m} > 2f+1 ∧ ¬sent-ready then

sent-ready := true

trigger <abeb, broadcast(Ready(m))>

Authenticated Double-Echo Broadcast (Bracha)

upon <abeb, deliver(p, Ready(m))> do

ready[p] := m

if ∃m : #{p | ready[p]=m} > f ∧ ¬sent-ready then

▹ amplification of READY messages

sent-ready := true

trigger <abeb, broadcast(Ready(m))>

else if ∃m : #{p | ready[p]=m} > 2f+1 then

trigger <Deliver(s, m)>

Note: some code to prevent duplicate execution is omitted.

Amplification

Totality by Amplification:

• A correct process has delivered the message. In the 2f+1 processes that it

received Ready from, there are at least f+1 correct processes. These correct
processes send Ready to all processes.

• After receiving f+1 Ready messages, all correct processes amplify the Ready
message if they have not already sent it. There are at least 2f+1 correct
processes, and they all send the Ready message.

• Therefore, each one of them receives Ready from 2f+1 processes and delivers
the message.

Byzantine Broadcast Channel

• Implemented by a sequence of one-message instances of Byzantine
broadcasts for each process

• Every message is delivered together with a unique label

• Consistency and totality hold for each label

• Two variants

• Consistent Channel

• Reliable Channel

Interface and properties of Byzantine consistent channel
Module:

Name: ByzantineConsistentBroadcastChannel, instance bcch.

Events:

• Request: ⟨ bcch , broadcast (m) ⟩: Broadcasts a message m to all processes.

• Indication: ⟨ bcch , deliver(p, ℓ, m)⟩: Delivers a message m with label ℓ broadcast by

process p.

Properties:

• BCCH1: Validity: If a correct process p broadcasts a message m, then every correct
process eventually delivers m.

• BCCH2: No duplication: For every process p and label ℓ, every correct process
delivers at most one message with label ℓ and sender p.

• BCCH3: Integrity: If some correct process delivers a message m with sender p, and
process p is correct, then m was previously broadcast by p.

• BCCH4: Consistency: If some correct process delivers a message m with label ℓ and
sender s, and another correct process delivers a message mʹ with label ℓ and sender
s, then m = mʹ.

Byzantine Consistent Channel
Implements:

ByzantineConsistentBroadcastChannel, instance bcch.

Uses:

ByzantineConsistentBroadcast (multiple instances).

upon event ⟨ init ⟩ do

n :=

ready := true

forall p ∈ Π do

	 Initialize a new instance bcb[p, 0] of

	 ByzantineConsistentBroadcast with sender p

[0]𝑁
n: It keeps the number of the current
broadcast instance for each process.

ready: It is used to wait for the previous
broadcast instance to finish.

Byzantine Consistent Channel

upon event ⟨ broadcast(m) ⟩ such that ready = true do

trigger ⟨ bcb[self, n[self]], broadcast(m) ⟩

ready := false

upon event ⟨ bcb[p, n[p]], deliver(p, m) ⟩ do

trigger ⟨ deliver(p, n[p], m) ⟩

n[p] := n[p] + 1

Initialize a new instance bcb[p, n[p]] of ByzantineConsistentBroadcast with sender p

if p = self then

ready := true

