
 
Group Membership and  

View Synchronous Communication
Mohsen Lesani

Group Membership

Who is there?

Group Membership

• In some distributed applications, processes need to know
which processes are participating in the computation and
which are not.

• Failure detectors provide such information; however, that
information is not coordinated (see next slide) even if the
failure detector is perfect.

Perfect Failure Detector

• P1

• P2

• P4

suspect ()

X
Crash!

suspect (p3)

suspect (p2) suspect (p2,p3)

suspect (p2,p3)
• P3 X

Crash!

Processes do not agree on the set of suspected processes.

Group Membership

• P1

• P2

• P4

X
Crash!

V1 = (p1,p3,p4)

• P3 X
Crash!

V2 = (p1,p4)

V2 = (p1,p4)

V1 = (p1, p3, p4)

Group Membership

• To illustrate the concept, we focus here on a group
membership abstraction to coordinate the information
about crashes

• In general, a group membership abstraction can also
typically be used to coordinate the processes joining and
leaving explicitly the set of processes (i.e., without
crashes)

Group Membership

• Like a failure detector, the processes are informed about
failures; we say that the processes install views.

• Like a perfect failure detector, the processes have
accurate knowledge about failures.

• Unlike a perfect failure detector, the information about
failures are coordinated: the processes install the same
sequence of views.

Group Membership

Events

• Indication: <membView, V>

Properties:

• Memb1, Memb2, Memb3, Memb4

Group Membership

• Memb1. Local Monotonicity: If a process installs view
(k,N) after installing (j,M), then k > j and N ⊆ M.

• Memb2. Agreement: No two processes install views
(j,M) and (j,M’) such that M ≠ M’.

• Memb3. Completeness: If a process p crashes, then
there is an integer j such that every correct process
eventually installs view (j,M) such that p is not in M.

• Memb4. Accuracy: If some process installs a view (i,M)
and p is not in M, then p has crashed.

Completeness and accuracy are similar to PFD completeness and strong accuracy.

GM Algorithm

Idea:

Use consensus rounds to install new views

GM Algorithm

Implements: GroupMembership (gmp).

Uses:

PerfectFailureDetector (P).

UniformConsensus (UCons) a sequence.

upon event < Init > do

(id, M) := (0, Π)

correct := Π

wait := false

trigger < membView, (id, M) >

upon event < crash, pi > do

correct := correct \ {pi}

wait is true when a view is
proposed to a consensus and
the decision is not made yet.

GM Algorithm

upon event (correct ⊊ M) and (wait = false) do

id := id + 1

wait := true

initialize uc[id]

trigger uc[id], < propose, correct >

upon event uc[i], < decide, M’ > and i = id do

M := M’

wait := false

trigger < membView, (id, M) >

GM Algorithm

• P1

• P2

• P4

X
Crash!

UCons ({p1,p2,p4}) : {p1,p2,p4}

• P3 X
Crash!

In the first view, p3 has crashed and in the second view, p2 and p3 have crashed.

UCons ({p1,p3,p4}) : {p1,p2,p4}

GM Algorithm

• P1

• P2

• P4

X
Crash!

UCons ({p1,p2,p4}) : {p1,p2,p4}

• P3 X
Crash!

In the first view, p3 has crashed and in the second view, p2 and p3 have crashed.

UCons ({p1,p4}) : {p1,p4}

UCons ({p1,p3,p4}) : {p1,p2,p4} UCons ({p1,p4}) : {p1,p4}

Group Membership and Broadcast

• P1

• P2

• P3

X Crash!

Because of the differences in views, p1 accepts the messags from p2 but p3 does not.

m

membView(p1,p3)

m

membView(p1,p3)

View Synchronous Communication

• View synchronous broadcast is an abstraction that results
from the combination of group membership and reliable
broadcast.

• View synchronous broadcast ensures that the delivery of
messages is coordinated with the installation of views.

View Synchronous Communication

Events

Request:

<vsBroadcast, m>

Indication:

<vsDeliver, src, m>

<vsView, V>

View Synchronous Communication

Besides the properties of

group membership (Memb1-Memb4) and

reliable broadcast (RB1-RB4),

the following property needs to be ensured:

VS: A message is vsDelivered in the view where it is vsBroadcast.

View Synchronous Communication

• If the application keeps vsBroadcasting messages,
because of the VS property, the view synchrony
abstraction might never be able to vsInstall a new view;
the abstraction would be impossible to implement.

• We introduce a specific event vsBlock for the abstraction
to block the application from vsBroadcasting messages.
The application accepts by vsBlockOK. This only happens
when another process crashes.

View Synchrony

Events

Request:

<vsBroadcast, m>

<vsBlockOk>

Indication:

<vsDeliver, src, m>

<vsView, V>

<vsBlock>

VSC Algorithms

• Algorithm 1: TRB-based

• Algorithm 2: Consensus-based

TRB-based Algorithm

Idea:

Before delivering a view change, use terminating reliable broadcast (TRB) to
communicate delivered messages.

TRB-based VSC Algorithm

Idea:

• When a view change is received, add it to a queue. When there is no other
ongoing view change, take a new view from the queue and block broadcasting
new messages. Then update other processes with the messages that have been
received in the current view. Wait for the update message from every process in
the current view. Terminating reliable broadcast (TRB) is used to receive a
(dummy) message even if the sender crashes. Then, install the new view and
unblock broadcasting of new messages.

• Why TRB? Before moving to the next view, in order to preserve the agreement
property of Broadcast, a correct process needs to deliver messages that other
correct processes have delivered in the current view. In order to preserve the
completeness property of Group Membership, TRB is used so that processes do
not get stuck waiting for messages to arrive from crashed processes.

• When a new message is broadcast, and broadcasting is not blocked, broadcast it
using best-effort broadcast (BEB). When it is delivered, deliver the message.

TRB-based VSC Algorithm

• P1

• P2

• P3

X Crash!

m

m

deliver(m)

TRB-based VSC Algorithm

• P1

• P2

• P3

X Crash!

m

m

deliver(m) membView(p1,p3)

TRB-based VSC Algorithm

• P1

• P2

• P3

X Crash!

m

m

deliver(m) membView(p1,p3)

TRB-based VSC Algorithm

• P1

• P2

• P3

X Crash!

m

m

deliver(m)

membView(p1,p3)

membView(p1,p3)

TRB-based VSC Algorithm

• P1

• P2

• P3

X Crash!

m

m

deliver(m)

membView(p1,p3)

membView(p1,p3)

TRB-based VSC Algorithm

• P1

• P2

• P3

X Crash!

m

m

deliver(m)

deliver(m)

membView(p1,p3)

membView(p1,p3)

TRB-based VSC Algorithm

• P1

• P2

• P3

X Crash!

m

m

deliver(m)

deliver(m)

membView(p1,p3)

membView(p1,p3)

𝜑

𝜑

TRB-based VSC Algorithm

• P1

• P2

• P3

X Crash!

m

vsView(p1,p3)
m

vsView(p1,p3)deliver(m)

deliver(m)

membView(p1,p3)

membView(p1,p3)

𝜑

𝜑

TRB-based VSC Algorithm

Implements:

ViewSynchrony (vs).

Uses:

GroupMembership (gmp).

TerminatingReliableBroadcast (trb).

BestEffortBroadcast (beb).

upon event < Init > do

(vid, M) := (0, Π)

delivered := ∅

vDelivered := ∅

viewsQueue := ∅

changing := blocked := false

trbdone := ∅

vid: the current view id

M: the current member processes

delivered: all the delivered messages

vdelivered: messages delivered in the current view

viewsQueue: the queue of pending views

changing: if the view is changing

blocked: if broadcasting is blocked

trbdone: processes whose updates are received

TRB-based VSC Algorithm

upon event <vsBroadcast, m> and (blocked = false) do

delivered := delivered ∪ {m}

vDelivered := vDelivered ∪ {(self, m)}

trigger <vsDeliver, self, m>

trigger <bebBroadcast, Data[vid, m]>

Broadcasting is accepted only if it is not currently blocked.

Although beb delivery performs the first three lines as well, they are needed here so that the message is
not lost if a view change is started right after this broadcast event.

TRB-based VSC Algorithm

upon event <bebDeliver, src, Data[v, m]> do

if (vid = v) and (m ∉ delivered) then

delivered := delivered ∪ {m}

vDelivered := vDelivered ∪ {(src, m)}

trigger <vsDeliver, src, m>

The condition vid = v is needed because if a process that is not a member of the current view broadcasts a
message, its message is not communicated during the view change. Then its message can be delivered late
to this handler. The late message has to be dropped.

The condition m not in delivered is needed to prevent duplicate delivery at the sender itself.

TRB-based VSC Algorithm

upon event <membView, V> do

enqueue V to viewsQueue

upon (viewsQueue ≠ ∅) and (changing = false) do

changing := true

trigger <vsBlock>

upon <vsBlockOk> do

blocked := true

trigger <trbBroadcast, (vid, vDelivered)>

TRB-based VSC Algorithm

upon <trbDeliver, p, (v, vDel)> where v = vid do

trbdone := trbdone ∪ {p}

if (vDel ≠)

forall (s, m) vDel and m ∉ delivered do

delivered := delivered ∪ {m}

trigger <vsDeliver, s, m>

upon (trbdone = M ∖ {self}) and (blocked = true) do

(vid, M) := dequeue(viewsQueue)

changing := blocked := false

vDelivered := ∅

trbdone := ∅

trigger <vsView, (vid, M)>

𝜑
∈

We do not need to wait to
trbdeliver from self.

The current process self must
have at least blocked new
broadcast requests.

Consensus-Based View Synchrony

Idea:

Use rounds of consensus to agree on the set of processes and
delivered messages.

Consensus-Based View Synchrony

Idea:

• When a process detects a failure, it broadcasts the messages that it
has delivered in that round and waits. Once the update messages
from all correct processes are delivered, a consensus instance is
used to agree on the correct set of processes and the
accompanying set of messages from each process.

• The update messages arrive from correct processes. Missing the
messages delivered at the incorrect processes does not violate the
agreement property of the broadcast. This is not uniform
agreement.

• Instead of launching a group membership plus parallel instances of
TRBs, we use one consensus instance and parallel broadcasts for
every view change.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

Xm

deliver(m)

m

• P3 X

Consensus-Based VSC Algorithm

• P1

• P2

• P4

Xm

deliver(m) crash(p2)

m

• P3 X

Consensus-Based VSC Algorithm

• P1

• P2

• P4

Xm

deliver(m) crash(p2)

m

• P3 X

Consensus-Based VSC Algorithm

• P1

• P2

• P4

Xm

deliver(m)

crash(p3)

crash(p2)

m

• P3 X

Consensus-Based VSC Algorithm

• P1

• P2

• P4

Xm

deliver(m)

crash(p3)

crash(p2)

m

• P3 X

Consensus-Based VSC Algorithm

• P1

• P2

• P4

Xm

deliver(m)

crash(p3)

crash(p2)

m

• P3 X

crash(p3)

Consensus-Based VSC Algorithm

• P1

• P2

• P4

Xm

deliver(m)

crash(p3)

crash(p2)

m

• P3 X

crash(p3)

crash(p2)

Consensus-Based VSC Algorithm

• P1

• P2

• P4

Xm

deliver(m)

crash(p3)

crash(p2)

cons({p1,p4},{m}): {p1,p4},{m}

cons({p1,p4},{m}): {p1,p4},{m}

m

• P3 X

crash(p3)

crash(p2)

Consensus-Based VSC Algorithm

• P1

• P2

• P4

Xm

deliver(m)

deliver(m)crash(p3)

crash(p2)

cons({p1,p4},{m}): {p1,p4},{m}

cons({p1,p4},{m}): {p1,p4},{m}

m

• P3 X

crash(p3)

crash(p2)

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X
vsView(p1,p4)

m

vsView(p1,p4)deliver(m)

deliver(m)crash(p3)

crash(p2)

cons({p1,p4},{m}): {p1,p4},{m}

cons({p1,p4},{m}): {p1,p4},{m}

m

• P3 X

crash(p3)

crash(p2)

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X
m

deliver(m)

m

• P3 X

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X
m

deliver(m)

m

• P3 X

crash(p3)

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X
m

deliver(m)

m

• P3 X

crash(p3)

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X
m

deliver(m) crash(p3)

m

• P3 X

crash(p3)

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X
m

deliver(m) crash(p3)

m

• P3 X

crash(p3)

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X
m

deliver(m)

crash(p2)

crash(p3)

m

• P3 X

crash(p3)

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X
m

deliver(m)

crash(p2)

crash(p3)

m

• P3 X

crash(p3)

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X
m

deliver(m)

crash(p2)

crash(p3)

m

• P3 X
crash(p3)

crash(p3)

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X
m

deliver(m)

crash(p2)

crash(p3)

cons({p1,p2,p4},{m}) : {p1,p2,p4},{m}

cons({p1,p4},{}) : {p1,p2,p4},{m}

m

• P3 X
crash(p3)

crash(p3)

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X
m

deliver(m)

deliver(m)crash(p2)

crash(p3)

cons({p1,p2,p4},{m}) : {p1,p2,p4},{m}

cons({p1,p4},{}) : {p1,p2,p4},{m}

m

• P3 X
crash(p3)

crash(p3)

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X

vsView(p1,p2, p4)

m

vsView(p1,p2, p4)deliver(m)

deliver(m)crash(p2)

crash(p3)

cons({p1,p2,p4},{m}) : {p1,p2,p4},{m}

cons({p1,p4},{}) : {p1,p2,p4},{m}

m

• P3 X
crash(p3)

crash(p3)

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

• P1

• P2

• P4

X

vsView(p1,p2, p4)

m

vsView(p1,p2, p4)deliver(m)

deliver(m)crash(p2)

crash(p3)

cons({p1,p2,p4},{m}) : {p1,p2,p4},{m}

cons({p1,p4},{}) : {p1,p2,p4},{m}

m

• P3 X

crash(p2)

crash(p3)

crash(p3)

Process P1 is the only process that has delivered m from P2, and has not heard that it has crashed. The process p1 proposes
p2 to be in the next view. He must send m with his proposal, so that others deliver it in the current view.

Consensus-Based VSC Algorithm

Implements: ViewSynchrony (vs).

Uses:

UniformConsensus (uc) a sequesnce.

BestEffortBroadcast (beb).

PerfectFailureDetector (P).

upon event < Init > do

view := (0, Π)

correct := Π

changing := blocked := false

delivered := seen := ∅

changing: if the view is changing

blocked: if broadcasting is blocked

delivered: all the delivered messages

seen: mapping from processes to messages
delivered from them

Consensus-Based VSC Algorithm

upon event <vsBroadcast, m> and (blocked = false) do

delivered := delivered ∪ {m}

trigger <vsDeliver, self, m>

trigger <bebBroadcast, Data[vid, self, m]>

upon event <bebDeliver, src, Data[id, s, m]>

	 where id = vid and m ∉ delivered and blocked = false do

delivered := delivered ∪ {m}

trigger <vsDeliver, src, m>

Consensus-Based VSC Algorithm

upon event <crash, p> do

correct := correct \ {p}

if changing = false then

changing := true

trigger <vsBlock>

upon <vsBlockOk> do

blocked := true

trigger <bebBroadcast, Seen[vid, delivered]>

upon <bebDeliver, src, Seen[id, del]> where id = vid do

seen[src] := del

if forall p correct, seen[p] ≠ ⊥ then

	 vid := vid + 1

	 initialize uc[vid]

	 trigger <uc[vid], propose, (correct, seen)>

∈

Consensus-Based VSC Algorithm

upon <uc[id], decide, (M’, S)> where id = vid do

forall p M’, (s, m) S[p] such that m ∉ delivered do

delivered := delivered ∪ {m}

trigger <vsDeliver, s, m>

M := M’

changing := blocked := false

seen := delivered :=

trigger <vsView, (vid, M)>

∈ ∈

∅

Uniform View Synchrony

We now combine the properties of

• group membership (Memb1-Memb4) – which is already uniform.

(No two processes (correct or not) install different sets in the
same view.)

• uniform reliable broadcast (RB1-RB4) – which we require to be
uniform

• VS: A message is vsDelivered in the view where it is vsBroadcast

Uniform View Synchrony

Using uniform reliable broadcast instead of best effort
broadcast in the previous algorithms does not ensure the
uniformity of the message delivery.

Uniformity?

• P1

• P2

• P3

X Crash!m

vsView(p1,p3)

m

m

m

vsView(p1,p3)

vsDeliver(m)

The message m is delivered in P2 but is not delivered in P1 and P3.

Uniformity

Idea:

• Deliver a message only when all the correct processes

acknowledge receiving it.

• This is similar to uniform reliable broadcast.

Uniform VSC Algorithm

upon event < Init > do

(vid, M) := (0, S)

correct := S

changing := blocked := false

pending := delivered := seen :=

for all m: ack(m) :=

∅
∅

Uniform VSC Algorithm

upon event <vsBroadcast,m) and (blocked = false) do

pending := pending ∪ {(self, m)}

trigger <bebBroadcast, Data[vid, self, m]>

upon event <bebDeliver, src, Data[id, s, m]>

	 where id = vid and blocked = false do

ack(m) := ack(m) ∪ {src}

if (s, m) ∉ pending then

pending := pending ∪ {(s, m)}

trigger <bebBroadcast, Data[vid, s, m]>

upon event (s, m) ∈ pending and M ⊆ ack(m) and (m ∉ delivered) do

delivered := delivered ∪ {m}

trigger <vsDeliver, s, m>

Uniform VSC Algorithm

upon event < crash, p > do

correct := correct \ { p }

if changing = false then

changing := true

trigger <vsBlock>

upon <vsBlockOk> do

blocked := true

trigger <bebBroadcast, Pending[vid, pending]>

upon <bebDeliver, src, Pending[id, pd]> where id = vid do

seen[src] := pd

if forall p ∈ correct, seen[src] ≠ ⊥ then

vid := vid + 1

initialize uc[vid]

trigger <uc[vid], propose, (correct, seen)>

It could send delivered
instead of pending, but
pending is a superset of
delivered. When safe, we
want to deliver more.

The consensus guarantees
that the same set is
decided and delivered
everywhere.

Uniform VSC Algorithm

upon <uc[id], decide, (M’, S)> where id = vid do

forall p ∈ M’, (s, m) ∈ S[p] such that m ∉ delivered do

delivered := delivered ∪ {m}

trigger <vsDeliver, s, m>

changing := blocked := false

seen := delivered := pending :=

for all m: ack(m) :=

M := M’

trigger <vsView, (vid, M)>

∅
∅

Original slides adopted from R. Guerraoui

