
Total Order Broadcast
Mohsen Lesani

Overview

• Intuitions: what total order broadcast can bring?

• Specifications of total order broadcast

• Consensus-based total order algorithm

Broadcast

m1

m1

m2

m2

deliver

deliver

broadcast

broadcast

broadcast

deliver

Intuitions (1)

• In reliable broadcast, the processes are free to deliver
messages in any order they wish

• In causal broadcast, the processes need to deliver
messages according to some order (causal order)

• The order imposed by causal broadcast is however
partial: some messages might be delivered in different
orders by different processes

Casual Broadcast

• P1

• P2

m2

• P3

m1 m3

m3 m1 m2

m3 m2 m1

broadcast(m1) broadcast(m2)

broadcast(m3)

Reliable Broadcast

• P1

• P2

m2

• P3

m1 m3

m3 m1 m2

m3 m2m1

broadcast(m1) broadcast(m2)

broadcast(m3)

There is not causality between m3 and (m1 and m2).

Intuitions (3)

• A replicated service where the replicas need to treat the
requests (or transactions) in the same order to preserve
consistency (state machine replication)

• A notification service where the subscribers need to get
notifications in the same order

Intuitions (2)

• In total order broadcast, the processes must deliver all
messages according to the same order (i.e., the order is
now total)

• Note that this order does not need to respect causality
(or even FIFO ordering)

• Total order broadcast can be made to respect causal (or
FIFO) ordering

Total Broadcast (I)

• P1

• P2

m2

• P3

m1 m3

m3m1 m2

m3m2m1

broadcast(m1) broadcast(m2)

broadcast(m3)

The total order m1, m2, m3.

Total Broadcast (II)

• P1

• P2

m2

• P3

m1 m3

m3m1m2

m3m1m2

broadcast(m1) broadcast(m2)

broadcast(m3)

The total order m2, m1, m3.

Overview

• Intuitions: what total order broadcast can bring?

• Specifications of total order broadcast

• Consensus-based algorithm

Total order broadcast (tob)

• Events

• Request: <broadcast (m)>

• Indication: <deliver (src, m)>

• Properties:

• RB1, RB2, RB3, RB4

• Total order property

Specification (I)

• Validity: If pi and pj are correct, then every message
broadcast by pi is eventually delivered by pj.

• (Uniform) Agreement: For any message m. If a correct
(any) process delivers m, then every correct process
delivers m.

• No duplication: No message is delivered more than once.

• No creation: No message is delivered unless it was

broadcast.

Specification (II)

• (Uniform) Total Order:

• Let m and m' be any two messages.

• Let pi be a correct (any) process that delivers m without having

delivered m’ before m.

• Then there is no correct (any) process that delivers m' before m

or only delivers m'.

Specifications

Note the following incorrect statements:

• Let pi and pj be any two correct (any) processes that

deliver two messages m and m'. If pi delivers m before m',
then pj delivers m before m'.

• Let pi and pj be any two (correct) processes that deliver a
message m. If pi delivers a message m' before m, then pj
delivers m' before m.

The first definition allows m and m' to be delivered in pi, and m' and not m be delivered in pj.

The second definition allows m to be delivered only in pi, and m’ to be delivered only in pj.

Example

• P1

• P2

m1

• P3

m2

Incorrect execution. The process p2 cannot deliver m2, and the process p3 cannot deliver m1.

• P4

X
Crash!

X Crash!

broadcast(m2)

broadcast(m1)

Overview

• Intuitions: what total order broadcast can bring?

• Specifications of total order broadcast

• Consensus-based algorithm

Modules of a process

broadcast Applications

broadcast

deliver

deliver
Total-order broadcast

Channels

(R-U) Reliable Broadcast

propose decide

Consensus

…

Consensus

• In the (uniform) consensus, the processes propose values
and need to agree on one among these values.

• Events

• Request: <propose(v)>

• Indication: <decide(v)>

• Properties:

• C1, C2, C3, C4

Uniform Consensus

• C1. Validity: Any value decided is a value proposed.

• C2. Uniform Agreement: No two correct (any) processes
decide differently.

• C3. Termination: Every correct process eventually decides.

• C4. Integrity: Every process decides at most once.

Total-order broadcast

• Idea: Which message to deliver next is decided by
consensus.

• Use rounds of consensus. In each, processes propose
their set of messages, and one set is decided,
deterministically sorted and delivered.

• To prevent starvation of messages sent by a process, each
process first broadcasts its messages.

TOB

Implements: TotalOrder (to)

Uses:

rb: ReliableBroadcast

c: Consensus (cons) a sequence indexed by sn

upon event < Init > do

proposals = delivered = ∅

wait := false

sn := 1

wait is used to take consensus rounds in turn.

sn is the sequence number of the current consensus round.

TOB

upon event <broadcast (m)> do

trigger <rb, Broadcast, m>

upon event <rb, deliver (sm, m)> do

if (m ∉ delivered)

proposals := proposals U {(sm,m)}

upon proposals ≠ ∅ and ¬wait do

wait := true:

trigger <c[sn], propose(proposals)>

After a process delivers a message in a consensus round, the process
may receive it late from the broadcast. Such a message is ignored.

TOB

upon event <c[sn], decide(decided)> do

proposals := proposals \ decided

ordered := deterministic-sort (decided)

foreach (sm,m) in ordered:

trigger <deliver (sm, m)>

delivered := delivered U {m}

sn := sn + 1

wait := false

Equivalences

• One can build total order broadcast with consensus and
reliable broadcast

• One can build consensus with total order broadcast
(deciding the first delivered message)

Therefore, consensus and total order broadcast are
equivalent problems in a system with reliable channels

Parts of slides adopted from R. Guerraoui

