
Simulating Shared Memory

Mohsen Lesani

The application model

Registers

Message passing

Register (assumptions)

• For presentation simplicity, we assume registers of
integers.

• We also assume that the initial value of a register is 0 and
this value is initialized (write()en) by some process before
the register is used

• We assume that every value written is uniquely identified
(this can be ensured by associating a process id and a
timestamp with the value)

Register Specification

• Assume a register that is local to a process, i.e.,
accessed only by one process:

• In this case, the value returned by a Read() is the last
value Write()en.

Sequential execution

• P1

• P2

 R()

 W(5) W(6)

 R()

Sequential execution

• P1

• P2

 R():5

 W(5) W(6)

 R():6

Concurrent execution

• P1

• P2

 R1(): ?

 W(5) W(6)

 R2(): ? R3(): ?

Concurrent execution

• P1

• P2 W(5) W(6)

 R(): ?

X
Crash!

Regular register

• It assumes only one writer; multiple processes might
however read from the register.

• It provides strong guarantees when there is no concurrent
or failed operations (invoked by processes that fail in the
middle)

• When some operations are concurrent, or some
operation fails, the register provides minimal guarantees

Regular register

• Read() returns:

• The last value written if there is no concurrent or failed
operations.

• Otherwise the last value Write()en or any value concurrently
Write()en.

Execution

• P1

• P2

 R1()

 W(5) W(6)

 R2() R3()

Results 1

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 0 R3(): 5

Not regular. The return values of R2 is incorrect. (This is the so-
called safe execution that is ironically not so safe.)

Results 2

• P1

• P2

 R1(): 5

 W(5) W(6)

 R2(): 6 R3(): 5

This is regular. R2 returns the concurrently written value
and R3 returns the last written value.

Results 3

• P1

• P2 W(5) W(6)

 R(): 5

X
Crash!

Regular. R written the last written value.
W(6) is like a concurrent write that never finishes.

Results 4

• P1

• P2 W(5) W(6)

 R(): 6

X
Crash!

Regular. R returns the value written by the crashed write.

Regular Register Algorithms

Overview of this lecture

1. Overview of a register algorithm
2. A bogus algorithm
3. A simplistic algorithm
4. A simple fail-stop algorithm
5. A tight asynchronous lower bound
6. A fail-silent algorithm

Implementing a register

Implementing the register comes down to implementing Read() and
Write() operations at every process

Implementing a register

• Before returning a Read() value, the process must communicate
with other processes.

• Before finishing a Write(), i.e., returning the corresponding ok, the
process must communicate with other processes.

Overview of this lecture

1. Overview of a register algorithm
2. A bogus algorithm
3. A simplistic algorithm
4. A simple fail-stop algorithm
5. A tight asynchronous lower bound
6. A fail-silent algorithm

A Bogus Algorithm

• We assume that channels are reliable (perfect point-to-point links)

• Every process pi holds a copy of the register value vi

A Bogus Algorithm

upon Read() at pi

trigger Ret(vi)

upon Write(v) at pi
vi := v
trigger ok

The resulting register is live but
not safe:
Even in a sequential and
failure-free execution, a Read()
by pj might not return the last
written value, say by pi

A Bogus Algorithm

• P1

• P2

 R1(): 0

 W(5) W(6)

 R2(): 0 R3(): 0

No Safety

Overview of this lecture

1. Overview of a register algorithm
2. A bogus algorithm
3. A simplistic algorithm
4. A simple fail-stop algorithm
5. A tight asynchronous lower bound
6. A fail-silent algorithm

A Simplistic Algorithm

• We still assume that channels are reliable but now we also assume
that no process fails

• Basic idea: one process, say p1, holds the value of the register

A Simplistic Algorithm

upon Read() at pi
trigger send [R] to p1
wait to receive [v]
trigger Ret(v)

upon Write(v) at pi
trigger send [W,v] to p1
wait to receive [ok]
trigger ok

At p1:
upon deliver [R] from pi
 trigger send [v1] to pi

upon deliver [W,v] from pi
 v1 := v
 trigger send [ok] to pi

Correctness (liveness)

• Wait-free: every request is eventually followed by a
response.

• By the assumption that
• no process fails
• channels are reliable

• No wait statement blocks forever, and hence every
invocation eventually terminates

Correctness (safety)

• If there is no concurrent or failed operation, a Read() returns the
last value written.

• Assume a Write(x) terminates and no other Write() is invoked. The value of
the register is hence x at p1. Any subsequent Read() invocation by some
process pj returns the value of p1, i.e., x, which is the last written value.

• A Read() returns the previous value written or the value
concurrently written.

• Let x be the value returned by a Read(). By the properties of the channels, x
is the value of the register at p1. This value has been obviously written by
only the last or a concurrent Write().

What if?

• Processes might crash?

• If p1 is always up, then the register is regular and wait-free.

• If p1 crashes, then the register is not wait-free.

• The value cannot be hosted by only one process.

Overview of this lecture

1. Overview of a register algorithm
2. A bogus algorithm
3. A simplistic algorithm
4. A simple fail-stop algorithm
5. A tight asynchronous lower bound
6. A fail-silent algorithm

The fail-stop model

• We assume a fail-stop model: more precisely,
• any number of processes can fail by crashing (no recovery)

• failure detection is perfect (we have a perfect failure
detector)

• channels are reliable

Fail-stop N-N algorithm

• We implement a regular register
• Every process can be reader and writer.
• Every process pi has a local copy of the register value vi.
• Every process reads locally.
• The writer writes globally, i.e., at all (non-crashed)

processes.

Fail-stop N-N algorithm

upon Write(v) at pi
trigger send [W,v] to all
foreach pj, wait until either:

deliver [ack] or

suspect [pj]

trigger ok

At pi :
upon deliver [W,v] from pj
 vi := v

 trigger send [ack] to pj

upon Read() at pi

trigger Ret(vi)

Correctness (liveness)

• A Read() is local and eventually returns.

• A Write() eventually returns, by
• The strong completeness property of the failure detector

The protocol eventually does not wait for incorrect processes.

• The reliability of the channels.
Acknowledgments are received from correct processes.

Correctness (safety)

• In the absence of concurrent or failed operation, a Read() returns the
last value written

• Assume a Write(x) terminates and no other Write() is invoked.
• By the accuracy property of the failure detector, the value of the register at all

processes that did not crash is x.
• Any subsequent Read() invocation by some process pj returns the value of pj,

i.e., x, which is the last written value.

• A Read() returns the value concurrently written or the last value
written.

• Let x be the value returned by a Read() at process pi. The value x is the stored
value vi of pi. The stored value of a process has been written only by the last or
a concurrent Write().

What if?

Failure detection is not perfect.

Overview of this lecture

1. Overview of a register algorithm
2. A bogus algorithm
3. A simplistic algorithm
4. A simple fail-stop algorithm
5. A tight asynchronous lower bound
6. A fail-silent algorithm

The fail-silent model

• We assume a fail-silent model:
• Any number of processes can fail by crashing (no recovery)
• There is no accurate failure detector.
• Channels are reliable

Lower bound

• Proposition: Any wait-free asynchronous implementation of a regular
register requires a majority (quorum) of processes to be correct.

• Proof (sketch):
• Assume that this is possible with less than a correct majority. Assume a

Write(v) is performed. In the absence of failure detectors, to guarantee
liveness, this operation can write into and wait for at most ⌊n/2⌋ processes.
(If failure detector was available, the process could wait to write to all non-
crashed processes.) Since at most ⌊n/2⌋ of processes need to be correct, let
the written processes crash and let others be correct. Then, a Read() is
performed. The Read() cannot see the value v.

• The impossibility holds even with a 1-1 register (one writer and one
reader)

Overview of this lecture

1. Overview of a register algorithm
2. A bogus algorithm
3. A simplistic algorithm
4. A simple fail-stop algorithm
5. A tight asynchronous lower bound
6. A fail-silent algorithm

The majority algorithm (Fail-silent 1-N)

Idea:
• On write, send the value and receive ack from a quorum (majority).
• On read, get the value from a quorum (majority) and return the

newest value.

• To recognize the newest value, the writer maintains and propagates
a timestamp.

• Each reader maintains a local timestamp, and sends and receives it
to distinguish between responses to its different reads.

The majority algorithm (Fail-silent 1-N)

• We assume that p1 is the writer and any process can be a
reader.

• Every process pi stores a local copy of the register vi.

• The writer process p1 maintains a timestamp ts1 that is
incremented on each write.

• Each process pi stores the sequence number sni that is the
timestamp of its stored value vi.

• Each process pi stores the read timestamp rsi that is a local
timestamp in pi to distinguish its Read() operations.

Old Writes

• P1

• P2

 W(5)

Incorrect execution. In p3, the write message
with sn1 = 1 should be ignored.

• P3

Old Writes

• P1

• P2

 W(5)

Incorrect execution. In p3, the write message
with sn1 = 1 should be ignored.

• P3

v1=5

v1=5

Old Writes

• P1

• P2

 W(5)

Incorrect execution. In p3, the write message
with sn1 = 1 should be ignored.

• P3

v1=5

 W(6)

v1=6

v1=5

v3=6

Old Writes

• P1

• P2

 W(5)

Incorrect execution. In p3, the write message
with sn1 = 1 should be ignored.

• P3

v1=5

 W(6)

v1=6

v1=5

v3=6 v3=5

Old Writes

• P1

• P2

 W(5)

 R(): 5

Incorrect execution. In p3, the write message
with sn1 = 1 should be ignored.

• P3

v1=5

 W(6)

v1=6

v1=5

v3=6 v3=5

Old Writes

• P1

• P2

 W(5)

 R(): 5

Incorrect execution. In p3, the write message
with sn1 = 1 should be ignored.

• P3

v1=5

 W(6)

v1=6

v1=5

v3=6 v3=5

Old Writes

• P1

• P2

 W(5)

 R(): 6

Correct execution. In p3, the write message
with sn1 = 1 should be ignored.

• P3

sn1=1 ; v1=5

 W(6)

sn1=2 ; v1=6

sn1=1 ; v1=5

sn3=2 ; v3=6

Protocol - Write()

upon Write(v) at p1

 ts1 := ts1 + 1

 trigger send [W,ts1,v] to all

 wait for deliver [W,ts1,ack] from majority

 trigger ok

At pi

 upon deliver [W,ts1,v] from p1

 if ts1 > sni then

 vi := v

 sni := ts1

 trigger send [W,ts1,ack] to p1

The timestamp ts1 is sent with the ack
messages to distinguish different writes.

The write messages that arrive late (with
timestamps ts1 less than sni) are ignored.

Protocol - Read()

upon Read() at pi
 rsi := rsi + 1

 trigger send [R,rsi] to all

 wait for deliver [R,rsi,snj,vj] from majority

 v := vj with the largest snj

 trigger Ret(v)

At pi

 upon deliver [R,rsj] from pj

 trigger send [R,rsj,sni,vi] to pj

The timestamp rsi is used to distinguish
different read requests from the process pi.

The process pi itself can be one of the processes
in the quorum that replies with a value.

Correctness (liveness)

Every Read() or Write() eventually returns.
• As a majority of processes are correct, they will send the required

number of acknowledgements.
• In the write case, a process may have a newer timestamp and may

not send an ack. This means that a later write has written to it.
Thus, a later Write() is started in p1. Because writes execute in
sequence in p1, the older Write() has already returned.

Correctness (safety)

• In the absence of concurrent or failed operation, a Read() returns the last
value written.

• Assume a Write(x) terminates and no other Write() is invoked. A majority of the
processes q1 have x as their local value together with the highest timestamp in the
system. Any subsequent Read() invocation by some process pj reads values from a
majority of processes q2. The two quorums q1 and q2 intersect in at least one process
p. Therefore, pj can get the value x with the highest timestamp from p, and return x.

• A Read() returns the last value written or the value concurrently written.
• Consider two writes w1 and w2 that execute and finish in sequence. The second one

has a higher timestamp, and writes into a quorum q2.

• A value that a read returns is the value with the highest timestamp from a quorum
q3. The quorums q2 and q3 intersect at a process. Thus, w2 does not miss the larger
timestamp and the later value written by w2.

Multiple writers

• P1

• P2
 R(): 6

 W(5)

 ts1=1

 W(6)

 ts1=2

 W(7)

 ts1=1
• P3

Incorrect execution. The protocol does not support multiple writers. The write
in p3 is ignored and results in the incorrect read in p2. We will see an N-N
atomic register in the next lectures.

Original slides adopted from R. Guerraoui

