
 Causal Broadcast

Mohsen Lesani

1



Broadcast Abstraction

m

m

deliver(m)

broadcast(m)

deliver(m)

2

Process 1

Process 2

Process 3



Modular Design

broadcast(m) 

Causal Broadcast

3

Application

deliver(m) 

Causal Broadcast

Application

Process 1 Process 2



Broadcast Execution Diagram

Process 1

Process 2

Process 3

broadcast(m1)

4



Broadcast Execution Diagram

Process 1

Process 2

Process 3

m1

m1

broadcast(m1)

m1

4



Broadcast Execution Diagram

Process 1

Process 2

Process 3

m1

deliver(m1)

deliver(m1)

m1

broadcast(m1)

m1

deliver(m1)

4



Overview

• Motivation: why causal broadcast?

• Properties of causal broadcast

• Protocols
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Intuition

• So far, we did not consider ordering among messages; In 
particular, we considered messages to be independent


•  Two messages from the same process might not be delivered 
in the order they were broadcast


•  A message m1 that causes a message m2 might be delivered 
by some process after m2


• Consider a news or social network where every new event 
contains a reference to the event that caused it.
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Abstract

Today’s Internet services are often expected to stay available and
render high responsiveness even in the face of site crashes and
network partitions. Theoretical results state that causal consistency
is one of the strongest consistency guarantees that is possible
under these requirements, and many practical systems provide
causally consistent key-value stores. In this paper, we present
a framework called Chapar for modular verification of causal
consistency for replicated key-value store implementations and their
client programs. Specifically, we formulate separate correctness
conditions for key-value store implementations and for their clients.
The interface between the two is a novel operational semantics for
causal consistency. We have verified the causal consistency of two
key-value store implementations from the literature using a novel
proof technique. We have also implemented a simple automatic
model checker for the correctness of client programs. The two
independently verified results for the implementations and clients
can be composed to conclude the correctness of any of the programs
when executed with any of the implementations. We have developed
and checked our framework in Coq, extracted it to OCaml, and built
executable stores.

Categories and Subject Descriptors C.2.2 [Computer Communi-
cation Networks]: Network Protocols—Verification; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Correctness
Proofs

General Terms Algorithms, Reliability, Verification

Keywords causal consistency, theorem proving, verification

1. Introduction

Modern Internet servers rely crucially on distributed algorithms for
performance scaling and availability. Services should stay available
even in the face of site crashes or network partitions. In addition,
most services are expected to exhibit high responsiveness [21].
Hence, modern data stores are replicated across continents. During

Program 1 (p1): Uploading a photo and posting a status
0! Alice

put(Pic, ); . uploads a new photo
put(Post , ) . announces it to her friends

1! Bob

post  get(Post); . checks Alice’s post
photo  get(Pic); . then loads her photo
assert(post = ) photo 6= ?)

put(Pic, ) put(Post , )

get(Post): get(Pic):?

Figure 1. Inconsistent trace of Photo-Upload example

the downtime of a replica, other replicas can keep the service
available, and the locality of replicas enhances responsiveness.

On the flip side, maintaining strong consistency across repli-
cas [30] can limit parallelism [35] and availability. When avail-
ability is a must, the CAP theorem [19] formulates a fundamental
trade-off between strong consistency and partition tolerance, and
PACELC [3] formulates a trade-off between strong consistency
and latency [5]. In reaction to these constraints, modern storage
systems including Amazon’s Dynamo [17], Facebook’s Cassan-
dra [27], Yahoo’s PNUTS [16], LinkedIn’s Voldemort [1], and mem-
cached [2] have adopted relaxed notions of consistency that are
collectively called eventual consistency [48]. The main guarantee
that eventually consistent stores provide is that if clients stop is-
suing updates, then the replicas will converge to the same state.
Researchers [13, 44, 46] have proposed eventually consistent algo-
rithms for common datatypes like registers, counters, and finite sets.
Recent work [12, 14, 54] has formalized and verified the eventual-
consistency condition for these algorithms.

Weaker consistency is a double-edged sword. It can lead to
more efficient and fault-tolerant algorithms, but at the same time
it exposes clients to less consistent data. Programming with weak
consistency is challenging and error-prone. As an example, consider
Program 1, which shows two client routines (0 for Alice and
1 for Bob) running concurrently. An execution of the program
with an eventually consistent store is shown in Figure 1. Alice
uploads a photo of herself and then posts a message that she
has uploaded a photo . Bob reads Alice’s post announcing the
upload. He attempts to see the photo but only sees the default value.
The message containing the photo arrives late. The post is issued
after the photo is uploaded in Alice’s node. We call this a node-
order dependency from the post to the upload. If Bob can see the
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Lost Ring

Program 2 (p2): The lost and found ring
0! Alice

put(Alice, ); . “I’ve lost my ring”
put(Alice, ) . “Found it!”

1! Bob

post  get(Alice);

if post = then

put(Bob, ) . “Glad to hear it!”
2! Carol

post  get(Bob);
post 0  get(Alice);

assert (post = ) post 0 6= )

put(A, ) put(A, )

get(A): put(B , )

get(B): get(A):

Figure 2. Inconsistent trace of Lost-Ring example

post, he is expected not to miss the photo. Bob’s code includes
an assertion formalizing his expectation that the presence of a
post implies the presence of a photo. Unfortunately, some natural
implementations of a key-value store will not respect such properties.
For instance, eventual consistency does not guarantee this invariant
in intermediate execution states, just quiescent states.

Program 2 and Figure 2 depict another scenario [31], where
Alice posts that she has lost her ring , but then she finds it and
posts that all is well . Bob sees Alice’s second post. We say that
there is a gets-from dependency from Alice’s second put to Bob’s
get operation. Bob then responds with “Glad to hear it!” . Bob’s
put operation is node-order dependent on his get operation. Thus,
Bob’s put operation is transitively dependent on Alice’s second put
operation. Carol is an observer of this exchange. If she sees Bob’s
post, she should not miss Alice’s second post. However, a store
that does not respect dependencies may allow for an inconsistent
execution, where Carol could mistakenly think that Bob is glad to
hear that Alice has lost her ring.

Therefore, stronger notions of consistency that can still be
provided in the face of partitions are desirable. Causal consis-
tency [4, 9, 28, 42] is shown [34] to be one of the strongest con-
sistency notions compatible with high availability. Thus, many pi-
oneering systems such as ISIS [9], causal memory [4], lazy repli-
cation [26], Bayou [37, 47], and PRACTI [7], plus recent systems
such as COPS and Eiger [31, 32] and Bolt-On [6], provide causal
consistency. In addition to social-network applications, many others,
including the familiar example of electronic mail, can benefit from
causal consistency.

Causal consistency ensures that replicas respect the causal
dependencies between the operations. In other words, if an update
is visible at a replica, all the updates that it is dependent on should
be also visible at that replica. For example, in the scenario above,
Alice’s post is dependent on her upload of the photo. Thus, the
update for the post should be applied to Bob’s replica only when the
update for the photo is already applied. Therefore, when the post
is retrieved from the replica, the photo is already available in the
replica.

Concurrent and distributed algorithms are challenging to design
and understand, and distributed-system bugs [20, 52] are notoriously
hard to find and reproduce. Further, the integrity of the data store and

Programs

Verified Model Checker

Abstract Causal Operational Semantics

Instrumented Concrete Operational Semantics

Concrete Operational Semantics

Implementations

Causally Content

Causal Consistency

Well-Reception

Figure 3. Overview of Chapar Framework

the consistency of the data that clients observe are dependent on the
correctness of the causally consistent algorithm that coordinates
between the replicas. Therefore, precise specification of causal
consistency and verification techniques that check the compliance
of key-value store implementations with the specification enhance
the reliability of applications that are built using these data stores.
In addition, causal consistency provides weaker guarantees than
serializability to clients. Thus, the client programs are exposed to
less consistent data and are prone to more bugs. Therefore, automatic
checkers are a useful aid for client programmers to verify that
their programs preserve their application invariants if executed with
causally consistent stores. Although there have been recent efforts
on verification of eventual consistency, to the best of our knowledge,
our work presented here is the first to address causal consistency.

We have developed a verification framework called Chapar for
causally consistent key-value stores using the Coq proof assistant.
Figure 3 shows an overview of the framework. We explain each part
in turn.

Previous work [4, 13, 42] has presented denotational definitions
of causal consistency for execution histories. In this work, we
present an abstract operational semantics for causal consistency.
The semantics defines all the causally consistent executions of
a program on the map interface independently of any concrete
implementation of the interface. It serves as a layer that separates
the verification of concrete implementations from the verification of
client programs. Implementations are verified to comply with, and
clients are verified on top of, the abstract semantics. (For brevity,
throughout this paper we adopt the convention that implementations
refers to implementations of key-value stores, while client code
refers to programs running on top, even though those programs
are reasonably considered as “implementations” with standard
terminology.)

The abstract semantics provides a convenient execution model
to build automatic model checkers. We refer to programs that avoid
assertion failures when executed with the abstract semantics as
causally content. We present a simple automatic model checker that
can verify that a closed program is causally content.

We present a common interface for the key-value store imple-
mentations. The interface captures the type of the node state and
broadcast updates; the signatures of the put, get, and update opera-
tions; and a precondition guard on updates. We present a concrete
operational semantics for implementations of this interface, paramet-
ric in a choice of implementation. We define that an implementation
is causally consistent if and only if the concrete operational se-
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implementations of a key-value store will not respect such properties.
For instance, eventual consistency does not guarantee this invariant
in intermediate execution states, just quiescent states.

Program 2 and Figure 2 depict another scenario [31], where
Alice posts that she has lost her ring , but then she finds it and
posts that all is well . Bob sees Alice’s second post. We say that
there is a gets-from dependency from Alice’s second put to Bob’s
get operation. Bob then responds with “Glad to hear it!” . Bob’s
put operation is node-order dependent on his get operation. Thus,
Bob’s put operation is transitively dependent on Alice’s second put
operation. Carol is an observer of this exchange. If she sees Bob’s
post, she should not miss Alice’s second post. However, a store
that does not respect dependencies may allow for an inconsistent
execution, where Carol could mistakenly think that Bob is glad to
hear that Alice has lost her ring.

Therefore, stronger notions of consistency that can still be
provided in the face of partitions are desirable. Causal consis-
tency [4, 9, 28, 42] is shown [34] to be one of the strongest con-
sistency notions compatible with high availability. Thus, many pi-
oneering systems such as ISIS [9], causal memory [4], lazy repli-
cation [26], Bayou [37, 47], and PRACTI [7], plus recent systems
such as COPS and Eiger [31, 32] and Bolt-On [6], provide causal
consistency. In addition to social-network applications, many others,
including the familiar example of electronic mail, can benefit from
causal consistency.

Causal consistency ensures that replicas respect the causal
dependencies between the operations. In other words, if an update
is visible at a replica, all the updates that it is dependent on should
be also visible at that replica. For example, in the scenario above,
Alice’s post is dependent on her upload of the photo. Thus, the
update for the post should be applied to Bob’s replica only when the
update for the photo is already applied. Therefore, when the post
is retrieved from the replica, the photo is already available in the
replica.

Concurrent and distributed algorithms are challenging to design
and understand, and distributed-system bugs [20, 52] are notoriously
hard to find and reproduce. Further, the integrity of the data store and

Programs

Verified Model Checker

Abstract Causal Operational Semantics

Instrumented Concrete Operational Semantics

Concrete Operational Semantics

Implementations

Causally Content

Causal Consistency

Well-Reception

Figure 3. Overview of Chapar Framework

the consistency of the data that clients observe are dependent on the
correctness of the causally consistent algorithm that coordinates
between the replicas. Therefore, precise specification of causal
consistency and verification techniques that check the compliance
of key-value store implementations with the specification enhance
the reliability of applications that are built using these data stores.
In addition, causal consistency provides weaker guarantees than
serializability to clients. Thus, the client programs are exposed to
less consistent data and are prone to more bugs. Therefore, automatic
checkers are a useful aid for client programmers to verify that
their programs preserve their application invariants if executed with
causally consistent stores. Although there have been recent efforts
on verification of eventual consistency, to the best of our knowledge,
our work presented here is the first to address causal consistency.

We have developed a verification framework called Chapar for
causally consistent key-value stores using the Coq proof assistant.
Figure 3 shows an overview of the framework. We explain each part
in turn.

Previous work [4, 13, 42] has presented denotational definitions
of causal consistency for execution histories. In this work, we
present an abstract operational semantics for causal consistency.
The semantics defines all the causally consistent executions of
a program on the map interface independently of any concrete
implementation of the interface. It serves as a layer that separates
the verification of concrete implementations from the verification of
client programs. Implementations are verified to comply with, and
clients are verified on top of, the abstract semantics. (For brevity,
throughout this paper we adopt the convention that implementations
refers to implementations of key-value stores, while client code
refers to programs running on top, even though those programs
are reasonably considered as “implementations” with standard
terminology.)

The abstract semantics provides a convenient execution model
to build automatic model checkers. We refer to programs that avoid
assertion failures when executed with the abstract semantics as
causally content. We present a simple automatic model checker that
can verify that a closed program is causally content.

We present a common interface for the key-value store imple-
mentations. The interface captures the type of the node state and
broadcast updates; the signatures of the put, get, and update opera-
tions; and a precondition guard on updates. We present a concrete
operational semantics for implementations of this interface, paramet-
ric in a choice of implementation. We define that an implementation
is causally consistent if and only if the concrete operational se-
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Overview

• Motivation: why causal broadcast?

• Properties of causal broadcast

• Protocols
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Causal Order Property

If any process pi delivers a message m2,  
then pi must have delivered every message m1 that m2 is dependent on.

11



Causal Relation (Dependency)

Let m1 and m2 be any two messages.  
m1 ≺ m2 (m1 is causally before m2, or m2 depends on m1) iff


• FIFO order: 
A process pi broadcasts m1 before broadcasting m2.


• …


• …

12
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Causal Relation (Dependency)

Let m1 and m2 be any two messages.  
m1 ≺ m2 (m1 is causally before m2, or m2 depends on m1) iff


• FIFO order: 
A process pi broadcasts m1 before broadcasting m2.


• InOut order:  
A process pi delivers m1 and then broadcasts m2.


• …

15



Example 2: InOut Order
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Causal Relation (Dependency)

Let m1 and m2 be any two messages.  
m1 ≺ m2 (m1 is causally before m2, or m2 depends on m1) iff


• FIFO order: 
A process pi broadcasts m1 before broadcasting m2.


• InOut order:  
A process pi delivers m1 and then broadcasts m2.


• Transitivity: 
There is a message m3 such that m1 ≺ m3 and m3 ≺ m2.

17



Uniform Causal Broadcast (UCB)

• Events

• Request: <broadcast (m)>

• Indication: <deliver (src, m)>


also called ucbBroadcast and ucbDeliver.


• Properties:

• URB1, URB2, URB3, URB4 +

• CO 



Overview

• Motivation: why causal broadcast?

• Properties of causal broadcast

• Protocols
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Protocols

How do we preserve the causal order?

20



Protocol 1

Idea:

Remember the past messages and  
sent them together with every new message.

21
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Observation

Messages that carry the past are large!

24



Protocol 2

Idea:

• Keep the number of messages delivered from each process as a 

vector (clock) of numbers.


• Send the vector clock (VC) together with new messages.

(*except for the current process that is updated with the number of 
broadcast messages.) 

p1 p2 p3

2 1 0

25



Protocol 2

• Deliver a message only if the local vector clock is larger 
than the vector clock of the message.

p1 p2 p3

2 1 0

26

p1 p2 p3
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Modular Design

broadcast Application

crash 

Failure Detector

Channels

Reliable Broadcast

deliver 

Causal Broadcast broadcast deliver 
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Protocol 1

Implements: UniformCausalBroadcast (ucb).

Uses: UniformReliableBroadcast (urb).
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Protocol 1

Implements: UniformCausalBroadcast (ucb).

Uses: UniformReliableBroadcast (urb).

upon event < Init > do

delivered := past := ∅
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Protocol 1

Implements: UniformCausalBroadcast (ucb).

Uses: UniformReliableBroadcast (urb).

upon event < Init > do

delivered := past := ∅

upon event < broadcast (m) > do

trigger < urb, broadcast ([past, m]) >

past := past U {[self, m]}

31
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Protocol 1

Implements: UniformCausalBroadcast (ucb).

Uses: UniformReliableBroadcast (urb).

Every new message is added to 
past. This preserves the FIFO 
order property.

upon event < Init > do

delivered := past := ∅

upon event < broadcast (m) > do

trigger < urb, broadcast ([past, m]) >

past := past U {[self, m]}

31

Similarly Reliable broadcast 
can be used to get Reliable 
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Protocol 1

upon event <urb, deliver (pi, [pastm, m])> do

if m ∉ delivered then


forall [sn, n] ∈ pastm do


if n ∉ delivered then


trigger < deliver (sn, n) >


delivered := delivered U {n}


past := past U {[sn, n]}
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Protocol 1

upon event <urb, deliver (pi, [pastm, m])> do

if m ∉ delivered then


forall [sn, n] ∈ pastm do


if n ∉ delivered then


trigger < deliver (sn, n) >


delivered := delivered U {n}


past := past U {[sn, n]}
The set pastm is added to past.

This preserves the transitivity property.
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The set pastm is added to past.

This preserves the transitivity property.
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Protocol 1

upon event <urb, deliver (pi, [pastm, m])> do

if m ∉ delivered then


forall [sn, n] ∈ pastm do


if n ∉ delivered then


trigger < deliver (sn, n) >


delivered := delivered U {n}


past := past U {[sn, n]}

trigger < deliver (pi, m) >


delivered := delivered U {m}


past := past U {[pi, m]}
Every delivered message is added to past. 
This preserves the InOut property.

The set pastm is added to past.

This preserves the transitivity property.
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Observation

If we keep remembering the past, 
we eventually run out of space!

33



Protocol 1 + Garbage Collection

Idea:


• Broadcast an ack when a message is delivered.


• Forget a message after receiving acks from all correct processes.
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Protocol 1 + Garbage Collection

Implements:  CausalOrderBroadcast (co).

Uses:  


ReliableBroadcast (rb).

PerfectFailureDetector (P).


upon event < Init > do 

…

correct := Π

ack(m) := ∅ (for all m)
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Protocol 1 + Garbage Collection

upon event < P, crash (pi) > do 

correct := correct \ {pi}
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Protocol 1 + Garbage Collection

upon event < P, crash (pi) > do 

correct := correct \ {pi}

upon event <urb, deliver (p, Msg[pastm, m])> do

…

trigger <urb, broadcast (Ack[p, m])>
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Protocol 1 + Garbage Collection

upon event < P, crash (pi) > do 

correct := correct \ {pi}

upon event <urb, deliver (p, Msg[pastm, m])> do

…

trigger <urb, broadcast (Ack[p, m])>

upon event <urb, deliver (p, Ack[s, m])> do 

ack(m) := ack(m) U {p}

if correct ⊆ ack(m) then


past := past \ {[s, m]}
36



Protocol 2

Implements:  UniformCausalBroadcast (ucb).

Uses:  UniformReliableBroadcast (urb).


upon event < Init > do 

sq := 0

foreach pi in Π: VC[pi] := 0
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Protocol 2

upon event < broadcast (m) > do 

VC' = VC[self ↦ sq]

trigger < urb, broadcast ([VC’, m]) >

sq = sq + 1
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Protocol 2

upon event < urb, deliver (pj, [VCm, m]) > do 

wait until (VC  VCm)

trigger < deliver (pj, m) >

VC[pj] := VC[pj] + 1

≥

upon event < broadcast (m) > do 

VC' = VC[self ↦ sq]

trigger < urb, broadcast ([VC’, m]) >

sq = sq + 1

38


