
 Reliable Broadcast
Mohsen Lesani



Broadcast

m

m deliver

deliver

broadcast



Broadcast abstractions

Best-effort broadcast 
Reliable broadcast 
Uniform broadcast



Modules of a process

broadcast 

Applications

send deliver 

crash 

Failure Detector

Channel

(B-U) Reliable Broadcast deliver 

send deliver Channel



Intuition

• Broadcast is useful for instance in applications where some 
processes subscribe to events published by other processes 
(e.g., stocks) 

• The subscribers might require some reliability guarantees 
from the broadcast service (we say sometimes quality of 
service – QoS) that the underlying network does not provide.



Overview

• We shall consider three forms of reliability for a broadcast 
primitive 

   Best-effort broadcast 
   (Regular) reliable broadcast 
   Uniform (reliable) broadcast 
• We shall give first specifications and then algorithms



Best-effort Broadcast (BEB)

• Events 
• Request: <broadcast (m)> 
• Indication: <deliver (src, m)> 

also called bebBroadcast and bebDeliver. 

• Properties: BEB1, BEB2, BEB3



Best-effort Broadcast (BEB)

Properties: 
• BEB1. Validity:  

If pi and pj are correct, then every message broadcast by pi 
is eventually delivered by pj. 

•  BEB2. No duplication:  
No message is delivered more than once. 

•  BEB3. No creation:  
No message is delivered unless it was broadcast.



Best-effort Broadcast

• P1

• P2

• P3

broadcast(m)



Best-effort Broadcast

• P1

• P2

• P3

m

m

broadcast(m)



Best-effort Broadcast

• P1

• P2

deliver(p1,m)

• P3

deliver(p1,m)

deliver(p1, m)

m

m

broadcast(m)



Best-effort Broadcast

• P1

• P2

deliver(p1,m)

• P3

deliver(p1,m)

deliver(p1,m)

m

m

broadcast(m) broadcast(m2)

If the sender or receiver is not correct, the 
message does not need to be delivered.



Best-effort Broadcast

• P1

• P2

deliver(p1,m)

• P3

deliver(p1,m)

deliver(p1,m)

m

m

broadcast(m) broadcast(m2)

If the sender or receiver is not correct, the 
message does not need to be delivered.



Best-effort Broadcast

• P1

• P2

deliver(p1,m)

• P3

deliver(p1,m)

deliver(p1,m)

m

m

broadcast(m)

m2 m2

broadcast(m2)

If the sender or receiver is not correct, the 
message does not need to be delivered.



Best-effort Broadcast

• P1

• P2

deliver(p1,m)

• P3

deliver(p1,m)

deliver(p1,m)

m

m

broadcast(m)

X
Crash!

m2 m2

broadcast(m2)

If the sender or receiver is not correct, the 
message does not need to be delivered.



Best-effort Broadcast

• P1

• P2

deliver(p1,m)

• P3

deliver(p1,m)

deliver(p1,m)

m

m

broadcast(m)

X
Crash!

deliver(p1,m2)
m2 m2

broadcast(m2)

If the sender or receiver is not correct, the 
message does not need to be delivered.



Reliable Broadcast (RB)

• Events 
•  Request: <broadcast (m)> 
•  Indication: <deliver (src, m)> 

also called rbBroadcast and rbDeliver. 
• Properties: RB1, RB2, RB3, RB4



Reliable Broadcast (RB)

Properties 
• RB1 = BEB1.  
• RB2 = BEB2.  
• RB3 = BEB3. 
• RB4. Agreement: For any message m, if a correct process 

delivers m, then every correct process delivers m.



Best-effort Broadcast

• P1

• P2

deliver(p1,m)

• P3

deliver(p1,m)

deliver(p1,m)

m

m

broadcast(m)

X
Crash!

deliver(p1,m2)
m2 m2

broadcast(m2)

If the sender or receiver is not correct, the 
message does not need to be delivered.

X



Reliable Broadcast

• P1

• P2

deliver(p1,m)

• P3

deliver(p1,m)

deliver(p1,m)

m

m

broadcast(m)

X
Crash!

deliver(p1,m2)
m2 m2

broadcast(m2)

deliver(p1,m2)

In contrast to beb, because p2 has delivered, 
p3 should deliver too.



Reliable Broadcast

• P1

• P2

• P3

deliver

deliver

m1

m1

Crash!

The process p2 did not deliver; p3 does not 
need to deliver.

m2

deliverbroadcast broadcast

X



Reliable Broadcast

• P1

• P2

• P3

deliver

deliver

m1

m1

The process p2 delivered but is not correct; the 
process p3 does not need to deliver.

m2

deliver deliver

deliver

Xm2

broadcast broadcast

X

X



Uniform (Reliable) Broadcast (URB)

• Events 
•  Request: <broadcast (m)> 
•  Indication: <deliver (src, m)> 

also called urbBroadcast and urbBroadcast. 

• Properties: URB1, URB2, URB3, URB4



Uniform (Reliable) Broadcast (URB)

• Properties 
•  URB1 = BEB1.  
•  URB2 = BEB2.  
•  URB3 = BEB3. 
• URB4. Uniform Agreement: If a process delivers a message m, then 

every correct process delivers m.

The delivering process does not need to be 
correct.



Uniform (Reliable) Broadcast

• P1

• P2

• P3

deliver

deliver

m1

m1

The process p2 has delivered but is not correct. 
Nonetheless, urb requires correct processes to deliver.

m2

deliver deliver

deliver

deliverm2

broadcast broadcast

X

X



Uniform (Reliable) Broadcast

• P1

• P2

• P3

delivery

delivery

m1

m1

Crash!

No process including the process p2 has delivered. 
Other processes do not need to deliver.

delivery

Crash!m2

broadcast broadcast

X

X



Overview

• Three forms of reliability for a broadcast primitive 
   Best-effort broadcast 
   (Regular) reliable broadcast 
   Uniform (reliable) broadcast 
• We saw the specifications. Now, protocols.



BEB Protocol

Implements:  BestEffortBroadcast (beb). 
Uses:  PerfectLinks (pp2p). 

upon event < broadcast (m) > do  
forall pi in Π do  

trigger < pp2p, send (pi, m) > 

upon event < pp2p, deliver(pi, m) > do  
trigger < deliver (pi, m) >



BEB Protocol

• P1

• P2

deliver

• P3

deliver

deliver

m

m

broadcast



BEB Protocol

• Proof (sketch) 
•  BEB1. Validity: By (1) the broadcast handler pp2p sends the 

message to all (2) the validity property of perfect links and (3) 
the pp2p deliver handler of every correct process delivers the 
message. 

• BEB2. No duplication: By contradiction: A message is delivered 
only when it is pp2p delivered. The no duplication (and no 
creation) property of perfect links. The assumption that each 
message is broadcast once. 

• BEB3. No creation: Similar to BEB2.



BEB Protocol

• P1

• P2

• P3

deliver

deliver

m1

m1

Crash in the middle of the loop.

m2

deliver

deliver

m2

broadcast broadcast

X

X



Reliable Broadcast (RB) Protocol

How do we deliver the message even when the sender crashes?



Reliable Broadcast (RB) Protocol

Idea:  
If the sender crashes and there is a correct process that has 
received the message, then that process itself should help out. 

• Each process pi remembers the messages that each other 
process pj has sent. If pi finds that pj has crashed, pi 
rebroadcasts the messages that Pj has previously sent. 

• Reliable agreement is achieved: If there is a correct process 
that has delivered a message, this process itself rebroadcasts 
and ensures delivery to others.



Reliable Broadcast (RB) Protocol

Implements:  ReliableBroadcast (rb). 
Uses:  

BestEffortBroadcast (beb).   
PerfectFailureDetector (P). 

upon event < Init > do  
delivered := ∅ 
forall pi in Π do from[pi] := ∅ 
correct := Π

delivered: To prevent duplicate delivery. 
from[pi]: To remember the set of messages received from pi. 
correct: To resend messages received from an incorrect process that arrive late.



Reliable Broadcast (RB) Protocol

upon event < broadcast (m) > do  
delivered := delivered U {m} 
trigger < deliver (self, m) > 
trigger < beb, broadcast ([self, m]) >

The process first delivers to itself. 
Delivery to self is not left to beb 
broadcast so that the process does 
not save its own messages.



Reliable Broadcast (RB) Protocol

upon event < P, crash (pi) > do  
correct := correct \ {pi} 
forall [pj, m] in from[pi] do 
 trigger <beb, broadcast([pj, m])>



Reliable Broadcast (RB) Protocol

upon event <beb, deliver(pi, [pj, m])> do  
if m ∉ delivered then  

delivered := delivered U {m} 

trigger <deliver (pj, m)> 

if pi ∉ correct then 

trigger <beb, broadcast([pj, m])> 

else  
from[pi] := from[pi] U {[pj, m]}

pi is the sender. 
pj is the sender of m. 
If i is not equal to j, the process pj 
has crashed and pi is trying to 
help him. 

The then branch: pi has crashed 
after sending and before this 
delivery

The else branch: pi in correct. We add m to 
from[pi] so that if a crash indication of pi 
comes, we rebroadcast it. If m is added to 
from[pj], then we might have already 
received crash indication of pj, and m is 
never rebroadcast.



Reliable Broadcast (RB) without Synchrony

• The previous algorithm uses perfect failure detector that 
is only possible in the synchronous model. 

• What about when there is no synchrony? 
• Instead of waiting for a crash indication, each process can 

eagerly beb broadcast every message that it receives.



Reliable Broadcast (RB) Protocol

• P1

• P2

deliver

• P3

deliver

deliver

m

m

broadcast



Reliable Broadcast (RB) Protocol

• P1

• P2

• P3

deliver

deliver

m
m

p2 learns that the 
sender p1 crashed and 
rebroadcasts m.

m

m

broadcast

X

X crash(p1)



Reliable Broadcast (RB) Protocol

Proof (sketch): 
• RB1. RB2. RB3:  Similar to the beb algorithm 
• RB4. Agreement:  

• Assume some correct process pi rb delivers a message m rb 
broadcast by some process pk.  

• If pk is correct, then by property BEB1, all correct processes beb 
deliver and then rb deliver m. 

• If pk crashes, then by the completeness property of P, pi detects 
the crash, and beb broadcasts m to all. 
It rebroadcasts no matter it gets the crash indication of pk after 
or before the the delivery of m. 
Since pi is correct, then by property BEB1, all correct processes 
beb deliver and then rb deliver m.



Uniform (Reliable) Broadcast (URB) Protocol

How do we deliver the message even if a crashed process delivers it?



Uniform (Reliable) Broadcast

• P1

• P2

• P3

The process p2 has delivered but is not correct. 
Nonetheless, urb requires correct processes to deliver.

deliver

deliver

broadcast

X

X



Uniform (Reliable) Broadcast (URB) Protocol

• P1

• P2

• P3

deliver

m
m

m

crash(p1)

broadcast

X

X

m

m deliver

crash(p1)



Uniform (Reliable) Broadcast (URB) Protocol

Idea:  

• A process may crash right after delivering the message and before sending it to others. 
Therefore, before delivering the message locally, the process has to make sure every 
correct process will eventually deliver it. 

• Before delivering locally, a process has to make sure that at least one correct process 
has the message. 

• Every process rebroadcasts a message that it receives.  

• A process p delivers the message only if it receives it from every process except those 
that the failure detector has reported crashed. 

• If there is a process p' that remains correct, and is expected to deliver the message, 
then the process p' itself is a correct process that p got the rebroadcast message from. 
So a correct process has the message. That single correct process can send it to all 
other correct processes. Then, the correct processes send and receive the message 
from each other. They can make each other eventually deliver the message.



URB

broadcast 

Applications

crash 

Failure Detector

URB

deliver 

broadcast

deliver 

BEB



Uniform (Reliable) Broadcast (URB) Protocol

Implements:  UniformBroadcast (urb). 
Uses:  

BestEffortBroadcast (beb).   
PerfectFailureDetector (P). 

upon event < Init > do  
correct := S 
delivered := pending := ∅ 
ack[Message] := ∅ 

upon event < broadcast (m) > do  
pending := pending U {[self,m]} 
trigger < beb, broadcast([self,m]) >

pending is a set of <src, m> pairs that 
represents the already forwarded 
and pending messages. It is used to 
forward messages only once. 

ack is a map from each message to 
set of processes that ack for that 
message is received from

We note that in contrast to the 
previous algorithm, the process does 
not deliver the message to itself here.



Uniform (Reliable) Broadcast (URB) Protocol
upon event <beb, deliver (pi, [pj,m])> do  

ack[m] := ack[m] U {pi} 
if [pj,m] ∉ pending then 

pending := pending U {[pj,m]} 
trigger < beb, broadcast ([pj,m]) > 

else 
tryDelivery() 

def tryDelivery() 
foreach ([pj,m] in pending) 

if (correct  ack[m] and m ∉ delivered) 
delivered := delivered U {m} 

trigger <deliver (pj, m)> 

upon event < crash, pi > do  
correct := correct \  {pi} 
tryDelivery()

⊆

The process pj is the original sender. 

When pi is not pj, m is indirectly 
received through pi. The process pj 
might have crashed.

The correct state is always a 
superset of or equal to the set of 
correct processes.



Uniform (Reliable) Broadcast (URB) Protocol

• P1

• P2

• P3

deliverym m

m

m

m
m

delivery

deliverybroadcast



Uniform (Reliable) Broadcast (URB) Protocol

• P1

• P2

• P3

deliver

m
m

m

crash(p1)

broadcast

X

X
m deliver

crash(p1)



Uniform (Reliable) Broadcast (URB) Protocol

• P1

• P2

• P3

delivery

m

delivery

m

m

m

crash(p2)

broadcast

crash(p2)

X



Uniform (Reliable) Broadcast (URB) Protocol

• P1

• P2

• P3

m

crash(p1)

broadcast

X

X
m

crash(p1)

crash(p2)



Correctness

Proof (sketch) 
A simple lemma: If a correct process p beb broadcasts a message 
m, then every correct process p’ eventually urb delivers m.  
• By the validity property of BEB, every correct process will 

eventually beb deliver m from p, and then broadcasts it if it has 
not already. 

• Thus, every correct process p’ will eventually bebDeliver m from 
every correct process.  

• From the completeness property of PFD, the correct set is 
eventually a subset of correct processes.  

• Therefore, eventually, every correct process beb delivers m from 
every process in its correct set, and hence it urb delivers m.



Correctness

Proof (sketch) 

• URB1. Validity:  
• If a correct process pi urb broadcasts a message m, then pi beb 

broadcasts it. Thus, by our lemma, every correct process pj urb 
delivers m. 

• URB2. URB3:  follow from BEB2 and BEB3 and the delivered set. 

• URB4. Agreement:  
• Assume some process pi urb delivers a message m. By the algorithm, 

pi has beb delivered from its correct set.  
• By the accuracy of PFD, the set of correct processes is a subset of its 

correct set.  
• Therefore, pi has beb delivered m from a correct process. By the no 

creation property of BEB, the correct process has beb broadcast m. By 
our lemma, every correct process urb delivers m.



URB without Synchrony

• The previous algorithm uses perfect failure detector that is only 
possible in the synchronous model. 

• What about when there is no synchrony? 
• We assume that at lease a majority of the processes (a quorum) are 

correct. 
• Instead of tracking correct processes and delivering a message when 

the ack is received from all of them, 
a process delivers a message when it receives an ack from a majority 
of processes. 

• There will be at least one correct process in that majority. That 
correct process broadcasts the message. Thus, all correct processes 
receive and also broadcast the message. Correct processes are a 
majority. Thus, each correct process receives the message from a 
majority, and is convinced to deliver the message.



References

Parts adopted from R. Guerraoui


