
Principles of Distributed Computing

Mohsen Lesani

Distributed Systems

• One processor
• Reliable (no faults)
• No communication

• No Concurrency
• One step at a time

• Complexity
• Step complexity

• Examples
• Sorting (Quicksort, Mergesort,

Heapsort)
• Searching (Binary search)
• Matrix mult. (Strassen's)
• Primality testing

Algorithms

• Many processors
• Faulty (crash, byzantine, etc.)
• Communication over network

• Concurrent
• Multiple steps at a time

• Complexity
• Message complexity
• Latency analysis

• Examples
• Leader election
• Consensus (Agreement)
• Mutual exclusion (Dining Philosophers)
• Atomic objects

History Lesson

• 1960’s: Edsger W. Dijkstra
• Concurrent operating systems
• Semaphores
• Dining Philosophers (mutual exclusion)
• Self-stabilization (fault-recovery)

• 1970’s: Leslie Lamport
• Logical clocks (time and causality)
• Replication
• Byzantine Generals Problem (consensus)
• “A distributed system is one in which the failure

of a computer you didn't even know existed
can render your own computer unusable.”

• 1970's: Jim Gray
• Transactions
• Databases

• 1980's: Nancy Lynch
• Fault tolerance
• Timing (synchrony, asynchrony, partial

synchrony)
• Consensus

• 1990's: Birman, Schneider, Toueg
• Failure detectors
• Reliable broadcast
• Totally-ordered broadcast
• Causal broadcast
• Group membership
• View synchrony

• 2020’s
• Map Reduce, Google File System
• Raft, Spanner
• Spark
• Bitcoin

Todays Lecture

• Big picture:
• What is a distributed system?
• Why build a distributed system?

• Components of a distributed system:
• Processes (abstracting computers)
• Channels (abstracting networks)

• Time & failure detectors

A distributed system

Client-server system

Elon Musk Paypal server

Multiple Servers

Why distributed systems?

• What are the advantages?

Distributed
Multi-server

Centralized
Client-server

vs.

Why distributed systems?

• What are the advantages?

Distributed
Multi-server

Centralized
Client-server

• High-availability / Fault-tolerance
• Locality, Responsiveness
• Concurrency / Parallelism -> Performance

vs.

Why not distributed systems?

• What are the disadvantages?

Distributed
Multi-server

vs.
Centralized

Client-server

Why not distributed systems?

• What are the disadvantages?

Distributed
Multi-server

vs.
Centralized

Client-server

• Expensive (to have redundancy)
• Concurrency -> Interleaving -> Bugs
• Failures -> Incorrectness

Todays Lecture

• Big picture:
✓What is a distributed system?
✓Why build a distributed system?

• Components of a distributed system:
• Processes (abstracting computers)
• Channels (abstracting networks)
• Time & failure detectors

• Time & failure detectors

Textbook

Introduction to Reliable and Secure Distributed Programming

C. Cachin, R. Guerraoui, L. Rodrigues

2nd ed. of "Introduction to Reliable Distributed Programming”

The new content covers Byzantine failures.

Distributed Programming

• System with N processes (also called replicas) Π = {p, q, r …}.
(Processes know each other.)

• Processes coordinate to implement the application

Communication Abstraction

 p q r s….
Processes

Programming abstractions

• Sequential programming
• Array, record, list ...

• Concurrent programming
• Thread, semaphore, monitor, ...

• Distributed programming
• Reliable broadcast
• Shared memory
• Consensus
• Atomic commit
• ...

Distributed System

Applications

Algorithms

Channels

Applications

Algorithms

Channels

Modules of a process

Applications request

Algorithmic
Modules

Channels

request

request

indication

indication

indication

Layered Modular Architecture

• Every process is a tree of components.
• Every component has a unique identifier.
• There might be multiple instances of a component type.

• Modules communicate through events.

Events

Events

Component

Sub Component 1 Sub Component 2

Events

Programming with Events

• Asynchronous events
• Request events flow downward
• Indication (or Response) events flow upward

Layer n

Indication

(send) (deliver)

(propose) (decide)

Layer n+1
Request

Indication
Layer n-1

Request

Reactive Programming

A component is implemented as a set of event handlers

 upon event <component, Event (att1, att2 …) > do
do something;
trigger <component', Event' (att’1, att'2 …) >;

The component is elided if it is the current component self.

Specification

What does a component provide?
Specification in terms of the interface events.

Example Components

• Reliable broadcast
• Ensure that a message sent to a group of processes is received by

all or none.

• Atomic commit
• Ensure that the processes reach a common decision on whether

to commit or abort a transaction.

Module Specification

• A module is defined by events and properties:

Reliable Broadcast
• Events

• Request: < broadcast (m) >
• Indication: < deliver (src, m) >

• Properties:
• Validity
• No Duplication
• No creation
• Agreement

Module Specification

• A module is defined by events and properties:

Atomic Commit

• Events
• Request: < propose (d) > where d is either Commit or Abort
• Indication: < decide (d) >

• Properties:
• Uniform Agreement
• Integrity
• Abort Validity
• Commit Validity
• Termination

Two Types of Properties

• Safety properties state that nothing bad ever happens.

• Liveness properties state that something good eventually
happens.

Safety and Liveness

• Example: Traffic lights

• Only one direction gets a
green light

Safety and Liveness

• Example: Traffic lights

• Eventually each direction
gets a green light

Safety and Liveness

• Example: Reliable Broadcast
Eventually every message is delivered.

Safety and Liveness

• Example: Failure Detector
Strong Completeness: Eventually, every process that
crashes is permanently suspected by every correct process.

Safety and Liveness

• Example: Failure Detector
Strong Accuracy: No process is suspected before it crashes.

Execution Traces

• P1

• P2

m1

• P3

m2

m3

Execution Traces

• P1

• P2

m1

• P3

m2 Crash!

Processes

Processes may fail:

• Crash-stop: The process takes no further process.
Simply a more specific case of emissions (dropping messages):If a
process omits a message, then it omits all subsequent messages.

• Arbitrary (Byzantine): The process can take arbitrary including
malicious actions. For example, it can send misleading messages.

A process that does not fail is called correct.
A process that fails is called incorrect.

Processes

• By default, we assume crash-stop processes.
• Processes fail only by crashing.
• Processes do not recover.

Todays Lecture

• Big picture:
✓ What is a distributed system?
✓ Why build a distributed system?

• Components of a distributed system:
✓ Processes (abstracting computers)
• Channels (abstracting networks)
• Time & failure detectors

• Time & failure detectors

Channels

• Processes communicate by message passing through
communication channels.

• We consider point-to-point channels.
• Messages are uniquely identified and the message

identifier includes the sender's identifier.

Links

• Logically every process may communicate with every
other process: (a)

• Physical implementation may differ: (b)-(d)

Channels

How reliable are the communication channels?
• Fair-loss links:

• Messages may be lost, but is delivered with some small probability.

• Stubborn links:
• Eventually messages delivered (infinitely often).

• Perfect links:
• Eventually each message is delivered once.

Channel Specification

A channel module is defined by events and properties:
• Events

• Request: send (dest, m)
• Indication: deliver (src, m)

• Properties:
• Reliability
• No Duplication
• Integrity
• …

Fair-loss links

• FL1. Fair-loss:
• If a message is sent infinitely often by pi to pj, and neither pi or

pj crash, then m is delivered infinitely often to pj.

• FL2. Finite duplication:
• If a message is sent a finite number of times by pi to pj, it is not

delivered an infinite number of times to pj.

• FL3. No creation:
• No message is delivered unless it was sent.

Stubborn links

• SL1. Stubborn delivery.
• If a correct process pi sends a message m to a correct process pj,

then pj delivers m, an infinite number of times.

• SL2. No creation:
• No message is delivered unless it was sent.

Algorithm (sl)

Implements: StubbornLinks (sl)
Uses: FairLossLinks (fl)

upon event <sl, send (dest, m)> do
repeat forever

trigger <fl, send (dest, m)>

upon event <fl, deliver (src, m)> do
 trigger <sl, deliver (src, m)>

Stubborn Link

Fair-loss Link

send

send deliver

deliver

Reliable (Perfect) links

• PL1. Validity.
• If pi and pj are correct, then every message sent by pi to pj is

eventually delivered by pj.

• PL2. No duplication:
• No message is delivered to a process more than once.

• PL3. No creation:
• No message is delivered unless it was sent.

Algorithm (pl)

Implements: PerfectLinks (pl)
Uses: StubbornLinks (sl)

upon event < Init > do delivered := ∅

upon event < pl, send (dest, m) > do
trigger < sl, send (dest, m) >

upon event < sl, deliver (src, m) > do
if m delivered then

trigger < pl, deliver (src, m) >
delivered := delivered ∪ {m}

∉

Stubborn Link

Fair-loss Link

send

send deliver

deliver

Perfect Link

send deliver

Reliable links

• We implicitly assume perfect links.
• Roughly speaking, reliable links ensure that messages

exchanged between correct processes are not lost.

Todays Lecture

• Big picture:
✓ What is a distributed system?
✓ Why build a distributed system?

• Components of a distributed system:
✓ Processes (abstracting computers)
✓Channels (abstracting networks)
• Time & failure detectors

• Time & failure detectors

Time

• Local clocks:
• Do processes have access to local clocks?
• If so, are these clocks synchronized? Are these clocks accurate?

• clock skew Difference between time
• clock drift Difference between clock rate

• Communication channels:
• How long does a message take to be delivered?

Models of Synchrony

Asynchrony: anything goes

Synchrony: perfectly synchronized rounds

Partial Synchrony

Timing assumptions

• Synchronous:
• Processing: the time it takes for a process to execute a

step is bounded and known.
• Delays: there is a known upper bound limit on the time

it takes for a message to be received.
• Clocks: the drift between a local clock and the global

real time clock is bounded and known.

• Eventually Synchronous:
• Synchronous timing holds eventually.

• Asynchronous:
• No assumptions, no clocks.

Time and Failure Detection

Sender
failed?

Slow
Channel?

Failure Detector

• A failure detector is a distributed component that provides
processes with suspicions about crashed processes.

• It is implemented using (i.e., it encapsulates) timing
assumptions.

• According to the timing assumptions, the suspicions can
be accurate or inaccurate.

Failure Detector

Failure detector component
• Events

• Indication: < crash (p) >
• Indication: < restore (p) >

• Properties:
• Completeness

• Accuracy

Failure Detector

• Perfect:
• Strong Completeness: Eventually, every process that crashes

is permanently suspected by every correct process.
• Strong Accuracy: No process is suspected before it crashes.

• Eventually Perfect:
• Strong Completeness

• Eventual Strong Accuracy: Eventually, no correct process is
ever suspected.

Failure Detector

Implementation:
• Processes periodically exchange heartbeat messages.
• A process sets a timeout based on worst case roundtrip of

a message exchange.
• A process suspects another process if its times out is

triggered.
• A process that receives a message from a suspected

process revises its suspicion and increases its timeout.

Failure Detectors

Network model:

• Synchronous ->

• Eventual Synchronous ->

• Asynchronous ->

Guarantees:

Failure Detectors

Network model:

• Synchronous ->

• Eventual Synchronous ->

• Asynchronous ->

Guarantees:

Perfect FD

Failure Detectors

Network model:

• Synchronous ->

• Eventual Synchronous ->

• Asynchronous ->

Guarantees:

Perfect FD

Eventually Perfect FD

Failure Detectors

Network model:

• Synchronous ->

• Eventual Synchronous ->

• Asynchronous ->

Guarantees:

Perfect FD

Eventually Perfect FD

None!!

Protocol Design

Assumptions:
• Processes: crash-stop failures
• Channels: reliable channels
• Timing: perfect OR eventually perfect failure detectors

For every service:
• We develop algorithms for a crash-stop system with a

perfect failure detector.
• We try to make a weaker assumptions and revisit the

algorithms.

Cryptographic primitives

Dual goals of cryptography
• Confidentiality (encryption, not relevant here)
• Integrity

• Hash functions
• Message authentication codes (MAC)
• Digital signatures

Hash functions

• Cryptographic hash function H maps inputs of
arbitrary length to a short unique hash value.

• Collision-freedom: No process can find distinct
values x and x' such that H(x) = H(x')

Message-Authentication Codes

• A MAC authenticates data between two processes
• It is based on a shared symmetric key, which is known only to the sender

and to the receiver of a message, but to nobody else.
• For a message of its choice, the sender can compute an authenticator for

the receiver. Given an authenticator and a message, the receiver can
verify that the message has indeed been authenticated by the sender.

• Symmetric cryptographic can be computed and verified quickly.

Digital signatures

• Digital signatures are based on public-key cryptography (or asymmetric
cryptography).

• The sender owns a private key that must remain secret; the public key is
accessible to anyone. With the private key, the sender can produce a signature
for a message.

• Everyone with access to the public key can verify that the signature on the
message is valid.

• A signature scheme is more powerful than a MAC in the sense that if a relayed
message is verified, only the owner of the private key can be the sender.

• Because of their underlying mathematical structure, asymmetric cryptography
adds considerable computational overhead compared to symmetric
cryptography.

