
CSE113: Parallel Programming

• Topics:
• RMW mutex implementations

time

mutex request

mutex acquire

account -= 1

mutex release

time

mutex request

mutex acquire

account += 1

mutex release

Announcements

• Third lecture in Module 2

• HW 1 should be in today.

• HW 2 was last Thursday. You can start on part 1, probably part 2 by
end of today.

• Office hours available. Start early!

Announcements

• Office hour etiquette
• Some people are going without help. Let’s do round robin.

Announcements

• Midterm is in next week, Oct 22
• In-person test
• 3 pages of notes front and back (but no memorization questions)
• 10% of your grade
• 5 or 6 short answer questions

Previous quiz + review

Previous quiz

Properties of mutexes

Recap: three properties

• Mutual Exclusion: Two threads cannot be in the critical section at the same
time

• Deadlock Freedom: If a thread has requested the mutex, and no thread
currently holds the mutex, the mutex must be acquired by one of the
requesting threads

• Starvation Freedom (optional): A thread that requests the mutex must
eventually obtain the mutex.

Previous quiz

Mutex Performance

Try to keep mutual exclusion sections small!

Code example with overhead

Mutex Performance

Try to keep mutual exclusion sections small! Protect only data conflicts!

Code example with overhead

core 0

core 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire

Long periods of waiting in the threads

Overhead

Overhead

mutex request

Long periods of
waiting in the
threads

Mutex Performance

Try to keep mutual exclusion sections small! Protect only data conflicts!

Code example with overhead

core 0

core 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire

overlap the overhead (i.e. computation without any data conflicts)

Overhead

Overhead Peronal_account

Overhead

Previous quiz

Previous quiz

Our primitive instructions

• Types: atomic_int

• Interface (C++ provides overloaded operators):
• load
• store

• Properties:
• loads and stores will always go to memory.
• compiler memory fence
• hardware memory fence

Previous quiz

Atomic properties

• loads and stores will always go to memory

• Compiler example, performance difference

int foo(int x) {
 x = 0;
 for (int i = 0; i < 2048; i++) {
 x++;
 }
 return x;
}

int foo(atomic x) {
 x.store(0);
 for (int i = 0; i < 2048; i++) {
 int tmp = x.load();
 tmp++;
 x.store(tmp);
 }
 return x.load();
}

Previous quiz

Mutex Implementations

Finally, we can can make a mutex that works:

Use flags to mark interest
Use victim to break ties

Called the Peterson Lock

Mutex Implementations

flags and victim

Initially:
No victim and no threads are interested in the critical section

Mutex Implementations

j is the other thread

Mark ourself as interested

volunteer to be the victim in case of a tie

Spin only if:
 there was a tie in wanting the lock,
 and I won the volunteer raffle to be victim

Mutex Implementations

mark ourselves as uninterested

Thread 0:
m.lock();
m.unlock();

previous flag
issue

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].load

Mutex request

flag[0].load

returns 1

flag[0].store(1)

flag[1].store(1) flag[0].load flag[0].load flag[0].load

Both will spin forever!

flag[0].load flag[0].load flag[0].load flag[0].load

flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load

how does petersons solve this?

Thread 0:
m.lock();
m.unlock();

Tie breaking with
victim

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

only one of the stores will be in victim (one will overwrite the other)

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

only one of the stores will be in victim (one will overwrite the other)
1 0

victim.loadflag[0].load

1 0

Tie breaking with
victim

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Tie breaking with
victim

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Mutex release

flag[1].store(1)

Tie breaking with
victim

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Mutex release

flag[1].store(1)

victim.loadflag[1].load

0 0

Mutex acquire

Tie breaking with
victim

core 0

Mutex request

flag[1].loadflag[0].store(1)

will spin forever!

flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load

Thread 0:
m.lock();
m.unlock();

previous victim
issue

Thread 0:
m.lock();
m.unlock();

previous flag
issue

core 0

Mutex request

flag[0].store(1) victim.store(0) victim.loadflag[1].load

0 0

Thread 0:
m.lock();
m.unlock();

previous flag
issue

core 0

Mutex request

flag[0].store(1) victim.store(0) victim.loadflag[1].load

0 0
Mutex acquire

we can enter critical section because the other thread isn’t interested

Critical section

New material

Historical perspective

• These locks are academically interesting: they can be implemented
with plain loads and stores

• However, they are not very performant compared to modern
solutions
• Your HW will show this

• We will now turn our attention to more performant implementations
that use RMWs

Start by revisiting our first mutex
implementation
• A first attempt:
• A mutex contains a boolean.

• The mutex value set to 0 means that it is free. 1 means that some thread is
holding it.

• To lock the mutex, you wait until it is set to 0, then you store 1 in the flag.

• To unlock the mutex, you set the mutex back to 0.

• Let’s remember why it was buggy

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

returns 0

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 0

flag.store(1)

Mutex acquire Critical section

Critical sections overlap! This mutex
implementation is not correct!

Buggy Mutex
implementation:
Analysis

flag.load flag.store(1)

What went wrong?

• The load and stores from two threads interleaved
• What if there was a way to prevent this?

What went wrong?

• The load and stores from two threads interleaved
What if there was a way to prevent this?

atomic_fetch_add

Recall the lock free account

Atomic Read-modify-write (RMWs): primitive instructions that
implement a read event, modify event, and write event indivisibly, i.e. it
cannot be interleaved.

atomic_fetch_add(atomic_int * addr, int value) {
 int tmp = *addr; // read
 tmp += value; // modify
 *addr = tmp; // write
}

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

lock-free accounts

time
time

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

lock-free accounts

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

time
time

tmp = tylers_account.load();
tmp -= 1;
tylers_account.store(tmp);

tmp = tylers_account.load();
tmp += 1;
tylers_account.store(tmp);

lock-free accounts

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

time
time

tmp = tylers_account.load();
tmp -= 1;
tylers_account.store(tmp);

tmp = tylers_account.load();
tmp += 1;
tylers_account.store(tmp);

cannot interleave!

lock-free accounts

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

time
time

tmp = tylers_account.load();
tmp -= 1;
tylers_account.store(tmp);

tmp = tylers_account.load();
tmp += 1;
tylers_account.store(tmp);

cannot interleave!

either way, account breaks even at the end!

lock-free accounts

atomic_fetch_add

Recall the lock free account

int atomic_fetch_add(atomic_int * addr, int value) {
 int stash = *addr; // read
 int new_value = value + stash; // modify
 *addr = new_value; // write

return stash; // return previous value in the memory location
}

RMW

A read-modify-write consists of:
• read
• modify
• write
done atomically, i.e. they cannot interleave.

Typically returns the value (in some way) from the read.

They operate on atomic types.

RMW-based locks

• A few simple RMWs enable lots of interesting mutex implementations

• When we have simpler implementations, we can focus on
performance

First example: Exchange Lock

• Simplest atomic RMW will allow us to implement an:

• N-threaded mutex with 1 bit!

First example: Exchange Lock

value atomic_exchange(atomic *a, value v);

Loads the value at a and stores the value in v at a. Returns the value
that was loaded.

First example: Exchange Lock

value atomic_exchange(atomic *a, value v);

Loads the value at a and stores the value in v at a. Returns the value
that was loaded.

value atomic_exchange(atomic *a, value v) {
 value tmp = a.load();

 a.store(v);

 return tmp;

}

First example: Exchange Lock

Lets make a mutex with just one atomic bool!

First example: Exchange Lock

Lets make a mutex with just one atomic bool!

one atomic flag

initialized to false

First example: Exchange Lock

Lets make a mutex with just one atomic bool!

one atomic flag

initialized to false

main idea:

The flag is false when the mutex
is free.

The flag is true when some
thread has the mutex.

First example: Exchange Lock

First example: Exchange Lock

So what’s going on?

First example: Exchange Lock

So what’s going on?

Two cases:

mutex is free: the value loaded is false. We store
true. The value returned is False, so we don’t spin

mutex is taken: the value loaded is true, we put
the SAME value back (true). The returned value is
true, so we spin.

First example: Exchange Lock

Unlock is simple: just store false to the flag,
marking the mutex as available.

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

mutex works
with one thread

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

EXCH()

Mutex request

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

EXCH()

returns true
Mutex request

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

EXCH()

returns true

EXCH() EXCH() EXCH() EXCH() EXCH() EXCH()

Mutex request

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

EXCH()

returns true

EXCH() EXCH() EXCH() EXCH() EXCH() EXCH()

Mutex request
returns false

Mutex acquire

critical section

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release
what about interleavings?

EXCH()

returns true

EXCH() EXCH() EXCH() EXCH()

Mutex request
returns false

Mutex acquire

critical section
EXCH() EXCH()

Analysis

core 0

core 1

Mutex request

Mutex request

EXCH()

EXCH()

core 2

core 3

Mutex request

Mutex request

EXCH()

EXCH()

what about 4 threads?

Analysis

core 0

core 1

Mutex request

Mutex request

EXCH()

EXCH()

core 2

core 3

Mutex request

Mutex request

EXCH()

EXCH()

what about 4 threads?

atomic operations can’t overlap

Analysis

core 0

core 1

Mutex request

Mutex request

EXCH()

EXCH()

core 2

core 3

Mutex request

Mutex request

EXCH()

EXCH()

what about 4 threads?

atomic operations can’t overlap

Analysis

core 0

core 1

Mutex request

Mutex request

EXCH()

EXCH()

core 2

core 3

Mutex request

Mutex request

EXCH()

EXCH()

what about 4 threads?

atomic operations can’t overlap

this one will win

Analysis

core 0

core 1

Mutex request

Mutex request

EXCH()

EXCH()

core 2

core 3

Mutex request

Mutex request

EXCH()

EXCH()

what about 4 threads?

atomic operations can’t overlap

this one will win

spin

spin

spin

Analysis

core 0

core 1

Mutex request

Mutex acquired

EXCH()

core 2

core 3

Mutex request

Mutex request

EXCH()

EXCH()

what about 4 threads?

atomic operations can’t overlap

Critical section

spin

spin

spin

Analysis

core 0

core 1

Mutex request

Mutex acquired

EXCH()

core 2

core 3

Mutex request

Mutex request

EXCH()

EXCH()

what about 4 threads?

atomic operations can’t overlap

Critical section

spin

spin

spin

mutex release
flag.store(false)

Analysis

core 0

core 1

Mutex request

Mutex acquired

EXCH()

core 2

core 3

Mutex request

Mutex request

EXCH()

EXCH()

what about 4 threads?

atomic operations can’t overlap

Critical section

spin

spin

spin

mutex release
flag.store(false)

EXCH()

EXCH()

EXCH()

some thread
will win

Most versatile RMW: Compare-and-swap

• Exchange was the simplest RMW (no modify)

• Most versatile RMW: Compare-and-swap (CAS)

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace);

Most versatile RMW: Compare-and-swap

• Exchange was the simplest RMW (no modify)

• Most versatile RMW: Compare-and-swap (CAS)

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace);

Checks if value at a is equal to the value at expected. If it is equal, swap with replace.
returns true if the values were equal. false otherwise.

Most versatile RMW: Compare-and-swap

• Exchange was the simplest RMW (no modify)

• Most versatile RMW: Compare-and-swap (CAS)

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace);

Checks if value at a is equal to the value at expected. If it is equal, swap with replace.
returns true if the values were equal. false otherwise.
expected is passed by reference: the previous value at a is returned

Most versatile RMW: Compare-and-swap

• Exchange was the simplest RMW (no modify)

• Most versatile RMW: Compare-and-swap (CAS)

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
 value tmp = a.load();
 if (tmp == *expected) {
 a.store(replace);
 return true;
 }
 *expected = tmp;
 return false;
}

Most versatile RMW: Compare-and-swap

• Exchange was the simplest RMW (no modify)

• Most versatile RMW: Compare-and-swap (CAS)

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
 value tmp = a.load();
 if (tmp == *expected) {
 a.store(replace);
 return true;
 }
 *expected = tmp;
 return false;
}

we will discuss
this soon!

Most versatile RMW: Compare-and-swap

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
 value tmp = a.load();
 if (tmp == *expected) {
 a.store(replace);
 return true;
 }
 *expected = tmp;
 return false;
}

a:0

thread 0:
// some atomic int address a
int e = 0;
bool s = atomic_CAS(a,&e,6);

Most versatile RMW: Compare-and-swap

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
 value tmp = a.load();
 if (tmp == *expected) {
 a.store(replace);
 return true;
 }
 *expected = tmp;
 return false;
}

thread 0:
// some atomic int address a
int e = 0;
bool s = atomic_CAS(a,&e,6);

a:0

Most versatile RMW: Compare-and-swap

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
 value tmp = a.load();
 if (tmp == *expected) {
 a.store(replace);
 return true;
 }
 *expected = tmp;
 return false;
}

thread 0:
// some atomic int address a
int e = 0;
bool s = atomic_CAS(a,&e,6);

a:6

Most versatile RMW: Compare-and-swap

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
 value tmp = a.load();
 if (tmp == *expected) {
 a.store(replace);
 return true;
 }
 *expected = tmp;
 return false;
}

thread 0:
// some atomic int address a
int e = 0;
bool s = atomic_CAS(a,&e,6);

a:6

true

Most versatile RMW: Compare-and-swap

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
 value tmp = a.load();
 if (tmp == *expected) {
 a.store(replace);
 return true;
 }
 *expected = tmp;
 return false;
}

a:16

thread 0:
// some atomic int address a
int e = 0;
bool s = atomic_CAS(a,&e,6);

next example

Most versatile RMW: Compare-and-swap

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
 value tmp = a.load();
 if (tmp == *expected) {
 a.store(replace);
 return true;
 }
 *expected = tmp;
 return false;
}

a:16

thread 0:
// some atomic int address a
int e = 0;
bool s = atomic_CAS(a,&e,6);

false

CAS lock
Pretty intuitive: only 1 bit required again:

CAS lock

Check if the mutex is free, if so, take it. compare the mutex to free (false), if so, replace it with
taken (true). Spin while the thread isn’t able to take
the mutex.

CAS lock

Unlock is simple! Just store false back

Starvation

• Are these RMW locks fair?

Analysis

core 0

core 1

mutex
request

Is this mutex starvation Free?

mutex
request

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

EXCH()

mutex
request

mutex
acquire

spin

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

critical section
flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

critical section
flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Delay!!! (OS preemption, garbage
collector, energy throttling)

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

critical section
flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

critical section
flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

EXCH()

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

critical section
flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

EXCH()

mutex
acquire critical section

EXCH()

missed it!
spin

How about in practice?

• Code demo

How can we make this more fair?

• Use a different atomic instruction:
• int atomic_fetch_add(atomic_int *a, int v);

We’ve seen this one before!

How can we make this more fair?

• Use a different atomic instruction:
• int atomic_fetch_add(atomic_int *a, int v);

We’ve seen this one before!
intuition: take a ticket

like at Zoccoli’s!

Ticket lock

• Ticket lock: instead of 1 bit, we need
an integer for the counter.

• The mutex also needs to track of

which ticket is currently being served

Ticket lock

• Ticket lock: instead of 1 bit, we need
an integer for the counter.

• The mutex also needs to track of

which ticket is currently being served

Get a unique number

Spin while your number isn’t being served

To release, increment the number that’s currently
being served.

Analysis

core 0

core 1

mutex
request

Is this mutex starvation Free?

mutex
request

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

currently_serving is 0

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

mutex
release

serving
+= 1

Delay!!! (OS preemption, garbage
collector, energy throttling)

currently_serving is 1

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

mutex
release

serving
+= 1

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

atomic_add

my_number is 2,
counter is now 3

currently_serving is 1

spin

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

mutex
release

serving
+= 1

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

atomic_add

my_number is 2,
counter is now 3

currently_serving is 1

spin

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

mutex
release

serving
+= 1

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

atomic_add

my_number is 2,
counter is now 3

currently_serving is 1

spin

load()
mutex
acquire

Fair?

• Code Example

Optimizations

How is CAS (and others) implemented?

• X86 has an actual instruction
• ARM and POWER are load linked and store conditional

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

thread 1:
a.store(..);

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

thread 1:
a.store(..);

has to wait

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

thread 1:
a.store(..);

has to wait

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

thread 1:
a.store(..);

has to wait

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

thread 1:
a.store(..);

once the lock is released then we can access

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a Pros: if there is contention, the CAS
will complete successfully

thread 2:
a.store(..);

thread 1:
a.store(..);

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

Cons: if no other threads are contending, lock
overhead is high

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

For this example consider an atomic increment

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

T0_exclusive = 1

before we store, we have to check if there
was a conflict.

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

can’t store because our exclusive bit was
changed, i.e. there was a conflict!

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

can’t store because our exclusive bit was
changed, i.e. there was a conflict!

solution: loop until success:

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 0

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 1

Pros: very efficient when there is no conflicts!

Cons: conflicts are very expensive!

Spinning thread might starve (but not indefinitely)
if other threads are constantly writing.

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 1

ARM implements all atomics this way!

