
CSE113: Parallel Programming

• Topics:
• Intro to mutual exclusion

• Different types of parallelism
• Data conflicts
• Protecting shared data

time

mutex request

mutex acquire

account -= 1

mutex release

time

mutex request

mutex acquire

account += 1

mutex release

Announcements

• Second lecture in Module 2: mutexes!

• HW 2 will be assigned today at midnight. You’ll have what you need
to complete part 1 by end of today.

• No guarantee of homework help after 5 PM or weekends.

Announcements

• Midterm is in 2 weeks
• In-person test
• 3 pages of notes front and back (but no memorization questions)
• 10% of your grade

Previous quiz

Previous quiz

Mutex alternatives?

Other ways to implement accounts?

Atomic Read-modify-write (RMWs): primitive instructions that
implement a read event, modify event, and write event indivisibly, i.e. it
cannot be interleaved.

atomic_fetch_add(atomic_int * addr, int value) {
 int tmp = *addr; // read
 tmp += value; // modify
 *addr = tmp; // write
}

other operations: max, min, etc.

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Previous quiz

Embarrassingly parallel

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

All threads can read from the same value.
Conflicts only occur if a thread writes to the
value!

Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

threads read
unique locations

Conflict because multiple threads write to the same location!

Note: Reductions have some
parallelism in them, as seen in your
homework.

Previous quiz

Previous quiz

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
 for (int i = tid; i < a_size; i+=num_threads) {
 a[i]++;
 }
}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1
iterations computed by thread 1

Previous quiz

Review

Mutex Performance

Try to keep mutual exclusion sections small! Protect only data conflicts!

Code example with overhead

core 0

core 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire

Long periods of waiting in the threads

Overhead

Overhead

mutex request

Long periods of
waiting in the
threads

Mutex Performance

Try to keep mutual exclusion sections small! Protect only data conflicts!

Code example with overhead

core 0

core 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire

overlap the overhead (i.e. computation without any data conflicts)

Overhead

Overhead Peronal_account

Overhead

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• Need to protect both of them using a mutex
• Easy, we can just the same mutex

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• No reason individual accounts can’t be accessed in parallel

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• No reason individual accounts can’t be accessed in parallel

core 0

core 1 business_account += 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Long periods of waiting in the threads

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexB request mutexB acquire mutexB release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexB request mutexB acquire mutexB release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request personal_account += 1mutexP acquire mutexP release

Managing multiple mutexes

Consider this increasingly elaborate scheme

My accounts start being audited by two agents:
• UCSC
• IRS

• They need to examine the accounts at the same time. They need to
acquire both locks

Managing multiple mutexes

void irs_audit() {
 for (int i = 0; i < NUM_AUDITS; i++) {
 tylers_personal_account_mutex.lock();
 tylers_business_account_mutex.lock();

 AUDIT(tylers_personal_account, tylers_business_account);

 tylers_personal_account_mutex.unlock();
 tylers_business_account_mutex.unlock();
 }
}

Multiple mutexes

• Our program deadlocked! What happened?

void ucsc_audit() {
 for (int i = 0; i < NUM_AUDITS; i++) {
 tylers_business_account_mutex.lock();
 tylers_personal_account_mutex.lock();

 AUDIT(tylers_personal_account, tylers_business_account);

 tylers_personal_account_mutex.unlock();
 tylers_business_account_mutex.unlock();
 }
}

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

mutexP request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

mutexP request

IRS has the personal mutex and won’t release it until it acquires the business mutex.
UCSC has the business mutex and won’t release it until it acquires the personal mutex.

This is called a deadlock!
The locks must be acquired in the same order across the application.

New material

Properties of mutexes

Three properties

• Mutual exclusion - Only 1 thread can hold the mutex at a time.
Critical sections cannot interleave

time

concurrent execution

Other threads are allowed to request, but not acquire until
the thread that has acquired the mutex releases it.

mutex acquire

disallowed!

mutex request mutex acquire mutex request

Properties of mutexes

Three properties

• Mutual exclusion - Only 1 thread can hold the mutex at a time.
Critical sections cannot interleave

time

concurrent execution

Other threads are allowed to request, but not acquire until
the thread that has acquired the mutex releases it.

mutex acquiremutex request mutex acquire mutex request mutex release

allowed!

Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no
thread currently holds the mutex, the mutex must be acquired by one
of the requesting threads

time

concurrent execution

mutex request mutex request

Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no
thread currently holds the mutex, the mutex must be acquired by one
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no
thread currently holds the mutex, the mutex must be acquired by one
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

mutex acquire

allowed

Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no
thread currently holds the mutex, the mutex must be acquired by one
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

mutex acquire

also allowed

Properties of mutexes

Three properties

• Starvation Freedom (Optional) - A thread that requests the mutex
must eventually obtain the mutex.

time

concurrent execution

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

Thread 1 (yellow) requests the mutex but never gets it

Properties of mutexes

Three properties

• Starvation Freedom (Optional) - A thread that requests the mutex
must eventually obtain the mutex.

time

concurrent execution

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

Thread 1 (yellow) requests the mutex but never gets it

Difficult to provide in practice and timing variations usually provide this property naturally

Properties of mutexes

Recap: three properties

• Mutual Exclusion: Two threads cannot be in the critical section at the same
time

• Deadlock Freedom: If a thread has requested the mutex, and no thread
currently holds the mutex, the mutex must be acquired by one of the
requesting threads

• Starvation Freedom (optional): A thread that requests the mutex must
eventually obtain the mutex.

Building blocks

• Memory reads and memory writes
• later: read-modify-writes

• We need to guarantee that our reads and writes actually go to
memory.
• And other properties we will see soon

• To do this, we will use C++ atomic operations

A historical perspective

• Adding concurrency support to a programming language is hard!
• The memory model defines how threads can safely share memory

• Java tried to do this,

wikipedia

Brian Goetz (2019)

A historical perspective

• How is C++?

• Has issues (imprecise, not modular)
• but at least considered safe
• Specification makes it difficult to reason about all programs
• Open problem!

• Race-free program are safe! Use either locks or atomic variables.

Our primitive instructions

• Types: atomic_int

• Interface (C++ provides overloaded operators):
• load
• store

• Properties:
• loads and stores will always go to memory.
• compiler memory fence
• hardware memory fence

Atomic properties

• loads and stores will always go to memory

• Compiler example, performance difference

Atomic properties

• loads and stores will always go to memory

• Compiler example, performance difference

int foo(int x) {
 x = 0;
 for (int i = 0; i < 2048; i++) {
 x++;
 }
 return x;
}

int foo(atomic x) {
 x.store(0);
 for (int i = 0; i < 2048; i++) {
 int tmp = x.load();
 tmp++;
 x.store(tmp);
 }
 return x.load();
}

Atomic properties

• loads and stores will always go to memory

• Compiler example, performance difference

• Compiler makes reasoning about parallel code hard, but big
performance improvements for sequential code:
• O(ITERS) vs. O(1)

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

can be optimized to:

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

x = a[i];
x2 = a[i];

x = a[i];
x2 = x;

can be optimized to: can be optimized to:

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

x = a[i];
x2 = a[i];

x = a[i];
x2 = x;

a[i] = 6;
x = a[i];

x = 6;

can be optimized to: can be optimized to: can be optimized to:

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

• And many others... especially when you consider mixing with other
optimizations
• Very difficult to understand when/where memory accesses will actually occur

in your code

Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

Compiler cannot keep personal_account
in a register past the mutex

because this thread needs to see the
updated view

Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

what can go wrong if the compiler doesn’t
write values to memory?

Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

what can go wrong if the compiler doesn’t
write values to memory?

initially personal_account is 0

Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1;

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0

Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1;

loads 0

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0

writes 1

Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1; *personal_account = reg;

personal_account is -1

loads 0

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0

writes 1

Atomic properties

• Also provides a memory barrier

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account 0

mutex: Free
personal_account NA

mutex: Free
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account 0

mutex: C0
personal_account NA

mutex: C0
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account 0

mutex: C1
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

stale value!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account 0

rewind

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account -1

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: free
personal_account -1

mutex: free
personal_account NA

mutex: free
personal_account -1

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account -1

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

memory fence

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

memory fence

memory fence

got the right value

• Memory Fence (or Memory Barrier)

different architectures have different memory barriers

Intel X86 naturally manages caches in order

ARM and PowerPC let cache values flow out-of-order
GPUs let caches flow out-of-order

RISC-V has two models:
 more like x86: easier to program
 more like ARM: faster and more energy efficient

For mutexes, atomics will naturally handle the memory fences for us!

Atomics

• What do those fences (compiler and memory) give us?

• Atomics were designed so that we can implement things like
mutexes!

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Atomics

• What do those fences (compiler and memory) give us?

• Atomics were designed so that we can implement things like
mutexes!

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

C0 memory operations are performed and flushed

C1 memory operations have not yet been performed and cache is invalidated

Mutex Implementations

Mutex Implementations

• We will just consider two threads for now, with thread ids 0, 1

• A first attempt:
• A mutex contains a boolean.

• The mutex value set to 0 means that it is free. 1 means that some thread is
holding it.

• To acquire the mutex, you wait until it is set to 0, then you store 1 in it.

• To release the mutex, you set the mutex back to 0.

Mutex Implementations

atomic_bool for our memory location

mutex is initialized to “free”

Mutex Implementations

Once the mutex is available, we will claim it

While the mutex is not available (i.e. another thread has it)

Mutex Implementations

Once the mutex is available, we will claim it

While the mutex is not available (i.e. another thread has it)

What’s up with this while loop?

Mutex Implementations

To release the mutex, we just set it back to 0 (available)

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

m.request

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

flag.load flag.load flag.load flag.load flag.load flag.load

returns 0

Mutex acquire

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

flag.load flag.load flag.load flag.load flag.load flag.load

returns 0

Mutex acquire Critical section

flag.store(1)

Thread 0:
m.lock();
m.unlock();
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

flag.load flag.load flag.load flag.load flag.load flag.load

returns 0

Mutex acquire Critical section

flag.store(1)

Mutex request

flag.load flag.load flag.load

Mutual Exclusion property!
critical sections do not overlap!

returns 1

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Recall our previous analysis. What was core 1 probably doing?

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex releaseload load load load loadload load load load load

Recall our previous analysis. What was core 1 probably doing?

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

Lets try another interleaving

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

Mutex request

Enter at almost the same time

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

returns 0

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request

returns 0
flag.store(1)

Mutex acquire Critical section

Critical sections overlap! This mutex
implementation is not correct!

flag.load flag.store(1)

Mutex Implementations

• Second attempt:
• A flag for each thread (2 flags)

• If you want the mutex, set your flag to 1.

• Spin while the other flag is 1 (the other thread has the mutex)

• To release the mutex, set your flag to 0

Mutex Implementations

two flags this time

both initialized to 0

Mutex Implementations

Thread id (0, or 1)

Mark your intention to take the lock

Wait for other thread to leave the
critical section

Mutex Implementations

Thread id (0, or 1)

Mark your flag to say you have left the
critical section.

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].loadflag[0].store(1)

returns 0

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].loadflag[0].store(1)

returns 0

Mutex acquire Critical section

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].loadflag[0].store(1)

returns 0

Mutex acquire Critical section Mutex release

flag[0].store(0)

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].load

Mutex acquire Critical section Mutex release

Mutex request

flag[0].load

Mutex acquire

returns 0

flag[0].store(1) flag[0].store(0)

flag[1].store(1) flag[0].load flag[0].load flag[0].load

Critical section

flag[1].store(0)

Mutex release

critical sections do not
overlap!

returns 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

Enter at almost the same time

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

flag[1].load

flag[0].load

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

flag[1].load

flag[0].load

returns 1

returns 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

flag[1].load

flag[0].load

returns 1

returns 1

flag[0].load flag[0].load flag[0].load flag[0].load flag[0].load flag[0].load flag[0].load

flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load

Both will spin forever!

Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no
thread currently holds the mutex, the mutex must be acquired by one
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

Mutex Implementations

Third attempt:

Mutex Implementations

back to a single variable

initialized to -1

Mutex Implementations

Victims only job is to spin

Volunteer to be the victim

Mutex Implementations

No unlock!

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

victim.loadvictim.store(0)

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

victim.loadvictim.store(0)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load

spins forever if
the second thread
never tries to take the mutex!

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns ?

Enter at almost the same time

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load victim.load

critical section

Mutex acquire

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load victim.load

critical section

Mutex acquire Mutex release Mutex request

victim.store(1)

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load victim.load

critical section

Mutex acquire Mutex release Mutex request

victim.store(1)

victim.load

returns 1

Mutex acquire

victim.load victim.load victim.load

Mutex Implementations

Implementation with flags works when they do not request at the same time

Implementation with victim works when they request at the same time

Mutex Implementations

Finally, we can can make a mutex that works:

Use flags to mark interest
Use victim to break ties

Called the Peterson Lock

Mutex Implementations

flags and victim

Initially:
No victim and no threads are interested in the critical section

Mutex Implementations

j is the other thread

Mark ourself as interested

volunteer to be the victim in case of a tie

Spin only if:
 there the other thread wants the lock as well,
 and I am the victim

Mutex Implementations

mark ourselves as uninterested

Thread 0:
m.lock();
m.unlock();

Previous flag
issue

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].load

Mutex request

flag[0].load

returns 1

flag[0].store(1)

flag[1].store(1) flag[0].load flag[0].load flag[0].load

Both will spin forever!

flag[0].load flag[0].load flag[0].load flag[0].load

flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load

How does Peterson solve this?

Thread 0:
m.lock();
m.unlock();

Tie breaking with
victim

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

only one of the stores will be in victim (one will overwrite the other)

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

only one of the stores will be in victim (one will overwrite the other)
1 0

victim.loadflag[0].load

1 0

Tie breaking with
victim

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Tie breaking with
victim

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Mutex release

flag[1].store(0)

Tie breaking with
victim

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Mutex release

flag[1].store(0)

victim.loadflag[1].load

0 0

Mutex acquire

Tie breaking with
victim

core 0

Mutex request

victim.loadvictim.store(1)

will spin forever!

victim.load victim.load victim.load victim.load victim.load victim.load victim.load

Thread 0:
m.lock();
m.unlock();

Previous victim
issue

Thread 0:
m.lock();
m.unlock();

previous flag
issue

core 0

Mutex request

flag[0].store(1) victim.store(0) victim.loadflag[1].load

0 0

Thread 0:
m.lock();
m.unlock();

previous flag
issue

core 0

Mutex request

flag[0].store(1) victim.store(0) victim.loadflag[1].load

0 0
Mutex acquire

we can enter critical section because the other thread isn’t interested

Critical section

This lock satisfies the two critical properties

• Mutual exclusion

• Deadlock freedom

• More formal proof given in the textbook

What about starvation

time

concurrent execution

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

Thread 1 (yellow) requests the mutex but never gets it

recall the starvation property:

What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution

What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution

at this point, C0 volunteers to be the victim

What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution

at this point, C0 volunteers to be the victim

What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution

at this point, C0 volunteers to be the victim

Threads take turns in Peterson
algorithm. It is starvation free.

Mutex Implementations

Peterson only works with 2 threads.

Generalizes to the Filter Lock (Read chapter 2 in the book, part 1 of
your homework!)

Check implementations

• Thread sanitizer provided in Clang

• Checks for “data races”
• Generally can help you check if you’ve used mutexes correctly (protecting all

shared memory accesses).
• Also: If you don’t implement your mutexes correctly, you will probably have

data races
• This should hold for your next assignments too
• Can also check for deadlock based on lock inversion

• Checking tool: if you pass, it doesn’t mean your code is correct

Check implementations

• Why not run all the time with thread sanitizer? Overhead!

Back to Mutex Implementations

Peterson only works with 2 threads.

Generalizes to the Filter Lock (Read chapter 2 in the book, part 1 of
your homework!)

Historical perspective

• These locks are not very performant compared to modern solutions
• Your HW will show this

• However, they are academically interesting: they can be implemented
with plain loads and stores

• We will now turn our attention to more performant implementations
that use RMWs

Start by revisiting our first mutex
implementation
• A first attempt:
• A mutex contains a boolean.

• The mutex value set to 0 means that it is free. 1 means that some thread is
holding it.

• To lock the mutex, you wait until it is set to 0, then you store 1 in the flag.

• To unlock the mutex, you set the mutex back to 0.

• Let’s remember why it was buggy

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

returns 0

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 0

flag.store(1)

Mutex acquire Critical section

Critical sections overlap! This mutex
implementation is not correct!

Buggy Mutex
implementation:
Analysis

flag.load flag.store(1)

What went wrong?

• The load and stores from two threads interleaved
• What if there was a way to prevent this?

What went wrong?

• The load and stores from two threads interleaved
• What if there was a way to prevent this?

• Atomic RMWs
• operate on atomic types (we already have atomic types)
• recall the non-locking bank accounts:
atomic_fetch_add(atomic *a, value v);

What is a RMW

A read-modify-write consists of:
• read
• modify
• write
done atomically, i.e. they cannot interleave.

Typically returns the value (in some way) from the read.

atomic_fetch_add

Recall the lock free account

Atomic Read-modify-write (RMWs): primitive instructions that
implement a read event, modify event, and write event indivisibly, i.e. it
cannot be interleaved.

atomic_fetch_add(atomic_int * addr, int value) {
 int tmp = *addr; // read
 tmp += value; // modify
 *addr = tmp; // write
}

atomic_fetch_add

Recall the lock free account

Atomic Read-modify-write (RMWs): primitive instructions that
implement a read event, modify event, and write event indivisibly, i.e. it
cannot be interleaved.

int atomic_fetch_add(atomic_int * addr, int value) {
 int stash = *addr; // read
 int new_value = value + stash; // modify
 *addr = new_value; // write

return stash; // return previous value in the memory location
}

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

lock-free accounts

time
time

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

lock-free accounts

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

time
time

tmp = tylers_account.load();
tmp -= 1;
tylers_account.store(tmp);

tmp = tylers_account.load();
tmp += 1;
tylers_account.store(tmp);

lock-free accounts

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

time
time

tmp = tylers_account.load();
tmp -= 1;
tylers_account.store(tmp);

tmp = tylers_account.load();
tmp += 1;
tylers_account.store(tmp);

cannot interleave!

lock-free accounts

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

time
time

tmp = tylers_account.load();
tmp -= 1;
tylers_account.store(tmp);

tmp = tylers_account.load();
tmp += 1;
tylers_account.store(tmp);

cannot interleave!

either way, account breaks even at the end!

lock-free accounts

RMW-based locks

• A few simple RMWs enable lots of interesting mutex implementations

First example: Exchange Lock

• Simplest atomic RMW will allow us to implement an:

• N-threaded mutex with 1 bit!

First example: Exchange Lock

value atomic_exchange(atomic *a, value v);

Loads the value at a and stores the value in v at a. Returns the value
that was loaded.

First example: Exchange Lock

value atomic_exchange(atomic *a, value v);

Loads the value at a and stores the value in v at a. Returns the value
that was loaded.

value atomic_exchange(atomic *a, value v) {
 value tmp = a.load();

 a.store(v);

 return tmp;

}

First example: Exchange Lock

Lets make a mutex with just one atomic bool!

First example: Exchange Lock

Lets make a mutex with just one atomic bool!

one atomic flag

initialized to false

First example: Exchange Lock

Lets make a mutex with just one atomic bool!

one atomic flag

initialized to false

main idea:

The flag is false when the mutex
is free.

The flag is true when some
thread has the mutex.

First example: Exchange Lock

First example: Exchange Lock

So what’s going on?

First example: Exchange Lock

So what’s going on?

Two cases:

mutex is free: the value loaded is false. We store
true. The value returned is false, so we don’t spin

mutex is taken: the value loaded is true, we put
the SAME value back (true). The returned value is
true, so we spin.

First example: Exchange Lock

Unlock is simple: just store false to the flag,
marking the mutex as available.

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

mutex works
with one thread

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

EXCH()

Mutex request

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

EXCH()

returns true
Mutex request

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

EXCH()

returns true

EXCH() EXCH() EXCH() EXCH() EXCH() EXCH()

Mutex request

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

EXCH()

returns true

EXCH() EXCH() EXCH() EXCH() EXCH() EXCH()

Mutex request
returns false

Mutex acquire

critical section

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release
what about interleavings?

EXCH()

returns true

EXCH() EXCH() EXCH() EXCH() EXCH() EXCH()

Mutex request
returns false

Mutex acquire

critical section

