
CSE113: Parallel Programming

• Topics:
• Intro to mutual exclusion

• Different types of parallelism
• Data conflicts
• Protecting shared data

time

mutex request

mutex acquire

account -= 1

mutex release

time

mutex request

mutex acquire

account += 1

mutex release

Announcements

• Homework due on Oct 15
• You have everything you need to get it done
• Three free late days, nothing accepted after that
• Plenty of office hours remaining to get help
• Work on your design doc before asking for help
• We do not answer questions on the weekend

• Starting on Module 2 today!

Announcements

• Homework 1 notes:
• No assigned speedup required. You should get a noticeable speedup from ILP
• You can start to share results on your personal machines. Everyone’s results

will be slightly different
• Sometimes you cannot account for small differences

• Run your code for more iterations and take an average

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Review

Caches
C1 C2 C3C0

DRAMlatency
~200 cycles

Many GBs
(or even TBs)

L1
cache

L1
cache

L1
cache

L1
cache

latency
~4 cycles

256 KB

latency
~10 cycles

L2
cache

L2
cache

L2
cache

L2
cache

2048 KB

LLC cachelatency
~40 cycles 12 MB

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

4 cycles
1 cycles

4 cycles

9 cycles!

Cache Coherence and False Sharing

C0

L1
cache

LLC cache

C1

L1
cache

C2

L1
cachea[0]:a[15]

I

a[0]:a[15]
M

a[0]:a[15]
I

when one core modifies a value
in the cache line, it invalidates
everyone else’s cache line.

This is called False Sharing

C0 accesses a[0] C1 accesses a[1] C2 accesses a[2]

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
 // some foo code
}

int main() {
 // some main code
 thread thread_handle (foo,1,2,3);
 // code here runs concurrently with foo
 thread_handle.join();
 return 0;
}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

#include <thread>
#include <iostream>
using namespace std;

void foo(int a, int b, int *c) {
 // return a + b;
 *c = a + b;
}

int main() {
 // some main code
 int ret = 0;
 thread thread_handle (foo,1,2, &ret);
 // code here runs concurrently with foo
cout << ret << endl;

 thread_handle.join();
 return 0;
}

What if....

SPMD programming model

• Same program, multiple data

• Main idea: many threads execute the same function, but they operate
on different data.

• How do they get different data?
• each thread can access their own thread id, a contiguous integer starting at 0

up to the number of threads

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
 for (int i = tid; i < a_size; i+=num_threads) {
 a[i]++;
 }
}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1
iterations computed by thread 1

SPMD programming model
void increment_array(int *a, int a_size, int tid, int num_threads);

#define THREADS 8
#define A_SIZE 1024
int main() {
 int *a = new int[A_SIZE];
 // initialize a
 thread thread_ar[THREADS];

 for (int i = 0; i < THREADS; i++)
 thread_ar[i] = thread(increment_array, a, A_SIZE, i, THREADS);
 for (int i = 0; i < THREADS; i++)
 thread_ar[i].join();

 delete[] a;
 return 0;
}

New material

Concurrency vs. Parallelism

• Abstract tasks:
• In the abstract: a sequence of computation
• Given an input, produces an output

Concurrency vs. Parallelism

• Abstract tasks:
• In the abstract: a sequence of computation
• Given an input, produces an output

• Concrete tasks:
• Application (e.g. Spotify and Chrome)
• Function
• Loop iterations
• Individual instructions

granularity

coarse

fine

Concurrency vs. Parallelism

Task 0 Task 1

task 1 starttask 0 start task 0 end task 1 end

Concurrency vs. Parallelism

Task 0 Task 1

task 1 starttask 0 start task 0 end task 1 end

C0

time

Concurrency vs. Parallelism

C0

time

Task 0 Task 1

Sequential execution
Not concurrent or parallel

all of task 0 executes all of task 1 executes

Concurrency vs. Parallelism

C0

time

Task 0 Task 1

The OS can preempt a thread
(remove it from the hardware resource)

Concurrency vs. Parallelism

C0

time

The OS can preempt a thread
(remove it from the hardware resource)

Task 0 Task 0 Task 1 Task 1

Concurrency vs. Parallelism

C0

time

Task 0 Task 0Task 1 Task 1

The OS can preempt a thread
(remove it from the hardware resource)

tasks are interleaved on the same processor

Concurrency vs. Parallelism

C0

time

Task 0 Task 0Task 1 Task 1

The OS can preempt a thread
(remove it from the hardware resource)

• Definition:
• 2 tasks are concurrent if there is a point in

the execution where both tasks have
started and neither has ended.

Concurrency vs. Parallelism

C0

time

Task 0 Task 0Task 1 Task 1

The OS can preempt a thread
(remove it from the hardware resource)

• Definition:
• 2 tasks are concurrent if there is a point in

the execution where both tasks have
started and neither has ended.

task 0 start task 1 start task 0 end task 1 end

Concurrency vs. Parallelism

C0

time

C0

Task 0 Task 1

Concurrency vs. Parallelism

C0

time

C0

Task 0

Task 1

Concurrency vs. Parallelism

C0

time

C0

Task 0

Task 1

are these tasks concurrent?

Concurrency vs. Parallelism

C0

time

C0

Task 0

Task 1

are these tasks concurrent?

• 2 tasks are concurrent if there is a point
in the execution where both tasks have
started and neither has ended.

Concurrency vs. Parallelism

C0

time

C0

Task 0

Task 1

are these tasks parallel?

Concurrency vs. Parallelism

C0

time

C0

Task 0

Task 1

are these tasks parallel?

• Definition:
• An execution is parallel if there is a point in the execution

where computation is happening simultaneously

Concurrency vs. Parallelism
• Examples:
• Neither concurrent or parallel (sequential)

C0

time

Task 0 Task 1

task 0 start task 1 start

task 0 end

task 1 end

Concurrency vs. Parallelism
• Examples:
• Concurrent but not parallel

C0

time

Task 0 Task 0Task 1 Task 1

task 0 start task 1 start task 0 end task 1 end

Concurrency vs. Parallelism
• Examples:
• Parallel and Concurrent

C0

time

C0

Task 0

Task 1

Concurrency vs. Parallelism
• Examples:
• Parallel but not concurrent?

C0

time

C0

Task 0 Task 1

Concurrency vs. Parallelism
• Examples:
• Parallel but not concurrent?

C0

time

C0

Task 0 Task 0 Task 1 Task 1

Concurrency vs. Parallelism
• Examples:
• Parallel execution but task 0 and task 1 are not concurrent?

C0

time

C0

Task 0

Task 0

Task 1

Task 1

Concurrency vs. Parallelism
• In practice:
• Terms are often used interchangeably.

• Parallel programming is often used by high performance engineers
when discussing using parallelism to accelerate things

• Concurrent programming is used more by interactive applications, e.g.
event driven interfaces.

Embarrassingly parallel

Embarrassingly parallel

For this class: A multithreaded program is embarrassingly parallel if there are no data-
conflicts.

A data conflict is where one thread writes to a memory location that another thread
reads or writes to concurrently and without sufficient synchronization.

Embarrassingly parallel

• Consider the following program:

There are 3 arrays: a, b, c.
We want to compute c[i] = a[i] + b[i]

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Embarrassingly parallel

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Embarrassingly parallel

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Embarrassingly parallel

• The different parallelization strategies will probably have different
performance behaviors.

• But they are both embarrassingly parallel solutions to the problem

• There is lots of research into making these types of programs go fast!
• but this module will focus on programs that require synchronization

Embarrassingly parallel

• Next Program

There are 3 arrays: a, b, c.
We want to compute c[i] = a[0] + b[i]

Embarrassingly parallel

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

Embarrassingly parallel

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

Embarrassingly parallel

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

All threads can read from the same value.
Conflicts only occur if a thread writes to the
value!

Embarrassingly parallel

• Next Program

There are 2 arrays: b, c
We want to compute c[0] = b[0] + b[1] + b[2] ...

Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

threads read
unique locations

Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

threads read
unique locations

Conflict because multiple threads write to the same location!

Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

threads read
unique locations

Conflict because multiple threads write to the same location!

Note: Reductions have some
parallelism in them, as seen in your
homework.

We need a way how to safely share memory

• Many applications are not embarrassingly parallel

We need a way how to safely share memory

• Bank

My account: $$

We need a way how to safely share memory

• Bank

My account: $$

We need a way how to safely share memory

• Bank

My account: $$

We need a way how to safely share memory

• Bank

My account: $$

We need a way how to safely share memory

• Bank

My account: $$

We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media

We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media

these can be done in parallel

We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media

these can be done in parallel

We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media

potential conflict if different
threads access the red node

We need a way how to safely share memory

• Machine Learning

image from: https://www.mathsisfun.com/

Lots of machine learning is some form of matrix multiplication

We need a way how to safely share memory

• Machine Learning

image from: https://www.mathsisfun.com/

Lots of machine learning is some form of matrix multiplication

conflict!

We need a way how to safely share resources

• User interfaces

background process
that provides progress
updates to the UI.

UI updates must be
synchronized!!

https://drive.google.com/file/d/1JVQTQsrKhpksgVAM1yaMQky
ohfDtWsSI/view?usp=sharing

Dangers of conflicts

• We will illustrate using a running bank account example

Sequential bank scenario

• UCSC deposits $1 in my bank account after every hour I work.

• I buy a cup of coffee ($1) after each hour I work.

• I work 1M hours (which is actually true).

• I should break even

• C++ code

Concurrent bank scenario

• UCSC contracts me to work 1M hours.

• My bank is so impressed with my contract that they give me a credit
card. i.e. I can overdraw as long as I pay it back.

• UCSC deposits $1 in my bank account at some point for every hour I
work.

• I budget $1M to spend on coffee at some point during work.

Concurrent bank scenario

Tyler $ coffee

Tyler works

Tyler $ coffee Tyler $ coffee

Tyler works Tyler works Tyler works

Tyler $ coffee

This sets up a scheme where I buy coffee concurrently with working

time

Code demo

Reasoning about concurrency

• What is going on?

• We need to be able to reason more rigorously about concurrent
programs

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
 tylers_account -= 1;
}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
 tylers_account += 1;
}

A thread is a sequential program

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
 tylers_account -= 1;
}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
 tylers_account += 1;
}

A thread is a sequential program

The execution of a program gives rise to events
Important distinction between program and events

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
 tylers_account -= 1;
}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
 tylers_account += 1;
}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
 tylers_account -= 1;
}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
 tylers_account += 1;
}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

time

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
 tylers_account -= 1;
}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time timecolor code events.
coffee thread is blue
payment thread is yellow

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
 tylers_account += 1;
}

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
 tylers_account -= 1;
}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time time

Any interleaving of the
events is a valid

execution of
the concurrent

program!

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
 tylers_account += 1;
}

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

time

consider just one loop iteration

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

one possible execution

j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS) j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

one possible execution

tyler_account: 0 tyler_account: -1 tyler_account: 0

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

Another possible execution

tyler_account: 0 tyler_account: -1 tyler_account: 0

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

Another possible execution

tyler_account: 0 tyler_account: -1 tyler_account: 0

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

Another possible execution

This time my account isn’t ever negative

tyler_account: 0 tyler_account: 1 tyler_account: 0

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

How many possible interleavings?
Combinatorics question:

if Thread 0 has N events
if Thread 1 has M events

𝑁 +𝑀 !
𝑁!𝑀!

tyler_account: 0 tyler_account: 1 tyler_account: 0

in our example there are 252 possible interleavings!

Reasoning about concurrency

• Not feasible to think about all interleavings!
• Lots of interesting research in pruning, testing interleavings
• Very difficult to debug

• Think about smaller instances of the problem

• Reduce the problem: If there’s a problem we should be able to see it
in a single loop iteration.

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

time

concurrent execution

Lets get to the bottom of our money troubles:
For any interleaving, both of the increase and decrease must happen in some order.
So there isn’t an interleaving that will explain the issue.

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

time

concurrent execution

tylers_account -= 1

time time

tylers_account += 1

time

concurrent execution

Remember 3 address code...

tylers_account -= 1

time time

tylers_account += 1

time

concurrent execution

Remember 3 address code...

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

this line of code needs to be expanded

time time

tylers_account += 1

time

concurrent execution

Remember 3 address code...

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+= 1

*tylers_account = T1_load

time time

time

concurrent execution

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+= 1

*tylers_account = T1_load

What if we interleave these instructions?

time time

time

concurrent execution

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+= 1

*tylers_account = T1_load

T0_load = *tylers_account T1_load = *tylers_account T0_load -= 1 T1_load+= 1 *tylers_account = T1_load *tylers_account = T0_load

time time

time

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+= 1

*tylers_account = T1_load

T0_load = *tylers_account T1_load = *tylers_account T0_load -= 1 T1_load+= 1 *tylers_account = T1_load *tylers_account = T0_load

tylers_account has -1 at the
end of this interleaving!

concurrent execution

What now?

• Data conflicts lead to many different types of issues, not just strange
interleavings.
• Data tearing
• Instruction reorderings
• Compiler optimizations

• Rather than reasoning about data conflicts, we will protect against
them using synchronization.

Synchronization

• A scheme where several actors agree on how to safely share a
resource during concurrent access.

• Must define what “safely” means.

• Example:
• Two neighbors sharing a yard between a dog and cat
• Sharing refrigerator with roommates
• An account balance that is written to and read from
• More described in Chapter 1 in text book

Mutexes

• A synchronization object to protect against data conflicts

Simple API:

lock()
unlock()

• Before a thread accesses the shared memory, it should call lock()
• When a thread is finished accessing the shared data, it should call unlock()

Tyler’s coffee addiction:

tylers_account -= 1;

Tyler’s employer

tylers_account += 1;

A thread is a sequential program

assume a global mutex object m
protect the account access with the mutex

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

assume a global mutex object m
protect the account access with the mutex

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

at this point, thread 0 holds the mutex.
another thread cannot acquire the mutex until thread 0 releases the mutex
also called the critical section.

mutex request mutex acquire

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Allowed to request

mutex request mutex acquire mutex request

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Allowed to request

mutex acquire

disallowed!

mutex request mutex acquire mutex request

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution
Thread 0 has released the mutex

mutex request mutex acquire mutex request tylers_account -= 1 mutex release

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Thread 1 can take the mutex
and enter the critical section

mutex request mutex acquire mutex request tylers_account -= 1 mutex release mutex acquire

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request mutex acquire

Thread 1 can take the mutex
and enter the critical section

mutex request tylers_account -= 1 mutex release mutex acquire

A mutex restricts the number of allowed interleavings
Critical section are mutually exclusive: i.e. they cannot interleave

tylers_account += 1 mutex release

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request mutex acquire

Thread 1 can take the mutex
and enter the critical section

mutex request tylers_account -= 1 mutex release mutex acquire

It means we don’t have to think about 3 address code

tylers_account += 1 mutex release

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
if (tylers_account < -100) {
printf(“warning!\n”);
return;

}
m.unlock();
return;

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Make sure to unlock your mutex!

time mutex request

mutex acquire

tylers_account -= 1

time

mutex request

mutex acquire

tylers_account += 1

mutex release

say tylers_account is -1000

printf(“warning!\n”);

time mutex request

mutex acquire

tylers_account -= 1

time

mutex request

mutex acquire

tylers_account += 1

mutex releaseprintf(“warning!\n”);

concurrent execution

mutex request mutex acquire mutex request tylers_account -= 1 printf(“warning!\n”)

Thread 1 is stuck!

Mutex Performance

• What about timing?
• Overhead of acquiring/releasing mutex
• Cache flushing (heavier weight than coherence)
• Reduces parallelism

Mutex Performance

• What about timing?
• Overhead of acquiring/releasing mutex
• Cache flushing (heavier weight than coherence)
• Reduces parallelism

in a parallel system without the mutex

core 0

core 1 tylers_account += 1 tylers_account += 1 tylers_account += 1

tylers_account -= 1 tylers_account -= 1 tylers_account -= 1

Mutex Performance

• What about timing?
• Overhead of acquiring/releasing mutex
• Cache flushing (heavier weight than coherence)
• Reduces parallelism

in a parallel system with the mutex

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Long periods of waiting in the threads

Mutex Performance

Try to keep mutual exclusion sections small!

Code example with overhead

Mutex Performance

Try to keep mutual exclusion sections small! Protect only data conflicts!

Code example with overhead

core 0

core 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire

Long periods of waiting in the threads

Overhead

Overhead

mutex request

Long periods of
waiting in the
threads

Mutex Performance

Try to keep mutual exclusion sections small! Protect only data conflicts!

Code example with overhead

core 0

core 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire

overlap the overhead (i.e. computation without any data conflicts)

Overhead

Overhead Peronal_account

Overhead

Mutex alternatives?

Other ways to implement accounts?

Atomic Read-modify-write (RMWs): primitive instructions that
implement a read event, modify event, and write event indivisibly, i.e. it
cannot be interleaved.

atomic_fetch_add(atomic_int * addr, int value) {
 int tmp = *addr; // read
 tmp += value; // modify
 *addr = tmp; // write
}

other operations: max, min, etc.

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

tylers_account -= 1;

Tyler’s employer

tylers_account += 1;

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Two indivisible events.
Either the coffee or the employer comes first
either way, account is 0 afterwards.

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Code example

Atomic RMWs

Pros? Cons?

Atomic RMWs

Pros? Cons?

Not all architectures support RMWs (although more common with
C++11)

Limits critical section (what if account needs additional updating?)

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• Need to protect both of them using a mutex
• Easy, we can just the same mutex

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• No reason individual accounts can’t be accessed in parallel

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• No reason individual accounts can’t be accessed in parallel

core 0

core 1 business_account += 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Long periods of waiting in the threads

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexB request mutexB acquire mutexB release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexB request mutexB acquire mutexB release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request personal_account += 1mutexP acquire mutexP release

Managing multiple mutexes

Consider this increasingly elaborate scheme

My accounts start being audited by two agents:
• UCSC
• IRS

• They need to examine the accounts at the same time. They need to
acquire both locks

Managing multiple mutexes

Consider this increasingly elaborate scheme
My accounts start being audited by two agents:
• UCSC
• IRS void irs_audit() {

 for (int i = 0; i < NUM_AUDITS; i++) {
 tylers_personal_account_mutex.lock();
 tylers_business_account_mutex.lock();

 AUDIT(tylers_personal_account, tylers_business_account);

 tylers_personal_account_mutex.unlock();
 tylers_business_account_mutex.unlock();
 }
}

Multiple mutexes

• Our program deadlocked! What happened?

void ucsc_audit() {
 for (int i = 0; i < NUM_AUDITS; i++) {
 tylers_business_account_mutex.lock();
 tylers_personal_account_mutex.lock();

 AUDIT(tylers_personal_account, tylers_business_account);

 tylers_personal_account_mutex.unlock();
 tylers_business_account_mutex.unlock();
 }
}

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

mutexP request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

mutexP request

IRS has the personal mutex and won’t release it until it acquires the business mutex.
UCSC has the business mutex and won’t release it until it acquires the personal mutex.

This is called a deadlock!

Multiple mutexes

• Our program deadlocked! What happened?

• Fix: Acquire mutexes in the same order

• Proof sketch by contradiction
• Thread 0 is holding mutex X waiting for mutex Y
• Thread 1 is holding mutex Y waiting for mutex X

Assume the order that you acquire mutexes is X then Y
Thread 0 cannot hold mutex Y without holding mutex X.
Thread 1 cannot hold mutex X because thread 0 is holding mutex X
Thus the deadlock cannot occur

Multiple mutexes

• Our program deadlocked! What happened?

• Fix: Acquire mutexes in the same order

• Proof sketch by contradiction
• Thread 0 is holding mutex X waiting for mutex Y
• Thread 1 is holding mutex Y waiting for mutex X

Assume the order that you acquire mutexes is X then Y
Thread 1 cannot hold mutex Y without holding mutex X.
Thread 1 cannot hold mutex X because thread 0 is holding mutex X
Thus the deadlock cannot occur

Double check with testing

Programming with mutexes can be HARD!

make sure all data conflicts are protected with a mutex

keep critical sections small

balance between having many mutexes (provides performance) but
gives the potential for deadlocks

Thanks!

• Next time:
• Implementing Mutexes

