CSE113: Parallel Programming

* Topic: Memory Hierarchy and C++ threads
e Caches
L1 L1 L1 L1

* Cache lines
* Coherence

e C++ threads
* False Sharing

cache cache cache cache

. y . ,

Announcements

* Homework due on Oct 15
* Three free late days
* Plenty of office hours remaining to get help
* Work on your design doc before asking for help

Announcements

* Reminder on quiz and design doc: Not heavily graded, but low effort
responses are liable to lose points

* (Hopefully) Last lecture of Module 1
* Moving into Module 2: mutual exclusion next time!

e Should be able to do part 1 and part 2 of homework
* Hopefully part 3 by today, maybe next time though.

Quiz

The following statement in a language like C or Java would be compiled to how many
instructions in low-level code?

Z=X+X+X+X;

O 0
O 1
O 2
O 4

Quiz

How many levels of caches does a typical x86 system have?

01
O 2
O 3
O 4

Quiz

Write a few reasons why it may be difficult to reason about program performance when using
a high-level language like Python

Quiz

Using your best guess, how much faster do you think a program written in C/Java is than a
program written in Python? Give a few reasons explaining your guess. Feel free to run a
simple experiment and see what happens!

How many cores does the computer you're working on have:

1 0%
2 4 respondents 7%
4 20 respondents 33%
8 34 respondents 56 %

At least 16 8 respondents 13 %

Quiz

Modern-day compilers and runtimes will automatically make your code parallel. Because of
this, most programmers do not need to think about parallelism when writing programs.

Justify your answer above using a few sentences

Review

Instruction-level Parallelism (ILP)

* Parallelism from a single stream of instructions.
* Output of program must match exactly a sequential execution!

* Widely applicable:
* most mainstream programming languages are sequential
* most deployed hardware has components to execute ILP

* Done by a combination of programmer, compiler, and hardware

Instruction-level Parallelism (ILP)

* What type of instructions can be done in parallel?

two instructions can be executed in
parallel if they are independent

X =2z + w;
a =b + c;

Two instructions are independent if the
operand registers are disjoint from the result
registers

(assume all letter variables are registers)

instructions that are not independent
cannot be executed in parallel

X = 7Z + w;
a = b + x;

Many times, dependencies can be
easily tracked in the compiler:

How can hardware execute ILP?

o Pi p e I i ne p dla I | e I is m Instructli:n Fetch InSFE\g;](i:;itFD? [l:)eetg?]de Adgi(isc)s;éealc. Mem:;:;:;ccess Wri;eVI;ack
_ Next SEQ PC e SEQPC _—l nere [
> RS1 >§<
* Abstract mental model: 5 -
* N-stage pipeline 1[IF L g
* N instructions can be in-flight IE‘ oL 2 ;][

* Dependencies stall pipeline

A A A A

WB Data

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

How can hardware execute ILP?

* Executing multiple instructions at once:

e Superscalar architecture:
» Several sequential operations are issued in parallel
* hardware detects dependencies

issue-width is maximum number of instructions that can be issued in parallel
instrO;

instrl;
instr?2; if instrO and instrl are independent, they will be issued in parallel

What does this look like in the real world?

* Intel Haswell (2013):
* Issue width of 4
* 14-19 stage pipeline
* 000 execution

* Intel Nehalem (2008)
e 20-24 stage pipeline
* |ssue width of 2-4
* 000 execution

* ARM

* V7 has 3 stage pipeline; Cortex V8 has 13
e Cortex V8 has issue width of 2
* 000 execution

 RISC-V
* Ariane and Rocket are In-Order
* 3-6 stage pipelines

* some super scaler
implementations
(BOOM)

Using Loop Unrolling to Exploit ILP

Let SEQ (i,) be the jth

e Simple loop unrolling: instruction of SEQ (1) .
Let each instruction chain have N

|'||[I|

Using Loop Unrolling to Exploit ILP

* Simple loop unrolling:

for (int 1 = 0, 1 < SIZE; 1+=2) {

SEQ (1+1,1);

They can be interleaved
SEQ (1+1,2) ;

two instructions can be pipelined, or executed
on a superscalar processor

SEQ (1i+1, N);

Loop Unrolling for Reduction Loops

* chunk array in equal sized partitions and do local reductions
e Consider size 2:

Loop Unrolling for Reduction Loops

* chunk array in equal sized partitions and do local reductions
e Consider size 2:

Loop Unrolling for Reduction Loops

e Simple implementation:

for (int 1 = 1; 1 < SIZE/2; i++) {

a[0] = REDUCE (a[0], alil]l):

a[SIZE/2] = REDUCE (a[SIZE/2], al(SIZE/2)+1i]) ;
}

al[0] = REDUCE (a[0], al[SIZE/2])

Memory hierarchy overview

* How can threads communicate?

Main memory

store (a0, 128)

Main memory

store (a0, 128)

EEEE

Main memory

r0 = load (a0)

Main memory

r0 = load (a0)

o] o] o] o]

rO0:?

Main memory

r0 = load (a0)

Problem solved!
Threads can communicate! r0:128

Main memory

r0 = load (a0)

Problem solved!
Threads can communicate! r0:128

reading a value takes ~200 cycles

Main memory

Problem solved!
Threads can communicate!

reading a value takes ~200 cycles

Bad for parallelism, but

also really bad for sequential
code (which we optimized for
decades!)

r0 = load (a0)

r0:128

Main memory

int increment (int *a) { %5 = load 132, 132* %4
a[0]++; %6 = add nsw 132 %5, 1

} store 132 %6, 132* %4

Main memory

int increment (int *a) { %5 = load 132, 132* %4 200 cycles
a[0]++; %6 = add nsw 132 %5, 1

} store 132 %6, 132* %4

Main memory

int increment (int *a) { %5 = load 132, 132* %4 200 cycles
af[0]++; %6 = add nsw i32 %5, 1 1 cycles

} store 132 %6, 132* %4

Main memory

int increment (int *a) { %5 = load 132, 132* %4 200 cycles
af[0]++; %6 = add nsw i32 %5, 1 1 cycles

} store 132 %6, i32* %4 200 cycles

Main memory

int increment (1int *a)
a[0]++;

{

%5 = load 132, 132* %4
%6 = add nsw 132 %5, 1
store 132 %6, 132* %4

200 cycles
1 cycles

200 cycles

401 cycles

Caches

latency Many GBs

Caches

latency
~4 cycles

latency
~200 cycles

cache

l

cache

i

cache

i

cache

l

256 KB

Many GBs
(or even TBs)

Caches

latency
~4 cycles

latency
~10 cycles

latency
~200 cycles

cache

cache

cache

L1 L1 L1 L1

cache

y

y

A

A 4

L2
cache

L2
cache

L2
cache

L2
cache

!

!

!

256 KB

2048 KB

Many GBs
(or even TBs)

Caches

latency
~4 cycles

latency
~10 cycles

latency
~40 cycles

latency
~200 cycles

cache

cache

cache

cache

L2
cache

L2
cache

L2
cache

L2
cache

256 KB

2048 KB

12 MB

Many GBs
(or even TBs)

Caches

int increment (int *a) {

a[0]++; Wi

} cache
L2

%5 = load 132, 1i32* %4 cache

%6 = add nsw 132 %5, 1
store 132 %6, 132* %4

Caches

int increment (int *a) {

a[0]++; Wi

} cache
L2

%5 = load 132, 132* %4 4 cycles cache

%6 = add nsw 132 %5, 1
store 132 %6, 132* %4

Assuming the value is in the cache!

Caches

int increment (int *a) {

a[0]++; Wi

} cache
L2

%5 = load 132, 132* %4 4 cycles cache

%6 = add nsw 132 %5, 1 1lcycles
store 132 %6, 132* %4

Caches

int increment (int *a) {

a[0]++; Wi

} cache
L2

%5 = load 132, 132* %4 4 cycles cache

%6 = add nsw 132 %5, 1 1lcycles
store 132 %6, 132* %4 4 cycles

Caches

int increment (int *a)
a[0]++;

%5 = load 132, 132* %4
%6 = add nsw 132 %5, 1
store 132 %6, 132* %4

{

4 cycles
1 cycles

4 cycles

9 cycles!

L1
cache

L2
cache

Quick overview of C/++ pointers/memory

Passing arrays in C++

int 1ncrement (int *a) {

a[0]++;
}
int 1ncrement altl(int af[l]) { Not checked at compile time! but hints can help with
a [0] 4+ o compiler optimizations. Also good self documenting
} code.

int increment alt2(int al[]) {
a[0]++;

Passing pointers

int foolO(int *a) {
increment (a) pass pointer directly through

int fool (int *a) {
increment (& (a[8])) pass an offset of 8

int foo2(int *a) {
increment(a + 8) another way to pass an offset of 8

Memory Allocation

int allocate int arrayO() {
ol R L stack allocation
}
int allocate int arrayl () {
int *ar = new int[1l6]; C++ style
delete|] ar;
}
int allocate int array2() {
int *ar = (int*)malloc(sizeof (int) *16) ; C style

free(ar);

Cache lines

e Cache line size for x86: 64 bytes:
* 64 chars
e 32 shorts
e 16 float orint
* 8 double or long

Assume a[0] is not in the cache

Caches

int increment (int *a) {

a[0]++; Wi

} cache
L2

%5 = load 132, 132* %4 cache

%6 = add nsw 132 %5, 1
store 132 %6, 132* %4

Assume a[0] is not in the cache

Caches

int increment (int *a) {

a[0]++; Wi

} cache
L2

%5 = load 132, 132* %4 cache

%6 = add nsw 132 %5, 1
store 132 %6, 132* %4

a[0] - a[15]

Caches

int increment several (int *a) {

a[0]++; L1
al[l5]++; cache
a[lé]++;

cache

Caches

int increment several (int *a) {

a[0]++; N T

a[15]1++; cache
al[lée]++;

} L2

cache

a[0] - a[15]

Caches

int increment several (int *a) {

af0] ++;] L1
a[l5]++; cache
al[lée]++;
) 12
cache

will be a hit because we’ve loaded a[0] cache line

a[0] - a[15]

Assume a[0] is not in the cache

Caches

int increment several (int *a) {

a[0]++; N 5
a[l15]++; cache
a[lé]++;
} L2
cache
Miss

a[0] - a[15]
a[16] - a[31]

Assume a[0] is not in the cache

int increment several (int *b) { -

b[0]++; L1
b[15]++; cache

y

Cache alignment

}

L2
{ cache

int foo(int *a)
increment several (&(a[8]))

Assume a[0] is not in the cache

Cache alignment

int increment several (int *b) {

b[0]++; N T
b[15]++; ca?he
}
L2
int foo(int *a) { S

increment several (&(a[8]))

a[0] - a[15]

Assume a[0] is not in the cache

Cache alignment

int increment several (int *b) {

b[0]++; N T
b[15]++; ca?he

}
L2
int foo(int *a) { S

increment several (&(a[8]))

This loads a[8]
a[0] - a[15]

Assume a[0] is not in the cache

Cache alignment

int increment several (int *b) {

b[0]++; 1 L1
b[15]++; cache
J
L2
int foo(int *a) { cache
increment several (&(a[8]))
J
This loads a[8]

This loads a[23], a miss! al0] - a[15]
a[16] - a[31]

Cache alignment

* Malloc typically returns a pointer with “good” alignment.
» System specific, but will be aligned at least to a cache line, more likely a page

* For very low-level programming you can use special alighed malloc
functions

* Prefetchers will also help for many applications (e.g. streaming)

Cache alignment

* Malloc typically returns a pointer with “good” alignment.
» System specific, but will be aligned at least to a cache line, more likely a page

* For very low-level programming you can use special alighed malloc
functions

* Prefetchers will also help for many applications (e.g. streaming)

ot =0 < it
for {mt | 9’ 1<100; i) { prefetcher will start collecting consecutive data in the cache if
ali] +=bl[i]; it detects patterns like this.

}

Cache coherence

Cache coherence

How to manage multiple values
for the same address in the
system?

simplified view for illustration:
L1 cache and LLC

a0 :NA

cache

Consider 3 cores accessing
the same memory location

L1
cache

a0 :NA

cache

a0 :NA

Cache coherence

store (a0, 128)

Cache coherence

store (a0, 128)

Cache coherence

store (a0, 128)

Cache coherence

store (a0, 256)

Cache coherence

store (a0, 256)

Cache coherence

store (a0, 256)

Cache coherence

rl = load(a0)

in parallel

r2 = load (a0)

Cache coherence

rl = load(a0)

r2 = load (a0)

Cache coherence1

Incoherent view of values!

28

256

rl = load(a0)

r2 = load(a0)

Cache coherence

 MESI protocol

e Cache line can be in 1 of 4 states:

 Modified - the cache contains a modified value and it must be written back to the
lower level cache

e Exclusive - only 1 cache has a copy of the value
e Shared - more than 1 cache contains the value, they must all agree on the value

* Invalid - the data is stale and a new value must be fetched from a lower level cache

Cache coherence

Cache coherence

load (a0)

Cache coherence

Exclusive states
are clean: they match
main memory

Cache coherence

load (a0)

Cache coherence

load (a0)

Shared states
are clean: they match
main memory

Cache coherence

Cache coherence

store (a0, 256)

Cache coherence

store (a0, 256)

Modified states
are dirty: they don’t
match main memory

Cache coherence

Invalid states
are considered unused

Cache coherence

rl = load (a0)

r2 = load (a0)

Cache coherence

rl = load (a0)

r2 = load (a0)

Cache coherence

256

256

rl = load (a0)

r2 = load (a0)

Cache coherence

256 256

rl = load(a0) r2 = load(a0)

Takeaways:
Caches must agree on

ustag 20:256 L1 20:256
values across cores. s cache cache cache s

Caches are functionally
invisible! Cannot tell with
raw input and output

But performance measurements
can expose caches, especially
if they share the same cache line

C++ Threads

* Introduction
* Learn as needed throughout class

* Multi-threading officially introduced in C++11
* only widely available after ~2014
* official specification
e cross-platform

* Before C++ threads
e pthreads

C++ Threads

* Main idea:
* run functions concurrently

main

launch foo(a,b,c)

C++ Threads

* Main idea:
* run functions concurrently

main needs to wait for foo.
join()

main waiting

launch foo(a,b,c)

foo(a,b,c)

foo finishes

C++ Threads

e Main idea:
* run functions concurrently

main waits for foo.
called join()

foo finishes

join() returns in main

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main () {
// some main code
thread thread handle (foo,1,2,3);
// code here runs concurrently with foo
thread handle.join();
return O;

main waits for foo.

called join() join() returns in main

main waiting main

launch foo(a,b,c) foo(a,b,c)

foo finishes

#include <thread>
using namespace std;

void foo(int a, int Db,
// some foo code

}

int main() {
// some main code

int c)

{

thread thread handle (foo,1,2,3);
// code here runs concurrently with foo

thread handle.join();
return O;

main waits for foo.

called

join()

header and namespace

join() returns in main

main

waiting

main

launch foo(a,b,c)

foo(a,b,c)

foo finishes

#include <thread>
using namespace std;

void foo(int a, int Db,
// some foo code

}

int main () {
// some main code

int c)

{

thread thread handle (foo,1,2,3);
// code here runs concurrently with foo

thread handle.join();
return O;

main waits for foo.

called

join()

Launches a concurrent
thread that executes foo

Stores a handle in thread_handle
(don’t lose the handle!)

constructor takes in the function, and
all arguments

join() returns in main

main

waiting

main

launch foo(a,b,c)

foo(a,b,c)

foo finishes

#include <thread>
using namespace std;

void foo(int a, int Db,
// some foo code

}

int main () {
// some main code

int c)

{

thread thread handle (foo,1,2,3);
// code here runs concurrently with foo

thread handle.join();
return O;

main waits for foo.

called

join()

Requires C++14

clang++ -std=c++14 main.cpp

join() returns in main

main

waiting

main

launch foo(a,b,c)

foo(a,b,c)

foo finishes

#include <thread>
using namespace std;

void foo(int a, int b, int c) {

// some foo code calling join() on the thread handle
} will cause main to wait for the
int main() { thread launched with thread_handle
to finish.

// some main code

thread thread handle (foo,1,2,3);

// code here runs concurrently with foo
thread handle.join();

return O;

main waits for foo.

called join() join() returns in main

main waiting main

launch foo(a,b,c) foo(a,b,c)

foo finishes

#include <thread>
using namespace std;

void foo(int a, int Db,
// some foo code

}

int main () {
// some main code

int c)

{

thread thread handle (foo,1,2,3);
// code here runs concurrently with foo

thread handle.join();
return O;

main waits for foo.

called

join()

join() returns in main

After foo finishes,
main starts executing again

main

waiting

main

launch foo(a,b,c)

foo(a,b,c)

foo finishes

#include <thread> | ’
using namespace std; What happens if you don’t

join your threads?
void foo(int a, int b, int c) {
// some foo code

}

int main () {
// some main code
thread thread handle (foo,1,2,3);
// code here runs concurrently with foo
thread—handdeForn+

return 0O;

#include <thread> | ’
using namespace std; What happens if you don’t

join your threads?
void foo(int a, int b, int c) {
// some foo code

}

int main () {
// some main code
thread thread handle (foo,1,2,3);
// code here runs concurrently with foo
thread—handdeForn+

return 0O;

t trap:

11

| L
-

,Z\bo

JOIN YOUR THREADS!!!

#include <thread>
using namespace std;

void foo(int a, int b, int c) {

}

// some foo code

int main () {

// some main code

thread thread handle (foo,1,2,3);

// code here runs concurrently with foo
thread handle.join();

return O;

return value?

Doesn’t have to be void,
but it is ignored

how to get values back
from threads?

#include <thread>
#include <iostream>
using namespace std;

void foo (int a, int b, int *c) {
// return a + b;

*c = a + by

}

int main () {
// some main code
int ret = 0;

thread thread handle (foo,1,2, &ret);
// code here runs concurrently with foo
thread handle.join();

cout << ret << endl;

return O;

Pass by address (C++ or C)

#include <thread>
#include <iostream>
using namespace std;

int c;

void foo (int a, int b) {
// return a + b;
c = a + b;

}

int main () {
// some main code
1Tt ret — (.
TIrc Lt CC Ty

thread thread handle (foo,1,2);
// code here runs concurrently with foo

thread handle.join();
cout << ¢ << endl;

return O;

Options

global variable
(don’t do this very often!)

#include <thread>
#include <iostream>
using namespace std;

void foo (int a, int b, int *c) {
// return a + b;

*¢ = a + b;

}

int main () {
// some main code
int ret = 0;

thread thread handle (foo,1,2, &ret);
// code here runs concurrently with foo
cout << ret << endl;

thread handle.join();

return O;

What if....

#include <thread>
#include <iostream>
using namespace std;

void foo (int a, int b, int *c) {
// return a + b;

*¢ = a + b;

}

int main () {
// some main code
int ret = 0;

thread thread handle (foo,1,2, &ret);
// code here runs concurrently with foo
cout << ret << endl;

return O;

What if....

Undefined behavior!
Cannot access the same
values concurrently
without protection!

Next module we will talk
protection (locks)

SPMD programming model

 Same program, multiple data

* Main idea: many threads execute the same function, but they operate
on different data.

* How do they get different data?

* each thread can access their own thread id, a contiguous integer starting at 0
up to the number of threads

SPMD programming model

void increment array (int *a, int a size)
for (int 1 = 0; 1 < a size; 1i++)
ali]++;
J

lets do this in parallel!
each thread increments different
elements in the array

SPMD programming model

void increment array (int *a, int a size, int tid, int num threads) {
for (int 1 = 0; 1 < a size; 1i++)
ali]++;
}

The function gets a thread id and the
number of threads

SPMD programming model

void increment array (int *a, int a size, int tid, int num threads) {
for (int 1 = 0; 1 < a size; 1i++)
ali]++;
}

A few options on how to split up the work
lets do round robin

SPMD programming model

void increment array(int *a, int a size, int tid, int num threads) {
for (int 1 = tid; 1 < a size; 1+=num threads) ({
ali]++;

SPMD programming model

void increment array(int *a, int a size, int tid, int num threads) {
for (int 1 = tid; 1 < a size; 1+=num threads) ({
ali]++;

Assume 2 threads

lets step through thread O
i.e.

tid=0

num_threads =2

array a

SPMD programming model

void increment array(int *a, int a size, int tid, int num threads) {
for (int 1 = tid; 1 < a size; 1+=num threads) ({
ali]++;

iteration 1 computes index O Assume 2 threads

lets step through thread O
ie.

tid=0

num_threads =2

array a

SPMD programming model

void increment array(int *a, int a size, int tid, int num threads) {
for (int 1 = tid; 1 < a size; 1+=num threads) ({
ali]++;

iteration 2 computes index 2
Assume 2 threads

-:- lets step through thread O
.e.

tid=0
array a num_threads = 2

SPMD programming model

void increment array(int *a, int a size, int tid, int num threads) {
for (int 1 = tid; 1 < a size; 1+=num threads) ({
ali]++;

iteration 3 computes index 4
Assume 2 threads

lets step through thread 0
m i.e-
tid=0

array a

num_threads =2

SPMD programming model

void increment array(int *a, int a size, int tid, int num threads)
for (int 1 = tid; 1 < a size; 1+=num threads) ({
ali]++;

switch to thread 1

Assume 2 threads

lets step through thread 1
m i.e-
tid=1

array a

num_threads =2

SPMD programming model

void increment array(int *a, int a size, int tid, int num threads)
for (int 1 = tid; 1 < a size; 1+=num threads) ({
ali]++;

switch to thread 1

iteration 1 computes index 1
Assume 2 threads

lets step through thread 1
II i.e-
tid=1

array a

num_threads =2

SPMD programming model

void increment array(int *a, int a size, int tid, int num threads)
for (int 1 = tid; 1 < a size; 1+=num threads) ({
ali]++;

switch to thread 1

iteration 2 computes index 3
Assume 2 threads

lets step through thread 1
I i.e-
tid=1

array a

num_threads =2

SPMD programming model

void increment array(int *a, int a size, int tid, int num threads)
for (int 1 = tid; 1 < a size; 1+=num threads) ({
ali]++;

switch to thread 1

iteration 3 computes index 5
Assume 2 threads

lets step through thread 1
_ i.e-
tid=1

array a num_threads = 2

SPMD programming model
void increment array(int *a, int a size, int tid, int num threads);

#define THREADS 8
#define A SIZE 1024
int main () {

int *a = new int[A SIZE];

// initialize a

thread thread ar[THREADS];

for (int 1 = 1 < THREADS; 1i++) {

thread ar| = thread(increment array, a, A SIZE, i, THREADS);

}

for (int 1 = 0; i1 < THREADS; i++) {
thread ar[i].join();

}

delete[] a;

return O;

0;
1]

Extra if time

Concurrency vs. Parallelism

e Abstract tasks:

* In the abstract: a sequence of computation
* Given an input, produces an output

Concurrency vs. Parallelism

e Abstract tasks:

* In the abstract: a sequence of computation
* Given an input, produces an output

* Concrete tasks: coarse
* Application (e.g. Spotify and Chrome)
* Function
* Loop iterations granularity

Individual instructions
Circuit level?

fine

Concurrency vs. Parallelism

o

task O start

task O end

Task 1

task 1 start

task 1 end

Concurrency vs. Parallelism

task O start

task O end

Task 1

task 1 start

task 1 end

time

Concurrency vs. Parallelism

Sequential execution
Not concurrent or parallel

all of task 0 executes all of task 1 executes

Task 1

v

time

Concurrency vs. Parallelism

The OS can preempt a thread
(remove it from the hardware resource)

Task 1

v

time

Concurrency vs. Parallelism

The OS can preempt a thread
(remove it from the hardware resource)

Task 1 Task 1

v

time

Concurrency vs. Parallelism

tasks are interleaved on the same processor

The OS can preempt a thread
(remove it from the hardware resource)

Task 1

Task 1

time

Concurrency vs. Parallelism

e Definition:
2 tasks are concurrent if there is a point in
the execution where both tasks have The OS can preempt a thread
started and neither has ended. (remove it from the hardware resource)

ot | O | e |

time

Concurrency vs. Parallelism

e Definition:
2 tasks are concurrent if there is a point in
the execution where both tasks have The OS can preempt a thread
started and neither has ended. (remove it from the hardware resource)
task O start task 1 start task 0 end task 1 end

v v v

ot | O | e |

time

Concurrency vs. Parallelism

Task 1

time

Concurrency vs. Parallelism

"

Task 1

time

Concurrency vs. Parallelism

"

are these tasks concurrent?

Task 1

time

Concurrency vs. Parallelism

* 2 tasks are concurrent if there is a point
in the execution where both tasks have
started and neither has ended.

"

are these tasks concurrent?

Task 1

time

Concurrency vs. Parallelism

"

are these tasks parallel?

Task 1

time

Concurrency vs. Parallelism

* Definition:
* An execution is parallel if there is a point in the execution
where computation is happening simultaneously

are these tasks parallel?

v

v

Task 1

time

Concurrency vs. Parallelism

* Examples:
* Neither concurrent or parallel (sequential)

task O start task 1 start

task 1 end

Task 1

|

task O end

v

time

Concurrency vs. Parallelism

* Examples:
* Concurrent but not parallel

task O start task 1 start task O end task 1 end

ot | ON | e |

time

Concurrency vs. Parallelism

* Examples:

* Parallel and Concurrent

"

Task 1

time

Concurrency vs. Parallelism

* Examples:

e Parallel but not concurrent?

Task 1

time

Concurrency vs. Parallelism

* Examples:

e Parallel but not concurrent?

Task 1

Task 1

time

Concurrency vs. Parallelism

* Examples:
e Parallel execution but task O and task 1 are not concurrent?

v

Task 1

Task 1

time

Concurrency vs. Parallelism

* In practice:
* Terms are often used interchangeably.

* Parallel programming is often used by high performance engineers
when discussing using parallelism to accelerate things

* Concurrent programming is used more by interactive applications, e.g.
event driven interfaces.

