
CSE113: Parallel Programming

• Topic: Architecture and Compiler Overview
• Programming Language to ISA compilation
• 3-address code
• multiprocessors
• memory hierarchy

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

LLC cache

DRAM

Announcements

• Homework 1 released tonight (or Thursday)!
• A week to do it
• 3 free late days

• It will utilize github classroom and docker. There is a tutorial
assignment. Please do it! (not graded, but you are expected to know it)

• Solutions require a design doc.
• Not harshly graded but liable to lose points for low-effort
• Forces you to think about your solution before you start

Announcements

• Instrcutor and TAs: Office hours announced on the webpage
• Tutors: Office hours announced by Thursday.

Quiz – Getting to know your classmates

Quiz – Getting to know your classmates

Review

In a perfect world...

• Historically this worked well
• Dennard’s scaling:
• Computer speed doubles

every 1.5 years.

700 MHz 2.1 GHz
2003 20073x increase

over 4 years
The negotiators:
Specifications
Compiles
Runtimes
Interpreters

However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

2.1 GHz
2007

2.5 GHz
20171.2x increase

over 10 years

2 cores 4 cores

Compiler refresher

Compilation:

int add(int a, int b) {
return a + b;

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

official specification
Intel provides a specification: free
2200 pages

add(int, int): # @add(int, int)
push rbp
mov rbp, rsp
mov dword ptr [rbp - 4], edi
mov dword ptr [rbp - 8], esi
mov eax, dword ptr [rbp - 4]
add eax, dword ptr [rbp - 8]
pop rbp
ret

Language

Compilation:

int add(int a, int b) {
return a + b;

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

add(int, int):
sub sp, sp, #16
str w0, [sp, #12]
str w1, [sp, #8]
ldr w8, [sp, #12]
ldr w9, [sp, #8]
add w0, w8, w9
add sp, sp, #16
ret

Language

How about a more complicated program?
Quadratic formula

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

official specification
Intel provides a specification: free
2200 pages

There is not an ISA instruction that combines all these instructions!

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

• This is not exactly an ISA
• unlimited registers
• not always a 1-1 mapping of

instructions.

• but it is much easier to translate to
the ISA

• We call this an intermediate
representation, or IR

• Examples of IR: LLVM, SPIR-V

Memory accesses

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Unless explicitly expressed in the programming language, loads and stores are
split into multiple instructions!

New material – Instruction Level Parallelism

Instruction-level Parallelism (ILP)

• Parallelism from a single stream of instructions.
• Output of program must match exactly a sequential execution!

• Widely applicable:
• most mainstream programming languages are sequential
• most deployed hardware has components to execute ILP

• Done by a combination of programmer, compiler, and hardware

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

two instructions can be executed in
parallel if they are independent

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

Two instructions are independent if the
operand registers are disjoint from the
result registers

(assume all letter variables are registers)

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

x = z + w;
a = b + x;

instructions that are not independent
cannot be executed in parallel

Two instructions are independent if the
operand registers are disjoint from the result
registers

(assume all letter variables are registers)

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

x = z + w;
a = b + x;

instructions that are not independent
cannot be executed in parallel

Many times, dependencies can be
easily tracked in the compiler:

Two instructions are independent if the
operand registers are disjoint from the result
registers

(assume all letter variables are registers)

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr3;

instr1;instr2;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2; instr1;instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2;instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

6 cycles for 3 independent
instructions

Converges 1 instruction per cycle

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

What if the
instructions depend on
each other?

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr3;

instr2;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr3;

instr2;

and so on...

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

9 cycles for 3 instructions

converges to 3 cycles per
instruction

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instrX0;
instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instrX0;
instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;

instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;

instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;instrX1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;instrX1;instr2;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;instrX1;instr2;

and so on...

We converge to 1 cycle per instruction
again!

How can hardware execute ILP?

• Executing multiple instructions at once:

• Very Long Instruction Word (VLIW) architecture
• Multiple instructions are combined into one by the compiler

• Superscalar architecture:
• Several sequential operations are issued in parallel

How can hardware execute ILP?

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

How can hardware execute ILP?

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

if instr0 and instr1 are independent, they will be issued in parallel

Independent Instructions

• Out-of-order execution
• Hardware looks ahead for independent instructions
• Hardware delays dependent instructions

What does this look like in the real world?

• Intel Haswell (2013):
• Issue width of 4
• 14-19 stage pipeline
• OoO execution

• Intel Nehalem (2008)
• 20-24 stage pipeline
• Issue width of 2-4
• OoO execution

• ARM
• V7 has 3 stage pipeline; Cortex V8 has 13
• Cortex V8 has issue width of 2
• OoO execution

• RISC-V
• Ariane and Rocket are In-Order
• 3-6 stage pipelines
• some super scaler

implementations
(BOOM)

What does this mean for us?

• We should have an abstract performance model for instruction
scheduling (the order of instructions)

• Try not to place dependent instructions in sequence

• Many times the compiler will help us here, but sometimes it cannot!

Two techniques to optimize for ILP

• Independent for loops (loop unrolling)

• Reduction for loops (loop unrolling)

What is loop unrolling?

for (int i = 0; i < 12; i++) {
 a[i] = b[i] + c[i];
}

for (int i = 0; i < 6; i+=2) {
 a[i] = b[i] + c[i];
 a[i+1] = b[i+1] + c[i+1];
}

Can we unroll this loop?
Data and control dependencies

Using Loop Unrolling to Exploit ILP

• for loops with independent chains of computation

for (int i = 0; i < SIZE; i++) {
 SEQ(i);
}

where: SEQ(i) = instr1;
 instr2;
 ...

a[i] = instrN;

and let instr(N) depends on instr(N-1)

loops only write to memory
addressed by the loop variable

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
 SEQ(i);
 SEQ(i+1);
}

Saves one addition and one comparison per loop, but doesn’t help with ILP

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let green highlights indicate
instructions from iteration i.

Let blue highlights indicate
instructions from iteration i + 1.

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let SEQ(i,j) be the jth instruction of
SEQ(i).

Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i,2);
...
SEQ(i,N); // end iteration for i
SEQ(i+1,1);
SEQ(i+1,2);
...
SEQ(i+1, N); // end iteration for i + 1

}

Let SEQ(i,j) be the jth
instruction of SEQ(i).
Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);

 ...
SEQ(i,N);
SEQ(i+1, N);

}

They can be interleaved

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);

 ...
SEQ(i,N);
SEQ(i+1, N);

}

They can be interleaved

two instructions can be pipelined, or executed
on a superscalar processor

Using Loop Unrolling to Exploit ILP

• This is what you are doing in part 1 of homework 1

• You are playing the role of a compiler unrolling loops

• Your “compiler” is written in Python. You print out C++ code

• You the code is parameterized by dependency chain and by unroll
factor

Loop Unrolling for Reduction Loops

• Prior approach examined loops with independent iterations and
chains of dependent computations

• Now we will look at reduction loops:
• Entire computation is dependent
• Typically short bodies (addition, multiplication, max, min)

1 2 3 4 5 6
addition: 21

max: 6

min: 1

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE; i++) {
 a[0] = REDUCE(a[0], a[i]);
}

1 2 3 4 5 6+ + + + +

1 2 3 4 5 6

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE; i++) {
 a[0] = REDUCE(a[0], a[i]);
}

1 2 3 4 5 6+ + + + +

1 2 3 4 5 6

What is associativity?

(())

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Do addition reduction in base memory location

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Do addition reduction in base memory location

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

36 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
 a[0] = REDUCE(a[0], a[i]);
 a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);
}

a[0] = REDUCE(a[0], a[SIZE/2])

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
 a[0] = REDUCE(a[0], a[i]);

a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);
}

a[0] = REDUCE(a[0], a[SIZE/2])

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

independent
instructions
can be done
in parallel!

Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

consider instr1 and instr2 have a data dependence, and instrX’s are independent

instr1;
instrX0;
instrX1;
...
Instr2;

independent instructions. If they overwrite the register storing instr1’s result, then it will have to
be stored to memory and retrieved before instr2

Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

Solutions include using a resource model to guide the topological ordering. Highly
architecture dependent. Compiler algorithms become more expensive.

Consider timing the compile time in your homework assignment.

Memory hierarchy overview

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Core

C0

A core executes a stream
of sequential ISA instructions

A good mental model executes
1 ISA instruction per cycle

3 Ghz means 3B cycles per second
1 ISA instruction takes .33 ns

Core

Compiled function #0

Thread 0

Core

C0

Sometimes multiple
programs want to share
the same core.

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1

Core

C0

Sometimes multiple
programs want to share
the same core.

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1

The OS can preempt a thread
(remove it from the hardware resource)

X

Core

C0

Sometimes multiple
programs want to share
the same core.

Core

Compiled function #1 Compiled function #0

Thread 1 Thread 0

And place another thread to execute

This is called concurrency:
multiple threads taking turns
executing on the same hardware
resource

Core

C0

Preemption can occur:
• when a thread executes

a long latency instruction

• periodically from the OS to
provide fairness

• explicitly using sleep
instructions

Core

Compiled function #1 Compiled function #0

Thread 1 Thread 0

And place another thread to execute

Multicores

C0

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1

C1

Core

Threads can execute simultaneously
(at the same time) if there enough
resources.

This is also concurrency. But when they
execute at the same time, its called:
parallelism.

Multicores

C0

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1

C1

Core

This is fine if threads are independent:
e.g. running Chrome and Spotify at the
same time.

If threads need to cooperate to run
the program, then they need to communicate
through memory

Main memory

C1 C2 C3C0

DRAM

store(a0,128)

a0:? a1:? ... an:?

Main memory

C1 C2 C3C0

DRAM

store(a0,128)

a0:128 a1:? ... an:?

Main memory

C1 C2 C3C0

DRAM

r0 = load(a0)

a0:128 a1:? ... an:?

Main memory

C1 C2 C3C0

DRAM

r0 = load(a0)

a0:128 a1:? ... an:?

r0:?

Main memory

C1 C2 C3C0

DRAM

r0 = load(a0)

a0:128 a1:? ... an:?

r0:128

Problem solved!
Threads can communicate!

Main memory

C1 C2 C3C0

DRAM

r0 = load(a0)

a0:128 a1:? ... an:?

r0:128

reading a value takes ~200 cycles

Problem solved!
Threads can communicate!

Main memory

C1 C2 C3C0

DRAM

r0 = load(a0)

a0:128 a1:? ... an:?

r0:128

Bad for parallelism, but
also really bad for sequential
code (which we optimized for
decades!)

reading a value takes ~200 cycles

Problem solved!
Threads can communicate!

Main memory
int increment(int *a) {

a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

Main memory
int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

Main memory
int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

Main memory
int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

200 cycles

Main memory
int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

200 cycles

401 cycles

Main memory
int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

200 cycles

401 cycles

int x = 0;
for (int i = 0; i < 100; i++) {
 increment(&x);
}

Main memory
int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

200 cycles

401 cycles

int x = 0;
for (int i = 0; i < 100; i++) {
 increment(&x);
}

40100 cycles!

Caches
C1 C2 C3C0

DRAMlatency
~200 cycles

Many GBs
(or even TBs)

Caches
C1 C2 C3C0

DRAMlatency
~200 cycles

Many GBs
(or even TBs)

L1
cache

L1
cache

L1
cache

L1
cache

latency
~4 cycles

256 KB

Caches
C1 C2 C3C0

DRAMlatency
~200 cycles

Many GBs
(or even TBs)

L1
cache

L1
cache

L1
cache

L1
cache

latency
~4 cycles

256 KB

latency
~10 cycles

L2
cache

L2
cache

L2
cache

L2
cache

2048 KB

Caches
C1 C2 C3C0

DRAMlatency
~200 cycles

Many GBs
(or even TBs)

L1
cache

L1
cache

L1
cache

L1
cache

latency
~4 cycles

256 KB

latency
~10 cycles

L2
cache

L2
cache

L2
cache

L2
cache

2048 KB

LLC cachelatency
~40 cycles 12 MB

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

4 cycles

Assuming the value is in the cache!

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

4 cycles
1 cycles

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

4 cycles
1 cycles

4 cycles

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

4 cycles
1 cycles

4 cycles

9 cycles!

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Assume a[0] is not in the cache

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
 a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Assume a[0] is not in the cache

a[0] - a[15]

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *a) {
 a[0]++;
 a[15]++;
 a[16]++;
}

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *a) {
a[0]++;

 a[15]++;
 a[16]++;
}

a[0] - a[15]

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *a) {
 a[0]++;

a[15]++;
 a[16]++;
}

a[0] - a[15]

will be a hit because we’ve loaded a[0] cache line

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *a) {
 a[0]++;
 a[15]++;

a[16]++;
}

Assume a[0] is not in the cache

a[0] - a[15]

Miss

a[16] - a[31]

Cache alignment
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *b) {
 b[0]++;
 b[15]++;
}

int foo(int *a) {
 increment_several(&(a[8]))
}

Assume a[0] is not in the cache

Cache alignment
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *b) {
 b[0]++;
 b[15]++;
}

int foo(int *a) {
 increment_several(&(a[8]))
}

Assume a[0] is not in the cache

a[0] - a[15]

Cache alignment
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *b) {
b[0]++;

 b[15]++;
}

int foo(int *a) {
 increment_several(&(a[8]))
}

Assume a[0] is not in the cache

This loads a[8]
a[0] - a[15]

Cache alignment
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *b) {
 b[0]++;

b[15]++;
}

int foo(int *a) {
 increment_several(&(a[8]))
}

Assume a[0] is not in the cache

a[0] - a[15]

a[16] - a[31]

This loads a[8]
This loads a[23], a miss!

Cache alignment

• Malloc typically returns a pointer with “good” alignment.
• System specific, but will be aligned at least to a cache line, more likely a page

• For very low-level programming you can use special aligned malloc
functions

• Prefetchers will also help for many applications (e.g. streaming)

Cache alignment

• Malloc typically returns a pointer with “good” alignment.
• System specific, but will be aligned at least to a cache line, more likely a page

• For very low-level programming you can use special aligned malloc
functions

• Prefetchers will also help for many applications (e.g. streaming)

for (int i = 0; i < 100; i++) {
 a[i] += b[i];
}

prefetcher will start collecting consecutive data in the cache if
it detects patterns like this.

