
CSE113: Parallel Programming

• Topics:
• Example Questions

• Processes

Announcements

• HW 4 grades will be released this week.

• HW 5 is due today.

• SETs are out, please do them! It helps us out a lot.

Quiz

How many API calls do Barrier objects have?

◯ 0
◯ 1
◯ 2
◯ 3

Quiz

How many API calls do Barrier objects have?

◯ 0
◉ 1
◯ 2
◯ 3

Quiz

A barrier call emits which of the following events? Check all that apply

◯ barrier_lock

◯ barrier_arrive

◯ barrier_enqueue

◯ barrier_leave

Quiz

A barrier call emits which of the following events? Check all that apply

◯ barrier_lock

◉ barrier_arrive

◯ barrier_enqueue

◉ barrier_leave

Quiz

If a program uses both barriers and mutexes, the outcome is deterministic

(i.e. the same every time) if there are no data conflicts.

◯ True

◯ False

Quiz

If a program uses both barriers and mutexes, the outcome is deterministic

(i.e. the same every time) if there are no data conflicts.

◯ True

◉ False

If the mutex is protecting concurrent writes, there is non-determinism.

Quiz

Write a few sentences about what you think the best interface for parallel

programming is, that is, do you think it is Atomics? Mutexes? Concurrent

Data Structures? Barriers? Or even maybe the compiler should simply do it

all automatically? Or is it some combination of the above? What are the
trade-offs involved?

Sample Questions

Separate file

Zombies

Idea
▪When process terminates, still consumes system resources

▪Various tables maintained by OS
▪Called a “zombie”

▪Living corpse, half alive and half dead

Reaping
▪Performed by parent on terminated child (using wait or waitpid)
▪Parent is given exit status information
▪Kernel discards process

What if parent doesn’t reap?
▪If any parent terminates without reaping a child, then child will be
reaped by init process (pid == 1)
▪So, only need explicit reaping in long-running processes

▪e.g., shells and servers

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6639 ttyp9 00:00:03 forks

 6640 ttyp9 00:00:00 forks <defunct>

 6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6642 ttyp9 00:00:00 ps

Zombie
Example

ps shows child process as
“defunct”

Killing parent allows child to be
reaped by init

void fork7()

{

 if (fork() == 0) {

 /* Child */

 printf("Terminating Child, PID = %d\n",

 getpid());

 exit(0);

 } else {

 printf("Running Parent, PID = %d\n",

 getpid());

 while (1)

 ; /* Infinite loop */

 }

}

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6676 ttyp9 00:00:06 forks

 6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6678 ttyp9 00:00:00 ps

Orphan process:
Nonterminating
Child process

Child process still active even though
parent has terminated. The process init
adopts the process. Daemons can be
created this way.

Must kill explicitly, or else will keep
running indefinitely

void fork8()

{

 if (fork() == 0) {

 /* Child */

 printf("Running Child, PID = %d\n",

 getpid());

 while (1)

 ; /* Infinite loop */

 } else {

 printf("Terminating Parent, PID = %d\n",

 getpid());

 exit(0);

 }

}

wait: Synchronizing with Children

Parent reaps child by calling the wait function

int wait(int *child_status)

▪suspends current process until one of its children terminates
▪return value is the pid of the child process that terminated
▪if child_status != NULL, then the object it points to will be set to

a status indicating why the child process terminated

wait: Synchronizing with Children

void fork9() {

 int child_status;

 if (fork() == 0) {

 printf("HC: hello from child\n");

 }

 else {

 printf("HP: hello from parent\n");

 wait(&child_status);

 printf("CT: child has terminated\n");

 }

 printf("Bye\n");

 exit();

}

HP

HC Bye

CT Bye

wait() Example
If multiple children completed, will take in arbitrary order
Can use macros WIFEXITED and WEXITSTATUS to get information about exit
status (W for wait)

void fork10()

{

 pid_t pid[N];

 int i;

 int child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)

 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminate abnormally\n", wpid);

 }

}

waitpid(): Waiting for a Specific Process

waitpid(pid, &status, options)

▪suspends current process until specific process terminates
▪various options

void fork11()

{

 pid_t pid[N];

 int i;

 int child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)

 exit(100+i); /* Child */

 for (i = N-1; i >= 0; i--) {

 pid_t wpid = waitpid(pid[i], &child_status, 0);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

}

execve: Loading and Running Programs

int execve(

 char *filename,

 char *argv[],

 char *envp[]

)

Loads and runs in current process:
▪Executable filename
▪With argument list argv
▪And environment variable list envp

Does not return (unless error)
Overwrites code, data, and stack

▪keeps pid, open files

Environment variables:
▪“name=value” strings
▪Use functions getenv and putenv to

access environment variables.

envp[n] == NULL

envp[n-1]

envp[0]

…

argv[argc] == NULL

argv[argc-1]

argv[0]

…

envp

argc

argv

Stack bottom

Stack frame for
main Stack top

The v and e comes from the fact that it takes an
argument argv, envp to the vector of arguments and
environment variables to the program

execve Example

if ((pid = fork()) == 0) { /* Child runs user job */

 if (execve(argv[0], argv, envp) < 0) {

 printf("%s: Command not found.\n", argv[0]);

 exit(0);

 }

}

envp[n] = NULL

envp[n-1]

envp[0]

…

argv[argc] = NULL

argv[argc-1]

argv[0]

…

“ls”

“-lt”

“/usr/include”

“USER=droh”

“PRINTER=iron”

“PWD=/usr/droh”

envp

argv

	Slide 1: CSE113: Parallel Programming
	Slide 2: Announcements
	Slide 3: Quiz
	Slide 4: Quiz
	Slide 5: Quiz
	Slide 6: Quiz
	Slide 7: Quiz
	Slide 8: Quiz
	Slide 9: Quiz
	Slide 10: Sample Questions
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

