
CSE113: Introduction to Parallel
and Concurrent Programming

UCSC CSE

https://techwireasia.com/2020/06/japans-fugaku-is-the-worlds-fastest-supercomputer/
https://www.lenovo.com/
https://www.apple.com

Enrollment

• Class is full with a large waitlist.

• In the past I have opened the waitlist, with the condition that we’ve had at least 1 TA per
40 students.

• We have 1 TA for every 60 students as it stands right now.

• Because of this, I may not be able to let any more students into the class. It is already a
high ratio and I may not be able to make it higher.

• I will provide accommodations for those that get in late. So please stay on the waitlist,
but no need to keep coming to class, etc.

• I’m happy to let as many people audit the class as want to.

Hello!
• Professor Mohsen Lesani (he/him)
 Associate Professor

• Previously
• Associate Professor at UCSC
• Postdoc at MIT
• PhD at UCLA

• https://mohsenlesani.github.io/

https://mohsenlesani.github.io/

Research Interests

BS: University of Tehran MS: Sharif University of Technology

Multi-agent systems
Reinforcement learning

Social Networks

Research Interests
PhD: UCLA Postdoc: MIT Professor: UCR

Synthesis and Verification of
Reliable and Secure
Distributed Systems

Transactional Memory and
Concurrent Data Structures Distributed Data Stores

Research Interests
- Secure distributed systems
 Heterogeneous Quorum Systems
 Resilient Partitioning and Replication
 Blockchain cross-chain transactions
- Automatic analysis and synthesis of distributed data stores
 Automatic Synthesis of Replicated systems
 Integrity, Convergence and Recency
 RDMA and FPGA
- Verification of distributed systems
 Interactive Theorem proving
 Semantics and Program Logics
- Data analytics
 Declarative Graph Analytics
- Concurrent Systems
 Automatic Fence Insertion
 Verification of Concurrent Data Structures

Concurrency and Parallelism is everywhere!

https://techwireasia.com/2020/06/japans-fugaku-is-the-worlds-fastest-supercomputer/
https://www.lenovo.com/
https://www.apple.com

7.6M cores

Fujitsu SC at Riken (Japan) Consumer Laptop

2-16 cores

Mobile Phone

2-8 cores
Watches?

1 core

BUT

still need to worry about
concurrency!

Concurrency and Parallelism is everywhere!

https://techwireasia.com/2020/06/japans-fugaku-is-the-worlds-fastest-supercomputer/
https://www.lenovo.com/
https://www.apple.com

In many cases you won’t know what hardware you are programming for

web apps Android apps

You still need to worry about concurrency!

People have a variety of interests

• What are some of yours?

• Non CS topics?

• CS topics?

Parallel programming concepts applies to lots
of these CS interests!

Some examples

Self driving cars:

• Requires a reaction speed of 1.6s

• How to make faster?
• Algorithms
• interconnects
• cores

source: IEEESpectrum

Nvidia’s embedded device has increased from 256, to 384 to 512 cores

Some examples

Just because something is parallel doesn’t mean it will go fast!

Some examples

Some things are easy to make fast

pretty straight
forward computation
for brightening

(do every pixel in parallel,
easy to make go fast!)

image processing example
from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

Some examples

Other applications are harder to make go fast

This computation is known as the “Local Laplacian Filter”. Requires visiting all pixels 99 times

simple parallelism is 2x slower than
finely tuned parallelism

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

Some examples

But we need to be careful! Parallel programming is full of tricky
corner cases!

Parallel programming concepts apply to lots
of other non-CS topics as well!

Cooking
Simple soup recipe

Chop Carrots Chop Potatoes Combine and cook

Cooking
Simple soup recipe

How to cook with
one person?

time

Chop Carrots Chop Potatoes Combine and cook

Cooking
Simple soup recipe

How to cook with
two people?

time

Chop Carrots Chop Potatoes Combine and cook

Cooking
Simple soup recipe

How to cook with
two people?

time

Chop Carrots Chop Potatoes Combine and cook

Learning Objectives
• Foundations of concurrent/parallel computing

• Concepts, not languages/frameworks!
• Allows you to pick up future new languages and frameworks quickly

• Think in concurrency
• understand common synchronization idioms and their performance characterizations
• efficiently (and safely) utilize modern systems

• Shared memory concurrency
• Many concepts apply to other domains, but likely have different performance

characteristics (e.g. distributed systems)
• Emphasis on thread cooperation

Class information

• Important to go over class organization and structure
• You want to know this information.
• All information is also on the class website that we keep updating.

• Future lectures will be more visual

Today’s Schedule

• Class Structure

• Class Contents

• Assignments, Tests, Grades
• Special note on new AI tools

Class size

• This is a large class: 120 students!

• We have help:
• 2 grad TAs:
• Undergrad graders/tutors

• We will need lots of organization and structure to make it through the
quarter smoothly.

• We are continuing to develop new class material, structure, and
frameworks to aid with scaling. I appreciate your understanding and
patience.

Teaching Staff Introductions

• Grad TAs:

• Jessica Dagostini
• PhD student working on HPC applications
• 3nd time TA’ing this class

• Gurpreet Dhillon
• MS student working on GPU synchronization

Teaching Staff Introductions

• Undergrad tutors and graders

• Working on this! Please let me know if you have anyone in mind!

Teaching Staff Introductions

• They are all awesome! And they are passionate about parallel
programming! Please utilize their office hours and tutoring as much
as possible!

• They will be your primary point of contact for technical help
throughout the quarter

Class Resources

• Public: https://mohsenlesani.github.io/slugcse113/
• Slides, schedule, resources

• Private: Canvas
• Homeworks, grades, exams, announcements, recorded lectures, zoom links

• Private Class forum:
• Piazza - invite link incoming

Required Background

• CSE 12
• Assembly and hardware

• CSE 101
• Data structure specifications (Queues and Stacks)
• Reasoning about algorithms (Space and time complexity)

• CSE 120 (recommended)
• Caches If you did not have architecture, please

consult the architecture reference on
webpage!

Useful Background

• CSE 13S
• C programming and unix command line

• CSE 130
• Basic Concurrency

Required Skills

Class Format
• Tuesdays Thursdays 01:30 - 03:05pm: 95 minutes
• Class is generally structured as follows:

• Announcements (homework assignments, etc.)
• Quiz review
• Previous lecture review
• New material

• Please be engaged and participate in class! questions, comments,
corrections, etc. are all welcome!

Class format

• This is an in-person synchronous class
• I expect you to make an effort to attend the synchronous lecture
• Please participate in class and network with your classmates

Class format

• But please don’t come to class sick!

• I plan to record lectures and release through Yuja.

• Watch the lecture and then do the associated quiz.

Class format

• This class is designed to be a synchronous in-person class. Lecture
recordings are not meant to be an equal substitute for live class. They
are meant to fill in occasionally.

• If you do not plan to attend the majority of the classes in-person,
please talk to advising to find a class better suited for you.
• Inevitably, students that do not attend lectures do not do as well in the class

• If synchronous attendance drops significantly, then we will revisit
attendance grading and lecture recordings.

Office Hours

• My office hours:
• 3:10 – 5:10 PM on Thursdays
• Please be prepared with your questions to make sure the time is available to

others as well.

Office Hours

• The TAs and tutors will organize their office hours by the end of this
week and we will announce the days/times to the web page.
• We will strive to get a mix of both hybrid and in-person throughout

the week

Asynchronous Discussion
• Piazza
• Private message (to teaching staff) technical homework questions, sensitive

questions
• Programming and framework questions (global). Please try to help your peers!
• Tech news (global)
• Discussions on class material (global)
• We will try to answer in 24 hours.

• Email
• Please try using Piazza. Please send direct emails only for sensitive issues.
• Do not expect replies off-hours (after 5 pm, weekends, holidays)

Asynchronous Discussion

• Additional forums
• You are welcome to create one yourselves
• Please make it open and available to all your classmates
• Please provide sufficient moderation (e.g. be nice to each other!)
• Do not cheat
• Please remember that anything that is not in Canvas may not be private

• If there are issues, please let me or a TA know!

Class Content

Class Content

• 20 classes, split into
• 5 modules, so there are
• ~4 classes per module

• Reference book:
Available online from the library
Link on the webpage

Book uses Java: we will use C++

Class Content

• Module 1: Introduction, Background and ILP
This module will provide an architectural refresher and discuss how
modern hardware exploits parallelism within a thread (ILP). We will
also introduce threading in C++.

Class Content

• Module 2: Mutual Exclusion
This module will discuss the fundamental problem of mutual exclusion.
We will discuss the theory behind mutual exclusion, how it is
implemented in practice, and specialized mutual exclusion objects.

Class Content

• Module 3: Concurrent Data Structures
This module will discuss concurrent objects and how to reason about
them. We will discuss several implementations and discuss how it can
be used in load balancing and software pipelining.

Class Content

• Module 4: Parallel Programming on GPGPUs
This module will discuss general purpose (GP) GPU programming. We
will discuss the SIMT programming model, hierarchical execution, and
different architectural considerations when optimizing programs.

• I’m very excited for this module! We want to use a new platform
(WebGPU) to allow everyone to program the GPUs on their own
machines!

Class Content

• Module 5: Advanced topics
This module will discuss advanced topics, including memory
consistency, subtle concurrent data structures, and fairness.

Class Content

• Schedule:
https://mohsenlesani.github.io/slugcse113/#schedule

Readings are highly recommended; they will be a useful reference for
test studying and homeworks

Slides will be uploaded before lecture

Accessibility

UC Santa Cruz is committed to creating an academic environment that
supports its diverse student body. If you are a student with a disability
who requires accommodations to achieve equal access in this course,
please submit your Accommodation Authorization Letter from the
Disability Resource Center (DRC) to me by email, preferably within the
first two weeks of the quarter. I would also like us to discuss ways we
can ensure your full participation in the course. I encourage all students
who may benefit from learning more about DRC services to contact
DRC by phone at 831-459-2089 or by email at drc@ucsc.edu.

Assignments and Tests

Assignments

• Five assignments, one assignment per module
• Each homework is worth 10% of your grade (total of 50%)
• Released halfway through the module
• Deadlines announced in the schedule.

• We will try to make homeworks due at midnight. If we receive too
many questions off hours, we will move earlier (e.g., 8 PM)
• Please do not expect replies off-hours (after 5 pm, weekends,

holidays)

Assignments

• Late Policy:
• You have 10 days to submit each assignment.
• Each assignment has 3 days that you can turn in the assignment late with no

penalty.
• No work accepted after the 3 days.

Assignments

• Format:
• Coding assignments in C/++ and Python (and some Javascript/wgsl for module 4)
• It is recommended that you have access to a machine with at least 4 cores.
• TAs will provide Docker image and autograding instructions.

• We aim to use github classroom for submission and automatic feedback.
• You will be graded on the server feedback rather than the results from your own

machine. This is to help provide fair (and scalable) grading across the increasing
diversity of devices that everyone has these days. Someone with an Apple M-series
processor will get very different results than someone with an Intel X86 processor.
• Architectural differences are very interesting to discuss and I hope we can have

detailed discussions about how your machine’s results differ from the server on
Piazza.

Academic Integrity

For assignments:

I expect submitted assignments to contain your own original work. You
can refer to notes, slides, internet, etc. But do not blindly copy code.

Any part of your submission that is not your original work (e.g. code
snippets from the internet) need a citation. My aim is to be lenient with
cited code, but we may remove some points based on the extent. A few
missing points is better than a referral for academic misconduct.

AI Tools
• Exciting time for AI:
• Github co-pilot
• ChatGPT

• Impact on learning objectives is not clear.
• This class has been designed to be taken without the use of AI tools.
• Please do not use them for this class
• They inhibit you from learning the foundations of parallel programming
• If we suspect these are being used widely then we may implement random

audits.

AI Tools

Discussing results

You cannot share code snippets or discuss coding solutions at a low-level.

However, unless otherwise specified: in the second week of the assignment,
you can share local (from your own machine) results with your classmates.

If you collaborate with your classmates, please mention in the submission.
Again, a few missing points is better than a misconduct referral.

You will have different machines and thus, your results may not align
completely: it is interesting to think about why!

Cheating
This class has a zero tolerance policy on cheating. Please don’t do it. I
would much rather get a hundred emails asking for help than have to refer
anyone for academic misconduct.

Cheating harms you: this is the best chance in your
career to take the time to really learn the class
material. If you do not learn the material you will
not be successful in a tech career.

The current economic conditions are volatile for
computer science graduates. You will not stand out
to a company for having straight As. You will stand
out if you can show a deep understanding of
complicated CS topics. When you cheat, you
deprive yourself of this learning.

Tests

Two tests:
 Final and Midterm
Format:
 In-person tests

Tests

Midterm
• Data, time will be announced in the schedule. Often halfway through

module 3.
• It will be in the class.
• Worth 10% of grade
• Review slides and readings

Tests

Final
• Data, time and location will be announced in the schedule.
• Worth 30% of grade
• Inclusive: slide material from all year, including readings

Tests

For each test you are allowed 3 pages of notes, front and back, printed
or handwritten, you can print slides, etc.

Reviewing Grades

• For assignments and tests:
• You have 1 week from when the grade is posted to discuss grades with

teaching staff

Assignments and Tests

Grade Breakdown:
• 5 homeworks: 50%
• 1 midterm: 10%
• 1 final: 30%
• attendance/quiz: 10%

Attendance and Quizzes

• Small canvas “quiz” every lecture - take the quiz to get the daily points

• Quizzes are posted after class and due before the next class. Only submit
the quiz once you have watched the lecture (either in person or remotely)!
They are meant to test your understanding.

• Quiz answers are not graded! only if you submit it
• However, low-effort quiz submissions are liable to be failed.

• Some quiz questions do not have a right or wrong answer. They are meant
to make you think about the material!

• You can miss up to 3 quizzes without penalty.

Website tour

Final notes

Updates
• There may be updates to HWs and tests
• There may be schedule changes

Thank you!

• I’m happy to have all of you in the class!

• Your experiences and feedback will help shape this class for future
students. Email is always open for comments about class material,
HW assignments, etc.

Starting on more technical concepts

• Architecture/Compiler review:
• Parallel programming lives at the edge of the software/hardware interface.

We will need to understand architecture/compiler basics in order to program
efficient and correct programs

• Good programming languages for parallel architectures is still an open
problem!!

Architecture and compiler overview

• Overview - why do we need a lecture on compilation and
architecture?

• Compilation - How do we translate a program from a human-
accessible language to a language that the processor understands

• Architecture - How do processors execute programs?

• Example

Lecture Schedule

• Overview - why do we need a lecture on compilation and
architecture?

• Compilation - How do we translate a program from a human-
accessible language to a language that the processor understands

• Architecture - How do processors execute programs?

• Example

In a perfect world...

• Programming languages provide an abstraction

Programmer: Writes Code

Hardware Designer: Makes Chips

In a perfect world...

• Programming languages provide an abstraction Separation of concerns allows
incredible productivity

modern software:
~4.8 million lines of code

(Chromium)

modern chip:
~16 billion transistors

(Apple M1)

Programmer: Writes Code

Hardware Designer: Makes Chips

In a perfect world...

• Programming languages provide an abstraction

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

Programmer: Writes Code

Hardware Designer: Makes Chips

In a perfect world...

• Historically this worked well

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

In a perfect world...

• Historically this worked well

700 MHz
2003

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

In a perfect world...

• Historically this worked well
• Dennard’s scaling:
• Computer speed doubles

every 1.5 years.

700 MHz
2003

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

In a perfect world...

• Historically this worked well
• Dennard’s scaling:
• Computer speed doubles

every 1.5 years.

700 MHz 2.1 GHz
2003 2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

In a perfect world...

• Historically this worked well
• Dennard’s scaling:
• Computer speed doubles

every 1.5 years.

700 MHz 2.1 GHz
2003 20073x increase

over 4 years
The negotiators:
Specifications
Compiles
Runtimes
Interpreters

In a perfect world...

• Historically this worked well • Programming languages
also evolved:
• Garbage Collection
• Memory Safety
• Runtimes

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

2.1 GHz
2007

However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

2.5 GHz
2017

2.1 GHz
2007

However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

2.5 GHz
20171.2x increase

over 10 years2.1 GHz
2007

However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

2.1 GHz
2007

2.5 GHz
20171.2x increase

over 10 years

2 cores 4 cores

Reexamining the stack

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

Optimized and designed over decades for
single core.

Parallel programming breaks down these abstractions

Performance - e.g., memory contention
Safety - how to reason about shared data

Reexamining the stack

• Nowadays

To efficiently program
parallel architectures,
developers looking past the
negotiators and more directly at
hardware

Reexamining the stack

• Nowadays We’re going to pick a language that allows reasoning
about how it is executed on the hardware

Reexamining the stack

• Nowadays

Heavy runtime
(GC, JIT) makes it

hard to reason
about

performance on
hardware

Reexamining the stack

• Nowadays
often intuitive mappings to assembly

lean runtime

Modern trends (2024 is basically the same)

source: Tiobe index

Reasons for C’s popularity

• There have always been reasons to program close to the hardware
• Embedded systems
• Parallelism
• Diversity of architecture (especially recently)

• C/++
• has massive ecosystem,
• has large and active community
• can keep up with hardware trends and
• allows extremely efficient code to be written
• keeping a manageable level of abstraction

C/++ is not perfect

• Downsides:
• out of bound bugs,
• pointers,
• security issues,
• complicated specification

• Designing a fast, and safe programming language is difficult. Very much an
open problem. Many of you may be working on it in your career.

• Rust seems like an interesting development. Not yet to the place where I see it
being viable to teach.
• Currently ranked 19 (Down from 18 last year, but overall moving up)
• It’s a lot to learn a new language and parallelism in one quarter ...

Python?

• Great language for scripting
• We will use it to automate experiments in this class

• The GIL (global interpreter lock) restricts parallelism significantly.
• Makes the language safe

• TensorFlow and Pytorch?
• Wrappers around low-level kernels that execute outside of the python interpreter

Lecture Schedule

• Overview - why do we need a lecture on compilation and
architecture?

• Compilation - How do we translate a program from a human-
accessible language to a language that the processor understands?

• Architecture - How do processors execute programs?

• Example

Compilation:
Language ISA

Compilation:
Language ISA

int add(int a, int b) {
 return a + b;
}

Compilation:
Language ISA

int add(int a, int b) {
 return a + b;
}

If we didn’t have
computers, would this
mean anything?

Compilation:
Language ISA

int add(int a, int b) {
 return a + b;
}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

Compilation:
Language ISA

int add(int a, int b) {
 return a + b;
}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

Official specification
Intel provides a specification: free
2200 pages

Compilation:
Language ISA

int add(int a, int b) {
 return a + b;
}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

Official specification
Intel provides a specification: free
2200 pages

???

Compilation:

int add(int a, int b) {
return a + b;

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

Official specification
Intel provides a specification: free
2200 pages

add(int, int): # @add(int, int)
push rbp
mov rbp, rsp
mov dword ptr [rbp - 4], edi
mov dword ptr [rbp - 8], esi
mov eax, dword ptr [rbp - 4]
add eax, dword ptr [rbp - 8]
pop rbp
ret

Language

Compilation:

int add(int a, int b) {
return a + b;

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

add(int, int):
sub sp, sp, #16
str w0, [sp, #12]
str w1, [sp, #8]
ldr w8, [sp, #12]
ldr w9, [sp, #8]
add w0, w8, w9
add sp, sp, #16
ret

Language

How about a more complicated program?
Quadratic formula

How about a more complicated program?
Quadratic formula

How about a more complicated program?
Quadratic formula

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

How about a more complicated program?
Quadratic formula

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

Official specification
Intel provides a specification: free
2200 pages

There is not an ISA instruction that combines all these instructions!

A compiler will turn this into an
abstract syntax tree (AST)

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

Simplify this code:

Post-order traversal, using temporary
variables

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b); r0

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;

r0

r1

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;

r0

r1

r2

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;

r0

r1

r2

r3

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;

r0

r1

r2

r3

r4

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);

r0

r1

r2

r3

r4

r5

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;

r0

r1

r2

r3

r4

r6

r5

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;

r0

r1

r2

r3

r4

r6

r5

r7

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;

r0

r1

r2

r3

r4

r6

r5

r7

r8

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

• This is not exactly an ISA
• unlimited registers
• not always a 1-1 mapping of

instructions.

• but it is much easier to translate to
the ISA

• We call this an intermediate
representation, or IR

• Examples of IR: LLVM, SPIR-V

C program llvm IR

Memory accesses

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Unless explicitly expressed in the programming language, loads and stores are
split into multiple instructions!

Zoom out

• This can be a lot if you don’t have a compiler background; don’t feel
overwhelmed!

• To be successful in this class, you don’t need to be an expert on
compilation, ISAs, or IRs.

• The important thing is to have a mental model of how your complex
code is broken down into instructions that are executed on hardware,
especially loads and stores

