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FUZZY TRUST AGGREGATION AND PERSONALIZED TRUST
INFERENCE IN VIRTUAL SOCIAL NETWORKS

MOHSEN LESANI AND NILOUFAR MONTAZERI
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Virtual marketplaces on the Web provide people with great facilities to buy and sell goods similar to con-
ventional markets. In traditional business, reputation is subjectively built for known persons and companies as the
deals are made in the course of time. As it is important to do business with trustful individuals and companies, there
is a need to survive the reputation concept in virtual markets. Auction sites generally employ reputation systems
based on feedbacks that provide a global view to a cyber dealer. In contrast to global trust, people usually infer their
personal trust about someone whose reputation is completely or partially unknown by asking their trusted friends.
Personal reputation is what makes a person trusted for some people and untrusted for others. There should be a
facility for users in a virtual market to specify how much they trust a friend and also a mechanism that infers the
trust of a user to another user who is not directly a friend of her. There are two main issues that should be addressed
in trust inference. First, the trust modeling and aggregation problem needs to be challenged. Second, algorithms
should be introduced to find and select the best paths among the existing trust paths from a source to a sink. First, as
trust to a person can be stated more naturally using linguistic expressions, this work suggests employing linguistic
terms for trust specification. To this end, corresponding fuzzy sets are defined for trust linguistic terms and a fuzzy
trust aggregation method is also proposed. Comparing the fuzzy aggregation method to the existing aggregation
methods shows superiority of fuzzy approach especially at aggregating contradictory information. Second, this
paper proposes an incremental trust inference algorithm. The results show improvement in preciseness of inference
for the proposed inference algorithm over the existing and recently proposed algorithm named TidalTrust.
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1. INTRODUCTION

An individual usually satisfies his material and service requirements by his own or asks
others. As one cannot autonomously satisfy all his needs, the human being has selected to
live in society to be able to fulfill his needs through relationships. The advent of Internet
has added new dimensions to traditional interpersonal relationships and indeed the way that
people satisfy their needs. Web-based social network sites offer many facilities to their users
to find their friends, make new ones, and specify their relationships. Millions of people are
connected to each other in such social networks, making a large relationship network. People
are able to satisfy much of their requirements through virtual acquaintances. Web-based
services provide people with facilities to search for the items they need and to acquire them
from the providers. These services have opened a new way of business that makes people
able to virtually offer their goods and the goods can be browsed or be found by customers
that search. The item offered can also be a service such as news and review.

When a material or a service is being purchased from other persons, it is important
to have enough trust to the providers to be sure that they will deliver proper material or
service. The belief that a person is trusted or untrusted usually emerges as a consequence
of the person’s reputation. The reputation is the past behavior, i.e., the quality of previously
provided material or service. The idea is that in the future, a person will most probably
continue his past behavior. Some researchers have tried to prove that the concept of reputation
in a society is the incentive for selfish agents to behave honestly. Jurca and Faltings (2007)
have proposed a reputation mechanism and have shown that it has an equilibrium where the
providers behave as socially desired. Kerr and Cohen (2007) have employed first-order logic
to prove security for buyers in a reputation system based on a set of assumptions.
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While in traditional markets, the reputation was built over time for a known person or
company, the contemporary virtual marketplaces offer dealing with complete strangers. A
person may know hundreds of people in a social network but do not know many others.
The user may know how much she can rely on persons that she directly knows but what
about the others? How much should she trust a review that is written by a person that she
does not directly know? The question of how to preserve reputation and trust concepts in
virtual marketplaces is a matter to be solved or else the virtual marketplace becomes a place
for low-quality stuff (Akerlof 1970). The fact that the reputation of a seller is important to
customers is also supported by experiments on eBay1 (Resnick et al. 2002).

There are several methods designed to compute global trust to a user, ignoring the fact
that trust is often a personal matter. The well-known auction site, eBay, has a reputation
system based on feedbacks that sellers and buyers write for each other (Resnick et al. 2000).
The feedback score assigned to each profile is a signed summation of feedbacks of all people
who have had a deal with that profile. Hence the feedback score presents a global view to
the profile. Aside from the simple summation of feedbacks employed in eBay, an important
family of global trust computation algorithms is the flow model category. Algorithms that
compute trust by iterating paths and loops of trust graphs are called flow model algorithms.
This family includes Google’s PageRank (Page et al. 1998), EigenTrust (Kamvar, Schlosser,
and Garcia-Molina 2003), Advogato2 community reputation computation (Levien 2004),
and Appleseed (Ziegler and Lausen 2004) algorithms. PageRank used by Google for ranking
pages on the Web can be viewed as a reputation computation algorithm where any hyperlink
to a Web page is a positive rating for that page. EigenTrust algorithm is proposed to compute
trust scores of users in P2P networks for the purpose of determining the most reliable file
servants. Advogato’s reputation and Appleseed algorithms also assign a global trust score to
each member of the community.

In contrast to global trust, a unique person may be viewed trusted by some and untrusted
by some others. What the majority of people believe is not what anyone believes. The
deviation from the majority becomes more important when the matter that information is
requested for is related to personal feelings and taste. As an instance, the trust in a tailor
is highly dependent to the styles he is professional in and the styles the customer desires.
Besides, people naturally build trust to an unknown person by asking their trusted friends
about him. For example, if one has found an unknown person offering a laptop with a
reasonably low price, he is interested to know if any of his trusted friends knows him. If they
do not know him, he is interested to know if any of his trusted friends can ask from their
trusted friends about him; and the chain can get even longer. Recommender Web sites return
a list of providers in response to a search for an item. The list is desired to be ordered by the
user’s direct or indirect trust to the providers. There is a need to infer how much a person
individually trusts another one from the limited trust ratings that the users have provided.
Obviously, the persons may be not directly connected in the social network. Personalized
reputation is computed from information coming from trusted friends. Hence, it is also a
way to fight against false high or low reputations occurring as a result of cheating positive or
unfair negative feedbacks. When a reputation is built from the feedbacks coming from all the
social network users, it can be more easily misled by unknown users than when it is composed
from information coming only from trusted friends. By personalized reputation, an incorrect
trust rating provided by a cheating user can only mislead the users who directly or indirectly
have selected to trust him. Thus computing personalized versus global reputation and trust
seems to be more effective.

1http://www.ebay.com
2http://www.advogato.org/
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If the trust relationship in a social network is abstracted to a trust graph, to infer
personalized trust from a node to another one, algorithms are needed to find and select from
the paths that exist from the first node to the second. Also aggregation methods are needed to
combine trust values when the values are obtained from several nodes. Aggregation methods
are dependent and are proposed on specific trust modelings. This work has contributions in
both trust modeling and aggregation and also trust inference algorithms. In the remainder of
this part, an overview of related works and contributions in trust modeling and aggregation
and then trust inference algorithms will follow.

Crisp approach models trust as a number in a continuous range, for example [0, 10].
Golbeck (2005) and Golbeck and Hendler (2006) models trust relationships in a social
network as a crisp trust graph. Mean method has been used for trust aggregation. Huynh
et al. (2004) have offered a trust model called FIRE for open systems, the systems that
agents can join and leave at any time. FIRE has a crisp modeling of trust and uses the
mean method to aggregate trust ratings that are obtained from interactions, rules about
roles, witnesses, and certifications. Aringhieri et al. (2006) have proposed a trust model
for P2P networks. They used the term “fuzzy” in the sense that trust is a value between
[0, 1]. They employ weighted mean method to aggregate reputations obtained from other
peers. Jøsang (2001) has proposed Subjective Logic as a belief modeling and reasoning
theory. His modeling considers disbelief and uncertainty besides belief. Belief, disbelief,
and uncertainty all take crisp values. He has applied his belief model to trust and the belief
combination operators of his theory to trust aggregation. Also in his survey, Jøsang, Ismail,
and Boyd (2007) have reviewed different trust modeling methods and different live reputation
systems.

In the crisp modeling of trust, users should specify their trusts to other users as numbers,
whereas people naturally use linguistic expressions when they are asked to state their trust to
others. In fact, people tend to specify their trust in expressions such as very low, medium, or
high; and specifying trust in crisp numbers may seem odd to them. A user that trusts another
one by a medium high value may find no or little difference between 6 and 7 values in a trust
value scale of 10. Similarly people like to hear linguistic expressions when they ask others
about their trust to an unknown person. Hence, it seems that linguistic terms are superior to
crisp numbers in describing trust, although this can be stated more strongly when a subjective
study of users supports it. More importantly, as it is shown in this paper, the aggregation
methods proposed for the crisp modeling of trust, such as mean method and Subjective Logic
aggregation operators, do not perform well especially in combing contradictory information.
It seems that a number does not have enough capacity for conveying an aggregated value
especially if the value is the result of aggregating contradictory values.

According to the aforementioned shortcomings in the crisp view of trust, fuzzy sets seem
an ideal choice for trust modeling and inference. This research proposes using linguistic
terms for specifying trust. A fuzzy set is defined for each trust linguistic term and a fuzzy
aggregation method is offered for combining fuzzy trust values. Moreover, the resulting trust
fuzzy set is finally converted to its corresponding linguistic expression of trust. Hence, not
only trust specification is in linguistic terms, but also the inference result is offered as a
linguistic expression. The results of this research show that the fuzzy aggregation method
outperforms the mean and subjective logic aggregation methods.

As the other focus of this research is trust inference algorithms, the following paragraphs
mention two previously proposed algorithms and the contribution of this research for inferring
trust individually from a person to another.

Jøsang, Hayward, and Pope (2006) have proposed a trust inference algorithm called
DSPG (Directed Series Parallel Graph)-finding algorithm. The algorithm presents a subgraph
comprised of some selected paths between a source and a sink as a closed form of serial and
parallel connections. The trust from the source to the sink is then inferred from the obtained
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closed form using the Subjective Logic operators for serial and parallel belief combination.
The problem is that the time complexity of the DSPG-finding algorithm is exponential. A
suboptimal algorithm with time complexity of O(V + E + M × L) has also been proposed,
where M is the average number of paths between any two nodes and L is the average length
of these paths in the trust graph.

Golbeck (2005) and Golbeck and Hendler (2006) have researched on trust in social
networks and deduced some trust graph properties from real social networks. They have
proposed an incremental algorithm named TidalTrust, which performs the inference through
the strongest of shortest paths. The time complexity of TidalTrust is O(V + E) where V is
the number of vertices and E is the number of edges of the trust graph. Incremental trust
inference algorithms infer trust incrementally from the sink level by level back to the source.
For each node, trust to the sink is computed locally from the information (i.e., the trust to
sink) coming from its neighbors. Computed trust values for nodes in the current level are
used in computing trust values for nodes in the next level that is one level farther from the
sink.

TidalTrust confines the search to shortest paths while the information inferred from a
long chain of people with high trust along it may be much more precise than the information
inferred from a short chain of people with low trust along it. In addition, while the most
trustworthy information comes from the strongest paths, weaker paths can also convey
valuable information. TidalTrust also does not report the preciseness of inference; while the
inference along a lowly trusted path—even if it results the same inferred trust value—is less
precise than the inference that is done along a highly trusted path. The new incremental
algorithm that is proposed by this work not only benefits from shortest and strongest paths
but also from longer and weaker ones. The preciseness of inference is also reported in the
proposed algorithms. The results of AllLengthStrongestTrust algorithm, which considers not
only the shortest paths but also all the longer ones to find the strongest of all the possible
paths, show improvement in preciseness of inference in cases that longer paths are the most
trusted ones.

This paper begins with presenting definition, modeling, and some properties of trust; it
continues by explaining different aggregation methods including crisp and fuzzy approaches
and then the incremental inference algorithms are offered. The Simulation and Results section
presents the experiments and comparison with previous works. Finally, the Conclusion and
Future Works section concludes the paper.

2. TRUST

2.1. Trust Definition

Trust is defined differently in different contexts. For the purpose of this research, trust is
the relying party’s subjective belief in the trusted entity to serve a certain function on which
the welfare of the relying party depends. The function can be information provision.

2.2. Trust Graphs

A social network can be modeled as a large directed graph where nodes represent persons,
directed edges represent friendships or acquaintances, and edge labels represent trust values.
The trust rating on an edge is the trust that the first node has to the second node (i.e., the
belief to the correctness of information coming from the second node). Trust graphs not only
are theoretically defined but practical instances of them also exist such as FilmTrust.3 The
following properties are considered for trust and trust graphs.

3http://trust.mindswap.org/FilmTrust
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2.3. Trust Properties

2.3.1. Asymmetry. As two friends have different beliefs and may have seen different
behaviors form each other, the trust they have to each other may be different. This is what
makes the trust graph asymmetric and directed.

2.3.2. Transitivity. Trust may seem not to be transitive, i.e., if A highly trusts B and
B highly trusts C it does not mean that A also highly trusts C. However it is usual that you
ask one of your highly trusted friends about an unknown matter and take his opinion as your
own. Consider a case when A asks B about a film because A highly trusts B and B does
not know about the film; so B asks his highly trusted friend C that knows about the film
while A is unaware of this relationship. B takes C’s opinion as his own and gives it to A that
will also take it as her own opinion. Person A finally takes C’s opinion as if C is her trusted
friend. While the transitivity of trust is a source of argument, it can be considered that trust
is transitive in the sense of information back propagation. It can be defined that person B is
transitively trusted by person A in a social network if information can be propagated from B
back to A in reverse directions of trust connections in the network. The transitivity property
of trust lets information propagate backwards through a trust chain of people. It is obvious
that this information can also be the trust value to another person; so trust to an unknown
person can also be found from transitive trust paths.

When something is known personally, it is trusted with the maximum trust value. When
information is received from another person, the trust to that person affects the trust to
the information gotten from him. The less a person is trusted, the more the trust in the
information he provides is discounted. If the information propagates back through a person
and then another one and then reaches the person at the front of the chain, discounting of
the trust to the information happens twice. The longer the chain, the more the trust to the
information obtained from the chain is discounted. When you hear news from a witness of
an event you believe it more than when you get the news from a deeper chain of people.
Similarly, when trust to a person should be inferred, it is more desirable to be inferred from
shorter chains of people. Golbeck (2005) showed that shorter paths lead to more accurate
trust inference results.

Information is desired to be taken from a more trusted person or when the information
is an aggregation of information taken from several persons, it is desired to be affected more
by the information provided by more trusted persons. Similarly, when you are to infer the
trust to an unknown person and you have the choice of getting this information from two
people chains both ending to the unknown person and having the same depth, you certainly
choose the chain with more trust between the people along it. Golbeck (2005) showed that
paths with higher trust ratings cause better trust inference.

3. TRUST MODELING AND AGGREGATION

3.1. Trust Modeling

Trust is considered a measurable continuous subjective quantity. Trust quantity has a
minimum value (that means having no trust) and a maximum value (that means completely
having trust) where partial trust comes in-between. Taking 0 as the lower and 1 as the higher
bounds of trust results the range of [0, 1] for trust.4 As in some previous works, the trust
range can also be taken [0, 10] without losing any generality.

4This range is for trust and not distrust. To support distrust, the range should be extended to negative values. See
Conclusions and Future Works section.
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FIGURE 1. Fuzzy membership functions of trust linguistic terms.

Crisp modeling represents trust values as numbers in the trust range. Presenting trust as
a number such as 0.6 in the trust range is the approach adopted by most previous works.

Subjective Logic as a belief modeling and reasoning theory is also applied to trust
modeling and aggregation (Jøsang et al. 2006). Subjective Logic not only considers belief
but also disbelief and uncertainty. The ordering of w = (b, d, u, a) called opinion is the
modeling for subjective quantities such as trust where b, d, and u ∈ [0, 1] represent belief,
disbelief, and uncertainty, respectively. Parameter a is called base rate and is the amount
of belief considered by default in lack of any knowledge. Belief, disbelief, and uncertainty
are all crisp numbers and b + d + u = 1. Probability values are equivalent to expectation
values E = b + au in subjective logic, and expectation values are mapped to uncertainty-
maximized opinions with base rate a. This means that if E ≥ a then w = ((E − a)/
(1 − a), 0, (1 − E)/(1 − a), a) and if E < a then w = (0, (a − E)/a, E/a, a) (Jøsang 2001).

Similar to any other continuous quantity, fuzzy modeling is possible for trust. This
research proposes fuzzy modeling of trust where trust values are represented as fuzzy sets
with definite membership functions in the trust range. The fuzzy membership functions for
the linguistic terms such as low, medium, medium low, medium high, and high can be defined
as depicted in Figure 1. Hence, the linguistic terms can also be used as trust values.

3.2. Trust Aggregation

Several bits of information may be obtained from parallel paths as answers to a single
question. For example if A does not know C, she asks her friends (Bs) about C. Different
friends (Bs) may have different ideas about that person (C). Person A should combine the
different ideas she has received from Bs about C to infer a unique idea about C. Similarly,
the final combination phase should take place when the information comes from deeper
parallel chains of people. People naturally combine information when they receive them
from different sources, assigning more credit to more trusted sources. The belief combination
methods, also known as aggregation methods, try to simulate this human ability.

Aggregation methods of trust are dependent to the modeling of trust. First, mean ag-
gregation method and Subjective Logic aggregation operators are presented. Next the fuzzy
rule-based aggregation method proposed in this work for fuzzy modeling of trust is offered.

3.2.1. Mean Aggregation Method. Assume that person P has n different information
sources for the value of an unknown continuous quantity X. P should aggregate the values
that are obtained from these sources. If each source i reports value Bi as his believed value
for X and P trusts each source i with crisp trust value Ti , then the result of aggregation Bp ,
i.e., the value that P believes for X is

Bp =

n∑
i=1

Ti × Bi

n∑
i=1

Ti

. (1)
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The preceding aggregation method can be applied to trust aggregation. Assume that
a node N should aggregate different trust values to a sink that are obtained from its
neighbors. If trust values from different neighbors to the sink are known to be Trust-
ToSink1, TrustToSink2, . . . , TrustToSinkn and node N’s direct trust to its neighbors are Trust1,
Trust2, . . . , Trustn , respectively, the trust of node N to the sink as the result of aggregation is

TrustToSink N =

∑
i∈Neighbors(N )

Trust i × TrustToSink i

∑
i∈Neighbors(N )

Trust i

. (2)

3.2.2. Subjective Logic Combining Operators. The following operators are the two
operators Subjective Logic has defined for combining two serial and parallel opinions.
Opinion is the Subjective Logic’s modeling of trust that is proposed by Jøsang, which had
been described in Section 3.1.

Reduction Operator
If A’s trust to B in recognition of correctness of information x is ωA

B = (bA
B , dA

B , uA
B , aA

B )
opinion and B’s opinion about the information x is ωB

x = (bB
x , dB

x , uB
x , aB

x ) then to infer A’s
opinion to the information x, B’s opinion about the information x is reduced with the A’s
opinion in B as follows:

ωA:B
x = ωA

B ⊗ ωB
x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bA:B
x = bA

BbB
x

d A:B
x = bA

Bd B
x

u A:B
x = d A

B + u A
B + bA

BuB
x

a A:B
x = aB

x .

(3)

The superscript denotes the trusting and the subscript denotes the trusted.
The effect of reduction operator is to increase uncertainty and decrease belief and

disbelief in transitive chains.

Consensus Operator
Consensus between two opinions is an opinion that reflects both of the initial opinions

fairly. If A and B believe in the information x with corresponding beliefs of ωA
x = (bA

x , dA
x ,

uA
x , aA

x ) and ωB
x = (bB

x , dB
x , uB

x , aB
x ), their aggregation is: (Assuming that aA

x = aB
x .)

ωA♦B
x = ωA

x ⊕ ωB
x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bA♦B
x = (

bA
x uB

x + bB
x u A

x

)/(
u A

x + uB
x − u A

x uB
x

)
d A♦B

x = (
d A

x uB
x + d B

x u A
x

)/(
u A

x + uB
x − u A

x uB
x

)
u A♦B

x = (
u A

x uB
x

)/(
u A

x + uB
x − u A

x uB
x

)
a A♦B

x = a A
x .

(4)

The effect of the consensus operator is to increase belief and disbelief and decrease
uncertainty.

It is obvious that the information x can be trust to a sink and hence the operator can be
used to aggregate different trust values to a sink.

3.2.3. Fuzzy Aggregation Method. Fuzzy modeling and aggregation is the first con-
tribution of this work. Assume that person P should aggregate different values for a quantity
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FIGURE 2. Acceptable fuzzy set.

X that are obtained from his known sources. Assume that <Trusti , BelievedValuei> 1≤ i ≤
n are n pairs of fuzzy sets where BelievedValuei is the value that source i believes for X and
Trusti represents trust from P to source i. For each pair, a result fuzzy set named Resulti is
obtained from fuzzy implication with the following fuzzy rule.

if (Trust i is Acceptable)

then (Result i is BelievedValue i ).

In the [0, 1] trust range, the membership function of Acceptable fuzzy set is defined as
a linear function with membership value of 0 at trust value of 0 and membership value of 1
at trust value of 1 as in Figure 2.

In an implication, the firing rate of the rule is the truth degree of the antecedent. For the
preceding rule, the firing rate is:

FiringRate = Super (Trust i ∩ Acceptable), (5)

where for fuzzy sets S1 and S2, the membership function of S1 ∩ S2 is the minimum of
membership functions of S1 and S2. Also for a fuzzy set S, Super(S) is the maximum value
in the membership function of S.

If Larsen method is used as the implication method, then

Result i = FiringRate × BelivedValue i , (6)

where for a number c and a fuzzy set S, the membership function of c × S is the membership
function of S that is scaled down by c. Larsen implication method scales down the rule
consequence by the firing rate.

The fuzzy set that is named Result is the fuzzy union of all the Resulti fuzzy sets.

Result =
n⋃

i=1

Result i , (7)

where for fuzzy sets S1 and S2, the membership function of S1 ∪ S2 is the maximum of
membership functions of S1 and S2.

The final Result of fuzzy aggregation, FinalResult fuzzy set, is obtained by normalizing
the Result fuzzy set. Normalization of a fuzzy set S is (1/c) × S where c = super(S). In other
words, normalization scales a fuzzy set to make its super() value equal to 1.

The preceding general fuzzy rule can be simply applied to trust aggregation. Assume that
node N should aggregate different trust values to a sink that are obtained from its neighbors.
If TrustToSinki represents trust from neighbor i to the sink, then BelievedValuei would be
TrustToSinki and the inference rule would become

if (Trust i is Acceptable)

then (Result i is TrustToSink i ).
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FIGURE 3. Fuzzy aggregation example.

As an instance, Figure 3 depicts aggregation process for <MediumHigh, MediumLow>
and <MediumLow, Medium> pairs. Figures 3(a) and (b) depict computation of firing rates
of the rule. The firing rates are shown with vertical lines. TrustToSink1 and TrustToSink2
fuzzy sets (i.e., MediumLow and Medium) are scaled by the firing rates to produce Result1
and Result2 fuzzy sets as shown in Figures 3(c) and (d). Figure 3(e) shows Result fuzzy set
as the fuzzy union of Result1 and Result2 fuzzy sets (the lower membership function) and
FinalResult as the normalization of Result (the upper membership function).

It is notable that the fuzzy rule is similar to how people get a friend’s opinion if they
acceptably trust the friend. As the believed fuzzy sets are scaled by firing rates, the contri-
bution of each believed fuzzy set to the final result is proportional to the trust value to that
believed fuzzy set.

Although the lowly trusted believed fuzzy sets are scaled down, they are not eliminated
from the final result. Hence, even if a lowly trusted information source reports the sink as
not highly trusted, his belief is present in the final result and the sink is not considered as a
fully trusted node. This characteristic that is absent in other aggregation methods results in
success of the fuzzy aggregation method in the following simulations.

What the fuzzy aggregation procedure returns is a fuzzy set. If the result is to be fed
to an artificial deciding agent, the at hand fuzzy set form of the result is the proper form;
but if the client is a user, the result should be converted to a more readable format. To
make the aggregated trust value comprehendible to the user, the result fuzzy set should be
approximated to the most similar fuzzy set of the known terms (such as low, medium, and
high) or the known terms with hedges (such as very and somehow) or a disjunction of them
and report the corresponding linguistic expression such as “medium or somehow high” to
the user.
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There is a simple procedure for yielding an approximating linguistic expression for the
inferred fuzzy set although more intelligent algorithms may be possible. The first step is to
construct all the possible conjuncted pairs of the terms with hedges and their corresponding
fuzzy sets. We call these fuzzy sets linguistic fuzzy sets. In the second step, the inferred
fuzzy set is compared against each of the linguistic fuzzy sets and the most similar fuzzy set
is selected. Finally, the linguistic expression corresponding to the selected linguistic fuzzy
set is reported as the approximating linguistic expression for the inferred fuzzy set. The
similarity of two fuzzy sets A and B is defined as

S = |A ∪ B|
|A ∩ B| , (8)

where | | is the cardinality of a fuzzy set

|A| =
∫

x∈SupportSet
μA(x). (9)

As a result fuzzy set can be represented by its corresponding linguistic expression, not
only the input to but also the result from the fuzzy aggregation method can be in linguistic
terms.

4. TRUST INFERENCE ALGORITHMS

To infer an unknown trust value from a node to another in a trust graph, algorithms are
needed to identify trust paths from the first node to the second. Trust inference algorithms
use trust aggregation methods through the identified paths to finally infer the trust from the
source to the sink. Incremental trust inference algorithms infer trust incrementally from the
sink level by level back to the source.

Regarding the shortest paths and strongest paths as more proper paths for inference, four
different algorithms named ShortestStrongestTrust, ShortestAllStrengthTrust, AllLength-
AllStrengthTrust, and AllLengthStrongestTrust are possible. The algorithms that seek for
shortest paths (i.e., ShortestStrongetTrust and ShortestAllStrengthTrust) never requeue a
node that is previously visited because a shorter path to the node is previously found; hence
these algorithms are fundamentally Graph Search algorithms (Russel and Norvig 2003). In
contrast, algorithms that search for paths of any length (i.e., AllLengthAllStrengthTrust and
AllLengthStrongestTrust) do revisit previously visited nodes and are therefore basically Tree
Search algorithms (Russel and Norvig 2003).

ShortestStrongestTrust algorithm was first introduced by Golbeck (2005), which she
named TidalTrust algorithm. As this algorithm is improved in this work it is explained in the
following subsection.

4.1. ShortestStrongestTrust (TidalTrust) Algorithm

As indicated before, shorter paths are more desirable paths for information acquisition.
Also the most reliable information comes from the strongest trust paths. The algorithm
makes use of the strongest of the shortest paths hence it is called ShortestStrongestTrust
here. ShortestStrongestTrust algorithm searches for shortest paths from the source to the
sink similar to the breadth first search algorithm. Any path longer than the shortest paths is
ignored and nodes along it do not participate in trust inference. Also from all the shortest
paths only the strongest ones participate in trust inference.
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The strength property for a path is defined as the minimum trust rating along the path
excluding the last trust rating in the path. The reason behind excluding the last trust rating
is that although it’s a trust value, it is the information that is obtained from the path. All the
previous trust ratings along the path contribute to the trust to this information. The strength
of a path with zero length is the maximum value by definition. The strength from a source to
a sink is defined as the maximum path strength in all the paths between them.

ShortestStrongestTrust considers only the strongest paths among the shortest ones. Con-
sidering all the shortest paths form the source to the sink, only the nodes that are along
the strongest ones participate in trust inference. For the purpose of explaining the Shortest-
StrongestTrust, the strength of the strongest of shortest paths from the source to the sink
will be called the required strength. Hence, the trust from the source to the sink should be
inferred from the shortest paths that have the required strength.

The trust from intermediate nodes to the sink is to be computed during incremental
inference of trust from the sink back to the source. For inferring trust from an intermediate
node to the sink, information from only those neighbor nodes are used that are along the
paths from the source to the sink with the strength value equal to the required strength. We
call the set of such neighbors the Participating set. The Participating set for a node S is
defined as follows:

Participating (s) =

{
n ∈ Nodes |

adjacent(s, n) and trust (s, n) ≥ RequiredStrength

and

strength(pathFormTo(n, sink)) ≥ RequiredStrength
}

The ShortestStrongestTrust algorithm is as follows:
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The algorithm is named TidalTrust because computation flows from the source to the
sink and then back from the sink to the source. The algorithm starts with a search queue
that only contains the source node. It iterates the adjacent nodes level by level similar to the
breadth first search algorithm. Whenever a node is iterated, it is pushed onto a stack to take
the nodes in a reverse order later.

When a node that is not adjacent to the sink is iterated, all its neighbors are marked
visited and added to the next level search queue if they are not visited before. The previously
visited nodes are ignored; because if they belong to the next level, they have already been
put in next level queue. Otherwise, they belong to the current or a previous level and hence
they lead to longer paths while the algorithm searches for shortest ones.
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The strength from the source to each of the neighbor nodes that are in the next level
search queue is updated to the maximum of its previous value and the strength value of the
new path (that starts at the source, passes through the current node, and ends at the neighbor
node). Note that the strength from source to a node in the next level queue may be updated
several times as new edges from the current level nodes to it are found.

If the current node is adjacent to the sink, search has reached the goal; so to stop the
search, the upper limit of iteration depth (i.e., the maximum depth variable) is set to the
current depth. This prevents advancing to nodes in the next levels. Also, as other paths to
the sink can still be found, the strength from the source to the sink is updated. Note that the
trust edges from the nodes in the last level to the sink do not contribute to the computation of
strength from the source to the sink. This is according to the definition of strength property of
a path stated before. The strength property for a path is defined as the minimum trust rating
along the path except the last trust rating. The ShortestStrongestTrust algorithm presented
in Golbeck dissertation has not excluded the last trust rating but this problem is fixed here.
While the computation excluding the last trust rating is called strength computation, the
counterpart that includes the last trust rating is called the complete strength computation. All
the strength values from the source to midway nodes in the incremental strength computation
are computed as complete strengths to finally lead to normal strength computation from the
source to the sink.

When all the current level nodes are traversed and the current queue becomes empty,
depth variable is incremented and the next level search queue replaces the current one.
Iteration proceeds until all the nodes with depth lower or equal to the maximum depth
variable are iterated or the search queue is empty. If the iteration terminates because the
queue is empty, this means that all the nodes accessible from the source node are traversed
and the sink node could not be found. Hence, there is no path from the source to the sink.
As the maximum depth variable is updated when the sink is reached, to find out whether any
path from the source to the sink is found, the current value of the maximum depth variable
is compared to its initial value; if the variable is never updated from its initial value, the
algorithm returns a dummy value instead of an inferred trust value to show that the trust
cannot be inferred.

At the end of the forward wave, the required strength from the source to the sink is found.
The nodes are popped up from the stack for iteration in a reverse order in the backward wave.
If a node is adjacent to the sink, then its inferred trust to the sink is simply its trust rating
to the sink in the trust graph. If not, the trust to the sink is computed from the previously
defined participating set of neighbors. As the trust ratings of the current node to its neighbors
are available in the trust graph and the nodes are iterated backwards level by level from the
sink to the source, the trust values of neighbors of a node to the sink are computed before
the trust value from the node to the sink is inferred.

As inference is done along the paths with at least the required strength, the minimum
trust rating to any neighbor node participating in trust inference is the required strength.
This means that the inference is trusted as much as the required strength value. Therefore,
although preciseness of inference is not reported by Golbeck’s algorithm, the algorithm that
is presented here returns the preciseness of inference in addition to the inference result.

4.2. AllLengthStrongestTrust Algorithm

The main concern of this algorithm is to infer trust from the strongest paths. The
algorithm finds the strongest paths even if they are longer than the shortest ones; so it does
not stop the search when the sink node is visited for the first time; but the search continues
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until no other unvisited nodes can be found. This algorithm leads to a more precise inference
when deeper paths conduct more trusted information.
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In the first flow, the nodes are iterated level by level from the source to find the required
strength. When a node is iterated, a new path from source is found to each of its neighbors.
The strength from the source to the neighbors of the node is updated to the strength of the
new path if it is greater than previously found strength. If a neighbor node is not visited
before, it is added to the queue. If it is visited before, the current edge is a backward edge,
i.e., an edge to a node in a previous level. The reiteration of a node that belongs to one
of the previous levels requires reiteration of some nodes in its subsequent levels; hence it
is important to iterate them before advancing to the next level to prevent propagation of
reiteration to next levels. Therefore, revisited nodes should be iterated before iterating any
node in the queue. Thus, the priority queue is used to hold revisited nodes. The nodes in the
priority queue are prior to the nodes in the queue for iteration. Any neighbor node having
strength from the source lower than the currently found strength of the source to the sink
is ignored. Such neighbor nodes are ignored because they can only be on paths to the sink
that are weaker than the currently found paths. The first flow is finished when all the nodes
accessible from source are iterated. The strength from the source to the sink that is called the
required strength is finalized at the end of the first flow.

In the second flow, trust values from nodes to the sink are computed from the sink level
by level back to the source. Trust values should be computed thorough only the nodes that
are on the paths with strength equal to the required strength. Hence, trust from each node that
is adjacent to the currently iterated node is updated if the trust rating from it to the current
node is greater than or equal to the required strength. If such adjacent node is not visited
before, it is queued to be iterated later. Similar to the first flow, backward edges are possible;
hence the priority queue is employed to hold revisited nodes. The trust from a node to the
sink may be updated for several times as new adjacent nodes of it are iterated. When the
backward flow finishes, the trust value from source to the sink is finalized.

It is notable that if a node is adjacent to the sink in the trust graph (i.e., there is an edge
from the node to the sink), the algorithm does not ignore valuable information from other
longer paths from this node to sink. This corresponds to the situation when a person knows
another person but also gets information about him from trusted friends. As previously
mentioned about aggregation, the participation of information obtained from a source is
proportional to the trust value to that source. A node’s own direct trust rating to the sink
participates with the maximum trust value while the trust values obtained from longer paths
participate with a trust value equal to the strengths of the paths. The intuition is that people
usually trust their own knowledge more than knowledge of anyone other.

5. SIMULATION AND RESULTS

5.1. Mean versus Fuzzy Aggregation

The crisp trust graph depicted in Figure 4 is used for simulation of crisp mean aggregation
method. The [0, 1] and [0, 10] trust ranges can obviously be interchanged by a multiplication
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FIGURE 4. Crisp trust graph.

or division by 10. All the trust values in the graph are 0, 2.5, 5, 7.5, or 10. These values
are selected deliberately because all of them only and completely belong to one of the fuzzy
sets of Low, MediumLow, Medium, MediumHigh, and High linguistic terms; and therefore
the corresponding fuzzy trust graph for Figure 4 is the fuzzy trust graph in Figure 5. This
correspondence helps for comparing the two crisp mean and fuzzy aggregation methods. To
compare the two aggregation methods, the inference algorithm should be the same for both
aggregation methods. We used ShortestStrongestTrust as the inference algorithm for both
mean and fuzzy aggregation methods.

The results of trust inference is reported for every node in the set {A, B, . . . , L} to any
other one in the same set in following tables. The result values of ShortestStrongestTrust
algorithm with crisp mean aggregation method are shown in Table 1. The results of Shortest-
StrongestTrust algorithm with fuzzy aggregation method after conversion to approximating
linguistic expressions are presented in Table 2. The inferred fuzzy sets are approximated to
linguistic expressions such as “medium or very high.” Term abbreviations are used for the
sake of brevity.

Tables 3 and 4 compare the results of the crisp and fuzzy aggregation methods. Table 3
shows the membership value of each result of the crisp method in the corresponding result
of the fuzzy method. The absolute difference between the results of the crisp method and
defuzzified results of the fuzzy method are shown in Table 4. The defuzzification is done
using the center of gravity defuzzification method.

The average near 1 in Table 3 and the average near 0 in Table 4 show that the two aggrega-
tion methods agree generally in the results. The results of crisp mean and fuzzy aggregation
methods differ more when contradictory information should be combined. Among the zero
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FIGURE 5. Fuzzy trust graph.

TABLE 1. Mean Method Results

A B C D E F G H I J K L

A — 1 0.8 1 0.8 1 0.3 0.3 1 1 0.3 0.8
B 0.8 — 0.8 1 0.8 0 0.6 0.3 1 0.5 0.3 0.9
C 0.8 1 — 1 0.8 1 1 0.3 1 1 0.3 0.8
D 1 1 0.8 — 0.8 0 0.3 0.3 1 0.5 0.4 0.3
E 0.8 1 0.8 1 — 0 0.6 0.3 1 0.5 0.3 0.9
F 0.8 1 0.8 1 0.8 — 0.6 0.3 1 0.8 0.3 0.8
G 1 1 0.8 1 0.8 0 — 0.3 1 1 0.3 0.8
H 1 1 0.8 1 0.8 0 0.6 — 1 0 0.5 0
I 0.8 1 0.8 1 0.8 1 0.6 0.3 — 1 0.3 1
J — — — — — — — — — — — 0.8
K 1 1 0.8 1 0.8 1 0.3 0.3 1 1 — 0
L — — — — — — — — — — — —

values in Table 3 is the value corresponding to trust from D to J. The zero membership value
means that the results of the two methods are completely different. There are two shortest
paths from D to J that both participate in trust computations. The two neighbors G and H are
trusted equally, so they take part in trust inference from D to J equally. The neighbor nodes
G and H have contrary trust recommendations for node J; trust of G to J is high (10) while
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TABLE 2. Fuzzy Method Results (as Linguistic Expressions)

A B C D E F G H I J K L

A — M MH H MH M ML ML M H ML MH
B MH — MH H MH L ML or H ML M M ML MH or H
C MH M — H MH M H ML M H ML MH
D H M MH — MH L or M ML ML M L or H ML or M L or MH
E MH M MH H — L or M ML or H ML M M ML MH or H
F MH M MH H MH — ML or H ML M MH ML MH
G H M MH H MH L or M — ML M H ML MH
H H M MH H MH L or M ML or H — M L M L
I MH M MH H MH M ML or H ML — H ML H
J — — — — — — — — — — — MH
K H M MH H MH M ML ML M H — L
L — — — — — — — — — — — —

TABLE 3. The Membership Values of the Crisp Method’s Results in Fuzzy Method’s Results

A B C D E F G H I J K L

A — 1 1 1 1 1 1 1 1 1 1 1
B 1 — 1 1 1 1 0 1 1 1 1 0.5
C 1 1 — 1 1 1 1 1 1 1 1 1
D 1 1 1 — 1 0.2 1 1 1 0 0.5 0
E 1 1 1 1 — 0.2 0 1 1 1 1 0.5
F 1 1 1 1 1 — 0 1 1 1 1 1
G 1 1 1 1 1 0.2 — 1 1 1 1 1
H 1 1 1 1 1 0.2 0 — 1 1 1 1
I 1 1 1 1 1 1 0 1 — 1 1 1
J — — — — — — — — — — — 1
K 1 1 1 1 1 1 1 1 1 1 — 1
L — — — — — — — — — — — —

Average = 0.8945945945945947.

trust of H to J is low (0). The crisp mean aggregation method simply takes the average of
0 and 10, resulting trust value 5 that is just in between (medium), a value that none of the
neighbors believe in fact. The linguistic expression resulted from fuzzy aggregation method
is “Low or high.” This argument also accounts for other disagreements between the results
of the mean and fuzzy methods.

The averaging as the combining strategy is incapable to combine contradictory informa-
tion. In fact, a crisp number has no capacity to convey enough information. Fuzzy aggregation
method, on the other hand, benefits from the capacity of membership functions to preserve
and convey exactly the information that exists in the trust graph.

5.2. Comparison of Aggregation Methods

Different aggregation methods yield different inferred trust values. A criterion is needed
for comparison of aggregation methods. We defined a criterion named Probabilistic Flow for
comparison of different trust aggregation methods.
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TABLE 4. Absolute Difference between Crisp Method’s Results and Defuzzified Values of Fuzzy Method’s
Results

A B C D E F G H I J K L

A — 0 0 0.08 0 0 0 0 0 0.08 0 0
B 0 — 0 0.08 0 0.08 0.13 0 0 0 0 0.08
C 0 0 — 0.08 0 0 0.08 0 0 0.08 0 0
D 0.08 0 0 — 0 0.09 0 0 0 0 0 0.23
E 0 0 0 0.08 — 0.09 0.13 0 0 0 0 0.08
F 0 0 0 0.08 0 — 0.13 0 0 0 0 0
G 0.08 0 0 0.08 0 0.09 — 0 0 0.08 0 0
H 0.08 0 0 0.08 0 0.09 0.13 — 0 0.08 0 0.08
I 0 0 0 0.08 0 0 0.13 0 — 0.08 0 0.08
J — — — — — — — — — — — 0
K 0.08 0 0 0.08 0 0 0 0 0 0.08 — 0.08
L — — — — — — — — — — — —

Average = 0.030582530582530604.

5.2.1. Reliability. By definition, a node is reliable if the value of trust to it is not below
the half of the maximum trust value in the trust value range; otherwise, the node is unreliable.
Hence in the trust range of [0, 1], a node is considered to be reliable if the crisp trust value
to it is greater than 0.5. In the fuzzy modeling, a node is reliable if the trust fuzzy set to it
has nonzero membership values only in the [0.5, 1] range.

5.2.2. Reliability Probability. A path from a node to another one in a trust graph
introduces the second node as an information source for the first one. If trust value from a
source node to a sink is to be inferred, the nodes that have direct edges to the sink and are at
the end of paths from the source provide different trust recommendations. Nodes at the end
of stronger paths provide more reliable trust recommendations. According to these facts, the
following flow model criterion is proposed.

A flow starts from the source as the current state. It iteratively changes its state to one
of the neighbors based on the following probability distribution. If the current node has t 1,
t 2, . . . , tn crisp trust values to its neighbors N 1, N 2, . . . , Nn , the probability of selecting
neighbor Ni as the next node is

P(Ni ) = ti
n∑

i=1

ti

(10)

The probability assignment to each neighbor is proportional to the crisp trust rating to
that neighbor. This makes selection of more trusted neighbors more probable and hence
stronger paths are more probable to be traversed. The flow continues until it reaches a node
that has a direct edge to the sink. The trust rating on this edge is the trust value that is resulted
from the flow. According to the trust value that is resulted and the definition of reliability,
the flow denotes the sink as reliable or unreliable.

The flow is repeated for several times. Repetitions of the flow may traverse different
paths and hence result in different trust values to the sink. Some flows denote the sink
node as reliable and other flows denote it as unreliable. We name the percentage of flows
that denote the sink node as reliable, the reliability probability. As the probabilistic flows
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FIGURE 6. The graph that is used for comparison of the three aggregation methods.

traverse stronger paths more probably, results from stronger paths are repeated more and
hence stronger paths contribute more to the reliability probability. Increasing the number of
repetitions of the flow increases the accuracy of the reliability probability. In our simulations,
we repeat the flow until it is done greater than or equal to a definite number of times and all
the paths from the source to the sink are traversed at least once. Computing the reliability
probability is very time consuming and this accounts for why it is not directly used as a
trust inference method and is proposed as a criterion to evaluate performance of aggregation
methods.

5.2.3. Simulation. The graph depicted in Figure 6 is used for comparison of the three
aggregation methods: mean aggregation, subjective logic aggregation, and fuzzy aggregation
methods.

Fuzzy trust ratings are High, MediumHigh, Medium, MediumLow, and Low. The mem-
bership functions of these fuzzy terms are shown in Figure 1. To compare the methods, crisp
and opinion counterparts of the fuzzy values should be computed. Defuzzification of the
fuzzy sets results in the crisp trust ratings. Center of gravity method is used for defuzzi-
fication. Crisp probability values are equivalent to expectation values in subjective logic.
The mapping from the expectation value to subjective logic opinion that is presented in
Section 3.1 is used to compute the trust rating opinions. The default base rate a = 0.5 is used
in the mappings.

As the graph has 10 edges and there are five different trust terms, there are 105 different
assignments of terms to the graph edges. The simulation is done for each of the 105 graphs.
A definite trust aggregation method reports an inferred trust value for each of the graphs.
The inferred value indicates whether the aggregation method categorizes the sink node as
reliable or unreliable. Hence the graphs are categorized into two sets that are denoted as
Reliable and Unreliable in the following tables. Repeating the flow on each graph results a
percentage as the reliability probability. The flow is repeated 100 times on each graph for
the following results. The average, minimum, and maximum of reliability probability of the
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TABLE 5. Simulation Results for Mean Aggregation Method

Average of Minimum of Maximum of
reliability probability reliability probability reliability probability

Reliable set 63.11% 00.12% 100.00%
Unreliable set 17.32% 00.00% 78.00%

TABLE 6. Simulation Results of Subjective Logic Aggregation Method

Average of Minimum of Maximum of
reliability probability reliability probability reliability probability

Reliable set 67.70% 07.00% 100.00%
Unreliable set 33.52% 00.00% 100.00%

TABLE 7. Simulation Results of Fuzzy Aggregation Method

Average of Minimum of Maximum of
reliability probability reliability probability reliability probability

Reliable set 100.00% 100.00% 100.00%
Unreliable set 38.42% 00.00% 99.92%

TABLE 8. Comparison of Different Aggregation Methods

Denoting only the nodes with Denoting all the nodes with
a reliability probability of 100% a reliability probability of 100%

as reliable as reliable

Fuzzy Yes Yes
Mean No Yes
Subjective logic No No

graphs in each set are reported in the following tables. Tables 5–7 show the results for each
of the three aggregation methods.

Table 7 shows that all the graphs that the fuzzy aggregation method categorizes in
the Reliable set have a reliability probability of 100%. This means that when the fuzzy
aggregation method denotes the sink as reliable, all the flows denote it as reliable too. Also
no graph with a reliability probability of 100% is present in the Unreliable set. This means
that all the graphs for which the flows denote a reliability probability of 100% are also
denoted as reliable by the fuzzy aggregation method. Hence, not only every node that the
fuzzy aggregation method denotes as reliable has a reliability probability of 100%, but also
any node with reliability probability of 100% is denoted as reliable by the fuzzy aggregation
method. Table 8 summarizes these two properties for the three aggregation methods that
are acquired from Tables 5–7. Only the fuzzy aggregation method denotes all and only the
nodes with reliability probability of 100% as reliable. This shows the superiority of the
fuzzy modeling and aggregation to the other two methods. Although SL is shown not to
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TABLE 9. Fuzzy AllLengthStrongestTrust Algorithm Results.

ShortestStrongestTrust ShortestStrongestTrust
ShortestStrongestTrust preciseness AllLengthStrongestTrust preciseness

A to L MH MH MH MH
B to L MH or H M ∗L ∗MH
C to L MH H MH H
D to L L or MH ML ∗M or MH ML
E to L MH or H M ∗L ∗H
F to L MH MH MH MH
G to L MH H MH H
H to L L M ∗M or MH ∗H
I to L H H H H
J to L MH H MH H
K to L L H L H
L to L — — — —
M to L L H L H
N to L M or MH H M or MH H
O to L L H L H
P to L ML H ML H
Q to L MH H MH H
R to L M H M H

be competitive here, the strength of it is modeling of distrust in addition to trust. Fuzzy
modeling can also be extended to accommodate distrust.

5.3. AllLengthStrongestTrust Versus ShortestStrongestTrust

AllLengthStrongestTrust and ShortestStrongestTrust algorithms are compared on the
graph in Figure 5. The simulation results are reported in Table 9. The results of the Fuzzy
ShortestStrongestTrust algorithm and preciseness of these results are presented in columns
one and two. The results of the Fuzzy AllLengthStrongestTrust algorithm and preciseness
of these results are in third and fourth columns, respectively where star depicts a differ-
ence between the results of the two algorithms. The three stars in the fourth column that
all show improvement in preciseness correspond to the node pairs B to L, E to L, and H
to L where paths stronger than the shortest paths exist from the first node to the second;
and these stronger paths are well utilized for a more precise inference by the Fuzzy All-
LengthStrongestTrust algorithm. The results show improvement in preciseness of inference
for AllLengthStrongestTrust in comparison with ShortestStrongestTrust.

6. CONCLUSIONS AND FUTURE WORKS

Trust to people that are dealt with is an important aspect of any business. Auction sites
have tried to employ reputation mechanisms to provide trust ratings to other dealers. While
the contemporary mechanisms for trust inference generally compute a global trust to dealers,
trust can be more precisely modeled as a (direct or indirect) relationship between every pair
of dealers. This leads to the personalized view of trust. People naturally try to ask their trusted
friends if they themselves do not know someone. To infer personalized trust from a dealer to
another, not only algorithms called trust inference algorithms should be proposed to identify
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the trust paths, but also the theoretical problem of trust modeling and aggregation needs
to be addressed. This research proposes fuzzy modeling of trust and a fuzzy aggregation
method. New personalized trust inference algorithms extending previous works are also the
contribution of this research.

Aside from the fact that linguistic expressions are naturally more desirable for users to
write and read about trust, the results show the superiority of fuzzy aggregation method over
mean and Subjective Logic aggregation methods especially when contradictory information
should be aggregated. The preciseness of inference that this work reports for each inference
is improved by AllLengthStrongestTrust algorithm that performs the inference from the most
trusted paths and does not confine the search to shortest paths.

Besides the advantages, it should be mentioned that fuzzy aggregation has a heavier
computational load than the two other aggregation methods. The model should also be
extended to accommodate distrust in addition to trust.

In addition, although AllLengthStrongestTrust performs the inference more precisely,
the time complexity of the algorithm is exponential. The AllLength algorithms may not
be utilized in a real-time online application due to their time complexities but can be well
employed when a trust graph such as a research citation graph is to be precisely analyzed.

Although this work targeted the virtual social networks, ideas in trust modeling, trust
graphs and trust inference are proposed abstractly. Hence, the proposed material can also be
used in multiagent systems, distributed systems, and ubiquitous computing. The following
paragraphs present some future works that are suggested for researchers interested in the
subject.

Length has priority over strength in ShortestStrongestTrust algorithm. Another algorithm
can also be proposed that gives priority to strength over length. As stronger paths are favored
to weaker but shorter ones, strength of a path seems to be more important than its length.

Users can be asked to determine and specify their trust to others in a limited number of
concepts; but it happens to require trust inference in some other concepts. It is desired to
infer trust in a concept from the available trust ratings in some other related concepts. This
seems possible regarding the fact that related concepts have semantic overlap. A semantic
analysis of concepts is needed to accompany trust inference to infer trust in a concept from
the trust in other concepts with semantic overlap.

When the deviation in the result of trust inference is great (for example, if the result is
“low or high”), usually it is not much helpful for the user. One method to avoid generating
such results is to utilize information redundancy. In other words, when combining different
information that the neighbors of a node provide, more attention should be paid to the
information that the majority of neighbors agree with and infrequent information should be
faded. This can also be viewed as a need for a noise cancellation technique. The redundancy
that is in fact ignored by the fuzzy aggregation method can be useful in preference of some
bits of information to some others to offer more concentrated results.

Another subject is time. A trust rating given yesterday is much more important than a
trust rating given one year ago. A mechanism to decrease trust rates with time should be
proposed.
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APPENDIX

1.1. Distributivity

A Directed Series Parallel Graph (DSPG) defined in Jøsang et al. (2006) is a trust graph
(subgraph) containing some paths from a source to a sink that can be represented as a closed
form. Two operations for serial and parallel combination denoted by : and ♦ symbols are
used to represent a DSPG. As an instance the trust graph in Figure 7(a) is represented as
((A1 : C1) ♦ (A2 : C2)) : B.
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FIGURE 7. (a) The trust graph that is viewed as (b) by incremental sink to source traverse.

To infer the trust from the source to the sink, the corresponding closed form should
be evaluated; therefore the closed form of a DSPG is needed to be obtained first. Less
computation would be needed if the trust could be evaluated from the graph itself. The
incremental trust inference algorithm infers trust not from the closed form but incrementally
level by level back from the sink to the source. For example after two levels of trust inference,
the graph in Figure 7(a) is reduced to the graph in Figure 7(b). The trust value from the source
to the sink is defined to be the value obtained from the evaluation of the closed form. Hence,
only a trust aggregation method that results the same value from node 1 to node 4 in Figures
7(a) and (b) can be used with the incremental trust inference algorithm. This means that the
incremental computation approach can only be benefited with trust aggregation methods that
satisfy the following distribution for : and ♦ operators.

((A1 : C1)♦(A2 : C2)) : B = (A1 : (C1 : B))♦(A2 : (C2 : B)). (13)

Subjective Logic reduction and consensus operators are not distributive to each other
(Jøsang 2001) and therefore Subjective Logic aggregation method cannot be used with the
incremental trust inference algorithm. However it will be shown that crisp mean and fuzzy
rule-based aggregation methods satisfy the distribution and hence both can be used with
incremental trust inference algorithms.

For crisp mean aggregation method it can be defined that

(A1 : B1)♦(A2 : B2) = (A1 × B1) + (A2 × B2)

A1 + A2
(14)

and when there is no parallel path

A1 : B1 = (A1 : B1)♦(0 : 0) = A1 × B1 + 0 × 0

A1 + 0
= B1 (15)
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Hence the equality is proved as follows.

Ta = ((A1 : C1)♦(A2 : C2)) : B =
(

(A1 × C1) + (A2 × C2)

A1 + A2

)
: B

=
( (A1×C1)+(A2×C2)

A1+A2
× B

(A1×C1)+(A2×C2)
A1+A2

)
(16)

Tb = (A1 : (C1 : B))♦(A2 : (C2 : B)) = (A1 : (B))♦(A2 : (B))

= A1 × (B) + A2 × (B)

A1 + A2
= B (17)

For fuzzy rule based aggregation method : and ♦ operators are defined as

A1♦A2 = A1 ∪ A2

A1 : A2 = FuzzyInference(A1, A2).
(18)

Where FuzzyInference(A1, A2) is the result of inference with the fuzzy rule introduced
in subsection 3.2.3 with A2 as the BelievedValue and A1 as the Trust fuzzy set. According to
the fuzzy aggregation method the : operator can be written as

A1 : A2 = FuzzyInference(A1, A2) = Super (A1 ∩ Acceptable) × A2 (19)

Where Super() is a function that gets a fuzzy set as the input and returns the value with
the maximum membership in the support set of the fuzzy set. Multiplication of a scalar to a
fuzzy set scales down the fuzzy set.

Tb

= (A1 : (C1 : B))♦(A2 : (C2 : B))

= FuzzyInference(A1 : (C1 : B)) ∪ FuzzyInference(A2 : (C2 : B))

= [Super (A1 ∩ Acceptable) × (C1 : B)] ∪ [Super (A2 ∩ Acceptable) × (C2 : B)

= [Super (A1 ∩ Acceptable) × FuzzyInference(C1, B)]

∪[Super (A2 ∩ Acceptable) × FuzzyInference(C2, B)]

= [Super (A1 ∩ Acceptable) × Super (C1 ∩ Acceptable) × B]

∪[Super (A2 ∩ Acceptable) × Super (C2 ∩ Acceptable) × B]

= max

{
[Super (A1 ∩ Acceptable) × Super (C1 ∩ Acceptable)],
[Super (A2 ∩ Acceptable) × Super (C2 ∩ Acceptable)]

}
× B

= max

{
Super [Super (A1 ∩ Acceptable) × (C1 ∩ Acceptable)],
Super [Super (A2 ∩ Acceptable) × (C2 ∩ Acceptable)]

}
× B

= Super

{
[Super (A1 ∩ Acceptable) × (C1 ∩ Acceptable)]∪
[Super (A2 ∩ Acceptable) × (C2 ∩ Acceptable)]

}
× B

= Super

{ {[Super (A1 ∩ Acceptable) × C1] ∪ [Super (A2 ∩ Acceptable)
∩ Acceptable

}
× B

= Super{(A1 : C1)♦(A2 : C2) ∩ Acceptable} × B

= (A1 : C1)♦(A2 : C2) : B

(20)
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1.2. ShortestAllStrengthTrust Algorithm

This algorithm infers trust from a source to a sink benefiting from all the shortest paths.
The concern of this algorithm is to infer trust from the shortest paths possible; hence it
is especially useful in trust graphs in which longer inference paths inherently decrease the
validity of inference. If the trust ratings in the trust graph are taken from the users for an
atomic concept, the number of transitions or the path length is not an important issue; but
when the trust rating is asked in a general or broad concept that comprises some other
concepts, the path length matters. For example, consider a social network where users are
asked for trust to their friends in a general concept of C, where C includes two other concepts
C1 and C2. Assume that person P1 trusts person P2 in concept C1 and person P2 trusts person
P3 in concept C2; So P1 rates P2 and P2 rates P3 as trusted in concept C. There are trust
ratings from P1 to P2 and from P2 to P3 but inferring that P3 is trusted by P1 in C and
automatically directing information in C1 from P3 to P1 is not correct. If the concept that the
trust is asked for, is so general that is at high risk of change from a person to another, this
algorithm is the proper one. Because the algorithm is presented in detailed pseudo-code, the
verbal explanation is omitted not to extend the text.
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1.3. AllLengthAllStrengthTrust Algorithm

Although the shortest and strongest paths conduct the most reliable information, longer
and weaker paths also convey information. This information can also contribute to the
inference. AllLengthAllStrengthTrust algorithm infers the trust from a source to a sink in
the trust graph benefiting from all the existing paths.

The algorithm is basically a Tree Search with the breadth first strategy (Russel and
Norvig 2003) with the sink as the initial node and source as the goal node. The difference
is that a tree search terminates as the goal is found but AllLengthAllStrength algorithm
continues iteration even if the source node is found to traverse all the paths back from the
sink to the source. Also employing the priority queue makes the search tree to grow in some
branches more rapidly than others.

The algorithm pseudo-code is as follows. As the pseudo-code is written clearly in detail,
it is not explained.
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1.4. Time complexity

In the following time complexity analysis for the four incremental inference algorithms,
V is the number of vertices and E is the number of edges in the trust graph.

As ShortestStrongestTrust and ShortestAllStrengthTrust algorithms are Graph Search
algorithm with the breadth first strategy and the time complexity of a Graph Search with the
breadth first strategy is O(V + E) (Cormen et al. 2001), therefore the time complexity of
both algorithms is O(V + E). The following two paragraphs approve this time complexity
by analyzing the pseudo-code in detail.

First the time complexity of ShortestStrongestTrust algorithm is explained. Within the
first while loop, each node that is iterated and added to the queue is marked as visited and no
previously visited node is added to the queue. This means that any node can only be dequeued
from the queue and iterated once. Hence the time complexity for the while statement is O(V ).
The total time needed for the statements in the while loop that iterate the adjacency list of
each node is O(E). The second while loop iterates the same nodes as the first loop; so it also
runs in O(V ). Within this loop, the trust computation for each node needs iteration of that
node’s adjacency list; hence the trust computation totally runs in O(E) time. Thus the total
time of the algorithm is O(V + E).

There is a traverse from the sink back to the source in the ShortestAllStrengthTrust
algorithm. As the shortest paths are to be found, any link back to previous levels is ignored.
At most all the nodes of the graph are queued; so the total run time of the while loop statement
is O(V ). Computing the trust from each node to the sink requires iterating its adjacent nodes;
so the total run time of trust computation is O(E). The for loop that iterates the nodes that are
adjacent to the dequeued node also runs in a total time of O(E). Thus, the time complexity
of the algorithm is O(V + E).

In AllLengthAllStrengthTrust, the while loop implements a Tree Search with a breadth
first strategy with two differences. First, as the priority queue makes the search tree to
grow in some branches deeper than the current depth of breadth first search, the grown
branches can be deeper than the final depth of breadth first search in the worst case. Second
AllLengthAllStrengthTrust continues until the queues become empty while Tree Search
terminates sooner when the goal node is found for the first time. Hence, in the worst case
the number of nodes iterated by AllLengthAllStrengthTrust is greater than the number of
nodes iterated by Tree Search. It is known that the time complexity of Tree Search with the
breadth first strategy is �(bd ) where b is the branching factor, i.e., the average out-degree of
nodes and d is the length of the shortest path from the initial node to the goal node (Russel
and Norvig 2003). Therefore, the time complexity of AllLengthAllStrengthTrust algorithm
is also �(bd ).

AllLengthStrongestTrust algorithm performs a search from the source to the sink and
then another search from the sink back to the source. The second search is exactly similar
to the search of AllLengthAllStrengthTrust algorithm that was explained to have time order
of �(bd ). The first search from the source to the sink is a Tree Search with the same two
differences between AllLengthAllStrengthTrust algorithm and Tree Search. Same arguments
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can be offered to explain that the time order of the first search is also �(bd ). Thus the time
complexity of AllLengthStrongestTrust algorithm is totally �(bd ).

The exact time complexity of AllLength algorithms is dependent on the number of
reiterations that is related to structure of the trust graph and its trust ratings. As the time
complexity of the problem of finding all the paths from a source to a sink in a graph is
exponential, the algorithms that are to infer trust from all the existing paths naturally have
exponential time complexity. Any algorithm that claims a lower time complexity does not
search sufficiently deep in the graph and runs the risk of missing some paths.


