
Write-observation and Read-preservation TM Correctness Invariants

(Appendix)

Mohsen Lesani Jens Palsberg
Computer Science Department

University of California, Los Angeles
{lesani, palsberg}@ucla.edu

Contents

1 Proof of Marking Theorem 2

2 TL2 Marking 15

3 DSTM (visible reads) Marking 17

4 Opacity 19

1



1 Proof of Marking Theorem

For the sake of brevity, we use the shorthand notation
∃l = o.nT (v1):v2 ∈ X
for
∃l ∈ X : objX(l) = o ∧ nameX(l) = n ∧ threadX(l) = T ∧ arg1X(l) = v1 ∧ retvX(l) = v2
and similarly for universal quantification.

We also use W , R to denote labels.

Lemma 1. For all S ∈ TSequential, T ∈ S, S′ = V isible(S, T ), and T ′, T ′′ ∈ S′, we have T ′ ��S′ T ′′ ⇐⇒
T ′ ��S T ′′.

Proof.

T ′ ��S′ T ′′

⇐⇒ S′|T ′ �S′ S′|T ′′ ∨ T ′ = T ′′

⇐⇒ S|T ′ �S′ S|T ′′ ∨ T ′ = T ′′

⇐⇒ S|T ′ �S S|T ′′ ∨ T ′ = T ′′

⇐⇒ T ′ ��S T ′′

In these four steps we apply:
1) the definition of ��S′ ,
2) that the definition of V isible(S, T ) implies both S′|T ′ = S|T ′ and S′|T ′′ = S|T ′′,
3) S′ b S, and
4) the definition of ��S . 2

2



Lemma 2. For all S ∈ TSequential, T ∈ S, i ∈ I, v, v′ ∈ V , R = readT (i):v ∈ GlobalReads(S),
S′ = V isible(S, T ), T ′ ∈ S′, and W ′ = writeT ′(i, v′) ∈ GlobalWrites(S), we have

NoWriteBetween(S′|i)(W
′, R) ⇐⇒ N oWriterBetweenS,i(T

′,��S , T )

Proof.

NoWriteBetween(S′|i)(W
′, R)

⇐⇒ ∀W ′′ ∈W rites(S′|i) : W ′′ �(S′|i) W
′ ∨R �(S′|i) W

′′

⇐⇒ ∀T ′′ ∈ S′|i : ∀i′ ∈ I : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i′, v′′) ∈ S′|i : W ′′ �(S′|i) W
′ ∨R �(S′|i) W

′′

⇐⇒ ∀T ′′ ∈ S′|i : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S′|i : W ′′ �(S′|i) W
′ ∨R �(S′|i) W

′′

⇐⇒ ∀T ′′ ∈ S′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S′ : W ′′ �S′ W ′ ∨R �S′ W ′′

⇐⇒ ∀T ′′ ∈ S′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S′ : T ′′ ��S′ T ′ ∨ T ��S′ T ′′

⇐⇒ ∀T ′′ ∈ S′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S′ : T ′′ ��S T ′ ∨ T ��S T ′′

⇐⇒ ∀T ′′ ∈ S′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S′ : T ′′ ≺≺S T ⇒ T ′′ ��S T ′

⇐⇒ ∀T ′′ ∈ S : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S :[
[(T ′′ = T ) ∨ (T ′′ ≺≺S T ∧ T ′′ ∈ Committed(S))] ∧ [T ′′ ≺≺S T ]

]
⇒ T ′′ ��S T ′

⇐⇒ ∀T ′′ ∈ S : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S :

(T ′′ ∈ Committed(S) ∧ T ′′ ≺≺S T )⇒ T ′′ ��S T ′

⇐⇒ ∀T ′′ ∈WritersS(i) : T ′′ ≺≺S T ⇒ T ′′ ��S T ′

⇐⇒ ∀T ′′ ∈WritersS(i) : T ′′ ��S T ′ ∨ T ��S T ′′

⇐⇒ N oWriterBetweenS,i(T
′,��S , T )

In these twelve steps, we apply:
1) the definition of NoWriteBetween,
2) the definition of W rites,
3) the definition of projection S′|i,
4) R, W ′ and W ′′ access location i,
5) S′ ∈ TSequential and R ∈ GlobalReads(S′) and W ′ ∈ GlobalWrites(S′) (that are concluded from
S ∈ TSequential, R ∈ GlobalReads(S), W ′ ∈ GlobalWrites(S) and S′ = V isible(S, T ).),
6) Lemma 1,
7) Boolean logic and that ��S is total,
8) the definition of V isible,
9) logical simplification,
10) the definition of Writers,
11) Boolean logic and that ��S is total, and
12) the definition of NoWriterBetween. 2

3



Lemma 3. TSequential ⊂ Sequential

Proof. Straightforward from definitions of TSequential, THistory and Sequential. 2

Lemma 4. ∀i ∈ I : ∀v, v′ ∈ V : ∀T, T ′ ∈ Trans : if R = readT (i):v, W = writeT ′(i, v), W ′ = writeT (i, v′),
S ∈ TSequential, W ≺S R, NoWriteBetweenS(W,R) and W ′ ≺S R, then T = T ′.

Proof. Suppose (1) S ∈ TSequential, (2) W ≺S R, (3) NoWriteBetweenS(W,R) and (4) W ′ ≺S R. From
[1] and Lemma 3, we have (5) S ∈ Sequential. From [4] and [5], we have (6) ¬(R ≺S W ′). From [3] we
have (7) W ′ �S W ∨ R ≺S W ′. From [6] and [7], we have (8) W ′ �S W . From [2] and [8], we have (9)
W ′ �S W �S R. From [9], [1], and that W ′ and R are by T and W is by T ′, we have T = T ′. 2

4



Lemma 5. Suppose S ∈ TSequential. We have:

∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ V isible(S, T ) :

W ≺(V isible(S,T ) | i) R ∧ NoWriteBetween(V isible(S,T ) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec

Proof. Suppose S ∈ TSequential. Thus, from Lemma 3, we have S ∈ Sequential. Let S′ = V isible(S, T ).
From S ∈ TSequential and Lemma 1, we have S′ ∈ TSequential. Thus, from Lemma 3, we have S′ ∈
Sequential. From the definition of V isible, we have S′|T = S|T .

∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃T ′ ∈ S′ : ∃W = writeT ′(i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S : W ′ ≺S R ∧
∃T ′ ∈ S′ : ∃W = writeT ′(i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S′ : W ′ ≺S R ∧
∃T ′ ∈ S′ : ∃W = writeT ′(i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S′ : W ′ ≺S′ R ∧
∃T ′ ∈ S′ : ∃W = writeT ′(i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S′ : W ′ ≺(S′ | i) R ∧
∃T ′ ∈ S′ : ∃W = writeT ′(i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S′ : W ′ ≺(S′ | i) R ∧
∃W = writeT (i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

5



⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S′ R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ∀W ′ ∈W rites(S′ | i) : W ′ �(S′ | i) W ∨R ≺(S′ | i) W
′

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃W ′ ∈W rites(S′ | i) : ¬(W ′ �(S′ | i) W ) ∧ ¬(R ≺(S′ | i) W
′)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃W ′ ∈W rites(S′ | i) : W ≺(S′ | i) W
′ ≺(S′ | i) R

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃v′ ∈ V : ∃W ′ = writeT (i, v′) : W ≺(S′ | i) W
′ ≺(S′ | i) R

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃v′ ∈ V : ∃W ′ = writeT (i, v′) : W ≺(S | i) W
′ ≺(S | i) R

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃W ′ ∈W rites(S | i) : W ≺(S | i) W
′ ≺(S | i) R

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ∀W ′ ∈W rites(S | i) : ¬(W ≺(S | i) W
′) ∨ ¬(W ′ ≺(S | i) R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S : W ≺S R ∧
∀W ′ ∈W rites(S | i) : W ′ �(S | i) W ∨ R ≺(S | i) W

′

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S|T |i : W ≺S|T |i R ∧
∀W ′ ∈W rites(S|T |i) : W ′ �(S|T |i) W ∨ R ≺(S|T |i) W

′

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S|T |i :
W ≺S|T |i R ∧ NoWriteBetween(S|T |i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec

In these twenty steps, we apply: 1) the definition of LocalReads,

6



2) the definition of V isible,
3) S′|T = S|T and that both W ′ and R are by T ,
4) that both W ′ and R are on i,
5) Lemma 4,
6) duplicate conjunction,
7) the definition of V isible,
8) that both R and W are on i,
9) S′|T = S|T and that both R and W are by T ,
10) the definition of NoWriteBetween,
11) first-order logic,
12) (S′ | i) ∈ Sequential,
13) from (S′ | i) ∈ TSequential, R and W are by transaction T and W ′ is between them, we have W ′ is by
T ,
14) S′|T = S|T ,
15) from (S | i) ∈ TSequential, R and W are by transaction T and W ′ is between them, we have W ′ is by
T .
16) first-order logic,
17) (S | i) ∈ Sequential,
18) (S | i) ∈ Sequential, threadH(R) = threadH(W ) = T and arg1H(R) = arg1H(W ) = i,
19) the definition of NoWriteBetween,
20) the definition of LocalTSeqSpec.

2

7



Lemma 6. Suppose S ∈ TSequential ∩ TComplete. We have:

S ∈ TSeqSpec
⇐⇒ S ∈ LocalTSeqSpec ∧

∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T ) ∧ N oWriterBetweenS,i(T
′,��S , T )

Proof. Suppose S ∈ TSequential∩TComplete. From S ∈ TSequential and Lemma 1, we have V isible(S, T ) ∈
TSequential.

S ∈ TSeqSpec
⇐⇒ ∀T ∈ S : ∀i ∈ I : (V isible(S, T ) | i) ∈ SeqSpec(i)
⇐⇒ ∀T ∈ S : ∀i ∈ I :

∀T ′′ ∈ (V isible(S, T ) | i) : ∀v ∈ V : ∀R = readT ′′(i):v ∈ (V isible(S, T ) | i) :

∃T ′ ∈ (V isible(S, T ) | i) : ∃W = writeT ′(i, v) ∈ (V isible(S, T ) | i) :

W ≺(V isible(S,T ) | i) R ∧ NoWriteBetween(V isible(S,T ) | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I :

∀T ′′ ∈ V isible(S, T ) : ∀v ∈ V : ∀R = readT ′′(i):v ∈ V isible(S, T ) :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ V isible(S, T ) :

W ≺(V isible(S,T ) | i) R ∧ NoWriteBetween(V isible(S,T ) | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ S :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ V isible(S, T ) :

W ≺(V isible(S,T ) | i) R ∧ NoWriteBetween(V isible(S,T ) | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ V isible(S, T ) :

W ≺(V isible(S,T ) | i) R ∧ NoWriteBetween(V isible(S,T ) | i)(W,R)

∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ V isible(S, T ) :

W ≺(V isible(S,T ) | i) R ∧ NoWriteBetween(V isible(S,T ) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ V isible(S, T ) :

W ≺(V isible(S,T ) | i) R ∧ NoWriteBetween(V isible(S,T ) | i)(W,R)

8



⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ V isible(S, T ) :

W ≺V isible(S,T ) R ∧ NoWriteBetween(V isible(S,T ) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ V isible(S, T ) :

T ′ ≺≺V isible(S,T ) T ∧ NoWriteBetween(V isible(S,T ) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ V isible(S, T ) :

T ′ ≺≺S T ∧ NoWriteBetween(V isible(S,T ) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ ≺≺S T ∧ NoWriteBetween(V isible(S,T ) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ ≺≺S T ∧ N oWriterBetweenS,i(T
′,��S , T )

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T ) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T ) ∧ T ′ ∈ Committed(S) ∧ N oWriterBetweenS,i(T
′,��S , T )

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T ) ∧ N oWriterBetweenS,i(T
′,��S , T )

In these thirteen steps, we apply:
1) the definition of TSeqSpec and S ∈ TSequential ∩ TComplete,
2) the definition of SeqSpec(i),
3) R and W access location i,
4) that we can choose T ′′ = T ,
5) Reads(S) = LocalReads(S) ∪GlobalReads(S),
6) Lemma 5,
7) that R and W are both on location i
8) that R and W are by transactions T and T ′ respectively, V isible(S, T ) ∈ TSequential, and R ∈
GlobalReads(V isible(S, T )) (because R ∈ GlobalReads(R) and V isible(S, T )|T = S|T ),
9) Lemma 1,
10) T ′ ≺≺S T and NoWriteBetween(V isible(S,T ) | i)(W,R),
11) Lemma 2,

9



12) T ′ ∈ V isible(S, T ) and (T ′ ≺≺S T ), and
13) the definition of V isible(S, T ). 2

10



Lemma 7. (Invariance) If H ≡ H ′, then M arking(H) = M arking(H ′) and ReadPres(H) = ReadPres(H ′)
and W riteObs(H) = W riteObs(H ′).

Proof. Immediate from the definitions of M arking, ReadPres, and W riteObs. 2

Lemma 8. ∀H ∈ THistory : ∀ v ∈ M arking(H) : ∃S ∈ TSequential : H ≡ S ∧ ��H ⊆ ��S ∧ ��S ⊆ v.

Proof. Let H ∈ THistory and let v ∈ M arking(H). We have that v is a total order of Trans so we
can choose a permutation π on 1..n such that ∀i, j ∈ 1..n : (i < j) ⇔ (Tπ(i) < Tπ(j)). Define: S =
H|Tπ(1), . . . ,H|Tπ(n). It is straightforward to prove that S ∈ TSequential ∧ H ≡ S ∧ ��H ⊆ ��S ∧ ��S
⊆ v. 2

Lemma 9. Suppose v ∈ M arking(H) ∧ p2 6∈W ritersH(i).
If N oWriterBetweenH,i(T1,v, p2) and N oWriterBetweenH,i(p2,v, T3),
then N oWriterBetweenH,i(T1,v, T3).

Proof.

N oWriterBetweenH,i(T1,v, p2) ∧ N oWriterBetweenH,i(p2,v, T3)
⇐⇒ ∀T ∈W ritersH(i) : (T v T1 ∨ p2 v T ) ∧ (T v p2 ∨ T3 v T )

⇐⇒ ∀T ∈W ritersH(i) : (T v T1 ∧ (T v p2 ∨ T3 v T )) ∨
(p2 v T ∧ T v p2) ∨ (p2 v T ∧ T3 v T )

=⇒ ∀T ∈W ritersH(i) : (T v T1) ∨ (T3 v T )

⇐⇒ N oWriterBetweenH,i(T1,v, T3)

The first step uses the definition of N oWriterBetween. The second step uses ∧ distribution over ∨. The
third step simplifies the first disjunct using conjunction elimination, eliminates the second disjunct using
p2 6∈W ritersH(i) and simplifies the third disjunct using conjunction elimination. The fourth step uses the
definition of N oWriterBetween. 2

11



Lemma 10. Suppose S ∈ TSequential ∩ TComplete. We have:

S ∈ TSeqSpec⇐⇒ S ∈ M arkable

Proof. Let S ∈ TSequential∩TComplete. From Lemma 6, the definition of M arkable, and S ∈ TComplete,
we have that we must prove:

S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T ) ∧ N oWriterBetweenS,i(T
′,��S , T )

⇐⇒ ∃ v ∈Marking(S) : ��S ⊆ v ∧ v ∈ ReadPres(S) ∧ v ∈WriteObs(S)

From the definition of W riteObs and LastPreAccessor we have that:

v ∈W riteObs(S)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ Trans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Trans : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ ∈WritersS(i) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenS,i(T
′,v, R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ Trans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Trans : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ ∈ Committed(S) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenS,i(T
′,v, R)

We are now ready to prove the two directions of the equivalence.
⇒:
Assume that

S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T ) ∧ N oWriterBetweenS,i(T
′,��S , T )

Define:

p1 < p2 ⇐⇒ (p1 ≺≺S p2) ∨
(threadS(p1) ��S p2) ∨
(p1 ��S threadS(p2))

p1 v p2 ⇐⇒ p1 < ∨ p2p1 = p2

We show that

v ∈Marking(S) ∧
��S ⊆ v ∧ v ∈ ReadPres(S) ∧
S ∈ LocalTSeqSpec ∧
∀T ∈ Trans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Trans : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ ∈ Committed(S) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenS,i(T
′,v, R)

12



It is straightforward to prove v ∈ M arking(S) and ��S ⊆ v, v ∈ ReadPres(S). Additionally, the first
conjunct of W riteObs(S) (that is, S ∈ LocalTSeqSpec) is immediate from the assumption. So, we still need
to prove the second conjunct of W riteObs(S).

Let T ∈ Trans, i ∈ I, v ∈ V , R = readT (i):v ∈ GlobalReads(S). From the assumption (the left-hand
side), we have that we can find (1) T ′ ∈ Committed(S) and (2) W = writeT ′(i, v) ∈ GlobalWrites(S)
such that (3) (T ′ ≺≺S T ) and (4) N oWriterBetweenS,i(T

′,��S , T ). Let us now prove each conjunct of
T ′ 6= T ∧ T ′ v R ∧ N oWriterBetweenS,i(T

′,v, R) in turn.
From [3] and that ��S is a total order of Trans(S), we have (5) T ′ 6= T . From [3] and the definition

of v, we have T ′ v R. From [4] and ��S ⊆ v, we have (6) N oWriterBetweenS,i(T
′,v, T ). From T ��S T

and the definition of v, we have (7) R v T . From [6], [7] and the definition of v and transitivity of ��S , we
have N oWriterBetweenS,i(T

′,v, R).
⇐:
Assume the right-hand side and choose v ∈ M arking(S) such that:

��S ⊆ v ∧ v ∈ ReadPres(S) ∧
S ∈ TLocalSeqSpec ∧
∀T ∈ Trans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃ W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ 6= T ∧ T ′ v R ∧ N oWriterBetweenS,i(T
′,v, R)

We show that

S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T ) ∧ N oWriterBetweenS,i(T
′,��S , T )

The first conjunct (of the left-hand side), S ∈ LocalTSeqSpec, is immediate from the assumption. From the
assumption we have (1) ��S ⊆ v, (2) v ∈ ReadPres(S). Let T ∈ Trans, i ∈ I, v ∈ V , R = readT (i):v ∈
GlobalReads(S). From the above property of v, we have that we can find (3) T ′ ∈ Committed(S) and (4)
W = writeT ′(i, v) ∈ GlobalWrites(S) such that (5) T ′ 6= T and (6) T ′ v R and (7) N oWriterBetweenS,i(T

′,v
, R). From [1], that v is a total order on Trans(S) (v ∈ Marking(S)), and that ��S is a total order on
Trans(S) (S ∈ TSequential), we have (8) ∀T, T ′ ∈ Trans : T ′ v T ⇒ T ′ ��S T .

First we prove T ′ ≺≺S T . From [2] ,we have (9) N oWriterBetweenS,i(T,v, R). From [3] and [4], we
have (10) T ′ ∈ WritersS(i). From [9] and [10], we have (11) T ′ v T ∨ R v T ′. From [6], T ′ 6= R and v is
a total order on {R} ∪W ritersS(i) (v ∈ M arking(S)), we have (12) R 6v T ′. From [11] and [12], we have
(13) T ′ v T . From [8] and [13], we have (14) T ′ ��S T . From [14] and [5], we have T ′ ≺≺S T .

Second, we prove N oWriterBetweenS,i(T
′,��S , T ). From [2], we have (15) N oWriterBetweenS,i(R,v

, T ). From R 6∈ W ritersS(i), [7], [15], and Lemma 9, we have (16) N oWriterBetweenS,i(T
′,v, T ). From

[16] and [8] we have N oWriterBetweenS,i(T
′,��S , T ). 2

13



Theorem (Marking) F inalStateOpaque = M arkable.

Proof.

F inalStateOpaque

= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :

H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ S ∈ TSeqSpec}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :

H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ S ∈ M arkable}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧

∃ v ∈ M arking(S) : ��S ⊆ v ∧ v ∈ ReadPres(S) ∩W riteObs(S)}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧

∃ v ∈ M arking(H ′) : ��S ⊆ v ∧ v ∈ ReadPres(H ′) ∩W riteObs(H ′)}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈ M arking(H ′) :

v ∈ ReadPres(H ′) ∩W riteObs(H ′) ∧
∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ ��S ⊆ v }

= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈ M arking(H ′) :

��H′ ⊆ v ∧ v ∈ ReadPres(H ′) ∩W riteObs(H ′) ∧
∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ ��S ⊆ v }

= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈Marking(H ′) :

��H′ ⊆ v ∧ v ∈ ReadPres(H ′) ∩W riteObs(H ′)}
= Markable

In these eight steps we apply:
1) the definition of F inalStateOpaque,
2) Lemma 10 and S ∈ TComplete (because H ′ ∈ TExtension(H) and H ′ ≡ S),
3) the definition of M arkable and S ∈ TComplete,
4) Lemma 7,
5) logical rearrangement,
6) transitivity of ⊆,
7) Lemma 8, and
8) the definition of M arkable. 2

14



2 TL2 Marking

Shared objects: Thread-local objects: For each T ∈ Trans :
r : SafeReg[I], initially ⊥ rverT : SafeReg, initially ⊥
ver : AtomicReg[I], initially 0 rsetT : BasicSet, initially ∅
lock : TryLock[I], initially R wsetT : BasicMap, initially ∅
clock : SCounter, initially 0

R01 : def readT (i) C01 : def commitT
R02 : if (rverT = ⊥) C02 : foreach (i ∈ dom(wsetT ))
R03 : snap := clock.read() C03 : locked := lock[i].trylock()
R04 : rverT .write(snap) C04 : if (locked)

C05 : lset.add(i)
R05 : if (i ∈ dom(wsetT )) C06 : else
R06 : return wsetT (i) C07 : foreach (i ∈ lset) lock[i].unlock()

C08 : return A
R07 : t := ver[i].read()
R08 : v := reg[i].read() C09 : wver := clock.iaf
R09 : l := lock[i].read() C10 : if (wver 6= rverT + 1)
R10 : t′ := ver[i].read() C11 : foreach (i ∈ rsetT )
R11 : if(¬(l = false ∧ t = t′ ∧ t′ ≤ rverT )) C12 : l := lock[i].read()
R12 : return A C13 : t := ver[i].read()

C14 : if (¬(l = false ∧ t ≤ rverT ))
R13 : rverT .add(i) C15 : foreach (i ∈ lset) lock[i].unlock()
R14 : return v C16 : return A
W01 : def writeT (i, v)
W02 : wsetT .put(i 7→ v) C17 : foreach ((i 7→ v) ∈ wsetT )
W03 : return ok C18 : reg[i].write(v)

C19 : ver[i].write(wver)
C20 : lock[i].unlock()

C21 : return C

In addition to the orders imposed by the data and control dependencies and lock synchronization,
the following orders are required: R06 ≺ R07, R07 ≺ R08, R08 ≺ R09, C12 ≺ C13, C18 ≺ C19

Figure 1: TL2 Algorithm

15



Consider an execution history X of TL2 such that H = X|mem and H ∈ TComplete. Let

readAcc(R) = R08 in R

writeAcc(T, i) = C18 for i in CommitT

Eff(T ) =

{
R03 (in the first read of T ) if T ∈ Aborted(H)

C09 (in commitT ) if T ∈ Committed(H)

Let ≺clock represent the linearization order of the strong counter clock. The marking v for H is the reflexive
closure of < that is define as follows:

Let T, T ′ ∈ Trans(H) :
T < T ′ ⇔ Eff(T ) ≺clock Eff(T ′)

Let R ∈ Reads(H), i = arg1(R), T ∈WritersH(i) :
T < R⇔ writeAcc(T, i) -X readAcc(R)
R < T ⇔ readAcc(R) ≺X writeAcc(T, i)

Figure 2: The marking of TL2.

The marking relation for TL2 is defined in Figure 2. The effect order of transactions is the linearization
order of their calls to the clock strong counter. The access order of read operations and writer transactions
to location i is the execution order of their access to the reg[i] register.

16



3 DSTM (visible reads) Marking

Loc {writer : SafeReg, rset : BasicSet, oldV al : SafeReg, newV al : SafeReg}
Shared objects:

state : CASReg[Trans], initially R
ref : CASReg[I], initially new Loc(T0, ∅, 0, 0)

R01 : def readT (i) W01 : def writeT (i, v)
R02 : r := ref [i].read() W02 : r := ref [i].read()
R03 : v := currentV alueT (r) W04 : w := r.writer.read()
R04 : r′ = r.clone() W05 : if (w = T )
R05 : r′.rset.add(T ) W06 : r.newV al.write(v)
R06 : b := ref [i].cas(r, r′) W07 : return ok
R07 : s := stateT .read() W08 : v′ := currentV alueT (r)
R08 : if (¬b ∨ (s = A)) W09 : foreach (T ′ ∈ r.rset)
R09 : return A W10 : stateT ′ .cas(R,A)
R10 : else W11 : r′ := new Loc(T, ∅, v′, v)
R11 : return v W12 : b := ref [i].cas(r, r′)
C01 : def commitT () W13 : if (b)
C02 : b := stateT .cas(R,C) W14 : return ok
C03 : if (b) W15 : else
C04 : return C W16 : return A
C05 : else
C06 : return A
V 01 : def currentV alueT (r)
V 02 : T ′ = r.writer.read()
V 04 : if (¬(T ′ = T ))
V 05 : stateT ′ .cas(R, A)
V 06 : s := stateT ′ .read()
V 07 : if (s = A)
V 08 : return r.oldV al
V 09 : else
V 10 : return r.newV al

Figure 3: DSTM (visible reads) Algorithm

17



Consider an execution history X of DSTM such that H = X|mem and H ∈ TComplete. Let

readAcc(R) = R06 in R

writeAcc(T, i) = W12 in the first write to i by T

Eff(T ) =


C02 of the commit operation if T is committed

R06 of the last successful read if T is aborted and has a successful read

Any point in T if T is aborted and has no successful read

Let ≺ref [i] represent the linearization order of ref [i]. The marking v for H is the reflexive closure of < that
is define as follows:

Let T, T ′ ∈ Trans(H) :
T < T ′ ⇔ Eff(T ) -X Eff(T ′)

Let R ∈ Reads(H), i = arg1(R), T ∈WritersH(i) :
T < R⇔ writeAcc(T, i) ≺ref [i] readAcc(R)

R < T ⇔ readAcc(R) ≺ref [i] writeAcc(T, i)

Figure 4: The marking of DSTM (visible reads).

The marking relation for DSTM (visible reads) is defined in Figure 4.
Committed transactions take effect at the final cas of their state from R to C, C02, of their commit

operation. Aborted transactions that have successful read operations take effect at state check, R06, of their
last successful read.

The access order of read operations and writer transactions to location i is the linearization order of
their cas calls to the ref [i] register.

18



4 Opacity

Reads(H) = {R | R ∈ H ∧ objH(R) = this ∧
nameH(R) = read ∧ retvH(R) 6= A}

W rites(H) = {W |W ∈ H ∧ objH(W ) = this ∧
nameH(W ) = write ∧ retvH(W ) 6= A}

Trans(H) = {T | ∃l ∈ H : threadH(l) = T}
TSequential = {S ∈ THistory | ��S is a total order of Trans(S)}

Committed(H) = {T | ∃l ∈ H : threadH(l) = T ∧ retvH(l) = C}
Aborted(H) = {T | ∃l ∈ H : threadH(l) = T ∧ retvH(l) = A}

Completed(H) = Committed(H) ∪Aborted(H)

Live(H) = Trans(H) \ Completed(H)

TComplete = {H ∈ THistory | ∀T ∈ Trans(H) : T ∈ Completed(H)}
CommitPending(H) = {T ∈ Live(H) | ∃l ∈ H : threadH(l) = T ∧ nameH(l) = commit

iEv(l) b H ∧ ¬(rEv(l) b H)}
TExtension(H) = {H ′ ∈ THistory | H is a prefix of H ′ ∧ ∀T ∈ Trans(H ′)⇒ T ∈ Trans(H) ∧

Live(H) \ CommitPending(H) ⊆ Aborted(H ′) ∧
CommitPending(H) ⊆ Completed(H ′)}

V isible(S, T ) = filter
(
S, λT ′.(T ′ = T ) ∨

(
(T ′ ≺≺S T ) ∧ T ′ ∈ Committed(S)

))
NoWriteBetweenS(W,R) = ∀W ′ ∈W rites(S) : W ′ �S W ∨ R ≺S W ′

SeqSpec(i) = {S ∈ Sequential | ∀R ∈ Reads(S) : ∃W ∈W rites(S) :

W ≺S R ∧ NoWriteBetweenS(W,R) ∧
retvS(R) = arg2S(W )}

TSeqSpec = {S ∈ TSequential ∩ TComplete | ∀T ∈ S : ∀i ∈ I :

(V isible(S, T ) | i) ∈ SeqSpec(i)}
F inalStateOpaque = {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :

H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ S ∈ TSeqSpec}

Figure 5: F inalStateOpaque

Opacity of a TM algorithm is defined in two steps. First, it is defined what it means for a transaction
history to be opaque which is called final-state-opacity. Then, a TM algorithm is defined to be opaque if
every transaction history of every source program running on top of that TM algorithm is final-state-opaque.

F inalStateOpaque is defined in Figure 5. We use T prefix before some of the terms to avoid confusion
with the terms that we defined above for execution histories of objects. We say that a transaction history
is sequential if it is a sequence of transactions. A transaction T is committed or aborted in a transaction
history H if there is respectively a commit or abort response event for T in H. A completed transaction is
either committed or aborted. A live transaction is a transaction that is not completed. A transaction history
is complete if all its transactions are completed. A pending transaction has a pending event and a commit-
pending transaction has a commit pending event. An extension of a history is obtained by committing or

19



aborting its commit-pending transactions and aborting the other live transactions. If H is a transaction
history and p is a predicate on transaction identifiers, we define filter(H, p) to be the subsequence of H
that contains the events of transactions T for which p(T ) is true. The visible history for a transaction T
in a sequential transaction history S, V isible(S, T ), is the sequence of committed transactions before T in
S and T itself. The sequential specification of a location i, SeqSpec(i), is the set of sequential histories
of read and write method calls on location i where every read returns the value given as the argument to
the latest preceding write (regardless of thread identifiers). It is essentially the sequential specification of a
register. Transactional sequential specification is the set of complete sequential transaction histories S that
for every transaction T and location i, V isible(S, T )|i is a member of the sequential specification of i. A
transaction history H is final-state-opaque if there is an equivalent sequential transaction history S for an
extension of H such that S is real-time-preserving and a member of transactional sequential specification.
The sequential history S is called the justifying history. In other words, every correct concurrent execution
is indistinguishable from a correct sequential execution.

20


