Write-observation and Read-preservation TM Correctness Invariants
(Appendix)

Mohsen Lesani Jens Palsberg
Computer Science Department
University of California, Los Angeles
{lesani, palsberg}@ucla.edu

Contents

1 Proof of Marking Theorem
2 TL2 Marking
3 DSTM (visible reads) Marking

4 Opacity

15

17

19

1 Proof of Marking Theorem

For the sake of brevity, we use the shorthand notation
Al =onp(v1)we € X
for
dle X:objx(l) =0 A namex(l) =n A threadx(l) =T A arglx(l) =v1 A retox(l) = vo
and similarly for universal quantification.
We also use W, R to denote labels.

Lemma 1. For all S € T'Sequential, T € S, S" = Visible(S,T), and T',T" € S, we have T" KXg T" <
T/ ﬁs T”.

Proof.

T <o T"

S/|T/ g’ S/‘T” v T =T
S|IT"<g SIT" v T'=T"
ST <ag S|IT" v TN =T"
T <5 T"

1o

In these four steps we apply:

1) the definition of g,

2) that the definition of Visible(S,T) implies both S'|T" = S|T" and S'|T" = S|T",

3) 8" €S, and

4) the definition of <g. O

Lemma 2. For all S € TSequential, T € S, i € I, v,o' € V, R = readr(i):v € GlobalReads(S),
S" = Visible(S,T), T' € §', and W' = writer (i,v") € GlobalWrites(S), we have

NoWriteBetween(S/m(W/, R) <= NoWriterBetweeng;(T', Xs,T)
Proof.

NoWrite Betweeng/j;y (W', R)

= YW € Writes(S'|i): W Z(sny W'V R =g W
= VI e Si: Vi e I: W' e V: VW' = writepn(i',0") € S'Ji: W Z(g15y W'V R 2115y W
= VI" e Si: W' e VYW = writepn (i,v") € S'|i: W" < g5y WV R Z(g11) W"
e VT €S W € ViYW = writeqn(i,0") € S': W <g W'V R <51 W
— VI e S W e V:VW" =writepn(i,v") € S": T K¢ T'VT Xg T"
= VT e 8 W e VYW = writern(i,0") € 8 T" <g T'V T =g T"
— VI"e S W e V: VW' =writern(i,v") € S T < T =T" X T’
— VI"eS: W e V:VW" =writepn(i,v") € S:
[(T"=T)Vv(I" <s T ANT" € Committed(S))] A [T" <s T]| = T" XsT"
— VI e S: W' e V: VW' =writegn(i,v") € S:
(T" € Committed(S)N T" <5 T) = T" <5 T"
— VT" € Writerss(i): T" <s T =T" XsT'
— VT" € Writersg(i): T" XsT'VT XsT"
<= NoWriter Betweeng;(T', Xg,T)

In these twelve steps, we apply:

1) the definition of NoWrite Between,

2) the definition of Writes,

3) the definition of projection S'|,

4) R, W' and W" access location i,

5) 8" € TSequential and R € GlobalReads(S') and W' € GlobalWrites(S’) (that are concluded from
S € T'Sequential, R € GlobalReads(S), W' € GlobalWrites(S) and S' = Visible(S,T).),

6) Lemma 1,

7) Boolean logic and that g is total,

8) the definition of Visible,

9) logical simplification,

10) the definition of Writers,

11) Boolean logic and that =g is total, and

12) the definition of NoWriter Between. O

Lemma 3. T'Sequential C Sequential
Proof. Straightforward from definitions of T'Sequential, T History and Sequential. O

Lemma 4. Vi€ I: Yv,o' € V: VT, T € Trans: if R = ready(i):w, W = writer: (i,v), W' = writep(i,v'),
S € TSequential, W <g R, NoWriteBetweeng(W, R) and W' <g R, then T =T".

Proof. Suppose (1) S € TSequential, (2) W <g R, (3) NoWriteBetweeng(W, R) and (4) W' <g R. From
[1] and Lemma 3, we have (5) S € Sequential. From [4] and [5], we have (6) =(R <g W'). From [3] we
have (7) W/ <¢ WV R <g W’. From [6] and [7], we have (8) W' <g W. From [2] and [8], we have (9)
W' <¢ W <g R. From [9], [1], and that W’ and R are by T and W is by T”, we have T'=T". 0

Lemma 5. Suppose S € TSequential. We have:

VI €S:Viel:VYveV:VR=readr(i)w € Local Reads(S):
3T’ € Visible(S,T): IW = writer:(i,v) € Visible(S,T):
W <wisible(s.T) | i) B A NoWriteBetween v igipe(s,r) | i) (W RR)
<= S € LocalT SeqSpec

Proof. Suppose S € T'Sequential. Thus, from Lemma 3, we have S € Sequential. Let S" = Visible(S,T).
From S € TSequential and Lemma 1, we have S’ € TSequential. Thus, from Lemma 3, we have S’ €
Sequential. From the definition of Visible, we have S'|T = S|T.

VT € S:Viel:YveV:VR=readr(i)w € Local Reads(S):
Ir’ e 8" AW = writer (i,v) € S":
W <(s | iy R A NoWriteBetween(gsr | (W, R)
— VI'eS:Viel:YveV:VR=readr(i)w € Local Reads(S):
' e V:IW' = writer(i,v’) € S: W <s R A
T’ € S AW = writer:(i,v) € S
W < i B AN NoWriteBetween g | (W, R)
< VI'eS:Viel:VYveV:VR=readr(i)w € Local Reads(S):
F' € V: AW = writer(i,v') € S W <g¢ R A
Ir’ e §': AW = writep/ (i,v) € S”:
W < | iy R A NoWriteBetween g | (W, R)
— VI'eS:Viel:YveV:VR=readr(i)w € Local Reads(S):
' e V:IW' = writer(i,v’) € S W <g R A
T’ e 8" AW = writer (i,v) € S":
W < i) B A NoWriteBetween g | (W, R)
— VI'eS:Viel:YveV:VR=readr(i)w € Local Reads(S):
' e V: IW' = writep(i,v) € S W <(g |y R A
T’ € S IW = writer: (i,v) € S
W <y B AN NoWriteBetween(gr | (W, R)
= VI'eS:Viel:VYveV:VR=readr(i)w € Local Reads(S):
' e V: IW' = writer(i,v") € 8 W <(g |) R A
AW = writer(i,v) € S":
W <5 | iy R A NoWriteBetween g | (W, R)
— VI'eS:Viel:YveV:VR=readr(i)w € Local Reads(S):
AW = writer(i,v) € S':
W < i) B A NoWriteBetween g | (W, R)
< VI'eS:Viel:YveV:VR=readr(i)w € Local Reads(S):
IW = writer(i,v) € S:
W <9 B A NoWriteBetween(gr | (W, R)

< VI'eS:Viel:YveV:VR=readr(i):w € Local Reads(S):
W = writer(i,v) € S:
W <5 R A NoWriteBetween(gs: | (W, R)
< VI'eS:Viel:YveV:VR=readp(i):w € Local Reads(S):
AW = writer(i,v) € S:
W <s R N NoWriteBetweeng | (W, R)
< VI'eS:Viel:YveV:VR=readr(i):w € Local Reads(S):
W = writer(i,v) € S:
W <s R N VYW' € Writes(S" | i): W <(sr | sy WV R <5 | oy W
& VI'eS:Viel:VveV:VR=readr(i):w € Local Reads(S):
W = writer(i,v) € S:
W =g R A ~3W' € Writes(S' | i): ~(W' <(g | o W) A (R =g | o W)
— VI'eS:Viel:YveV:VR=readr(i):w € Local Reads(S):
W = writer(i,v) € S:
W <g R A -IW' € Wm'tes(S’ |i): W =8 | 4) w’ NCAD) R
— VI'eS:Viel:YveV:VR=readr(i):w € Local Reads(S):
AW = writer(i,v) € S:
W<sgR A - ecV:IW = writeT(i,v/): W <5) w’ S CADRL
< VI'eS:Viel:VYveV:VR=readr(i):w € Local Reads(S):
W = writer(i,v) € S:
W <sR A - eV :3IW =writer(i,v'): W <s |9 W <4 R
< VI'eS:Viel:YveV:VR=readr(i):w € Local Reads(S):
AW = writer(i,v) € S:
W <s R A -3W' e Writes(S [i): W <5 | sy W <(s |4 R
— VI'eS:Viel:YveV:VR=readr(i):w € Local Reads(S):
W = writer(i,v) € S:
W <s R N VW' € Writes(S | i): =~(W NCED) W v =W’ =(S | 4) R)
— VI'eS:Viel:YveV:VR=readr(i):w € Local Reads(S):
W = writer(i,v) € S: W <g R A
VW' e Writes(S | i): W Z(s 1 g W V R<g |9 W
< VI'eS:Viel:VveV:VR=readr(i):w € Local Reads(S):
IW = writer(i,v) € S|T|i: W <gip; R A
VW' € Writes(S|T|i): W' < WV R =g W'
— VI'eS:Viel:YveV:VR=readr(i):w € Local Reads(S):
AW = writer(i,v) € S|T|i:
W <7 B A NoWrite Between g (W, R)
<= S €& LocalT SeqSpec

In these twenty steps, we apply: 1) the definition of Local Reads,

2) the definition of Visible,

3) S'|T = S|T and that both W’ and R are by T,
4) that both W’ and R are on i,

5) Lemma 4,

6) duplicate conjunction,

7) the definition of Visible,

8) that both R and W are on i,

9) S’|T = S|T and that both R and W are by T
10) the definition of NoWriteBetween,

11) first-order logic,

12) (8" | i) € Sequential,

13) from (S’ | i) € T'Sequential, R and W are by transaction 7" and W' is between them, we have W' is by
T,

14) S"\T = S|T,

15) from (S | i) € T'Sequential, R and W are by transaction 7" and W' is between them, we have W’ is by
T.

16) first-order logic,

17) (S| i) € Sequential,

18) (S | i) € Sequential, threadp(R) = threadg(W) =T and argly(R) = arglg(W) = i,

19) the definition of NoWriteBetween,

)t

20) the definition of LocalT SeqSpec.

Lemma 6. Suppose S € T Sequential N TComplete. We have:

S € T'SeqSpec
<= S € LocalTSeqSpec N
VI'e S:Viel:YveV:VR=readr(i)v € Global Reads(S):
IT" € Committed(S): IW = writer:(i,v) € GlobalWrites(S):
(T" <s T) N NoWriter Betweeng;(T', %, T)

Proof. Suppose S € T'SequentialTComplete. From S € T Sequential and Lemma 1, we have Visible(S,T) €
T Sequential.

S € T'SeqSpec
VI'e S:Viel: (Visible(S,T) | i) € SeqSpec(i)
VI'e S:Viel:
VT" € (Visible(S,T) | i): Vv € V: VR = readyn(i):w € (Visible(S,T) | i):
3T’ € (Visible(S,T) | i): AW = writer: (i,v) € (Visible(S,T) | i):
W <wisible(s.1) | iy B N NoWriteBetween(visipe(s,r) | i)(Ws 1)
— VI'eS:Viel:
VT € Visible(S,T): Vv € V: VR = readyn(i):w € Visible(S,T):
3T’ € Visible(S,T): IW = writer: (i,v) € Visible(S,T):
W <wisible(s.T) | iy 8 N NoWriteBetween(visiie(s,r) | i) (W RR)
< VI'eS:Viel:YveV:VR=readr(i)veSs:
T’ € Visible(S,T): IW = writeq: (i,v) € Visible(S,T):
W <wisible(s.T) | iy B N NoWriteBetween(visiie(s,t) | i) (W RR)
& VI'eS:Viel:VveV:VR=readr(i):w € Local Reads(S):
3T’ € Visible(S,T): IW = writer:(i,v) € Visible(S,T):
W < wvisible(s.1) | iy B N NoWriteBetween(visie(s,r) | i)(Ws 1)

—
—

A
VI'e S:Viel:YveV:VR=readr(i)w € Global Reads(S):
AT € Visible(S,T): AW = writer:(i,v) € Visible(S,T):
W Lwisible(s,) | iy B N NoWriteBetween v isie(s,r) | o)(W, R)
<= S €& LocallT SeqSpec N
VI'eS:Viel:YveV:VR=readr(i):w € GlobalReads(S):
T’ € Visible(S,T): IW = writeq: (i,v) € Visible(S,T):
W <wisible(s.T) | iy 8 N NoWriteBetween(visiie(s,r) | i) (W RR)

<= S € LocalTSeqSpec N
VI'€S:Viel:YveV:VR=readr(i)w € Global Reads(S):
AT € Visible(S,T): IW = writer(i,v) € Visible(S,T):
W <visivie(s.r) & N NoWriteBetween(visiie(s,r) | i) (W RR)
< S € LocalT SeqSpec N
VI'e S: Vz €1:Yv e V:VR =readr(i)v € Global Reads(S):
3T’ € Visible(S,T): IW = writeq: (i,v) € Visible(S,T):
T" <visibiesry T A NoWrite Between visinie(s,r) | i)(W R)
<= S € LocalT SeqSpec N
VT e S: Vz €I:VYv e V:VR =readr(i):w € Global Reads(S):
"€ Visible(S,T): IW = writeq: (i,v) € Visible(S,T):
T’ <s T N NoWriteBetween(visiie(s,r) | i) (W R)
<= S € LocalTSeqSpec N
VI'€S:Viel:YveV:VR=readr(i):w € GlobalReads(S):
T’ € Visible(S,T): AW = writer (i,v) € GlobalWrites(S):
T' <5 T N NoWriteBetween vspie(s,) | iy(W, R)
<= S € LocalT SeqSpec A
VI e S: Vz €l:Yv e V:VR =readr(i)v € Global Reads(S):
3T’ € Visible(S,T): IW = writeq: (i,v) € GlobalWrites(S):
T' «sT AN NoWriter Betweeng;(T', Xgs,T)
<= S € LocalTSeqSpec N
VT e€S: Vz €I:Yv e V:VR =readr(i)w € Global Reads(S):
"€ Visible(S,T): IW = writer: (i,v) € GlobalWrites(S):
(T' ~«sT) N T' € Committed(S) N NoWriter Betweeng,;(T', %Xgs,T)
<= S € LocalTSeqSpec N
VI € S:Viel:YveV:VR=readp(i):wv € Global Reads(S):
31" € Committed(S): IW = writer: (i,v) € GlobalWrites(S):
(T' <5 T) N NoWriter Betweeng ;(T', %, T)

In these thirteen steps, we apply:
1) the definition of T'SeqSpec and S € T Sequential N TComplete,
2) the definition of SeqSpec(i),
3) R and W access location 1,
4) that we can choose T" =T,
5) Reads(S) = LocalReads(S) U Global Reads(S),
6) Lemma 5,
7) that R and W are both on location i
8) that R and W are by transactions T and T’ respectively, Visible(S,T) € TSequential, and R €
GlobalReads(Visible(S,T)) (because R € GlobalReads(R) and Visible(S,T)|T = S|T),
9) Lemma 1,
10) 7" <5 T and NoWriteBetween visiie(s,r) | i)(W; R),
11) Lemma 2,

12) T" € Visible(S,T) and (T" <g T), and
13) the definition of Visible(S,T).

10

Lemma 7. (Invariance) If H = H', then Marking(H) = Marking(H') and ReadPres(H) = ReadPres(H')
and WriteObs(H) = WriteObs(H').

Proof. Immediate from the definitions of Marking, ReadPres, and WriteObs. O
Lemma 8. VH € THistory: VYV C € Marking(H): 3S € TSequential: H=S N Xg C Xg A Xg C L.

Proof. Let H € THistory and let C € Marking(H). We have that C is a total order of Trans so we
can choose a permutation m on 1.n such that Vi,j € 1.n: (i < j) & (Tru T Tr)). Define: S =
H|Tr(1ys - - H|Tr(ny- It is straightforward to prove that S € T'Sequential N H=S5 N Xy C X5 A Xs
cL. O

Lemma 9. Suppose C € Marking(H) N pa & Writersg(i).
If NoWriter Betweeng (11, C, p2) and NoWriter Betweenp ;(p2, C, T3),
then NoWriter Betweenp ;(T1,C, T3).

Proof.

NoWriter Betweeny ;(Th,C,p2) N NoWriter Betweeny ;(p2, C, T3)
VT € Writersg(i): (TCTTy V po °TT) A (TEpe VT3CET)
VT € Writersg(i): (TETy A (TEpy vV T3CET)) V
(PET ANTCEp2) V (2 CET ANT3ET)
= VT € Writersy(i): (T CTy) vV (I3C1T)
<= NoWriter Betweenpg ;(11,C,T3)

—
—

The first step uses the definition of NoWriter Between. The second step uses A distribution over V. The
third step simplifies the first disjunct using conjunction elimination, eliminates the second disjunct using
p2 & Writersy (i) and simplifies the third disjunct using conjunction elimination. The fourth step uses the
definition of NoWriter Between. O

11

Lemma 10. Suppose S € T Sequential N TComplete. We have:
S € TSeqSpec < S € Markable
Proof. Let S € T SequentialNTComplete. From Lemma 6, the definition of Markable, and S € TComplete,

we have that we must prove:
S € LocalT SeqSpec A
VT € S:Viel:YveV:VR=readp(i):v € Global Reads(S):
AT € Committed(S): AW = writer: (i,v) € GlobalWrites(S):
(T" <s T) N NoWriter Betweeng;(T', %Xg,T)
<= dLC € Marking(S): <s¢ CC A C € ReadPres(S) N T € WriteObs(S5)
From the definition of WriteObs and LastPreAccessor we have that:

C € WriteObs(S)
<= S € LocalTSeqSpec N
VT € Trans: Vi € I:Yv € V: VR = readr(i):w € GlobalReads(S):
3T’ € Trans: AW = writer(i,v) € GlobalWrites(S):
T' € Writersg(i) AN T'#T N T'C R A NoWriter Betweeng;(T',C, R)
< S € LocalT SeqSpec N
VT € Trans: Vi€ I:Yv € V:VR = readr(i):v € Global Reads(S5):
T’ € Trans: AW = writer (i,v) € GlobalWrites(S):
T' € Committed(S) AN T'#T AN T'C R A NoWriter Betweeng;(T',C, R)
We are now ready to prove the two directions of the equivalence.
=:
Assume that
S € LocalT SeqSpec N
VI'€S:Viel:YveV:VR=readr(i):w € GlobalReads(S):
IT" € Committed(S): AW = writep: (i,v) € GlobalWrites(S):
(T" <s T) N NoWriter Betweeng;(T', %g,T)
Define:

pEpr = (p1<sp2) V
(threads(p1) Xs p2) V
(p1 Xs threads(p2))
prEp2 = p1C Vpapr=p2
We show that
C € Marking(S) A
<5 CC A E € ReadPres(S) A
S € LocalT SeqSpec N
VT € Trans: Vi€ I:Yv € V: VR = readr(i):v € GlobalReads(S):
T’ € Trans: IW = writer/(i,v) € GlobalWrites(S):
T' € Committed(S) AN T'#T AN T'C R A NoWriter Betweengs,;(T',C, R)

12

It is straightforward to prove C € Marking(S) and <g C C, C € ReadPres(S). Additionally, the first
conjunct of WriteObs(S) (that is, S € LocalT SeqSpec) is immediate from the assumption. So, we still need
to prove the second conjunct of WriteObs(S).

Let T € Trans, i € I, v € V, R = readr(i):v € GlobalReads(S). From the assumption (the left-hand
side), we have that we can find (1) 77 € Committed(S) and (2) W = writer:(i,v) € GlobalWrites(S)
such that (3) (I" <s T) and (4) NoWriter Betweeng;(T',<g,T). Let us now prove each conjunct of
T'#+T NT'C R AN NoWriterBetweeng;(T",C, R) in turn.

From [3] and that g is a total order of Trans(S), we have (5) 77 # T. From [3] and the definition
of C, we have 7' C R. From [4] and <g C C, we have (6) NoWriter Betweeng;(T',C,T). From T <g T
and the definition of C, we have (7) R C T. From [6], [7] and the definition of C and transitivity of <g, we
have NoWriter Betweengs;(T',C, R).

<~

Assume the right-hand side and choose C € Marking(S) such that:

<s CC A L € ReadPres(S) A

S € TLocalSeqSpec N

VI € Trans: Vi€ I:Yv e V:VR = readr(i):v € Global Reads(S):

T’ € Committed(S): 3 W = writer(i,v) € GlobalWrites(S):
T'#T N T'C R A NoWriter Betweeng,;(T',C, R)

We show that

S € LocalT SeqSpec A

VI'e S:Viel:VveV:VR=readr(i):w € Global Reads(S):

3T’ € Committed(S): AW = writer(i,v) € GlobalWrites(S):
(T" <s T) N NoWriter Betweeng;(T', %, T)

The first conjunct (of the left-hand side), S € LocalT SeqSpec, is immediate from the assumption. From the
assumption we have (1) Xg C C, (2) C € ReadPres(S). Let T € Trans,i € I, v € V, R = readrp(i):w €
Global Reads(S). From the above property of T, we have that we can find (3) 77 € Committed(S) and (4)
W = writer:(i,v) € GlobalWrites(S) such that (5) T” # T and (6) 7" C R and (7) NoWriter Betweeng ;(T', C
,R). From [1], that C is a total order on Trans(S) (E € Marking(S)), and that =g is a total order on
Trans(S) (S € TSequential), we have (8) VI, T € Trans: T'C T =T KXsT.

First we prove 7" «<g T. From [2] ,we have (9) NoWriter Betweeng;(T,C, R). From [3] and [4], we
have (10) T" € Writerss(i). From [9] and [10], we have (11) 7/ C T v RLC T'. From [6], 7’ # R and LC is
a total order on {R} U Writersg(i) (C € Marking(S)), we have (12) R [Z T'. From [11] and [12], we have
(13) 7" C T. From [8] and [13], we have (14) 77 g T. From [14] and [5], we have T" g T

Second, we prove NoWriter Betweens ;(T', <g,T). From [2], we have (15) NoWriter Betweeng ;(R,C
,T). From R ¢ Writerss(i), [7], [15], and Lemma 9, we have (16) NoWriter Betweeng;(T",C,T). From
[16] and [8] we have NoWriter Betweeng (1", <g,T). O

13

Theorem (Marking) FinalStateOpaque = Markable.

Proof.

FinalStateOpaque
= {H € THistory | 3H' € TExtension(H): 3S € T Sequential :
H =SAN X € Xg NS € TSeqSpec}
= {H € THistory | 3H' € TExtension(H): 3S € T Sequential :
H =8N X C X5 AS € Markable}
= {H € THistory | 3H' € TExtension(H): 3S € TSequential: H =S N Xy C X5 A
JC € Marking(S): <s CC A C € ReadPres(S) N WriteObs(S)}
= {H € THistory | 3H' € TExtension(H): 3S € TSequential: H =S N Xy C Xg A
JC € Marking(H'): <5 CC A C € ReadPres(H') N WriteObs(H')}
= {H € THistory | 3H' € TExtension(H): 3 C € Marking(H'):
C € ReadPres(H') N WriteObs(H') A
35 € TSequential: H = SN Xy C Kg A Xs CLC }
= {H € THistory | 3H' € TExtension(H): 3C € Marking(H'):
< CC A C € ReadPres(H') N WriteObs(H') A
S € T'Sequential: H = SN X C K¢ A Xg CLC}
= {H € THistory | 3H' € TExtension(H): 3C € Marking(H'):
<y CC A C € ReadPres(H') N WriteObs(H')}
= Markable

In these eight steps we apply:
1) the definition of FinalStateOpaque,
2) Lemma 10 and S € TComplete (because H' € T Extension(H) and H' = 5),
3) the definition of Markable and S € TComplete,
4) Lemma 7,
5) logical rearrangement,
6) transitivity of C,
7) Lemma 8, and
)

8) the definition of Markable.

14

2 TL2 Marking

Thread-local objects: For each T' € Trans:
rvery: SafeReg,initially L
rsetp: BasicSet, initially ()
wset: BasicMap, initially

Shared objects:
r: SafeReg[I], initially L
ver: AtomicReg[I], initially 0
lock: TryLock|I],initially R
clock: SCounter, initially 0
RO1: def readp(i)
R02 : if (rverp = 1)
RO3 : snap := clock.read))
RO4 : rverp.write(snap)
RO5: if (i € dom(wsetr))
R06 : return wsetr(7)
ROT : t :=verl[i].read()
RO8: v:=regli].read()
R09 : = lock]i].read()
R10 : = verli].read()
R11: zf((1= false N t=1t A t' <rverp))
R12: return A
R13: rvery.add(i)
R14 : return v
Wol: def writer(i,v)
Wo02: wsetp.put(i— v)
WO03: return ok

C01: def commity

C02: foreach (i € dom(wsetr))

C03 : locked := lock[i].trylock()

co4 : f (locked)

C05 : Iset.add(7)

C06 : else

cor: foreach (i € Iset) lock[i].unlock()
CO08 : return A

C09: wwver := clock.iaf

C10: if (wver # rverp + 1)

C11: foreach (i € rsetr)

C12: [:= lockli].read()

C13: t := verli].read()

C14: f (=(l = false N t < rverr))
C15: foreach (i € lset) lock[i].unlock()
C16: return A

C17: foreach ((i — v) € wsetr)

C18: regli].write(v)

C19: ver[i].write(wver)

C20: lockli].unlock()

C21: return C

In addition to the orders imposed by the data and control dependencies and lock synchronization,
the following orders are required: R06 < R07, RO7 < R08, R0O8 < R09, C'12 < C'13, C'18 < C'19

Figure 1: TL2 Algorithm

15

Consider an execution history X of TL2 such that H = X|mem and H € T'Complete. Let

readAcc(R) = R08in R

writeAcc(T,i) = C18 for ¢ in Commitr
Eff(T) RO03 (in the first read of T) if T' € Aborted(H)
C09 (in commitr) if T € Committed(H)

Let <ok represent the linearization order of the strong counter clock. The marking C for H is the reflexive
closure of C that is define as follows:

Let T, T € Trans(H):
TCT < Eff(T) =clock Eff(T/)

Let R € Reads(H),i = argl(R),T € Writersg(i):
T C R < writeAcc(T,i) Zx readAcc(R)
RC T < readAcc(R) <x writeAce(T, 1)

Figure 2: The marking of TL2.

The marking relation for TL2 is defined in Figure 2. The effect order of transactions is the linearization
order of their calls to the clock strong counter. The access order of read operations and writer transactions
to location 7 is the execution order of their access to the reg[i| register.

16

3 DSTM (visible reads) Marking

Loc {writer: SafeReg, rset: BasicSet,oldVal: SafeReg,newVal: SafeReg}
Shared objects:

state: C ASReg[Trans],initially R

ref : C ASReg[I], initially new Loc(Tp, 0,0, 0)

RO1: def readr(i) Wo1l: def writer(i,v)

R02: 7 :=refli]l.read() Wo02: r:=ref[i]l.read()
R0O3: v :=currentValuer(r) | W04: w:=r.writer.read()
RO4: 7' =r.clone() wWo5: if (w=T)

RO5: 7r'.rset.add(T) W6 : r.newVal.write(v)
RO6: b :=ref[i].cas(r,r") wor : return ok

RO7: s:= stater.read() Wo8: v :=currentValuep(r)
RO8: if (=b Vv (s=4A)) W09 : foreach (T’ € r.rset)
R09 : return A W10 : staterr.cas(R, A)
R10: else Wi1l: 1’ :=new Loc(T,D,v',v)
R11: return v W12: b:=refli].cas(r,r’)
C01: def commity() w13 : if (b)

C02: b:=statep.cas(R,C) | W14: return ok

co3: if (b) W15: else

Cc04: return C W16 : return A

C05: else

C06 : return A

VO01: def currentValuer(r)

V02: T =rwriter.read(

Vvod: if (-(T'=T))

Vo5 : staterr.cas(R, A)

V06 : s:= statepr.read()

VOT: if (s=A)

V08 : return r.oldVal

V09: else

V10 : return r.newVal

Figure 3: DSTM (visible reads) Algorithm

17

Consider an execution history X of DSTM such that H = X|mem and H € TComplete. Let

readAcc(R) = RO06in R
writeAce(T,i) = W12 in the first write to i by T
C02 of the commit operation if T is committed

R06 of the last successful read if T is aborted and has a successful read

Eff(T)

Any point in T if T' is aborted and has no successful read

Let <,¢f[j represent the linearization order of ref[i]. The marking C for H is the reflexive closure of that

is define as follows:
Let T,T" € Trans(H):
TCT & Eff(T) 3x Eff(T)
Let R € Reads(H),i = argl(R),T € Writersg(i):
T C R < writeAcc(T, i) <,epp) TeadAcc(R)
RCT < readAcc(R) <,epp) write Ace(T), 1)

Figure 4: The marking of DSTM (visible reads).

The marking relation for DSTM (visible reads) is defined in Figure 4.

Committed transactions take effect at the final cas of their state from R to C, C02, of their commit
operation. Aborted transactions that have successful read operations take effect at state check, R06, of their
last successful read.

The access order of read operations and writer transactions to location ¢ is the linearization order of
their cas calls to the ref[i] register.

18

4 Opacity

Reads(H)
Writes(H)

Trans(H)

T Sequential
Committed(H)
Aborted(H)
Completed(H)
Live(H)

TComplete
CommitPending(H)

T Extension(H)
Visible(S,T)
NoWriteBetweeng(W, R)
SeqSpec(i)

T SeqSpec

FinalStateOpaque

(R|ReH A obji(R) = this A
nameg(R) = read N retvg(R) # A}

{W | W eH A objg(W) =this A
name (W) = write A\ retog(W) # A}

{T'| 3l € H: threaduy(l) =T}

{S € THistory | Xg is a total order of Trans(S)}

{T'|3l € H: thready(l) =T A retvg(l) =C}

{T' |3l € H: threadg(l) =T A retvg(l) = A}

Committed(H) U Aborted(H)

Trans(H) \ Completed(H)

{H € THistory |YT € Trans(H): T € Completed(H)}

{T € Live(H) | 3l € H: threadg(l) =T A nameg(l) = commit
iEv(l) € H N =(rEv(l) € H)}

{H' € THistory | H is a prefix of H' A VT € Trans(H') = T € Trans(H) A
Live(H) \ CommitPending(H) C Aborted(H') A
CommitPending(H) C Completed(H')}

filter (S, AT (T' =T) Vv (T" <s T) ANT" € Committed(S)))

VW' e Writes(S): W <¢ W V R <g W'

{S € Sequential | VR € Reads(S): IW € Writes(S):

W <g R N NoWriteBetweeng(W, R) A
retvg(R) = arg2¢(W)}

{S € TSequential N TComplete | VT € S: Vi€ I:
(Visible(S,T) | i) € SeqSpec(i)}

{H € THistory | 3H' € TExtension(H): 3S € T Sequential :
H =SSN X € <Xg NS € TSeqSpec}

Figure 5: FinalStateOpaque

Opacity of a TM algorithm is defined in two steps. First, it is defined what it means for a transaction
history to be opaque which is called final-state-opacity. Then, a TM algorithm is defined to be opaque if
every transaction history of every source program running on top of that TM algorithm is final-state-opaque.

FinalStateOpaque is defined in Figure 5. We use T' prefix before some of the terms to avoid confusion
with the terms that we defined above for execution histories of objects. We say that a transaction history
is sequential if it is a sequence of transactions. A transaction T is committed or aborted in a transaction
history H if there is respectively a commit or abort response event for 7' in H. A completed transaction is
either committed or aborted. A live transaction is a transaction that is not completed. A transaction history
is complete if all its transactions are completed. A pending transaction has a pending event and a commit-
pending transaction has a commit pending event. An extension of a history is obtained by committing or

19

aborting its commit-pending transactions and aborting the other live transactions. If H is a transaction
history and p is a predicate on transaction identifiers, we define filter(H,p) to be the subsequence of H
that contains the events of transactions T' for which p(7T) is true. The visible history for a transaction T
in a sequential transaction history S, Visible(S,T), is the sequence of committed transactions before 7" in
S and T itself. The sequential specification of a location i, SeqSpec(i), is the set of sequential histories
of read and write method calls on location i where every read returns the value given as the argument to
the latest preceding write (regardless of thread identifiers). It is essentially the sequential specification of a
register. Transactional sequential specification is the set of complete sequential transaction histories S that
for every transaction T' and location i, Visible(S,T)|i is a member of the sequential specification of i. A
transaction history H is final-state-opaque if there is an equivalent sequential transaction history .S for an
extension of H such that S is real-time-preserving and a member of transactional sequential specification.
The sequential history S is called the justifying history. In other words, every correct concurrent execution
is indistinguishable from a correct sequential execution.

20

