
74

Hamsaz: Replication Coordination Analysis and Synthesis∗

FARZIN HOUSHMAND, University of California, Riverside, USA

MOHSEN LESANI, University of California, Riverside, USA

Distributed system replication is widely used as a means of fault-tolerance and scalability. However, it provides

a spectrum of consistency choices that impose a dilemma for clients between correctness, responsiveness and

availability. Given a sequential object and its integrity properties, we automatically synthesize a replicated

object that guarantees state integrity and convergence and avoids unnecessary coordination. Our approach is

based on a novel sufficient condition for integrity and convergence called well-coordination that requires

certain orders between conflicting and dependent operations. We statically analyze the given sequential

object to decide its conflicting and dependent methods and use this information to avoid coordination. We

present novel coordination protocols that are parametric in terms of the analysis results and provide the

well-coordination requirements. We implemented a tool called Hamsaz that can automatically analyze the

given object, instantiate the protocols and synthesize replicated objects. We have applied Hamsaz to a suite of

use-cases and synthesized replicated objects that are significantly more responsive than the strongly consistent

baseline.

CCS Concepts: • Theory of computation → Invariants; Program analysis; • Software and its engi-
neering → Distributed programming languages; Distributed systems organizing principles;

Additional KeyWords and Phrases: Well-Coordination, Distributed Systems, Invariant-Preserving, Consistency,

Program Synthesis

ACM Reference Format:
Farzin Houshmand and Mohsen Lesani. 2019. Hamsaz: Replication Coordination Analysis and Synthesis. Proc.
ACM Program. Lang. 3, POPL, Article 74 (January 2019), 32 pages. https://doi.org/10.1145/3290387

1 INTRODUCTION
Distributed system replication [Belaramani et al. 2006; Birman 1985; Ladin et al. 1992; Petersen et al.

1997] is an often-used mechanism to achieve fault-tolerance and scalability. Embedded control

systems replicate controllers [Madhusudan and Thiagarajan 2001] to tolerate faults, online services

rely on geo-replicated data stores [Cooper et al. 2008; Corbett et al. 2013; DeCandia et al. 2007; Li

et al. 2012; Lloyd et al. 2011, 2013; Sovran et al. 2011] to manage the ever-growing amount of data

and hand-held devices replicate data for off-line use. There has been a known dilemma [Abadi 2012;

Fischer et al. 1985; Gilbert and Lynch 2002, 2012] between strong and weak consistency of replicated

objects. Strongly consistent replication (via Viewstamp [Oki and Liskov 1988], Paxos [Lamport 1998]

and Raft [Ongaro and Ousterhout 2014] protocols) guarantees the same total order of operations

across all replicas. Therefore, if an operation is checked to preserve the integrity properties [Bailis

et al. 2015] at a replica, it will certainly preserve them in the other replicas as well. Further, replicas

∗
This work was partially funded by the National Science Foundation grant, CRII: SHF: Certified Byzantine Fault-tolerant
Systems (1657204).

Authors’ addresses: Farzin Houshmand, University of California, Riverside, USA, fhous001@ucr.edu; Mohsen Lesani,

University of California, Riverside, USA, lesani@cs.ucr.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART74

https://doi.org/10.1145/3290387

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

https://doi.org/10.1145/3290387
https://doi.org/10.1145/3290387

74:2 Farzin Houshmand and Mohsen Lesani

converge as a result of the same sequence of operations. Therefore, the correctness of replicated

execution simply reduces to the correctness of sequential execution. However, synchronisation

protocols that provide strong consistency need consensus between replicas and, hence, may not be

responsive and even available during network failures or offline use. Although optimized protocols

can emerge [Corbett et al. 2013; Jin et al. 2018], the strong semantics prevents their availability

for offline use. On the other hand, weak consistency notions can be provided with availability and

responsiveness but without the same total order of operations across replicas. Many consistency

weak notions dubbed eventual consistency [Bouajjani et al. 2014; Burckhardt et al. 2014; Clancy and

Miller 2017; Emmi and Enea 2018; Shapiro et al. 2011; Vogels 2008] simply broadcast the operations

that may be arbitrarily reordered. Likewise, causal consistency [Ahamad et al. 1995; Birman 1985;

Lamport 1978] preserves only the causal order between operations. Unfortunately, the absence of

the total order can lead to violation of integrity properties.

However, weak notions can be enough for certain operations to preserve the integrity proper-

ties. For example, consider a bank account object with the integrity property that its balance is

non-negative. The deposit operation can be executed without any coordination as it cannot make

the balance negative. However, a withdraw operation has to synchronize with other withdraw

operations to avoid overdrafts. In addition, consistent execution of a withdraw operation may be

dependent on the preceding deposit operations in the originating replica. Therefore, the withdraw

operation needs both a total order with respect to other withdraw operations and a causal order

with respect to preceding deposit operations. We observe that operations have distinct coordina-

tion requirements with respect to each other. It is unintuitive for end-users to specify the right

consistency requirement for each operation. Requesting too much may degrade performance, and

requesting too little may compromise correctness. Thus, users either resort to the blanket strong

consistency for all operations or ignore the problem and use a default notion of weak consistency.

Previous work recognized the problem, proposed hybrid models and took significant steps

towards helping the user with consistency choices [Balegas et al. 2015a; Gotsman et al. 2016; Li

et al. 2014, 2015; Sivaramakrishnan et al. 2015; Terry et al. 2013] to avoid coordination [Bailis et al.

2014; Roy et al. 2015]. They proposed proof techniques to verify the sufficiency of user-specified

consistency choices [Gotsman et al. 2016], or require user annotations to identify consistency

choices and do not guarantee convergence [Balegas et al. 2015a]. Further, many approaches [Balegas

et al. 2015a; Gotsman et al. 2016; Li et al. 2014] are crucially dependent on causal consistency as

the weakest possible notion while others have established the scalability limitations of causal

consistency [Bailis et al. 2012a]. We will further survey related works in § 9. Given a sequential

object with its integrity properties, our goal is to automatically synthesize a correct-by-construction

replicated object that guarantees integrity and convergence and avoids unnecessary coordination:

synchronization and tracking dependency between operations. Further, our approach supports

notions weaker than causal consistency; it builds upon eventual, causal and strong notions.

We present a static analysis and protocol co-design. The core of our approach is a novel suffi-

cient condition called well-coordination for integrity and convergence of replicated objects. We

define notions of conflicting and dependent pairs of methods. Well-coordination requires synchro-

nization between conflicting and causality between dependent operations. We statically analyze

the given sequential object and its integrity property, and infer the pairs of conflicting methods

(represented as the conflict graph) and dependent methods. We present two novel distributed

protocols that provide the well-coordination requirements. The protocols are parametric for the

analysis results. We present a non-blocking synchronization protocol based on a novel variant

of the total-order-broadcast protocol. The protocol parameters are decided by a reduction of the

minimum synchronization problem to the maximal clique problem on the conflict graph. We also

present a synchronization protocol that is blocking but allows some of the conflicting methods

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:3

Class Courseware
let Student := Set ⟨sid : SId⟩ in
let Course := Set ⟨cid : CId⟩ in
let Enrolment :=

Set ⟨esid : SId, ecid : CId⟩ in
Σ := Student × Course × Enrolment
I := 𝜆 ⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩.

refIntegrity(𝑒𝑠, esid, 𝑠𝑠, sid) ∧
refIntegrity(𝑒𝑠, ecid, 𝑐𝑠, cid)

register(𝑠) := 𝜆 ⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩.
⟨T, ⟨𝑠𝑠 ∪ {𝑠}, 𝑐𝑠, 𝑒𝑠⟩, ⊥⟩

addCourse(𝑐) := 𝜆 ⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩.
⟨T, ⟨𝑠𝑠, 𝑐𝑠 ∪ {𝑐}, 𝑒𝑠⟩, ⊥⟩

enroll(𝑠, 𝑐) := 𝜆 ⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩.
⟨T, ⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠 ∪ {(𝑠, 𝑐)}⟩, ⊥⟩

deleteCourse(𝑐) := 𝜆 ⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩.
⟨T, ⟨𝑠𝑠, 𝑐𝑠 \ {𝑐}, 𝑒𝑠⟩, ⊥⟩

query := 𝜆 𝜎. ⟨T, 𝜎, 𝜎⟩
(a) User Specification

r a e d q
r ✓ ✓ ✓ ✓ ✓
a ✓ ✓ ✓ × ✓
e ✓ ✓ ✓ ✓ ✓
d ✓ × ✓ ✓ ✓
q ✓ ✓ ✓ ✓ ✓

(b) S-commute

r a e d q
r ✓ ✓ ✓ ✓ ✓
a ✓ ✓ ✓ ✓ ✓
e ✓ ✓ ✓ × ✓
d ✓ ✓ × ✓ ✓
q ✓ ✓ ✓ ✓ ✓

(c) P-concur
r a e d q

r ✓ ✓ ✓ ✓ ✓
a ✓ ✓ ✓ × ✓
e ✓ ✓ ✓ × ✓
d ✓ × × ✓ ✓
q ✓ ✓ ✓ ✓ ✓

(d) Concur

(e) Conflict Graph 𝐺⊲⊳

r a e d q
r ✓ ✓ ✓ ✓ ✓
a ✓ ✓ ✓ ✓ ✓
e × × ✓ ✓ ✓
d ✓ ✓ ✓ ✓ ✓
q ✓ ✓ ✓ ✓ ✓

(f) Independent

(g) Dependency Graph

Fig. 1. Courseware Use-case. refIntegrity(𝑅, 𝑓 , 𝑅′, 𝑓 ′) := ∀𝑟 . 𝑟 ∈ 𝑅 → ∃𝑟 ′. 𝑟 ′ ∈ 𝑅′ ∧ 𝑓 (𝑟) = 𝑓 ′(𝑟 ′)

to execute without synchronization. The protocol parameters are decided by a reduction of the

minimum synchronization problem to the vertex cover problem on the conflict graph.

We present a tool called Hamsaz that given an object definition, uses off-the-shelf SMT solvers

to decide the pairs of conflicting and dependent methods. It then uses the analysis results to

avoid coordination and instantiate the protocols to synthesize replicated objects. We successfully

synthesized replicated objects for a suite of use-cases that we have adopted from the previous

works including CRDTs, bank account, auction, courseware, payroll and tournament. Experiments

show that compared to the strongly consistent baseline, the synthesized replicated objects are

significantly more responsive.

In the rest of the paper, we first present an overview in § 2. We define the well-coordination

condition and prove its sufficiency for correctness in § 3. We present the static analysis and apply it

to use-cases in § 4 and § 5. We then, present the protocols in § 6. The implementation and evaluation

are presented in § 7 and 8 before we conclude with related works and final remarks in § 9 and 10.

2 OVERVIEW
In this section, we illustrate the coordination analysis and synthesis with examples.

Object Replication. We define an object as a record ⟨Σ,I,M⟩ that includes the state type Σ,
an invariant I that is a predicate on the state, and a set of methodsM. Fig. 1.(a) represents the

courseware object that we have adopted from [Gotsman et al. 2016]. The state type Σ is the tuple of

three relations for students 𝑠𝑠 , courses 𝑐𝑠 and enrolments 𝑒𝑠 of students in courses. A relation is a set

of records of fields. The student and course relations 𝑠𝑠 and 𝑐𝑠 are simply a set of records of one field,

student identifiers sid and course identifiers cid respectively. The enrolment relation 𝑒𝑠 is a set of

records of two fields: the student identifier esid and the course identifier ecid, that are foreign keys

from the other two relations. The desired invariant I for the courseware object is the referential

integrity of the two foreign keys of the enrolment relation 𝑒𝑠 . Every student identifier esid in the

enrolment relation 𝑒𝑠 must refer to an existing student identifier sid in the student relation 𝑠𝑠 . The

condition for course identifiers is similar. We represent referential integrity properties using the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:4 Farzin Houshmand and Mohsen Lesani

refIntegrity predicate (defined in the caption). For example, refIntegrity(𝑒𝑠, esid, 𝑠𝑠, sid) states that
for every record 𝑟 in the relation 𝑒𝑠 , there exists a record 𝑟 ′ in the relation 𝑠𝑠 such that esid of 𝑟 is

equal to sid of 𝑟 ′ that is esid(𝑟) = sid(𝑟 ′) where the field names esid and sid are used as functions

on the corresponding records. Methods represent transactions on the object state. A method is a

function𝑚 from the method parameter(s) and the pre-state 𝜎 to a record of ⟨guard, update, retv⟩,
where guard is the boolean precondition of the method, update is the post-state, and retv is the
return value. The courseware object has five methods: register to register a student, addCourse to
add a course, enroll to enroll a student in a course, deleteCourse to delete a course and query to
obtain the current state of the object. The guard of a method captures the semantic preconditions

of the method and not the conditions that preserve the invariant. (We present the conditions that

preserve the invariant in § 3.) For simplicity, the guards in this example are all T. (A guard for

the deleteCourse method could be that the input course should exist in the course relation to be

deleted.) All but the querymethod return no value ⊥. A method call 𝑐 is the application of a method

to its arguments i.e. a function from the pre-state to a record of ⟨guard, update, retv⟩.
Given the definition of a sequential object, the goal is to automatically synthesize a replicated

object. The state of the object is replicated across replicas. Clients can call methods at every replica

and the calls are communicated between replicas. The replicated object is expected to satisfy

both consistency and convergence. Consistency is the safety property that every method call is

executed only when the guard of the method and the invariant are satisfied. Convergence is the
safety property that when no call is in transit, all replicas converge to the same state. We want to

perform coordination only when necessary to preserve these properties. We say that a method call 𝑐

is permissible in a state 𝜎 , written as P(𝜎, 𝑐), if the guard of 𝑐 is satisfied in 𝜎 and 𝑐 results in a post-

state 𝜎 ′ that satisfies the invariant I that is I(𝜎 ′). The post-state of a method call is the pre-state

of the next in a replica. The initial state is assumed to satisfy the invariant. Therefore, if every call

is permissible in its pre-state, then every call is consistent. To execute a method call, we check that

it is permissible in its originating replica. Thus, we say that each method call is locally permissible.
Otherwise, the call is aborted. Still, if the call is simply broadcast, it is not necessarily permissible

when it arrives at other replicas. Some calls need coordination. We now present representative

incorrect executions to showcase the conditions that necessitate coordination.

Well-coordination. Method calls such as adding a course and enrolling a student result in the

same state if their order of execution is swapped. However, the resulting state of some pairs of

methods calls is dependent on their execution order. Fig. 2.(a) shows an execution where a course

𝑐 is added and deleted concurrently at two replicas. The two method calls are executed without

coordination and are broadcast to other replicas and executed on arrival. Thus, the two replicas

execute the two method calls in two different orders and their final states diverge. Reordering the

execution of adding and removing a value from a set does not result in the same state. (As we will see

in § 5, particular CRDT sets can converge even when their operations reorder [Shapiro et al. 2011].)

As Fig. 2.(b) shows, we say that two method calls S-commute (state-commute) written as 𝑐1 ⇆S 𝑐2,

iff starting from the same pre-state, executing them in either of the two orders results in the same

post-state. Otherwise, we say that they S-conflict (state-conflict) and need synchronization; they

should be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds a student and

cannot result in a missing student or course in the enrolment relation. Thus, if it is broadcast and

executed on a replica whose state satisfies the invariant, it preserves the invariant. We call such

method calls invariant-sufficient. However, not all method calls are invariant-sufficient. Fig. 2.(c)

shows an execution where the enrolment of a student 𝑠 in a course 𝑐 is executed in the first replica.

This method call preserves the invariant as both the student 𝑠 and the course 𝑐 belong to the

corresponding relations. A method call that deletes the course 𝑐 is executed concurrently in the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:5

(a) S-conflict
(b) 𝑐1 ⇆S 𝑐2

State-Commutativity

(c) P-conflict
(d) 𝑐1 →P 𝑐2

P-R-Commutativity

(e) Dependence

(f) 𝑐2 ←P 𝑐1
P-L-Commutativity

Fig. 2. Incorrect Executions and Coordination Avoidance Conditions. Square and circle around method calls
in (b) , (d) and (f) are just visual aids to see the movements.

second replica. The enroll call is broadcast and received at the second replica after the delete call. It

does not preserve the invariant at the second replica as it is enrolling in a missing course. These

two method calls should synchronize to preserve the invariant. Nonetheless, some pairs of method

calls such as enrolling in a course and adding the course do not need synchronization. We say that

the call 𝑐1 P-R-commutes (permissible-right-commutes) with the call 𝑐2 written as 𝑐1 →P 𝑐2, iff 𝑐1
stays permissible if it is moved right after 𝑐2. More precisely, as Fig. 2.(d) shows, for every state 𝜎 ,

if 𝑐1 is permissible in 𝜎 , then it is permissible after applying 𝑐2 to 𝜎 as well. We say that a method

call 𝑐1 P-concurs (permissible-concurs) with another call 𝑐2 iff either 𝑐1 is invariant-sufficient or 𝑐1
P-R-commutes with 𝑐2. Otherwise, we say that 𝑐1 P-conflicts (permissible-conflict) with 𝑐2 and they

need synchronization. Enrolling in a course P-concurs with adding the course; however, enrolling

in a course P-conflicts with deleting the course, therefore; they should synchronize.

We say that two method calls concur iff they both S-commute and P-concur with each other.

Otherwise, we say they conflict and need synchronization. We statically analyze methods of the

object and determine whether they satisfy these properties. Fig. 1.(b) and (c) show the result of the

analysis for S-commute and P-concur on the courseware use-case and based on them, Fig. 1.(d)

shows the concur relation. The conflict relation is the complement of the concur relation. Fig. 1.(e)

shows the conflict graph where edges connect pairs of conflicting methods. In our running example,

deleting a course conflicts with adding a course and enrolment.

As explained above, invariant-sufficient method calls always preserve the invariant. However,

there are calls whose preservation of the invariant is dependent on the calls that have executed before

them at that replica. Fig. 2.(e) shows an execution where a student is registered and subsequently

enrolled in a course. The method calls are broadcast, reordered during transmission and executed

in the opposite order in the second replica. The invariant holds after the enrolment in the first

replica as it enrolls an existing student in a course. The student has been just registered. However,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:6 Farzin Houshmand and Mohsen Lesani

the enrolment violates the invariant in the second replica. As the student is enrolled before she is

registered, a missing student is enrolled which violates the referential integrity of the enrolment

relation. Nonetheless, an enrolment is independent of other enrolments. We say that a method

call 𝑐2 P-L-commutes (permissible-left-commutes) with a method call 𝑐1 written as 𝑐2 ←P 𝑐1, iff 𝑐2
remains permissible if it is moved left before 𝑐1. More precisely, as Fig. 2.(f) shows, for every state

𝜎 , if 𝑐2 is permissible in the state resulted from executing 𝑐1 on 𝜎 , then 𝑐2 is permissible in 𝜎 as well.

We say that a method call 𝑐2 is independent of 𝑐1 iff 𝑐2 is either invariant-sufficient or P-L-commutes

with 𝑐1. The dependencies of a method call is the set of method calls that it is dependent on. If 𝑐2
is dependent on 𝑐1 and 𝑐1 is executed before 𝑐2 in the originating replica of 𝑐2, then 𝑐2 should be

applied to other replicas only if 𝑐1 is already applied. In Fig. 2.(e), the enrolment is not invariant-

sufficient and does not P-L-commute with the registration of the student; thus, the enrolment is

dependent on the registration. The enrolment in the second replica should be postponed to after the

student is registered. Nonetheless, an enrolment P-L-commutes with other enrolments. Fig. 1.(f)

shows the result of static analysis for the independence relation on the courseware use-case. The

dependence relation is the complement of the independence relation. The dependence graph is

shown in Fig. 1.(g). Enrolment is dependent on registration and adding a course.

We say that an execution is conflict-synchronizing if the same order is enforced for conflicting

method calls across all replicas. We say that an execution is dependency-preserving if every method

call is executed only after its dependencies from its originating replica are already executed. We

define well-coordinated executions as locally permissible, conflict-synchronizing and dependency-

preserving executions. In § 3, we formally define well-coordination and prove that it is sufficient

for consistency and convergence of replicas.

Protocols.We now outline our protocols that provide well-coordination and are used to syn-

thesize replicated objects. For the given object, a static analysis finds the conflict and dependency

relations that we saw above. The analysis results are used to instantiate the protocols. In this

overview, we assume that methods are independent and focus on synchronization of conflicting

methods. We outline two protocols. The first protocol is non-blocking and makes progress even

if some replicas crash. The second protocol is blocking but can execute calls on one method of a

conflicting pair without synchronization.

Non-Blocking Protocol. The high-level idea is to find sets of conflicting calls and synchronize

calls in each set. We remember that a clique is a subset of the vertices of a graph such that any

of its distinct pair of vertices are adjacent. We find the maximal cliques of the conflict graph and

synchronize the methods of each maximal clique with each other. For example, in the conflict graph

of the courseware use-case shown in Fig. 1.(e), the maximal cliques are 𝑐𝑙1 = {𝑑, 𝑎} and 𝑐𝑙2 = {𝑑, 𝑒}
where 𝑑 is deletion, 𝑎 is addition and 𝑒 is enrolment. Deletion 𝑑 and addition 𝑎 and also deletion 𝑑

and enrolment 𝑒 should synchronize with each other. Deletion 𝑑 is a member of two cliques and

should synchronize in both. We use a variant of the classical total-order broadcast (TOB) protocol

to deliver method calls in the same order at all replicas. We use a TOB instance for each maximal

clique. In our example, we use the TOB instances tob1 and tob2 for the cliques 𝑐𝑙1 and 𝑐𝑙2. A call

on a method such as 𝑑 that is a member of multiple maximal cliques should be totally ordered

with respect to methods of each of those cliques. The call is broadcast to each TOB instance and is

executed only when it is ordered and delivered by all of them. The non-blocking property of the

protocol is derived from the termination property of TOB when a majority of nodes are correct.

As an example, Fig. 3.(a) shows an execution of the protocol on the courseware use-case. Three

methods are called at three replicas: adding 𝑎 a course 𝑐 , enrolling 𝑒 a student 𝑠 in the course 𝑐 and

deleting 𝑑 the course 𝑐 . The call 𝑎 is broadcast using tob1, and the call 𝑒 is broadcast using tob2. The
call 𝑑 has to be broadcast to both tob1 and tob2. It is first broadcast to tob1. The sub-protocol tob1
decides to order and deliver 𝑎 before 𝑑 . Thus, 𝑎 is delivered first and executed at the three replicas.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:7

(a)

(b)

Fig. 3. (a) Non-blocking Synchronization Protocol. The symbols ↓ and ↑ show requests to and responses from
the protocols. Events to the main protocol are shown above and events to the sub-protocols are shown below
the horizontal time line. The symbols ① and ② represent events of the first and second TOB sub-protocols
respectively. Blocks show the execution of method calls. (b) Blocking Synchronization Protocol. The symbols
↓ and ↑ show requests to and responses from the protocols. Diagonal arrows show message transmission.

The sub-protocol tob2 independently delivers 𝑒 . It is notable that the execution order of 𝑒 and 𝑎

that belong to distinct cliques and are broadcast to distinct TOB instances are different in the first

and the second replica. Once 𝑑 is delivered by tob1, it is broadcast to tob2. It is finally delivered by

tob2 as well and executed. Thus, the call 𝑑 is finally executed after both 𝑎 and 𝑒 at all replicas.

In the above execution, when the call 𝑑 is delivered by tob1, it is implicitly assigned a particular

place in the total order of calls in the first clique. However, it cannot execute on delivery from

tob1 and should be broadcast by tob2. To keep the place of 𝑑 , other calls delivered by tob1 should
wait for 𝑑 to finish its synchronization in the second clique. Therefore, we use a queue per TOB.

Method calls that are delivered by a TOB are enqueued to its corresponding queue. A call should

wait and can be executed only when it appears at the head of the queues of all TOBs that it is

broadcast to. Unfortunately naive implementation of waiting can potentially make mutual waiting

and deadlocks. For example, two calls on 𝑑 can be ordered differently by tob1 and tob2 and wait for

each other in a deadlock. In § 6.1, we revisit this problem and present and use a novel variant of

TOB called multi-total-order broadcast (MTOB) that prevents deadlocks.

Blocking Protocol. If two method calls conflict, the previous protocol requires both to go through

synchronization. We now present an overview of a protocol that pushes synchronization to only

one of the two. Consider that there are two conflicting methods𝑚 and𝑚′ and we want to let calls

on𝑚 execute without synchronization. The idea is that calls on𝑚′ reach out to other replicas, block

the execution of calls on𝑚 (so that new calls on𝑚 are not accepted) and then replicas exchange

updates on preceding calls on𝑚. Once the replicas apply the updates, they have the same set of

executed calls on𝑚. Then, the call on𝑚′ is executed at all replicas and calls on𝑚 are unblocked.

We remember that a minimum vertex cover of a graph is a smallest subset of the vertices such

that every edge has at least one endpoint in the cover. To avoid synchronization, we find a minimum

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:8 Farzin Houshmand and Mohsen Lesani

vertex cover of the conflict graph and synchronize only when methods in the cover are called. For

example, in the conflict graph of the courseware use-case, shown in Fig. 1.(e), the minimum vertex

cover is the singleton set of the delete method {𝑑}. Only deletion 𝑑 performs synchronization and

addition 𝑎 and enrolment 𝑒 can execute without synchronization. Further, methods can be assigned

weights inversely proportional to their call frequency and weighted minimum vertex cover can

optimize the average responsiveness of the replicated object.

As an example, Fig. 3.(b) shows an execution of the protocol on the courseware use-case. The first

and the third replicas call synchronization-free methods 𝑎 and 𝑒 . They are simply broadcast and

executed on arrival. In this execution, the delivery of these messages are delayed. The second replica

calls method 𝑑 . The call 𝑑 is broadcast and on its delivery, all replicas block the conflicting methods

𝑎 and 𝑒 . To update other replicas, each replica subsequently broadcasts the set of conflicting method

calls that it has executed. The first and third replicas broadcast their calls on 𝑎 and 𝑒 respectively.

These updates are applied on arrival. After all the updates are applied, every replica has executed

the same set of calls that conflict with 𝑑 although possibly in different orders. Then, the call on 𝑑 is

executed and the conflicting methods are unblocked. This protocol makes replicas wait for each

other; thus, crash of a replica can prevent progress of others. Following fundamental impossibility

results [Fischer et al. 1985; Gilbert and Lynch 2002], this protocol has a trade-off between availability

and consistency. We will revisit this trade-off in § 6.2.

3 WELL-COORDINATION
In this section, we define the well-coordination condition and prove that it is sufficient for state

integrity and convergence. We first define replicated executions and their correctness. Then, we

present the well-coordination conditions and prove that well-coordinated executions are correct.

An object is a record ⟨Σ,I,M⟩ that includes a state type Σ, an invariant I on the state, and a

set of methodsM. A method is a function𝑚 from the parameters and the pre-state to a record

of ⟨guard, update, retv⟩, where guard is a boolean expression that defines when the method can

be called, and update and retv are expressions for the post-state and the return value. We use

guard, update and retv as functions that extract elements of the record. A method call 𝑐 is a method

applied to its argument i.e. a function from the current state to a record of ⟨guard, update, retv⟩.
Execution.We first define the context c for a replicated execution. The state of each replica is

initialized to the same state 𝜎0 that satisfies the invariant I. The user can request a call on a method

at every replica that is called the originating replica of the call. The call is then propagated from

the originating replica and executed at other replicas. We uniquely identify requests by identifiers.

Definition 1 (Execution Context). An execution context c is the record ⟨𝜎0c, Rc, callc, origc⟩
where 𝜎0c is an initial state that satisfies the invariant i.e. I(𝜎0c), Rc is a set of request identifiers, callc
is a function from Rc to method calls, and origc is a function from Rc to replicas N .

We model an execution at a replica as a permutation of a set of request identifiers.

Definition 2 (Execution). In a context c, an execution x of a set of requests 𝑅 ⊆ Rc is a bijective
from positions [0..|𝑅 | − 1] to 𝑅.
We denote the range of x as R(x). An execution x of 𝑅 defines the total order ≺x on 𝑅. A request 𝑟

precedes another request 𝑟 ′ in an execution x written as 𝑟 ≺x 𝑟 ′ iff x−1 (𝑟) < x−1 (𝑟 ′).

In a replicated execution, calls are propagated and eventually executed at every replica. Conver-

gence is a condition on the state of the replicas after all calls are applied at all replicas. Therefore,

a replicated execution is a mapping from replicas to permutations of the same set of calls. For

example, Fig. 4.(a) shows a replicated execution where nine requests are executed. Propagation

of calls from the originating replicas to other replicas creates a visibility relation between calls

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:9

across replicas. For example, in Fig. 4.(a), arrows show the visibility relation. Consequently, the

happens-before relation is the transitive closure of the visibility relation and the execution order of

each replica. The happens-before relation is acyclic. In Fig. 4.(a), as the direction of all arrows is

forward, the happens-before relation is acyclic.

Definition 3 (Replicated Execution). In a context c, a replicated execution xs is a function
from replicas N to executions of Rc such that (1) let the execution order ≺xs on N × Rc be defined as:
for every replica 𝑛 and pair of requests 𝑟 and 𝑟 ′, (𝑛, 𝑟) ≺xs (𝑛, 𝑟 ′) iff 𝑟 ≺xs(𝑛) 𝑟 ′, (2) let the visibility
relation⇝xs on N × Rc be defined as: for every request 𝑟 , for every replica 𝑛, (origc (𝑟), 𝑟) ⇝xs (𝑛, 𝑟)
iff 𝑛 ≠ origc (𝑟), (3) let the happens-before relation hbxs be (≺xs ∪⇝xs)∗ then, hbxs is acyclic.

The post-state of each call at a replica is the result of applying the call to its pre-state. Thus, a

sequence of calls result in a sequence of states.

Definition 4 (State). In a context c, the state function s of an execution x is a function from
positions [0..|R(x) |] to states Σ such that s(0) = 𝜎0c and for every 0 ≤ 𝑖 < |R(x) |, s(𝑖 + 1) =

update(callc (x(𝑖))) (s(𝑖)). The state function is lifted to replicated executions. The state function ss of
a replicated execution xs is a function from replicas 𝑛 inN to the state function of the execution xs(𝑛).

Correctness.We now define correctness as convergence and integrity.

A replicated execution is convergent if it leads to the same final state for all replicas.

Definition 5 (Convergent). A replicated execution xs of a context c is convergent iff for every
pair of replicas 𝑛 and 𝑛′, ss(𝑛) (|Rc |) = ss(𝑛′) (|Rc |) where ss is the state function of xs.

In the definition of methods of an object, the user relies on the invariant in the pre-state. Further,

methods have explicit guards that define the subset of states that they are applicable to. We say

that a method call is consistent at a state if the invariant and the guard of the method hold in that

state. Method calls should be executed only on states that they are consistent in.

Definition 6 (Consistent Call). A method call 𝑐 is consistent in a state 𝜎 , written as cons(𝜎, 𝑐),
iff guard(𝑐) (𝜎) and I(𝜎).

The consistency condition is simply lifted to executions and replicated executions.

Definition 7 (Consistent Execution). In a context c, a request 𝑟 is consistent in an execution
x written as cons(c, x, 𝑟) iff cons(s(𝑖), callc (𝑟)) where s is the state function of x, and 𝑖 is x−1 (𝑟). In a
context c, an execution x is consistent written as cons(c, x) iff every request 𝑟 in R(x) is consistent in x.
A replicated execution xs of a context c is consistent written as cons(c, xs) iff for every replica 𝑛, the
execution xs(𝑛) is consistent.

Consistency of a replicated execution requires invariant preservation (that is state integrity) at

all replicas. We define correctness as both consistency and convergence.

Definition 8 (Correct). A replicated execution is correct iff it is consistent and convergent.

Well-coordination. Now, we define the well-coordination conditions. We say that a call is

permissible in a state iff its guard holds in that state and the invariant holds after the call is applied.

Definition 9 (Permissible Call). A method call 𝑐 is permissible in a state 𝜎 , written as P(𝜎, 𝑐),
iff guard(𝑐) (𝜎) and I(update(𝑐) (𝜎)).

Note that in contrast to the definition of consistency above that requires the invariant to hold

in the pre-state, permissibility requires it to hold in the post-state. By induction, permissibility

leads to consistency. The initial state satisfies the invariant; thus, for every call, if all the previous

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:10 Farzin Houshmand and Mohsen Lesani

calls have maintained the invariant, the call is applied to a state that satisfies the invariant as well.

Permissibility implies that the call preserves the invariant. Similar to consistency, permissibility is

simply lifted to executions and replicated executions. For brevity, we elide this to the appendix § 1

[Appendix 2018].

Well-coordination requires each call to be permissible in its originating replica. If a call is

requested at a replica but is not permissible in its current state, the call should be aborted (and

maybe retried later).

Definition 10 (Locally permissible). A replicated execution xs of a context c is locally permissible
iff every request 𝑟 is permissible in the execution of its originating replica orig𝑐 (𝑟).

Although permissibility is directly checked only locally at the originating replicas, we will show

that well-coordination conditions ensure the global permissibility of calls at every replica.

As we saw in Fig. 2.(b), we say that two method calls S-commute (state-commute) if starting

from every pre-state, the post-state is the same if the calls are reordered.

Definition 11 (State-Commutativity and State-Conflict). Two method calls 𝑐1 and 𝑐2 S-
commute, written as 𝑐1 ⇆S 𝑐2 iff for every state𝜎 , update(𝑐2) (update(𝑐1) (𝜎)) = update(𝑐1) (update(𝑐2) (𝜎)).
Otherwise, they S-conflict, written as 𝑐1 ⊲⊳S 𝑐2.

S-conflicting calls need synchronization since we saw in Fig. 2.(a) that they cause state divergence.

We note that S-commutativity and the following properties are defined on (dynamic) method

calls; however, they are simply lifted to (static) methods. For instance, we say that two methods

S-commute iff all calls on the two S-commute. In § 4, we consider these properties on methods.

There are calls such as deposit on a bank account that are always permissible as far as they are

applied to a state that satisfies the invariant. We call these calls invariant-sufficient.

Definition 12 (Invariant-Sufficient). A call 𝑐 is invariant-sufficient iff for every state 𝜎 if
I(𝜎) then P(𝜎, 𝑐).

Every call is checked to be permissible in its originating replica. However, as we saw in Fig. 2.(c),

if a call is simply broadcast, when it arrives at other replicas, other calls may have been executed at

the destination replicas that were not executed at the originating replica. These extra calls maymake

the arrived call impermissible. As we saw in Fig. 2.(d), we say that a method call P-R-commutes

(permissible-right-commutes) another if starting from any state where the former is permissible,

moving it right after the latter does not violate permissibility.

Definition 13 (Permissible-Right-Commutativity). The call 𝑐1 P-R-commutes with the call 𝑐2
written as 𝑐1 →P 𝑐2 iff for every state 𝜎 , if P(𝜎, 𝑐1) then P(update(𝑐2) (𝜎), 𝑐1).

If a call is invariant-sufficient or P-R-commutes another call, we say that the former P-concurs
(permissible-concurs) with the latter. Otherwise, we say that the former P-conflicts (permissible-

conflicts) with the latter.

Definition 14 (Permissible-Concur and Permissible-Conflict). A call 𝑐1 P-concurs with a
call 𝑐2 iff 𝑐1 is invariant-sufficient or 𝑐1 →P 𝑐2. Otherwise, 𝑐1 P-conflicts with 𝑐2.

A pair of calls can avoid synchronization only if they both S-commute and P-concur with
respect to each other.

Definition 15 (Concur and Conflict). A pair of calls 𝑐1 and 𝑐2 concur iff they S-commute and
P-concur with each other. Otherwise, they conflict written as 𝑐1 ⊲⊳ 𝑐2.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:11

Concur and conflict relations are symmetric. The conflict relation on methods can be represented

as the conflict graph 𝐺⊲⊳: an undirected graph where the vertices are the set of methods and the

edges are the pairs of conflicting methods. A replicated execution is conflict-synchronizing if every

pair of conflicting calls have the same order across replicas.

Definition 16 (Conflict-synchronizing). A replicated execution xs of a context c is conflict-
synchronizing iff for every pair of requests 𝑟 and 𝑟 ′ in Rc such that callc (𝑟) ⊲⊳ callc (𝑟 ′), for every pair
of replicas 𝑛 and 𝑛′, if 𝑟 ≺xs(𝑛) 𝑟 ′ then 𝑟 ≺xs(𝑛′) 𝑟 ′.
Similar to conflict-synchronizing, S-conflict-synchronizing and P-conflict-synchronizing are

similarly defined with respect to S-conflict and P-conflict. (We elide them to the appendix).

As we saw in Fig. 2.(e), when a call arrives at other replicas, other calls that were executed

at the originating replica may have not arrived and executed at destination replicas. However,

permissibility of the call may be dependent on the missing calls. As we saw in Fig. 2.(f), we say

that a method call P-L-commutes (permissible-left-commutes) with another if moving the former

left before the latter does not render the former impermissible.

Definition 17 (Permissible-Left-Commutative). A call 𝑐2 P-L-commutes a call 𝑐1, written as
𝑐2 ←P 𝑐1 iff for every state 𝜎 , if P(update(𝑐1) (𝜎), 𝑐2) then P(𝜎, 𝑐2).

A call can avoid tracking dependencies to another call if the former is invariant-sufficient or

P-L-commutes with the latter.

Definition 18 (Independent and Dependent). A call 𝑐2 is independent of 𝑐1, written as 𝑐2 ⊥⊥ 𝑐1,
iff either 𝑐2 is invariant-sufficient or 𝑐2 ←P 𝑐1. Otherwise, 𝑐2 is dependent on 𝑐1, written as 𝑐2 ⊥̸⊥ 𝑐1.

The dependency relation between methods can be represented as a directed graph that we call the

dependency graph. A replicated execution is dependency-preserving if for every call, its preceding

dependencies in its originating replica precede it in the other replicas as well.

Definition 19 (Dependency-Preserving). A replicated execution xs of a context c is dependency-
preserving iff for every pair of requests 𝑟 and 𝑟 ′ in Rc, such that callc (𝑟 ′) ⊥̸⊥ callc (𝑟), if 𝑟 ≺xs(origc (𝑟 ′)) 𝑟

′,
then for every replica 𝑛, 𝑟 ≺xs(𝑛) 𝑟 ′.

We note that in Def. 16, call orders in any replica necessitates the same orders in other replicas.

In contrast, in Def. 19, only orders between a call and its preceding calls in its originating replica
necessitates the same order in other replicas.

A replicated execution is well-coordinated if the permissibility of calls are checked at the orig-

inating replicas, conflicting calls are synchronized and the dependencies are preserved. Well-

coordination is a sufficient condition for the correctness of replicated executions.

Definition 20 (Well-coordination). A replicated execution is well-coordinated iff it is locally
permissible, conflict-synchronizing, and dependency-preserving.

Theorem 1. Every well-coordinated replicated execution is correct.

The full proof is available in the appendix § 1. It follows from the definition of well-coordination

and correct (Def. 20 and Def. 8) and the following two lemmas. We present the high-level ideas.

Lemma 1. Every S-conflict-synchronizing replicated execution is convergent.

Consider two executions x and x′ from the replicated execution (with the same set of requests

possibly in different orders). Assume that x and x′ are S-conflict-synchronizing with respect to

each other. We prove that these two executions result in the same post-state. By induction, x′ can
be incrementally converted to x from left to right without changing its final post-state. Assume

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:12 Farzin Houshmand and Mohsen Lesani

(a) (b)

Fig. 4. Correctness of well-coordinated replicated executions

that the requests until location 𝑖 are the same in x and x′. Consider the request 𝑟 at position 𝑖 in x.
If 𝑟 appears later at position 𝑗 in x′ where 𝑗 > 𝑖 , then we show that 𝑟 can be moved left in x′ to
position 𝑖 . The requests between 𝑖 and 𝑗 in 𝑛′ precede 𝑟 in x′ but succeed 𝑟 in x. Therefore, by the

S-conflict-synchronization condition, 𝑟 S-commutes with requests between 𝑖 and 𝑗 in x′. Thus, 𝑟
can be moved left to location 𝑖 in x′ without any change to the post-state. ■

Lemma 2. Every well-coordinated replicated execution is consistent.

We illustrate the crucial part of the proof by a figure. Let xs be a coordinated replicated execution.
To prove consistency of xs, we need to prove consistency of every request at the execution of every

replica. We will prove that every request at every replica is permissible. This implies that (1) the

guard of every request is satisfied. and (2) the post-state of every request satisfies the invariant.

Based on [2] and the fact that the initial state is defined to satisfy the invariant, we have that (3)

the pre-state of every request satisfies the invariant. From the facts [1] and [3] above, we have that

xs is consistent. We now show the permissibility of every request 𝑟 ∗. The proof is by induction

on a linear extension of hbxs. Let the request 𝑟 ∗ at the replica 𝑛 be the current request. If 𝑛 is the

originating replica of 𝑟 ∗, then 𝑟 ∗ is trivially permissible by the locally permissible condition; it states

that every replica only originates permissible requests. Otherwise, let 𝑛′ be the originating replica

of 𝑟 ∗. If 𝑟 ∗ is invariant-sufficient, we only need to show that the pre-state of 𝑟 ∗ in 𝑛 satisfies the

invariant. The pre-state of 𝑟 ∗ is either the initial state that by definition satisfies the invariant or is

the post-state of the preceding request in 𝑛. By the induction hypothesis, the preceding request is

permissible that implies that its post-state satisfies the invariant.

Now we consider that 𝑟 ∗ is not invariant-sufficient. We illustrate the proof of permissibility of 𝑟 ∗

in Fig. 4. Let 𝜎 be the pre-state of 𝑟 ∗ in xs(𝑛). We want to show that 𝑟 ∗ is permissible in 𝜎 . Let 𝜎 ′ be
the pre-state of 𝑟 ∗ in xs(𝑛′) (the execution of the originating replica). Let 𝑅 be the requests that

precede 𝑟 ∗ in both xs(𝑛) and xs(𝑛′). In Fig. 4.(a), 𝑅 is the set of shaded requests {𝑟1, 𝑟2, 𝑟3, 𝑟4}. Let 𝑅′
be the requests that precede 𝑟 ∗ in 𝑥𝑠 (𝑛′) but do not precede 𝑟 ∗ in xs(𝑛). In Fig. 4.(a), 𝑅′ is {𝑟 ′

1
, 𝑟 ′

2
}.

Consider a request 𝑟 in 𝑅 and a request 𝑟 ′ in 𝑅′ such that 𝑟 ′ precedes 𝑟 in xs(𝑛′). In Fig. 4.(a), 𝑟 can

be 𝑟4 and 𝑟
′
can be 𝑟 ′

2
. The request 𝑟 ′ precedes 𝑟 in xs(𝑛′) but succeeds it in xs(𝑛). Therefore, by the

S-conflict-synchronization condition, 𝑟 ′ and 𝑟 S-commute. In Fig. 4.(a), we commute 𝑟 ′
2
with 𝑟4.

Then, we commute 𝑟 ′
1
with 𝑟3 and 𝑟4. Thus, by induction, each request in 𝑅′ from the rightmost to

the leftmost in xs(𝑛′) can be moved right to form a block of requests before 𝑟 ∗ in xs(𝑛′) without
changing the pre-state 𝜎 ′ of 𝑟 ∗. Let x′ denote the result of the commute. Fig. 4.(b) shows x′ where
the pre-state of 𝑟 ∗ is still 𝜎 ′. In Fig. 4.(a), the requests 𝑅′ precede 𝑟 ∗ in xs(𝑛′) but succeed it in xs(𝑛).
Therefore, by the dependency-preserving condition, 𝑟 ∗ is independent of the requests in 𝑅′. In
Fig. 4.(a), 𝑟 ∗ is independent of 𝑟 ′

1
and 𝑟 ′

2
. By the locally permissible condition and that 𝑛′ is the

originating replica of 𝑟 ∗, the request 𝑟 ∗ is permissible at its pre-state 𝜎 ′ in xs(𝑛′). By induction

from right to left in x′, using the independence condition, 𝑟 ∗ is permissible at the pre-state of each

request 𝑟 ′ in 𝑅′. Thus, 𝑟 ∗ is permissible at the pre-state of 𝑅′ that is the post-state of 𝑅 in x′. In
Fig. 4.(b), 𝑟 ∗ is permissible at the states 𝜎 ′

1
and 𝜎 ′

2
.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:13

fun ConflictRel() : M ×M → B {
𝐶1 var SCom : M ×M → B
𝐶2 var ISuff : M → B
𝐶3 var PRCom, PConcur : M ×M → B
𝐶4 var Concur,Conflict : M ×M → B
𝐶5 let P B 𝜆𝜎, 𝑐. guard(𝑐) (𝜎) ∧ I (update(𝑐) (𝜎))
𝐶6 foreach (𝑚1 ∈ M,𝑚2 ∈ M)
𝐶7 SCom(𝑚1,𝑚2) B

⊢ ∀𝜎, 𝑎1, 𝑎2
update(𝑚2 (𝑎2)) (update(𝑚1 (𝑎1)) (𝜎)) =
update(𝑚1 (𝑎1)) (update(𝑚2 (𝑎2)) (𝜎))

𝐶8 foreach (𝑚 ∈ M)
𝐶9 ISuff (𝑚) B

⊢ ∀𝜎, 𝑎. I(𝜎) → P(𝜎,𝑚 (𝑎))
𝐶10 foreach (𝑚1 ∈ M,𝑚2 ∈ M)
𝐶11 PRCom(𝑚1,𝑚2) B

⊢ ∀𝜎, 𝑎1, 𝑎2 .
P(𝜎,𝑚1 (𝑎1)) →
P(update(𝑚2 (𝑎2)) (𝜎),𝑚1 (𝑎1))

𝐶12 PConcur(𝑚1,𝑚2) B ISuff (𝑚1) or
PRCom(𝑚1,𝑚2)

𝐶13 foreach (𝑚1 ∈ M,𝑚2 ∈ M)

𝐶14 Concur(𝑚1,𝑚2) B SCom(𝑚1,𝑚2) and
PConcur(𝑚1,𝑚2) and
PConcur(𝑚2,𝑚1)

𝐶15 Conflict(𝑚1,𝑚2) B not Concur(𝑚1,𝑚2)
𝐶16 return Conflict }

fun DepRel() : M ×M → B {
𝐷1 var ISuff : M → B
𝐷2 var LRCom : M ×M → B
𝐷3 var Dep, Indep : M ×M → B
𝐷4 let P B 𝜆𝜎, 𝑐. guard(𝑐) (𝜎) ∧ I (update(𝑐) (𝜎))
𝐷5 foreach (𝑚 ∈ M)
𝐷6 ISuff (𝑚) B

⊢ ∀𝜎, 𝑎. I(𝜎) → P(𝜎,𝑚 (𝑎))
𝐷7 foreach (𝑚2 ∈ M,𝑚1 ∈ M)
𝐷8 PLCom(𝑚2,𝑚1) B

⊢ ∀𝜎, 𝑎1, 𝑎2 .
P(update(𝑚1 (𝑎1)) (𝜎),𝑚2 (𝑎2)) →
P(𝜎,𝑚2 (𝑎2))

𝐷9 Indep(𝑚2,𝑚1) B ISuff (𝑚2) or
𝐷10 PLCom(𝑚2,𝑚1)
𝐷11 Dep(𝑚2,𝑚1) B not Indep(𝑚2,𝑚1)
𝐷12 return Dep }

Fig. 5. Static analysis to calculate the conflict and dependency relations. The object ⟨Σ,I,M⟩ is given.

The argument above for moving requests in xs(𝑛′) can be applied to xs(𝑛) as well. Let 𝑅′′ be
the requests that precede 𝑟 ∗ in 𝑥𝑠 (𝑛) but do not precede it in 𝑥𝑠 (𝑛′). In Fig. 4.(a), 𝑅′′ is {𝑟 ′′

1
, 𝑟 ′′

2
}.

S-commutativity allows moving 𝑅′′ right in xs(𝑛). The requests 𝑅′′ can be moved to form a block

immediately before 𝑟 ∗ without changing the pre-state of 𝑟 ∗. Let x denote the result of the commute.

Fig. 4.(b) shows x. The requests {𝑟 ′′
1
, 𝑟 ′′

2
} moved right immediately before 𝑟 ∗. The set of requests

𝑅 appear on the left side of both x and x′ although possibly in different orders. By the argument

presented above for Lemma 1 using S-commutativity, it is proved that the post-state of the set of

requests 𝑅 in x and x′ is the same. We showed above that 𝑟 ∗ is permissible in the post-state of 𝑅 in

x′. Thus, 𝑟 ∗ is permissible in the post-state of 𝑅 in x as well. In other words, 𝑟 ∗ is permissible at the

pre-state of the set of requests 𝑅′′ in x. In Fig. 4.(b), 𝑟 ∗ is permissible in 𝜎 ′
2
, the post-state of 𝑟4 in x.

The requests 𝑅′′ precede 𝑟 ∗ in xs(𝑛) but succeed it in xs(𝑛′). Therefore, by the P-conflict-
synchronization condition, each request in 𝑅′′ P-R-commutes with 𝑟 ∗. In Fig. 4.(a), 𝑟 ∗ P-R-commute

with 𝑟 ′′
1
and 𝑟 ′′

2
. We proved above that the request 𝑟 ∗ is permissible at the pre-state of 𝑅′′ in x. By

induction from left to right in x, using the P-R-commutativity, 𝑟 ∗ is permissible at the post-state

of each request 𝑟 ′′ in 𝑅′′. Therefore, 𝑟 ∗ is permissible at its pre-state 𝜎 in x. In Fig. 4.(b), 𝑟 ∗ is
permissible at the states 𝜎1 and 𝜎 . Therefore, 𝑟

∗
is permissible at its pre-state in xs(𝑛). ■

We note that conflict-synchronization is stronger than dependency-preservation. If a request 𝑟

both conflicts with and depends on 𝑟 ′, it is sufficient to synchronize 𝑟 with 𝑟 ′ and its dependencies

to 𝑟 ′ do not need to be tracked.

4 STATIC ANALYSIS
In the previous section, we defined conflict and dependency relations between methods. In this

section, we recast the definitions as a static analysis that calculates these relations. The user specifies

an object ⟨Σ,I,M⟩ where Σ is the state type, I is the invariant andM is the set of methods. Given

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:14 Farzin Houshmand and Mohsen Lesani

the object, Fig. 5 presents two functions ConflictRel() andDepRel() that calculate the two relations.
We consider each one in turn and apply them to our running example.

The function ConflictRel() returns the conflict relation as a mapping from pairs of methods

M ×M to boolean B. It first calculates the S-commutativity relation in the variable SCom (at

lines 𝐶6-𝐶7). Following Def. 11, for every pair of methods𝑚1 and𝑚2, SCom(𝑚1,𝑚2) is true iff the

following assertion is valid: for every pre-state 𝜎 , argument 𝑎1 of𝑚1 and argument 𝑎2 for𝑚2, the

post-states of applying the two calls𝑚1 (𝑎1) and𝑚2 (𝑎2) on 𝜎 in the two different orders are equal.

We use the notation ⊢ A to represent whether the assertion A is valid. To check the validity of an

assertion, we use SMT solvers to check the satisfiability of its negation.

For example, Fig. 1.(b) shows that the two methods addCourse and enroll S-commute. Let us see

how this is calculated. To calculate the value of SCom(addCourse, enroll), the assertion in line 𝐶7

is instantiated to the following assertion. (The pre-state 𝜎 is expanded to ⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩, the argument

of addCourse is 𝑐 and the arguments of enroll are 𝑠 and 𝑐 ′.)

⊢ ∀𝑠𝑠, 𝑐𝑠, 𝑒𝑠, 𝑐, 𝑠, 𝑐 ′. update(enroll(𝑠, 𝑐 ′)) (update(addCourse(𝑐)) (⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩)) =
update(addCourse(𝑐)) (update(enroll(𝑠, 𝑐 ′)) (⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩)) (1)

Based on the object definition in Fig. 1.(a), the two expressions can be simplified as follows:

Left exp: update(enroll(𝑠, 𝑐 ′)) (update(addCourse(𝑐)) (⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩)) =

update(enroll(𝑠, 𝑐 ′)) (⟨𝑠𝑠, 𝑐𝑠 ∪ {𝑐}, 𝑒𝑠⟩) = ⟨𝑠𝑠, 𝑐𝑠 ∪ {𝑐}, 𝑒𝑠 ∪ {⟨𝑠, 𝑐 ′⟩}⟩
Right exp: update(addCourse(𝑐)) (update(enroll(𝑠, 𝑐 ′)) (⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩)) =

update(addCourse(𝑐)) (⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠 ∪ {⟨𝑠, 𝑐 ′⟩}⟩) = ⟨𝑠𝑠, 𝑐𝑠 ∪ {𝑐}, 𝑒𝑠 ∪ {⟨𝑠, 𝑐 ′⟩}⟩

(2)

The two expressions are equal; thus, the assertion is valid and the two methods S-commute.

Similar to S-commutativity, the other relations are calculated by a validity check for their

definitions. In summary, the ConflictRel() function calculates the invariant-sufficiency relation

(Def. 12) in the variable ISuff (at𝐶8-𝐶9) and the P-R-commutativity relation (Def. 13) in the variable

PRCom (at 𝐶10-𝐶11). They are used to calculate the P-concur relation (Def. 14) in the variable

PConcur (at line 𝐶12). Then, the concur relation (Def. 15) for a pair of methods is calculated in

the variable Concur as the conjunct of S-commutativity and P-concur of the method pair with

respect to each other (at𝐶13-𝐶14). (We note that S-commutativity is symmetric.) Finally, the conflict

relation (Def. 15) is calculated as the negation of the concur relation in the variable Conflict and
returned (at 𝐶15-𝐶16). These steps calculate the sub-figures (b) to (e) of Fig. 1 in order.

The function DepRel() calculates the dependency relation. It first calculates invariant-sufficiency

(Def. 12) in the variable ISuff (at lines 𝐷5-𝐷6) and P-L-commutativity (Def. 17) in the variable

PLCom (at 𝐷7-𝐷8). They are used to calculate the independence relation (Def. 18) in the variable

Indep (at 𝐷9-𝐷10). Finally, the dependence relation (Def. 18) is calculated as the negation of the

independence relation in the variable Dep and returned (at 𝐷11-𝐶12).

Fig. 1.(f) and (g) show that enroll is dependent on addCourse. Let us see how this is calculated. We

show that enroll is not invariant-sufficient and does not P-L-commute with addCourse either. First,
we show that the method enroll is not invariant-sufficient. Intuitively, even if the invariant holds in

the pre-state of enroll, it does not trivially hold in its post-state. The invariant-sufficiency assertion

that is checked at 𝐷6 is instantiated to the following assertion: (The pre-state 𝜎 is expanded to

⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩ and the arguments of enroll are 𝑠 and 𝑐 .)

⊢ ∀𝑠𝑠, 𝑐𝑠, 𝑒𝑠, 𝑠, 𝑐 . I(⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩) → P(⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩, enroll(𝑠, 𝑐)) (3)

After unrolling P, the conclusion of the implication includes the following conjunct

I(update(enroll(𝑠, 𝑐)) (⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩)) = I(⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠 ∪ {⟨𝑠, 𝑐⟩}⟩) =

refIntegrity(𝑒𝑠 ∪ {⟨𝑠, 𝑐⟩}, esid, 𝑠𝑠, sid) ∧ refIntegrity(𝑒𝑠 ∪ {⟨𝑠, 𝑐⟩}, ecid, 𝑐𝑠, cid) (4)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:15

According to the definition of referential integrity in the caption of Fig. 1, the first conjunct is

expanded to the following assertion:

∀𝑟 . 𝑟 ∈ 𝑒𝑠 ∪ {⟨𝑠, 𝑐⟩} → ∃𝑟 ′. 𝑟 ′ ∈ 𝑠𝑠 ∧ esid(𝑟) = sid(𝑟 ′) (5)

We note that 𝑠 is an unconstrained universally quantified variable in Eq. 3, the original invariant-

sufficiency assertion. Therefore, to falsify that assertion, the variable 𝑠 can be instantiated with

any student value. Enrolling any student 𝑠 that is not already in 𝑠𝑠 violates the above referential

integrity property and leads to a counter-example for validity for Eq. 3. Intuitively, enrolling a

student that is not already in the students relation violates integrity. Hence, the method enroll is
not invariant-sufficient.

Next, we show that enroll does not P-L-commute with addCourse. Intuitively, the enrollmethod

does not preserve its permissibility if it is moved left before a preceding addCourse. The assertion
in line 𝐷8 is instantiated to the following assertion. (The pre-state 𝜎 is expanded to ⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩, the
argument of addCourse is 𝑐 and the arguments of enroll are 𝑠 and 𝑐 ′.)

⊢ ∀𝑠𝑠, 𝑐𝑠, 𝑒𝑠, 𝑐, 𝑠, 𝑐 ′.
P(update(addCourse(𝑐)) (⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩), enroll(𝑠, 𝑐 ′)) → P(⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠⟩, enroll(𝑠, 𝑐 ′)) (6)

The counter-example is when 𝑐 = 𝑐 ′, that is the same course is added and enrolled, and 𝑐 ∉ 𝑐𝑠 ,

that is 𝑐 is not already an existing course. After expansion and removing the trivially valid guard
assertions, we have

I(⟨𝑠𝑠, 𝑐𝑠 ∪ {𝑐}, 𝑒𝑠 ∪ {𝑠, 𝑐}⟩) → I(⟨𝑠𝑠, 𝑐𝑠, 𝑒𝑠 ∪ {𝑠, 𝑐}⟩) (7)

Expanding the conclusion of the implication results in the following conjunct:

∀𝑟 . 𝑟 ∈ 𝑒𝑠 ∪ {⟨𝑠, 𝑐⟩} → ∃𝑟 ′. 𝑟 ′ ∈ 𝑐𝑠 ∧ ecid(𝑟) = cid(𝑟 ′) (8)

This assertion is invalid. For 𝑟 = ⟨𝑠, 𝑐⟩, the conclusion never holds as 𝑐 ∉ 𝑐𝑠 . This makes a counter-

example for the P-L-commutativity assertion. Thus, enroll does not P-L-commute with addCourse.
A call on enroll is dependent on the preceding addCourse call.

We note that the premise of the implication in Eq. 7 does not refute the choice that 𝑐 ∉ 𝑐𝑠 . In the

premise of Eq. 7, the integrity of the enrolment relation 𝑒𝑠 ∪ {⟨𝑠, 𝑐⟩} for the course 𝑐 may hold only

because 𝑐 was just added and resulted in the course relation 𝑐𝑠 ∪ {𝑐} and not because it already

existed in 𝑐𝑠 .

We note that since local permissibility is a condition of a well-coordinated replicated execution,

every call is permissible in its originating node. Therefore, every call in all the conditions above

can be additionally assumed to be permissible in a fresh state (unrelated to the other state variables

in the condition). We elided this permissibility condition for brevity. Permissibility even in an

unrelated state can provide useful information. In particular, the validity of the guard of the call

can provide conditions on the arguments of the call that are independent of the state.

5 USE-CASES
We now present two use-cases. (All of our use-cases are available in the appendix § 2.)

Fig. 6.(a) represents the Auction use-case that we have adopted from CISE [Gotsman et al. 2016].

Users can place bids and then the auction can be closed to declare the winner. The state Σ of the

object is the record of the set of current bids 𝑏𝑠 , and the option value𝑤 that is either some winning

bid or none ⊥ when the auction is still open. The integrity invariant I is that if the auction is

closed, then the winning bid is the maximum of the non-empty set of bids. Auction offers three

methods: place, close and query. While the auction is open, the method place can place a bid 𝑏. The

method close closes the bid by picking the maximum bid. The method query returns the current
state of the auction. It is notable that in the guard of close, we do not need to repeat the condition

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:16 Farzin Houshmand and Mohsen Lesani

Class Auction
Σ := ⟨𝑏𝑠 : Set Int, 𝑤 : Option Int⟩
I := 𝜆 ⟨𝑏𝑠,𝑤⟩.

𝑤 ≠ ⊥ → (𝑏𝑠 ≠ ∅ ∧ 𝑤 = some(max(𝑏𝑠)))
place(𝑏) := 𝜆 ⟨𝑏𝑠,𝑤⟩.
⟨𝑤 = ⊥, ⟨𝑏𝑠 ∪ {𝑏}, 𝑤⟩, ⊥⟩

close := 𝜆 ⟨𝑏𝑠,𝑤⟩.
⟨𝑤 = ⊥, ⟨𝑏𝑠, some(max(𝑏𝑠))⟩, ⊥⟩

query := 𝜆 𝜎. ⟨T, 𝜎, 𝜎⟩
(a) User Specification

p c q
p ✓ × ✓
c × ✓ ✓
q ✓ ✓ ✓

(b) S-commute

p c q
p ✓ × ✓
c ✓ × ✓
q ✓ ✓ ✓

(c) P-concur

(d) Conflict graph

p c q
p ✓ ✓ ✓
c × ✓ ✓
q ✓ ✓ ✓

(e) Independent

Class 2PSet
Σ := ⟨Set, Set⟩
I := T
add(𝑒) := 𝜆 ⟨𝐴, 𝑅⟩.
⟨T, ⟨𝐴 ∪ {𝑒}, 𝑅⟩, ⊥⟩

remove(𝑒) := 𝜆 ⟨𝐴, 𝑅⟩.
⟨T, ⟨𝐴, 𝑅 ∪ {𝑒}⟩, ⊥⟩

contains(𝑒) := 𝜆 ⟨𝐴, 𝑅⟩.
⟨T, ⟨𝐴, 𝑅⟩, 𝑒 ∈ 𝐴 \ 𝑅⟩

(f) User Specification

a r c
a ✓ ✓ ✓
r ✓ ✓ ✓
c ✓ ✓ ✓

(g) S-commute

a r c
a ✓ ✓ ✓
r ✓ ✓ ✓
c ✓ ✓ ✓

(h) P-concur

(i) Conflict graph

a r c
a ✓ ✓ ✓
r ✓ ✓ ✓
c ✓ ✓ ✓

(j) Independent

Fig. 6. Auction and Two Phase Set Use-cases. The conflict graph in (d) is obtained from (b) and (c).

that the bid set should be non-empty. This condition is declared in the invariant. If a call on close
violates the invariant, the call is not permissible and is aborted. In general, the user does not need

to restate the invariant as guards. The guard needs to only specify the semantic preconditions of

the method. Thus, our specifications are simpler than previous work [Gotsman et al. 2016]. As an

example of semantic preconditions, the execution of a close call on an auction is meaningful only if

the auction is not already closed although it does not violate the invariant. Similarly, placing a bid

is meaningful only when the auction is not closed even if the bid is less than the already decided

winner which does not violate the integrity of the auction.

Fig. 6.(b) shows that the place and close methods S-conflict. a call on place can execute either

before or after a call on close. In the former, the close method gets to see the new bid that might be

the largest. However, in the latter, the new bid is missed. Therefore, the two executions can diverge.

As Fig. 6.(c) shows, the place and close methods P-conflict with the close method. The methods

place and close are not invariant-sufficient. Their guards require the auction to be open that is

not implied by the invariant. If a call on place is pushed after a call on close, the call on place can
violate the invariant as it can place a bid larger than the already decided winner. If a call on close is
pushed after another call on close, its guard does not hold after the move. As Fig. 6.(e) shows, a call

on close is dependent on a preceding call on place. The preceding place call can be placing the only

bid and if it is removed, the close call gets an empty auction to close that violates the invariant.

Fig. 6.(f) shows the 2PSet (two-phase set) use-case that we have adopted from CRDTs [Shapiro

et al. 2011]. Classical sets S-conflict on adding and removing elements. The two orders do not

agree on the final set. However, this is only when the two calls are on the same element. A set with

a known finite domain can avoid conflicts and synchronization for unequal elements. We present

the finite set in the appendix § 2 where we consider add or remove calls on each element separately

leading to a larger table with fewer conflicts. In contrast, 2PSet avoids conflicts by changing the set

semantics: once an element is removed, it cannot be added again. As Fig. 6.(f) shows, it uses two

sets to store added and removed elements and the abstract state of the set is the added set minus

the removed set. Therefore, the two orders of adding and removing an element result in the same

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:17

set: the element is considered to be removed. As Fig. 6.(g)-(j) shows, the methods of 2PSet concur
and are independent. Thus, 2PSet methods can execute without any coordination. In the appendix,

we apply 2PSet to the Courseware use-case to reduce set conflicts.

6 PROTOCOLS
In the previous sections, we presented how the conflict and dependency relations of a given object

are calculated. In this section, we present two concrete protocols that use these relations and

implement the well-coordination conditions. The protocols are parametric and instantiated with

the object and its conflict and dependency relations. The first protocol is non-blocking. Crash of a

replica does not prevent other replicas from making progress. The second protocol is blocking. In

return, it can further avoid synchronization. For a pair of conflicting methods, the protocol can push

synchronization to only one of them and the other method can execute without synchronization.

In the next two subsections, we focus on synchronization of conflicting methods (and assume

that methods are independent). We consider dependencies in the third subsection.

Each protocol declares the request events that it inputs and the response events that it outputs.

It also declares the state that it stores at every node. It may include an initialization method that is

called once at the beginning of the execution at each node. A protocol may declare and use other

protocols. It defines methods for requests from the client and responses from the used protocols. A

method may be guarded by a condition. Such a method accepts events only when the condition

is satisfied; otherwise, the processing of the event is postponed. In the body of the methods, a

protocol may issue responses to its client or issue requests to the used protocols.

6.1 Non-blocking Synchronization Protocol
In this subsection, we present a non-blocking protocol to synchronize conflicting calls.

Protocol Idea. A subset of the vertices of a graph is a clique iff any of its distinct pair of vertices

are adjacent. A clique is maximal if it is not a subset of a larger clique. There are known algorithms

[Bron and Kerbosch 1973; Tsukiyama et al. 1977] that list the set of maximal cliques of a graph.

The methods of a clique of the conflict graph have to all synchronize with each other. The

idea is to synchronize only the methods of each maximal clique with each other to minimize

synchronization. We use the total-order broadcast (TOB) protocol that employs consensus to deliver

messages in the same total order to all nodes [Cachin et al. 2011]. Let Cl denote the set of maximal

cliques of the conflict graph. For each maximal clique cl ∈ Cl, we use a TOB instance tob(cl). Calls
on conflicting methods in a maximal clique are broadcast to a TOB instance and delivered with

the same total order to all nodes. (A single node (without a loop) is considered a clique but does

not need synchronization. Thus, before calculating the maximal cliques, we remove all the single

nodes without loops from the conflict graph.) As we saw in Fig. 3.(a) for the delete call 𝑑 , a call

𝑐 of a method𝑚 that is a member of multiple maximal cliques cls should be totally ordered with

respect to calls of each of those cliques. We broadcast the call 𝑐 to every tob(cl) where cl ∈ cls and
execute 𝑐 only when it is ordered and delivered by all of them. To execute calls in the delivery

order from TOBs, we maintain a queue 𝑞(cl) for each TOB instance tob(cl). Method calls that are

delivered by a TOB instance tob(cl) are enqueued to its corresponding queue 𝑞(cl). If cls is the set
of maximal cliques containing a method𝑚, a call on𝑚 can be executed once it appears at the head

of the queues 𝑞(cl) for each cl ∈ cls. The call is then dequeued from the queues and executed. Thus,

the execution order of calls at every replica is an extension of the delivery order of each of the

TOBs. Therefore, calls to conflicting methods have the same execution order across replicas.

However, deadlocks can happen if the TOB instances are not properly coordinated. Consider two

method calls 𝑐 and 𝑐 ′ of a method𝑚 that is a member of two cliques cl and cl′. If 𝑐 and 𝑐 ′ are simply

broadcast to tob(cl) and tob(cl′), 𝑐 may precede 𝑐 ′ in the total order of tob(cl) and succeed it in the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:18 Farzin Houshmand and Mohsen Lesani

NonBlockingRepObject
request : call(C)
response : ret(C,V)

aborted(C)
Params :

cliques : M→ List[Cl]
Using :

rb : ReliableBroadcast
mtob : Cl→ MultiTotalOrderBroadcast

State :
𝜎 : Σ = 𝜎0

𝑞 : Cl→Queue[C] = Cl ↦→ ∅
𝑅0 request (call(𝑐))
𝑅1 𝑚 ← method(𝑐)
𝑅2 cls← cliques(𝑚)
𝑅3 if (cls = ∅)
𝑅4 issue request (rb, broadcast(𝑐))
𝑅5 else
𝑅6 cl ← head(cls)
𝑅7 issue request (mtob(cl), broadcast(𝑐,⊥))
𝑁0 response (rb, deliver(𝑐))
𝑁1 exec(𝑐)
𝐼1 response (mtob(cl), deliver(𝑐))
𝐼2 enq(𝑞 (cl), 𝑐)
𝐼3 𝑚 ← method(𝑐)
𝐼4 cls← cliques(𝑚)

𝐼5 if (cl = last(cls))
𝐼6 check(𝑐)
𝐼7 else
𝐼8 cl′ ← next(cls, cl)
𝐼9 issue request (mtob(cl′), broadcast(𝑐, cl))
𝐶0 fun check(𝑐)
𝐶1 𝑚 ← method(𝑐)
𝐶2 cls← cliques(𝑚)
𝐶3 if (forall cl ∈ cls. head(𝑞 (cl)) = 𝑐)
𝐶4 foreach(cl ∈ cls) 𝑞 (cl) .deq()
𝐶5 exec(𝑐)
𝐶6 checkQs()
𝐶7 return true
𝐶8 else
𝐶9 return false
𝑄1 fun checkQs()
𝑄2 foreach(cl ∈ Cl, 𝑞 (cl) ≠ ∅)
𝑄3 𝑐 ← head(𝑞 (cl))
𝑄4 if (check(𝑐)) return
𝐸1 fun exec(𝑐)
𝐸2 if (guard(𝑐) (𝜎) ∧ I (update(𝑐) (𝜎)))
𝐸3 𝜎 ← update(𝑐) (𝜎)
𝐸4 𝑣 ← retv(𝑐) (𝜎)
𝐸5 issue response ret(𝑐, 𝑣)
𝐸6 else
𝐸7 issue response aborted(𝑐)

Fig. 7. Non-blocking Synchronization Protocol. C and V are call and return value respectively

total order of tob(cl′). Thus, 𝑐 ′ cannot appear at the head of the queue 𝑞(cl) and waits for 𝑐 and

symmetrically 𝑐 cannot appear at the head of the queue 𝑞(cl′) and waits for 𝑐 ′. As a result, 𝑐 and 𝑐 ′

and all later calls in 𝑞(cl) and 𝑞(cl′) will be blocked at all replicas. To prevent deadlocks, firstly, we

statically order the maximal cliques Cl and always send a message to TOB instances tob(cl) in the

order of their corresponding cliques cl. Secondly, we ensure that if a message is ordered before

another by a TOB instance then the next TOB instance respects this order. To this end, we present

and use a particular kind of total-order broadcast that respects given total orders on subsets of

messages. We call it the multi-total-order broadcast (MTOB) protocol.

In the multi-total-order broadcast (MTOB) protocol, the messages are divided to multiple disjoint

subsets called message classes. Each class is associated with a total order. The user broadcasts each

message together with its class identifier. She should also broadcast messages of a class in the total

order of that class. The protocol delivers messages in a total order that respects (i.e. is an extension

of) the order of each message class.

We use MTOB as follows. We define a class as the set of calls of the methods of a clique. As

mentioned above, a call is sent to the MTOB instances in a statically-determined order. For example,

in the example above, we assume that mtob(cl) is before mtob(cl′) in the static order. Assume that

𝑐 is delivered before 𝑐 ′ by mtob(cl). We broadcast 𝑐 and 𝑐 ′ in order to mtob(cl′) with class cl. As
the order of messages in class cl is preserved in the delivery order of mtob(cl′), 𝑐 will be delivered
before 𝑐 ′ by mtob(cl′) as well and the deadlock mentioned above cannot happen.

We first present the main protocol and then the multi-total-order-broadcast protocol. They use

the classical reliable broadcast and consensus protocols [Cachin et al. 2011].

Main Protocol. The non-blocking protocol is presented in Fig. 7. The requests to the protocol

are call(𝑐) to execute a method call 𝑐 on the replicated object. In response, the protocol issues the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:19

MultiTotalOrderBroadcast
request : broadcast(M,C)
response : deliver(M)

Using :
rb : ReliableBroadcast
cs : 𝑅 → Consensus

State :
𝑝 : Set[M × C × Int] = ∅ Pending

𝑑 : Set[M × C × Int] = ∅ Delivered

𝑟 : Int = 0 Round

rank : 𝐶 → Int = 𝐶 ↦→ 0 Rank

𝐼0 init()
𝐼1 issue request (cs (0), propose(∅))
𝑅0 request (broadcast(𝑚,𝑐))
𝑅1 if (𝑐 ≠ ⊥)
𝑅2 rank (𝑐) ← rank (𝑐) + 1

𝑅3 issue request (rb, broadcast(𝑚,𝑐, rank (𝑐)))
𝑅4 else
𝑅5 issue request (rb, broadcast(𝑚,⊥, 0))
𝐷0 response (rb, deliver(𝑚,𝑐, 𝑖))
𝐷1 if ((𝑚,𝑐, 𝑖) ∉ 𝑑)
𝐷2 𝑝 ← 𝑝 ∪ {(𝑚,𝑐, 𝑖) }
𝐶0 response (cs (𝑟 ′), decide(𝑑′)) if (𝑟 ′ = 𝑟)
𝐶1 foreach((𝑚,𝑐, 𝑖) ∈ sort(𝑑′))
𝐶2 issue response deliver(𝑚)
𝐶3 𝑑 ← 𝑑 ∪ 𝑑′
𝐶4 𝑝 ← 𝑝 \ 𝑑′
𝐶5 𝑟 ← 𝑟 + 1
𝐶6 issue request (cs (𝑟), propose(proposal()))
𝑃0 fun proposal()
𝑃1 {(𝑚,𝑐, 𝑖) | (𝑚,𝑐, 𝑖) ∈ 𝑝 ∧
𝑃2 ∀𝑖′. 0 < 𝑖′ < 𝑖 → ∃𝑚′. (𝑚′, 𝑐, 𝑖′) ∈ 𝑑 }

Fig. 8. Multi-Total-Order Broadcast Protocol. M and C are message and class types respectively.

response ret(𝑐, 𝑣) to return the value 𝑣 as the result of the call 𝑐 or aborted(𝑐) to indicate that the

call 𝑐 could not be executed without the violation of the invariant and is aborted. The parameter to

the protocol is the map cliques. It maps each method in the set of methods M to a list of maximal

cliques Cl that the method belongs to. As explained earlier, the set of maximal cliques is calculated

and statically sorted to a total order. To prevent deadlocks, every list in the range of cliques is
consistent with this total order. A call on a method𝑚 is sent to the TOB instances of the cliques

cliques(𝑚) in order. The protocol uses two protocols: reliable broadcast rb and a multi-total-order

broadcast per clique mtob. Among other properties, the reliable broadcast guarantees that if a

message is delivered by a correct node, then it is eventually delivered by every correct node. In

addition to this guarantee, as previously mentioned, MTOB protocol guarantees that messages are

delivered in a total order that is an extension of the order of each message class. Each replica stores

the following state: the state 𝜎 of the user-defined object, and the queues 𝑞, one per maximal clique.

On the invocation of the request call(𝑐) to execute the call 𝑐 (at 𝑅0), the protocol finds the method

𝑚 of 𝑐 (at 𝑅1) and the set of cliques cls that 𝑚 belongs to (at 𝑅2). If the set of cliques is empty,

no synchronization is needed and the request is sent using the reliable broadcast rb (at 𝑅3-𝑅4).

Otherwise, the request is sent using the MTOB instance mtob(cl) of the first clique cl in cls. As this
is the first broadcast, the call can be arbitrarily ordered and no class (⊥) is passed as the class (at

𝑅5-𝑅7). When a call 𝑐 is delivered by the reliable broadcast rb (at 𝑁0), as no further synchronization

is required, it is executed (at 𝑁1). When a call 𝑐 is delivered by an MTOB instance mtob(cl) (at 𝐼1),
we enqueue it to the corresponding queue 𝑞(cl) (at 𝐼2), and get the list of cliques cls of the method

(at 𝐼3-𝐼4). If the current clique is the last one in the list (at 𝐼5), we check if the call can be executed

(at 𝐼6). Otherwise, we send 𝑐 to the next MTOB instance mtob(cl′). The call is broadcast together
with the previous clique cl as the class (at 𝐼7-𝐼9). A call is ready to be executed if it appears at the

head of all the queues of the cliques that the method belongs to (at 𝐶0-𝐶3). A call 𝑐 that is ready is

dequeued from the queues (at 𝐶4) and executed (at 𝐶5). Then, the queues are checked for next calls

that might be ready to execute (at 𝐶6). To check the queues (at 𝑄1), the call at the head of every

queue is checked. Checking is repeated if a call is executed (at 𝑄2-𝑄4 and 𝐶5-𝐶9). To execute a call

(at 𝐸1), it is checked that it is locally permissible i.e. its guard is satisfied and applying it does not

violate the invariant (at 𝐸2). If the check is passed, the updated state is stored, the return value 𝑣 is

calculated (at 𝐸3-𝐸4), and a return response is issued with 𝑣 (at 𝐸5). Otherwise, an abort response is

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:20 Farzin Houshmand and Mohsen Lesani

issued (at 𝐸6-𝐸7). As pairs of conflicting methods are synchronized and methods are independent, a

call is permissible in one replica if and only if it is permissible in another.

The protocol is non-blocking: if a quorum (majority) of nodes are correct (not faulty), every

request for a call will eventually get a response. The call is first broadcast to the rb or an mtob.
Both will eventually deliver the call. (We will show this property for MTOB with a quorum of

correct nodes.) In the former case, the call is executed on arrival. In the latter case, it is put in the

corresponding queue and may be broadcast to the next mtob. As we explained above, each MTOB

preserves the delivery order of the previous MTOBs; thus, two calls can appear in two queues only

in the same order and cannot cause a deadlock. Calls eventually arrive at the head of the queues,

are dequeued and executed.

Multi-Total-Order Broadcast. The multi-total-order broadcast (MTOB) protocol is presented

in Fig. 8. The protocol accepts requests to broadcast a message𝑚 given its class 𝑐 . (A message can

belong to no class ⊥. These messages are assumed to be unique.) MTOB delivers messages to every

node with the same order and this order respects the order of all message classes. The idea is to

have rounds of consensus to agree on the messages to deliver. In each round, nodes propose their

current messages for consensus. When the consensus protocol issues the decision response with

a set of messages, they are locally sorted using a deterministic sort algorithm and delivered. To

respect the order of message classes, a message is proposed only if all the messages before it in the

class are already delivered. Starvation of a node and its messages in the case that its proposal is

repeatedly not chosen is prevented as follows. MTOB uses a reliable broadcast protocol. Upon a

broadcast request for a message, it is first broadcast with the reliable broadcast protocol to other

nodes. Thus, the message will be in the proposal of other nodes and will be eventually chosen.

MTOB uses the reliable broadcast protocol rb and an instance sequence of the consensus protocol

cs. MTOB proceeds in rounds 𝑅 and uses an instance of consensus in each round. It stores the set

of pending messages 𝑝 , the set of delivered messages 𝑑 , the number of the current round 𝑟 , and the

rank of the last delivered message for each class rank.
The rounds of consensus are kick-started in the initialization function (at 𝐼0-𝐼1). Upon an MTOB

request to broadcast a message, if it belongs to a class (at 𝑅1), the rank for the class is incremented

(at 𝑅2) and it is broadcast using the reliable broadcast rb (at 𝑅3). Otherwise, the message is broadcast

with no class and zero rank (at 𝑅4). When rb delivers a message (at 𝐷0), if it is not already delivered

(at 𝐷1), it is added to the pending set (at 𝐷2). Once the decision of the current round is received (at

𝐶0), its messages are sorted and delivered (at 𝐶1-𝐶2) and added to the delivered set and removed

from the pending set (at 𝐶3-𝐶4). Then, the node enters the next round and proposes in it (at 𝐶5-𝐶6).

The proposal is the largest subset of the pending messages𝑚 such that all the messages before𝑚

in its class are already delivered (at 𝑃0-𝑃2). This condition ensures that the order of each class is

preserved. It is notable that as the messages with no class are added to the pending set with rank 0,

they always satisfy the proposal condition. We elide the optimizations to the appendix § 4.

It is assumed that a quorum (majority) of nodes are correct. Let us explain why a message

broadcast by a correct node is eventually delivered to every correct node. We consider a message

of a class and by induction assume that previous messages of the class are eventually delivered. If

the message has been and will be in the decided set of a round, it is or will be eventually delivered

by all correct nodes. Otherwise, we assume that it is never in a decided set and thus never in a

delivered set. The message is first broadcast using rb. Thus, it is eventually delivered by rb and as it
is not in the delivered sets, it will be added to the pending set of all correct nodes. As the previous

messages in the class are eventually delivered, the message will eventually be in the proposed set

of all correct nodes. With a quorum of correct nodes, the consensus protocol guarantees eventual

decision. Thus, the message will eventually be in the decided set and delivered.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:21

BlockingRepObject
request : call(C)
response : ret(C,V) | aborted(C)

Params :
conflict : M→ Set[M]
cover : Set[M]

Using :
rb : ReliableBroadcast
tob : M→ TotalOrderBroadcast

State :
𝜎 : Σ = 𝜎0

𝑏 : M→ Int = M ↦→ 0

xed : M→ Set[C] = M ↦→ ∅
act : M→ B = M ↦→ false
cnt : C→ Int = C ↦→ 0

𝑅0 request (call(𝑐))
𝑅1 𝑚 ← method(𝑐)
𝑅2 if (𝑚 ∉ cover)
𝑅3 issue request (rb, broadcast(nsync(𝑐)))
𝑅4 else
𝑅5 if (𝑚 ∈ conflict(𝑚))
𝑅6 issue request (tob(𝑚), broadcast(sync(𝑐)))
𝑅7 else
𝑅8 issue request (rb, broadcast(sync(𝑐)))
𝑁0 response (rb, deliver(nsync(𝑐))) if 𝑏 (method(𝑐)) = 0

𝑁1 exec(𝑐)

𝐶0 response (tob(𝑚), deliver(sync(𝑐))) if ¬act (𝑚)
𝐶1 act (𝑚) ← true
𝐶2 blockAndUpdate(𝑐)
𝐶3 response (rb, deliver(sync(𝑐)))
𝐶4 blockAndUpdate(𝑐)
𝐵1 fun blockAndUpdate(𝑐) where𝑚 ← method(𝑐)
𝐵2 foreach(𝑚′ ∈ conflict(𝑚)) 𝑏 (𝑚′) ← 𝑏 (𝑚′) + 1
𝐵3 cs← xed | conflict(𝑚)
𝐵4 issue request (rb, broadcast(update(𝑐, cs)))
𝑈0 response (rb, deliver(update(𝑐, cs)))
𝑈1 foreach(𝑐′ ∈ cs) exec(𝑐′)
𝑈2 cnt (𝑐) ← cnt (𝑐) + 1
𝑈3 if (cnt (𝑐) = N)
𝑈4 exec(𝑐)
𝑈5 foreach(𝑚′ ∈ conflict(𝑚)) 𝑏 (𝑚′) ← 𝑏 (𝑚′) − 1
𝑈6 act (𝑚) ← false
𝐸0 fun exec(𝑐)
𝐸1 if (guard(𝑐) (𝜎) ∧ I (update(𝑐) (𝜎)))
𝐸2 𝜎 ← update(𝑐) (𝜎)
𝐸3 𝑣 ← retv(𝑐) (𝜎)
𝐸4 issue response ret(𝑐, 𝑣)
𝐸5 add(xed (method(𝑐)), 𝑐)
𝐸6 else
𝐸7 issue response aborted(𝑐)

Fig. 9. Blocking Synchronization Protocol

6.2 Blocking Synchronization Protocol
The previous protocol requires both calls of a conflicting pair to participate in synchronization. In

this section, we introduce a blocking protocol. As we saw in Fig. 3.(b) for the add 𝑎 and enroll 𝑒

calls, this protocol can make one of the two calls execute without synchronization.

Protocol Idea. Consider two conflicting methods𝑚 and𝑚′, and two calls 𝑐 on𝑚 and 𝑐 ′ on𝑚′.
To let the call 𝑐 execute without synchronization, the other call 𝑐 ′ needs to reach out to other nodes,

block the execution of calls on𝑚 at those nodes and then propagate previous calls on𝑚 from every

node to other nodes. Then, 𝑐 ′ can be executed at all nodes. At the end, the execution of calls on𝑚

is unblocked at all nodes. Therefore, the set of calls on𝑚 before each call on𝑚′ is the same across

nodes. This means that the order of every pair of calls on𝑚 and𝑚′ is the same across nodes.

A vertex cover 𝑉 ′ of a graph ⟨𝑉 , 𝐸⟩ is a subset of the vertices 𝑉 such that every edge in 𝐸 has at

least one endpoint in 𝑉 ′. A minimum vertex cover of a graph is a vertex cover of the smallest size.

In a graph with weighted vertices, the weighted minimum vertex cover is a vertex cover of the

smallest weight sum. Finding the (weighted) minimum vertex cover is a classical graph problem.

In the interest of avoiding synchronization, we find the minimum vertex cover of the conflict

graph. Only the methods in the cover synchronize and the rest can execute without synchronization.

To execute a method in the cover, the requesting node has to reach out to all nodes and block

and solicit the conflicting methods. If the user calls a method more often than others or favors its

responsiveness, she can assign a lower weight to that method and apply the weighted minimum

vertex cover. Methods can be assigned weights inversely proportional to their call frequency. To

enforce that a method becomes synchronization-free, infinity can be assigned to its weight.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:22 Farzin Houshmand and Mohsen Lesani

Protocol. The blocking synchronisation protocol is presented in Fig. 9. It accepts requests to

execute calls and in return issues responses with the return value or that the call is aborted. The

parameters to the protocol are the map conflict that maps every method to its set of conflicting

methods and a vertex cover, cover, of the conflict graph. The protocol uses two classical protocols:

the reliable broadcast rb and a total-order broadcast per method tob. The protocol stores the

following state at each node: the user-defined state of the object 𝜎 , a mapping 𝑏 from each method

to the number of times that it is blocked, a mapping xed from each method to the set of executed

calls on that method, a mapping act from each method to whether there is an active execution of a

call on the method, a mapping cnt from each call to the number of messages received for it.

Upon a request to execute a method call 𝑐 (at 𝑅0), if its method 𝑚 is not a member of the

cover (at 𝑅1-𝑅2), it can be executed without synchronization. So, it is broadcast using rb as a non-
synchronizing nsync call (at 𝑅3). Otherwise, the call should synchronize with conflicting methods

(at 𝑅4) and it is broadcast as a synchronizing sync call. If𝑚 has a self-loop in the conflict graph,

then 𝑐 should synchronize with other calls on𝑚. To order calls on𝑚, they are broadcast using the

total-order-broadcast tob(𝑚) (at 𝑅5-𝑅6). If𝑚 does not have a self-loop, 𝑐 only needs to synchronize

with calls on other methods. Thus, 𝑐 is broadcast using the reliable broadcast rb (at 𝑅7-𝑅8).
Upon receiving a non-synchronizing call that is not blocked (at 𝑁0), it is executed (at 𝑁1). A call

on a blocked method should wait until it is unblocked. When a synchronizing call 𝑐 on a method𝑚

is received from a total-order broadcast tob(𝑚), if the execution of another call on𝑚 is not active

(at 𝐶0), it is recorded that the execution of a call on𝑚 is active (at 𝐶1). On the other hand, when a

synchronizing call is received from the reliable broadcast rb (at 𝐶3), it does not need to prevent

other calls on𝑚 as𝑚 does not conflict with itself. In both cases (at 𝐶2 and 𝐶4), each method that

conflicts with 𝑚 is blocked (at 𝐵2), and the calls on the conflicting methods that this node has

executed are broadcast as an update to other nodes (at 𝐵3-𝐵4). When an update arrives (at 𝑈0),

its calls are executed (at 𝑈1) and the number of received updates for the call is incremented (at

𝑈2). When an update from all nodes is received (at 𝑈3), the call is executed (at 𝑈4), the previously

blocked methods for 𝑐 are unblocked (at𝑈5), and it is recorded that the execution of a call on𝑚 is

no longer active (at𝑈6). The execution of a call (at 𝐸0-𝐸7) is similar to the previous protocol.

As mentioned earlier, this protocol brings more synchronization-freedom. However, either

progress or consistency and convergence of nodes may be affected by crashes. Blocked operations

are only unblocked when update messages are received from all the other nodes. If the update

message from a node is not received, calls on the blocked methods cannot be executed. Either

the network is slow or that node has crashed. If other nodes assume the former, the latter may

be the case and they can never execute the blocked methods. On the other hand, if other nodes

assume that the node has crashed, the network may be just slow. In particular, if a correct node 𝑛

is mistakenly suspected while a synchronizing call 𝑐 is being executed, consider that other nodes

refrain from waiting for 𝑛, execute 𝑐 and unblock conflicting methods before 𝑛 blocks conflicting

methods. Then, a node 𝑛′ can execute a call 𝑐 ′ on a conflicting method. The call 𝑐 ′ can reach and

execute at the suspected node 𝑛 before it executes 𝑐 . Thus, 𝑐 ′ is after 𝑐 at 𝑛′ but before it at 𝑛.

Therefore, the two conflicting method calls have different orders in different nodes. Further, 𝑐 can

become impermissible after 𝑐 ′. Thus, this can cause divergence and violation of integrity at node 𝑛.

6.3 Dependency-Tacking Protocol
In the presented synchronization protocols, we assumed that method calls were independent.

However, as we saw in Fig. 2.(e), permissibility of a call at a node may be dependent on the

preceding calls at that node; the call may not be permissible at other nodes.

We saw that method calls may or may not need to synchronize before execution. If a call did not

need synchronization, it was simply broadcast and was immediately executed on arrival. For both

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:23

the non-blocking protocol (Fig. 7) and the blocking protocol (Fig. 9) this was at 𝑁1. However, if it

has dependencies, they should be tracked at the originating node and broadcast together with the

call. The receiving nodes should apply the call only after its dependencies are applied. On the other

hand, some calls go through synchronization before execution. When synchronization is finished

for a call 𝑐 , it may or may not be permissible in different nodes. For the non-blocking protocol

(Fig. 7), this is at𝐶5 and for the blocking protocol (Fig. 9), this is at𝑈4. If there is a node 𝑛 that finds

𝑐 permissible, every node can become permissible for 𝑐 after 𝑛 propagates the dependencies. The

call 𝑐 is aborted only if it is impermissible at every node. We use a protocol that is the inverse of the

classical atomic commit protocol. The decision is abort if every replica votes for abort and is commit

otherwise. Every node that finds 𝑐 permissible votes for commit together with the dependencies of

𝑐 and every node that finds it impermissible votes for abort. If a node receives the abort decision,

it aborts the execution of 𝑐 . If a node receives the commit decision, it waits for the dependencies.

After the dependencies are applied, the call 𝑐 is permissible and is executed. The detailed protocol

is available in the appendix § 3.

7 IMPLEMENTATION
In this section, we describe the implementation of our synthesis tool, Hamsaz. The input to Hamsaz is

the definition of an object that includes the state type and invariants on the state along with methods.

Hamsaz synthesizes non-blocking and blocking replicated objects. It also outputs the baseline

sequentially consistent replicated object. Hamsaz consists of two main parts: (1) determining the

conflicts and dependencies and (2) instantiating the protocols.

Conflict and Dependency Analysis.We use the CVC4 [Barrett et al. 2011] SMT solver [Barrett

et al. 2010] to decide the validity of concur and independence relations for pairs of methods. In

particular, we use the theory of linear arithmetic, inductive datatypes, and more importantly, the

theory of finite sets [Bansal et al. 2016] and the follow-up theory of finite relations [Meng et al.

2017] that is recently added to CVC4. Decidable fragments of set theory [Cantone et al. 2013] is an

active area of research [Cantone and Zarba 2000; Kuncak and Rinard 2007; Suter et al. 2011].

To decide the validity of a condition, Hamsaz may decompose the invariant to conjuncts. As an

example, consider whether enroll(𝑠1, 𝑐1) P-concurs with enroll(𝑠2, 𝑐2) in the Courseware use-case
presented in Fig. 1. We focus on the invariant refIntegrity(𝑒𝑠, esid, 𝑠𝑠, sid); the other invariant is
similar. The invariant is unrolled to ∀𝑒. 𝑒 ∈ 𝑒𝑠 → ∃𝑠 . 𝑠 ∈ 𝑠𝑠 ∧ esid(𝑒) = sid(𝑠). We decompose it

to the following two conjuncts based on whether the referential integrity involves the enrolled

student 𝑠1: (1) ∀𝑒. 𝑒 ∈ 𝑒𝑠 ∧ esid(𝑒) = 𝑠1 → ∃𝑠 . 𝑠 ∈ 𝑠𝑠 ∧ esid(𝑒) = sid(𝑠), (2) ∀𝑒. 𝑒 ∈ 𝑒𝑠 ∧ esid(𝑒) ≠
𝑠1 → ∃𝑠 . 𝑠 ∈ 𝑠𝑠 ∧ esid(𝑒) = sid(𝑠). For the first one, the call enroll(𝑠1, 𝑐1) P-R-commutes with the

call enroll(𝑠2, 𝑐2). For the second one, the call enroll(𝑠1, 𝑐1) is invariant-sufficient.

Protocols.We implemented the parametric protocols presented in § 6. Given the analysis results,

we apply the graph optimizations and then instantiate the protocols with the optimization results.

We implemented our protocols on top of APPIA [Carvalho and et. al. 2011], the accompanying toolkit

of [Cachin et al. 2011]. It is a Java library of basic communication abstractions. We implemented

our protocols on top of the basic broadcast, total-order broadcast and consensus protocols. We also

implemented the sequentially consistent baseline. It uses a total-order broadcast instance to deliver

calls to all nodes in the same order.

8 EVALUATION
We applied Hamsaz to a suite of use-cases to synthesize non-blocking and blocking replicated

objects and compared their performance with the sequentially consistent baseline.

Use-cases. The use-cases are the following: (The uses-case and their concur and independence

tables are available in the appendix § 2. Code snippets of a few uses-cases are available in the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:24 Farzin Houshmand and Mohsen Lesani

appendix § 6.) Counter: It can increment and decrement an integer value. NNCounter: The non-
negative counter has the invariant that the counter value should be non-negative. Register: A
register stores a value and provides methods to read and write it. BankAccount: The invariant is a
non-negative balance. CSet: The classical set provides add, remove and contains methods. GSet:
The grow-only set (adopted from [Shapiro et al. 2011]) provides adding (but not removing) an

element contains methods. Both methods can execute without coordination. FDSet: A finite-domain

set provides the classical set operations on a predefined finite set of elements. Thus, it can avoid

coordination between calls on different elements. 2PSet (two-phase set) (adopted from [Shapiro

et al. 2011]) and Auction (adopted from [Gotsman et al. 2016]) that we saw in Fig. 6.

unique(𝑅, 𝑓) :=
∀𝑟, 𝑟 ′. 𝑟 ∈ 𝑅 ∧ 𝑟 ′ ∈ 𝑅 ∧ 𝑓 (𝑟) = 𝑓 (𝑟 ′) → 𝑟 = 𝑟 ′

refIntegrity(𝑅, 𝑓 , 𝑅′, 𝑓 ′) :=
∀𝑟 . 𝑟 ∈ 𝑅 → ∃𝑟 ′. 𝑟 ′ ∈ 𝑅′ ∧ 𝑓 (𝑟) = 𝑓 ′(𝑟 ′)

rowIntegrity(𝑅, 𝑝) :=
∀𝑟 . 𝑟 ∈ 𝑅 → 𝑝 (𝑟)

Fig. 10. Relational Integrity Constrains

The suite includes relational use-cases as

well. Relational integrity properties are spec-

ified using three predicates that we present

in Fig. 10. The property unique(𝑅, 𝑓) states
that the values of the field 𝑓 in the records

of the relation 𝑅 are unique. The property

refIntegrity(𝑅, 𝑓 , 𝑅′, 𝑓 ′) states that for every

record 𝑟 in 𝑅, there exists a record 𝑟 ′ in 𝑅′ such
that the field 𝑓 of 𝑟 is equal to the field 𝑓 ′ of 𝑟 ′.
The property rowIntegrity(𝑅, 𝑝) states that every record of the relation 𝑅 satisfies the predicate 𝑝 .

The relational uses cases are the following. Courseware: We saw the courseware use-case (adopted

from [Gotsman et al. 2016]) in Fig. 1. It requires referential integrity for the student and course

identifiers. 2PCourseware: It uses 2PSet to reduce conflicts in Courseware. Payroll: The payroll
use-case (adopted from [Bailis et al. 2014]) stores employee and department relations. It requires

uniqueness of employee identifiers, referential integrity for the department identifiers of employees,

non-null values for employee names and non-negative salaries. It supports adding and remov-

ing employees and departments, and increasing and decreasing employee salaries. Tournament:
The tournament use-case (adopted from [Balegas et al. 2015a]) stores players, tournaments, and

enrolments. It requires uniqueness of player and tournament identifiers, referential integrity of

player and tournament identifiers in enrolments, and that each player has a positive budget, each

tournament has a size within a cap, and each active tournament has at least one player. It supports

adding and removing players and tournaments, adding funds for a player, enrolling and disenrolling

a player in a tournament, and beginning and ending a tournament.

Platform. The experiments are done on a cluster with 4 computing nodes. Each node has 2 AMD

Opteron 6272 CPUs with a total 8 cores with 64GB ECC protected memory of RAM and a 40Gbps

high-bandwidth low-latency InfiniBand network. The OS running on the cluster is CentOS 7.4

Linux x86_64 with the kernel version 3.10.0-862.3.2.el7. JDK is openjdk version 1.8.0_171 (OpenJDK

64-Bit Server VM build 25.171-b10, mixed mode). All nodes are connected to a Mellanox 18 port

InfiniBand switch. Reported numbers are the arithmetic means of results from five repetitions.

Conflict and Dependency Analysis. The concur and independence conditions for Counter,
NNCounter, Register and BankAccount use-cases all fall in the quantifier-free fragment of the

theory of linear arithmetic. The conditions for CSet, GSet, FDSet and 2PSet all fall in the quantifier-

free fragment of the theory of sets. However, the Auction use-case uses the max function. We

specified the following two axioms for max and CVC4 could use them to decide the validity of

the conditions. A1 : ∀𝑠, 𝑖 . 𝑖 ∈ 𝑠 → max(𝑠) ≥ 𝑖 and A2 : ∀𝑠 . 𝑠 ≠ ∅ → max(𝑠) ∈ 𝑠 . The

integrity properties of the relational uses-cases are encoded using quantifiers as presented in

Fig. 10. The reason is that the current theory of sets in CVC4 does not support a complete set

of relational operators. A set of operators is called complete if any relational algebra expression

can be expressed by a combination of them. Selection (𝜎), projection (𝜋), renaming (𝜌), union (∪),

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:25

difference (\) and product (×) are a complete set of operators. For example, a referential integrity

refIntegrity(𝑅, 𝑎, 𝑅′, 𝑎′) can be written as 𝜋𝑎𝑅 \ 𝜋𝑎′𝑅′ = ∅ using projection and difference and as

Car(𝑅 ⊲⊳𝑎=𝑎′ 𝑅
′) ≥ Car(𝑅) using join and cardinality. CVC4 supports difference and join but

not projection and cardinality is a planned feature [Meng et al. 2017]. Despite using quantifiers,

CVC4 can decide the validity of all conditions in our relational use-cases in less than a minute. We

measured the time that Hamsaz takes to calculate the conditions and represent the results in Fig. 11.

For each use-case, the table lists the number of methods, the number of invariants, the time to

calculate P-concur and S-commute for the conflict relation, the time to calculate the independence

relation and the total time. The table for all the use-cases is available in the appendix § 5.

Usecase #M1
#I2 P3 S4 Indep Total

Bank

Auction

Courseware

NNCounter

Tournament

3 1 284 695 595 1574

3 2 405 921 571 1897

5 4 950 3256 2597 6803

3 1 283 598 470 1351

9 5 3482 25615 24146 53603

1
The number of methods

2
The number of invariants

3 P-concure time (ms)

4 S-commute time (ms)

Fig. 11. Analysis time

Results. In this section, we compare

the response time of our protocols with

each other and the sequentially consis-

tent (SC) baseline. The response time for

a call is the time spent between the re-

quest and the response of the call. We

conduct two experiments on the course-

ware use-case that we saw in Fig. 1 and

the bank account use-case. In the bank

account use-case, the withdraw method

conflicts with itself and is dependent on

deposit. The deposit and balancemethods are conflict-free and independent. In the first experiment,

we compare the response time of methods using different protocols. In the second one, we measure

the effect of increasing the workload on the response time. In both experiments, we execute 500

calls evenly distributed on the methods.

In the first experiment, we issue one call per millisecond and measure the average response time

of the calls on each method. The results for the non-blocking and the SC protocols are shown in

Fig. 12.(a) and for the blocking protocol are shown in Fig. 12.(b). We make this separation because

the latter is two orders of magnitude more responsive than the former. The response time for

SC is the same across methods as all methods use the same TOB instance. In the non-blocking

protocol, the response time of the register and querymethods is around a millisecond. The response

time of these two methods is significantly less than that of the other methods because they can

execute without coordination. The response time of the deleteCourse method is about two times

that of addCourse and enroll methods because a deleteCourse call has to be ordered by two TOB

instances while an addCourse or enroll call needs to be ordered by only one TOB instance. The

enroll method is less responsive than the addCourse method because enroll has dependencies
and needs to wait for them and addCourse does not. Both the SC and non-blocking protocols

synchronize by TOB instances that rely on consensus. On the other hand, the blocking protocol

avoids using TOB for the courseware use-case. Fig. 12.(b) shows that this avoidance significantly

improves the response time. The two methods register and query execute without coordination.
Calls on the deleteCourse method coordinate to block addCourse and enroll methods. Therefore,

deleteCourse is less responsive than the other methods. Calls on addCourse and enroll methods

may be blocked but when they are not, they execute without coordination.

We applied the first experiment to the bank account use-case as well. The results are shown in

Fig. 12.(c). Similar to the courseware use-case, the SC protocol is the least responsive and uniform

across all methods. In the other two protocols, the deposit and balancemethods can execute without

coordination in around a millisecond response time. Interestedly, the withdraw method exhibits

almost the same response time in the blocking and non-blocking protocols. The reason is that

withdraw conflicts with itself, and the blocking protocol uses a TOB to order withdraw calls (at

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:26 Farzin Houshmand and Mohsen Lesani

𝑅6 in Fig. 9). Thus, both the blocking and non-blocking protocols use TOB for the bank account

use-case and the synchronization by the TOB dominates the execution time.

In the second experiment, we increase the workload from 10 to 800 calls per second and measure

the average response time over all the calls. The results for the non-blocking and the SC protocols

on the courseware use-case are shown in Fig. 12.(d). The result for the blocking protocol follow

the same trend and are available in the appendix § 5. Similar to the first experiment, we make

this separation because the latter is orders of magnitude more responsive than the former. As we

increase the workload, the network transmits more messages and the protocol states grow that in

turn affect the responsiveness. All the protocols get less responsive as the workload increases. The

response time of the SC protocol grows faster as every operation goes through synchronization.

We observe that coordination specially synchronization can adversely affect the response time.

The experiments suggest that our protocols can effectively avoid coordination to reduce the response

time. They exhibit considerable improvement over the SC protocol. In particular, the blocking

protocol is more responsive than the other protocols especially when no method conflicts with itself.

However, as mentioned before, the blocking protocol may not progress in case of node crashes. On

the other hand, the non-blocking protocol is less responsive but maintains progress.

9 RELATEDWORKS
I-confluence [Bailis et al. 2014] is a sufficient condition for invariant preservation of state-based

replicated objects [Shapiro et al. 2011]. It states that if user operations and the merge operation are

invariant preserving, then every execution is invariant preserving. In contrast to I-confluence,
well-coordination is a correctness condition for operation-based replicated objects [Shapiro et al.

2011]. Further, in addition to coordination-avoiding operations, it supports and reduces coordination

for conflicting operations. A follow-up work, Blazes [Alvaro et al. 2017], applies a technique called

sealing to replicated stream processing. It calculates deterministic results in the presence of non-

deterministic reordering of messages. The idea is to split messages to windows and apply aggregate

operations on them. Both the technique and its applications are distinct from ours.

Warranties [Liu et al. 2014] delay update operations for a limited time to preserve a state assertion

on the distributed state. Thus, local computations can count on the assertion without coordination.

However, in contrast to our approach, warranties are not automatically inferred and specifically

improve the efficiency of read-dominated applications. Further, they preserve strong consistency

rather than exploiting weak consistency. Homeostasis [Roy et al. 2015] targets invariants that span

nodes of partially-replicated distributed stores. Each node maintains a condition called treaty on its

local state and relies on the validity of other node treaties. The idea is that a change in the state of a

node may preserve its treaty and not observationally change the execution of transactions in other

nodes. Thus, coordination can be avoided. However, if a node violates its treaty, it synchronizes

with other nodes and a new set of treaties are calculated and installed. In contrast, well-coordination

targets fully-replicated stores, exploits weak consistency and guarantees convergence. Further, the

analysis is static and the protocols do not calculate conditions at runtime.

Sieve [Li et al. 2014, 2012] defines a consistency model called RedBlue and applies static and

dynamic analysis to determine whether an operation can be executed under causal consistency

(blue) or needs strong consistency (red) to preserve the invariant. However, the analysis does not

check that the result will indeed validate the invariant. In contrast, we prove the sufficiency of

well-coordination. Further, causal consistency is the weakest possible notion in the RedBlue model

while our model allows operations to execute with no synchronization and dependency.

Quelea [Sivaramakrishnan et al. 2015] lets the programmer declare consistency contracts for

operations of a replicated object using primitive consistency relations such as visibility and session

orders. It defines axiomatic semantics for consistency notions using the same primitives. It then

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:27

register query addCourse enrol deleteCourse

0

2

4

6

·103

Operations

R
es
p
on

se
T
im

e
(m

s)

SC
Non-Blocking

(a)

register query addCourse enrol deleteCourse

0

20

40

60

80

100

120

Operations

R
es
p
on

se
T
im

e
(m

s)

Blocking

(b)

deposit withdraw getBalance

0

1

2

3

4

5
·103

Operations

R
es
p
on

se
T
im

e
(m

s)

Non-Blocking
Blocking

SC

(c)

0 200 400 600 800

2

3

4

5

·103

Workload (ops/s)

R
es
p
on

se
T
im

e
(m

s)

SC
Non-Blocking

(d)

Fig. 12. (a) Response time for Courseware with the Non-Blocking and SC protocols. (b) Response time for
Courseware with the Blocking protocol. (c) Response time for BankAccount. (d) The effect of workload on
response time for Courseware.

automatically maps a contract to the weakest consistency notion that satisfies the contract. However,

these contracts are lower-level than integrity invariants and translating invariants to contracts is

non-trivial. Inspired by weak memory models, a similar work [Bernardi and Gotsman 2016; Cerone

et al. 2015] presented a framework for specification of weak consistency models that have atomic

visibility and defined dynamic and static checks for serializability of applications that choose to use

weak consistency. Later, [Brutschy et al. 2017] defined a generalization of conflict serializability

to be used together with weak consistency notions. It presented a dynamic checker to determine

whether an execution of an application that uses weak consistency is serializable. In contrast, our

approach requires applications to specify only higher-level integrity properties and automatically

finds the coordination needed to preserve them.

Indigo [Balegas et al. 2015a,b] lets the user introduce application-specific predicates and define

invariants and method post-conditions in terms of those predicates. It identifies operations that

violate the invariant if executed concurrently and either prevents or repairs their concurrent

execution. For the former, it applies reservation techniques to enhance coordination efficiency and

for the latter, it provides a library of restoring operations. In contrast, well-coordination does not

require user-defined predicates and annotations. In addition, the well-coordination conditions are

formally defined and their sufficiency is proved. Further, well-coordination guarantees convergence

in addition to invariant preservation. Besides, the implementation of Indigo is dependent on causal

consistency of a lower-level store while we defined and implemented standalone protocols.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

74:28 Farzin Houshmand and Mohsen Lesani

CISE [Gotsman et al. 2016; Najafzadeh et al. 2016] lets the user specify the invariant of the object,

associate each method with tags and define conflicts between tags. It presents a rely-guarantee style

proof technique for invariant preservation. The proof technique allows conditions to be associated

with tags and requires that each operation guarantees the conditions of its tags relying on the

conditions of non-conflicting tags. In contrast to well-coordination, the proof rule is fundamentally

dependent on causal consistency and hence causal consistency is the weakest possible notion in

the model. Further, our approach does not require the user to provide the conflict relation and

automatically calculates it. In addition, we present protocols that provide the required coordination.

For database transactions, [Lu et al. 2004] presented correctness conditions of different isolation

levels and an algorithm to find the lowest isolation level for transactions of an application to be

semantically correct. Later, [Fekete 2005; Fekete et al. 2005] presented an algorithm to determine

whether executions of a transaction are serializable under snapshot isolation. Recently, Alone-

Together [Kaki et al. 2017] presented a program logic that enables compositional verification of

invariant preservation for weakly isolated transactions. These works consider isolation levels

on shared memory [Anderson et al. 2009; Hoffmann et al. 2013; Jones 1983; Lahav and Vafeiadis

2015; Nardelli et al. 2009; OHearn 2007; Owicki and Gries 1976] databases. For instance, in the

AloneTogether model, all updates of a transaction become visible to all threads in an indivisible

step. In contrast, we consider weak consistency for replicated state.

IPA [Holt et al. 2016] presents a type system ensuring that values from weakly consistent

operations cannot flow into strongly consistency operations without explicit user endorsement.

IPA stores adapt consistency to system load within the user-specified bound. Similarly, MixT

[Milano and Myers 2018] is a language that allows transactions to access different stores with

varying consistency guarantees and applies information flow analysis to prevent less-consistent

data from influencing more-consistent data. In contrast to our approach that infers the required

synchronization and dependency, IPA and MixT require the user to explicitly associate consistency

conditions with objects and stores. Further, they are concerned with consistency flow rather than

integrity preservation.

Epsilon-serializability [Ramamritham and Pu 1995] and TACT [Yu and Vahdat 2000] reduce

coordination by bounding the staleness of replicated state. PBS [Bailis et al. 2012b] reduces coordi-

nation to a partial rather than a complete quorum and statistically bounds staleness. In contrast to

bounding staleness, we focus on preserving invariants efficiently. Rationing [Kraska et al. 2009]

and Pileus [Terry et al. 2013] dynamically adjust consistency based on temporal load statistics and

Correctables [Guerraoui et al. 2016] incrementally makes the result more consistent to enhance

responsiveness. In contrast, we presented a static approach to avoid coordination.

We note that our commutativity definitions are similar to Lipton’s [Lipton 1975] moverness

in nature. However, they are defined for replicated rather than shared state. In addition, they are

weaker conditions. In particular, P-commutativity does not require the same final state and return

value after the move as far as the guard and the invariant continue to hold.

10 CONCLUSION
We presented an analysis and protocol co-design for automatic synthesis of correct and efficient

replicated objects. We presented well-coordination, a novel sufficient condition for integrity and

convergence of replicated objects that requires synchronization of conflicting and precedence of

dependent methods. We presented novel parametric protocols that implement these requirements.

We automatically identified conflicting and dependent methods for a suite of use-cases. We used

this information to reduce the coordination avoidance problem to classical graph optimization

problems and instantiated the protocols to synthesize replicated objects. The experimental results

show that the synthesized objects significantly improve responsiveness.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

Hamsaz: Replication Coordination Analysis and Synthesis 74:29

REFERENCES
Daniel Abadi. 2012. Consistency Tradeoffs in Modern Distributed Database System Design. Computer 45, 2 (2012), 6.
Mustaque Ahamad, Gil Neiger, James E Burns, Prince Kohli, and Phillip W Hutto. 1995. Causal memory: Definitions,

implementation, and programming. Distributed Computing 9, 1 (1995).

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. 2017. Blazes: Coordination Analysis and Placement for

Distributed Programs. ACM Trans. Database Syst. 42, 4, Article 23 (Oct. 2017), 31 pages. https://doi.org/10.1145/3110214
Zachary R. Anderson, David Gay, and Mayur Naik. 2009. Lightweight annotations for controlling sharing in concurrent data

structures. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2009, Dublin, Ireland, June 15-21, 2009. 98–109. https://doi.org/10.1145/1542476.1542488

Appendix. 2018. Appendix. https://www.cs.ucr.edu/~lesani/companion/popl19/Appendix.pdf. (2018).

Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, JosephM. Hellerstein, and Ion Stoica. 2014. Coordination Avoidance

in Database Systems. Proc. VLDB Endow. 8, 3 (Nov. 2014), 185–196. https://doi.org/10.14778/2735508.2735509
Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. 2015. Feral concurrency

control: An empirical investigation of modern application integrity. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 1327–1342.

Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. 2012a. The potential dangers of causal consistency

and an explicit solution. In Proceedings of the Third ACM Symposium on Cloud Computing. ACM, 22.

Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M Hellerstein, and Ion Stoica. 2012b. Probabilistically

bounded staleness for practical partial quorums. Proceedings of the VLDB Endowment 5, 8 (2012), 776–787.
Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguica, Mahsa Najafzadeh, and Marc Shapiro.

2015a. Putting Consistency Back into Eventual Consistency. In Proceedings of the Tenth European Conference on Computer
Systems (EuroSys ’15). ACM, New York, NY, USA, Article 6, 16 pages. https://doi.org/10.1145/2741948.2741972

Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguica, Mahsa Najafzadeh, and Marc Shapiro.

2015b. Towards Fast Invariant Preservation in Geo-replicated Systems. SIGOPS Oper. Syst. Rev. 49, 1 (Jan. 2015), 121–125.
https://doi.org/10.1145/2723872.2723889

Kshitij Bansal, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. 2016. A new decision procedure for finite sets and

cardinality constraints in SMT. In International Joint Conference on Automated Reasoning. Springer, 82–98.
Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovi’c, Tim King, Andrew Reynolds,

and Cesare Tinelli. 2011. CVC4. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV
’11) (Lecture Notes in Computer Science), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.), Vol. 6806. Springer, 171–177.

http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf Snowbird, Utah.

Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB Standard: Version 2.0. In Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories (Edinburgh, UK), A. Gupta and D. Kroening (Eds.).

Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani, Praveen Yalagandula, and Jiandan Zheng.

2006. PRACTI Replication. In Proc. NSDI.
Giovanni Bernardi and Alexey Gotsman. 2016. Robustness against consistency models with atomic visibility. In LIPIcs-Leibniz

International Proceedings in Informatics, Vol. 59. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Kenneth P. Birman. 1985. Replication and Fault-Tolerance in the ISIS System. In Proc. SOSP.
A. Bouajjani, C. Enea, and J. Hamza. 2014. Verifying Eventual Consistency of Optimistic Replication Systems. In Proc. POPL.
Coen Bron and Joep Kerbosch. 1973. Algorithm 457: Finding All Cliques of an Undirected Graph. Commun. ACM 16, 9 (Sept.

1973), 575–577. https://doi.org/10.1145/362342.362367

Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. 2017. Serializability for Eventual Consistency: Criterion,

Analysis, and Applications. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2017). ACM, New York, NY, USA, 458–472. https://doi.org/10.1145/3009837.3009895

Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated Data Types: Specification,

Verification, Optimality. In Proc. POPL.
Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. 2011. Introduction to Reliable and Secure Distributed Programming

(2nd ed.). Springer Publishing Company, Incorporated.

Domenico Cantone, Eugenio Omodeo, and Alberto Policriti. 2013. Set theory for computing: from decision procedures to
declarative programming with sets. Springer Science & Business Media.

Domenico Cantone and Calogero G Zarba. 2000. A new fast tableau-based decision procedure for an unquantified fragment

of set theory. In Automated Deduction in Classical and Non-Classical Logics. Springer, 126–136.
Nuno Carvalho and et. al. 2011. APPIA Framework. http://appia.di.fc.ul.pt/wiki/index.php?title=Main_Page. (2011). Accessed:

2018-06-23.

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A framework for transactional consistency models with

atomic visibility. In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 42. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

https://doi.org/10.1145/3110214
https://doi.org/10.1145/1542476.1542488
https://www.cs.ucr.edu/~lesani/companion/popl19/Appendix.pdf
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/2723872.2723889
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
https://doi.org/10.1145/362342.362367
https://doi.org/10.1145/3009837.3009895
http://appia.di.fc.ul.pt/wiki/index.php?title=Main_Page

74:30 Farzin Houshmand and Mohsen Lesani

Kevin Clancy and Heather Miller. 2017. Monotonicity Types for Distributed Dataflow. In Proceedings of the Programming
Models and Languages for Distributed Computing. ACM, 2.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick

Puz, Daniel Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s Hosted Data Serving Platform. Proc. VLDB Endow. 1, 2
(2008), 12.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey

Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander

Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal

Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed Database.

ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 22 pages. https://doi.org/10.1145/2491245
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-

nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.

In Proc. SOSP.
Michael Emmi and Constantin Enea. 2018. Monitoring Weak Consistency. In Proc. CAV.
Alan Fekete. 2005. Allocating Isolation Levels to Transactions. In Proceedings of the Twenty-fourth ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems (PODS ’05). ACM, New York, NY, USA, 206–215. https://doi.org/10.

1145/1065167.1065193

Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha. 2005. Making Snapshot Isolation

Serializable. ACM Trans. Database Syst. 30, 2 (June 2005), 492–528. https://doi.org/10.1145/1071610.1071615
Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of Distributed Consensus with One Faulty

Process. J. ACM 32, 2 (April 1985), 374–382. https://doi.org/10.1145/3149.214121

Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-tolerant

Web Services. SIGACT News 33, 2 (June 2002), 9.
Seth Gilbert and Nancy A. Lynch. 2012. Perspectives on the CAP Theorem. IEEE Computer 45, 2 (2012), 30–36.
Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I’M Strong Enough:

Reasoning About Consistency Choices in Distributed Systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA, 371–384. https://doi.org/10.

1145/2837614.2837625

Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. 2016. Incremental Consistency Guarantees for Replicated

Objects.. In OSDI. 169–184.
Jan Hoffmann, Michael Marmar, and Zhong Shao. 2013. Quantitative reasoning for proving lock-freedom. In Proceedings of

the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE Computer Society, 124–133.

Brandon Holt, James Bornholt, Irene Zhang, Dan Ports, Mark Oskin, and Luis Ceze. 2016. Disciplined Inconsistency with

Consistency Types. In Proceedings of the Seventh ACM Symposium on Cloud Computing (SoCC ’16). ACM, New York, NY,

USA, 279–293. https://doi.org/10.1145/2987550.2987559

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soule, Changhoon Kim, and Ion Stoica. 2018.

NetChain: Scale-Free Sub-RTT Coordination. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). USENIX Association.

Cliff B. Jones. 1983. Tentative steps toward a development method for interfering programs. ACM Transactions on
Programming Languages and Systems (TOPLAS) 5, 4 (1983), 596–619.

Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. 2017. Alone Together: Compositional Reasoning

and Inference for Weak Isolation. Proc. ACM Program. Lang. 2, POPL, Article 27 (Dec. 2017), 34 pages. https://doi.org/10.
1145/3158115

Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. 2009. Consistency Rationing in the Cloud: Pay

Only when It Matters. Proc. VLDB Endow. 2, 1 (Aug. 2009), 253–264. https://doi.org/10.14778/1687627.1687657
Viktor Kuncak and Martin Rinard. 2007. Towards efficient satisfiability checking for Boolean Algebra with Presburger

Arithmetic. In International Conference on Automated Deduction. Springer, 215–230.
Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. 1992. Providing High Availability Using Lazy Replication.

ACM Trans. Comput. Syst. 10, 4 (1992), 32.
Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries reasoning for weak memory models. In International Colloquium on

Automata, Languages, and Programming. Springer, 311–323.
Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21, 7 (1978).

Leslie Lamport. 1998. The Part-time Parliament. ACM Trans. Comput. Syst. 16, 2 (1998).
Cheng Li, João Leitão, Allen Clement, Nuno Preguica, Rodrigo Rodrigues, and Viktor Vafeiadis. 2014. Automating the

Choice of Consistency Levels in Replicated Systems. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (USENIX ATC’14). USENIX Association, Berkeley, CA, USA, 281–292. http://dl.acm.org/citation.

cfm?id=2643634.2643664

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

https://doi.org/10.1145/2491245
https://doi.org/10.1145/1065167.1065193
https://doi.org/10.1145/1065167.1065193
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2987550.2987559
https://doi.org/10.1145/3158115
https://doi.org/10.1145/3158115
https://doi.org/10.14778/1687627.1687657
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dl.acm.org/citation.cfm?id=2643634.2643664

Hamsaz: Replication Coordination Analysis and Synthesis 74:31

Cheng Li, João Leitão, Allen Clement, Nuno Preguica, and Rodrigo Rodrigues. 2015. Minimizing coordination in replicated

systems. In Proceedings of the First Workshop on Principles and Practice of Consistency for Distributed Data. ACM, 8.

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguica, and Rodrigo Rodrigues. 2012. Making Geo-

replicated Systems Fast As Possible, Consistent when Necessary. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (OSDI’12). USENIX Association, Berkeley, CA, USA, 265–278. http:

//dl.acm.org/citation.cfm?id=2387880.2387906

Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (Dec. 1975),

717–721. https://doi.org/10.1145/361227.361234

Jed Liu, Tom Magrino, Owen Arden, Michael D. George, and Andrew C. Myers. 2014. Warranties for Faster Strong

Consistency. In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation (NSDI’14).
USENIX Association, Berkeley, CA, USA, 503–517. http://dl.acm.org/citation.cfm?id=2616448.2616495

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t Settle for Eventual: Scalable

Causal Consistency for Wide-area Storage with COPS. In Proc. SOSP.
Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2013. Stronger Semantics for Low-latency

Geo-replicated Storage. In Proc. NSDI.
Shiyong Lu, Arthur Bernstein, and Philip Lewis. 2004. Correct execution of transactions at different isolation levels. IEEE

Transactions on Knowledge and Data Engineering 16, 9 (2004), 1070–1081.

P. Madhusudan and P.S. Thiagarajan. 2001. Distributed Controller Synthesis for Local Specifications. In Automata, Languages
and Programming, Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 396–407.

BaoluoMeng, AndrewReynolds, Cesare Tinelli, and Clark Barrett. 2017. Relational Constraint Solving in SMT. In International
Conference on Automated Deduction. Springer, 148–165.

Matthew Milano and Andrew C Myers. 2018. MixT: A Language for Mixing Consistency in Geodistributed Transactions.

(2018).

Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc Shapiro. 2016. The CISE Tool: Proving

Weakly-consistent Applications Correct. In Proceedings of the 2Nd Workshop on the Principles and Practice of Consistency
for Distributed Data (PaPoC ’16). ACM, New York, NY, USA, Article 2, 3 pages. https://doi.org/10.1145/2911151.2911160

Francesco Zappa Nardelli, Peter Sewell, Jaroslav Sevcik, Susmit Sarkar, Scott Owens, Luc Maranget, Mark Batty, and Jade

Alglave. 2009. Relaxed memory models must be rigorous. In Exploiting Concurrency Efficiently and Correctly Workshop.
Peter W. OHearn. 2007. Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375, 1-3 (2007), 271–307.
Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped Replication: A New Primary Copy Method to Support Highly-

Available Distributed Systems. In Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing
(PODC ’88). ACM, New York, NY, USA, 8–17. https://doi.org/10.1145/62546.62549

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Consensus Algorithm. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Conference (USENIX ATC’14). USENIX Association, Berkeley, CA, USA,

305–320. http://dl.acm.org/citation.cfm?id=2643634.2643666

Susan Owicki and David Gries. 1976. An axiomatic proof technique for parallel programs I. Acta Informatica 6, 4 (1976),
319–340.

Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J. Demers. 1997. Flexible Update

Propagation for Weakly Consistent Replication. In Proc. SOSP.
Krithi Ramamritham and Calton Pu. 1995. A formal characterization of epsilon serializability. IEEE Transactions on Knowledge

and Data Engineering 7, 6 (1995), 997–1007.

Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch, Nate Foster, and Johannes Gehrke. 2015.

The Homeostasis Protocol: Avoiding Transaction Coordination Through Program Analysis. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data (SIGMOD ’15). ACM, New York, NY, USA, 1311–1326.

https://doi.org/10.1145/2723372.2723720

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011. A comprehensive study of Convergent and
Commutative Replicated Data Types. Technical Report RR-7506. INRIA.

KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative Programming over Eventually Consistent

Data Stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, New York, NY, USA, 413–424. https://doi.org/10.1145/2737924.2737981

Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional Storage for Geo-replicated Systems. In

Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP ’11). ACM, New York, NY, USA,

385–400. https://doi.org/10.1145/2043556.2043592

Philippe Suter, Robin Steiger, and Viktor Kuncak. 2011. Sets with cardinality constraints in satisfiability modulo theories. In

International Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, 403–418.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://doi.org/10.1145/361227.361234
http://dl.acm.org/citation.cfm?id=2616448.2616495
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/62546.62549
http://dl.acm.org/citation.cfm?id=2643634.2643666
https://doi.org/10.1145/2723372.2723720
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2043556.2043592

74:32 Farzin Houshmand and Mohsen Lesani

Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-

Libdeh. 2013. Consistency-based Service Level Agreements for Cloud Storage. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (SOSP ’13). ACM, New York, NY, USA, 309–324. https://doi.org/10.1145/

2517349.2522731

Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. 1977. A New Algorithm for Generating All the Maximal

Independent Sets. SIAM J. Comput. 6, 3 (1977), 505–517. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=
normal&id=SMJCAT000006000003000505000001&idtype=cvips&gifs=yes

Werner Vogels. 2008. Eventually consistent. ACM Queue 6, 6 (2008).
Haifeng Yu and Amin Vahdat. 2000. Design and evaluation of a continuous consistency model for replicated services.

In Proceedings of the 4th Conference on Symposium on Operating System Design & Implementation-Volume 4. USENIX
Association, 21.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 74. Publication date: January 2019.

https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1145/2517349.2522731
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJCAT000006000003000505000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJCAT000006000003000505000001&idtype=cvips&gifs=yes

	Abstract
	1 Introduction
	2 Overview
	3 Well-Coordination
	4 Static Analysis
	5 Use-cases
	6 Protocols
	6.1 Non-blocking Synchronization Protocol
	6.2 Blocking Synchronization Protocol
	6.3 Dependency-Tacking Protocol

	7 Implementation
	8 Evaluation
	9 Related Works
	10 Conclusion
	References

