Replication Coordination Analysis and Synthesis

Farzin Houshmand, Mohsen Lesani University of California, Riverside

Consistency vs Responsiveness and Availability

Viewstamp [PODC'88]
Paxos [98]
Raft [USENIX'14]

Sequential Consistency

Consistency vs Responsiveness and Availability

Viewstamp [PODC'88] Paxos [98] Raft [USENIX'14] **Sequential Consistency**

Responsiveness Availability

Consistency

Eventual Consistency

Consistency vs Responsiveness and Availability

Viewstamp [PODC'88] Paxos [98] Raft [USENIX'14] **Sequential Consistency**

COPS [SOSP'11]
Eiger [NSDI'13]
BoltOn [SIGMOD'13]
GentleRain [SOCC'14]

Causal Consistency

Eventual Consistency

What users need is integrity and not consistency.
 Consistency is a means to Integrity.

- What users need is integrity and not consistency.
 Consistency is a means to Integrity.
- Bank Account. Integrity: Non-negative balance.

- What users need is integrity and not consistency.
 Consistency is a means to Integrity.
- Bank Account. Integrity: Non-negative balance.
- Deposit
 No synchronization
 No dependency

- What users need is integrity and not consistency.
 Consistency is a means to Integrity.
- Bank Account. Integrity: Non-negative balance.
- Deposit
 No synchronization
 No dependency
- Withdraw
 Synchronization with withdraw
 Dependent on preceding deposits

State of the Art

Facilitating the consistency choices

- Require user-specified choices or annotations
- Crucially dependent on causal consistency as the weakest notion

Object

 \int Int

Integrity Property

Synthesis of replicated objects that preserve integrity and convergence and minimize coordination

Well-coordination:

Synchronization between conflicting Causality between dependent

Theorem:

Well-coordination is sufficient for integrity and convergence

$$\langle \Sigma, \mathcal{I}, \mathcal{M} \rangle$$

```
Class Courseware
                                let Student := Set (sid: SId) in
                                 let Course := Set (cid: Cld) in
                                 let Enrolment :=
                                       Set (esid: Sld, ecid: Cld) in
                                \Sigma := \mathsf{Student} \times \mathsf{Course} \times \mathsf{Enrolment}
                                \mathcal{I} := \lambda \langle ss, cs, es \rangle.
                                       refIntegrity(es, esid, ss, sid) \land
                                       refIntegrity(es, ecid, cs, cid)
                                register(s) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
                                addCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
                                enroll(s,c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
                                deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
                                query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
refintegrity(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')
```

```
Class Courseware
                                let Student := Set (sid: SId) in
                               let Course := Set \( \)cid: Cld \( \) in
                               let Enrolment :=
                                      Set (esid: Sld, ecid: Cld) in
                               \Sigma := Student \times Course \times Enrolment
                               I := \lambda \langle ss, cs, es \rangle.
                                      refIntegrity(es, esid, ss, sid) ∧
                                      refIntegrity(es, ecid, cs, cid)
                               register(s) := \lambda \langle ss, cs, es \rangle.
                                      \langle \mathbb{T}, \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
                               addCourse(c) := \lambda \langle ss, cs, es \rangle.
                                     \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
                               enroll(s,c) := \lambda \langle ss, cs, es \rangle.
                                      \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
                               deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
                                     \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
                               query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
refintegrity(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')
```

```
Class Courseware
      let Student := Set (sid: SId) in
      let Course := Set (cid: Cld) in
      let Enrolment :=
             Set (esid: SId, ecid: CId) in
      \Sigma := Student \times Course \times Enrolment
      \mathcal{I} := \lambda \langle ss, cs, es \rangle.
             refIntegrity(es, esid, ss, sid) ∧
            refIntegrity(es, ecid, cs, cid)
      register(s) := \lambda \langle ss, cs, es \rangle.
            \langle \mathbb{T}, \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
      addCourse(c) := \lambda \langle ss, cs, es \rangle.
            \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
      enroll(s,c) := \lambda \langle ss, cs, es \rangle.
            \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
      deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
            \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
      query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
```

refintegrity $(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')$

```
Class Courseware
      let Student := Set (sid: SId) in
      let Course := Set (cid: Cld) in
      let Enrolment :=
             Set (esid: Sld, ecid: Cld) in
      \Sigma := \mathsf{Student} \times \mathsf{Course} \times \mathsf{Enrolment}
      \mathcal{I} := \lambda \langle ss, cs, es \rangle.
             refIntegrity(es, esid, ss, sid) ∧
             refIntegrity(es, ecid, cs, cid)
      register(s) := \lambda \langle ss, cs, es \rangle.
             \langle \mathbb{T}, \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
      addCourse(c) := \lambda \langle ss, cs, es \rangle.
             \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
      enroll(s,c) := \lambda \langle ss, cs, es \rangle.
             \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
      deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
             \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
      query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
```

refintegrity $(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')$

```
Class Courseware
                                 let Student := Set (sid: SId) in
                                 let Course := Set (cid: Cld) in
                                 let Enrolment :=
                                       Set (esid: Sld, ecid: Cld) in
                                \Sigma := \mathsf{Student} \times \mathsf{Course} \times \mathsf{Enrolment}
                                \mathcal{I} := \lambda \langle ss, cs, es \rangle.
                                       refIntegrity(es, esid, ss, sid) ∧
                                       refIntegrity(es, ecid, cs, cid)
                                register(s) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
                                addCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
                                enroll(s,c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
                                deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
                                query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
refintegrity(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')
```

```
Class Courseware
                                let Student := Set (sid: SId) in
                                let Course := Set (cid: Cld) in
                                let Enrolment :=
                                       Set (esid: SId, ecid: CId) in
                                \Sigma := \mathsf{Student} \times \mathsf{Course} \times \mathsf{Enrolment}
                                \mathcal{I} := \lambda \langle ss, cs, es \rangle.
                                       refIntegrity(es, esid, ss, sid) \land
                                       refIntegrity(es, ecid, cs, cid)
                                register(s) := \lambda \langle ss, cs, es \rangle.
                                                                                                        (guard, update, retv)
                                      \langle \mathbb{T}, | \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
                                addCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
                                enroll(s,c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
                                deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
                                      \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
                                query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
refintegrity(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')
```

```
Class Courseware
                                let Student := Set (sid: SId) in
                                let Course := Set (cid: Cld) in
                                let Enrolment :=
                                       Set (esid: SId, ecid: CId) in
                                \Sigma := \mathsf{Student} \times \mathsf{Course} \times \mathsf{Enrolment}
                                \mathcal{I} := \lambda \langle ss, cs, es \rangle.
                                       refIntegrity(es, esid, ss, sid) \land
                                       refIntegrity(es, ecid, cs, cid)
                                register(s) := \lambda \langle ss, cs, es \rangle.
                                                                                                       (guard, update retv)
                                       \langle \mathbb{T}, | \langle ss \cup \{s\}, cs, es \rangle, | \perp \rangle
                                addCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
                                enroll(s,c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
                                deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
                                      \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
                                query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
refintegrity(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')
```

```
Class Courseware
                                 let Student := Set (sid: SId) in
                                 let Course := Set (cid: Cld) in
                                 let Enrolment :=
                                       Set (esid: SId, ecid: CId) in
                                 \Sigma := \mathsf{Student} \times \mathsf{Course} \times \mathsf{Enrolment}
                                \mathcal{I} := \lambda \langle ss, cs, es \rangle.
                                       refIntegrity(es, esid, ss, sid) \land
                                       refIntegrity(es, ecid, cs, cid)
                                 register(s) := \lambda \langle ss, cs, es \rangle.
                                                                                                         \( \text{guard}, \text{update}, \text{retv} \)
                                       \langle \mathbb{T}, \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
                                 addCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
                                 enroll(s,c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
                                 deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
                                 query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
refintegrity(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')
```

```
Class Courseware
                                 let Student := Set (sid: SId) in
                                 let Course := Set (cid: Cld) in
                                 let Enrolment :=
                                       Set (esid: SId, ecid: CId) in
                                \Sigma := \mathsf{Student} \times \mathsf{Course} \times \mathsf{Enrolment}
                                \mathcal{I} := \lambda \langle ss, cs, es \rangle.
                                       refIntegrity(es, esid, ss, sid) \land
                                       refIntegrity(es, ecid, cs, cid)
                                 register(s) := \lambda \langle ss, cs, es \rangle.
                                                                                                        \(\langle guard, update, retv\rangle \)
                                       \langle \mathbb{T}, \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
                                addCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
                                enroll(s,c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
                                deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
                                query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
refintegrity(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')
```

```
Class Courseware
                                 let Student := Set (sid: SId) in
                                 let Course := Set (cid: Cld) in
                                 let Enrolment :=
                                       Set (esid: Sld, ecid: Cld) in
                                \Sigma := \mathsf{Student} \times \mathsf{Course} \times \mathsf{Enrolment}
                                \mathcal{I} := \lambda \langle ss, cs, es \rangle.
                                       refIntegrity(es, esid, ss, sid) \land
                                       refIntegrity(es, ecid, cs, cid)
                                register(s) := \lambda \langle ss, cs, es \rangle.
                                                                                                        \(\langle guard, update, retv\rangle \)
                                       \langle \mathbb{T}, \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
                                addCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
                                enroll(s,c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
                                deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
                                query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
refintegrity(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')
```

```
Class Courseware
                                 let Student := Set (sid: SId) in
                                 let Course := Set (cid: Cld) in
                                 let Enrolment :=
                                       Set (esid: Sld, ecid: Cld) in
                                \Sigma := \mathsf{Student} \times \mathsf{Course} \times \mathsf{Enrolment}
                                \mathcal{I} := \lambda \langle ss, cs, es \rangle.
                                       refIntegrity(es, esid, ss, sid) \land
                                       refIntegrity(es, ecid, cs, cid)
                                 register(s) := \lambda \langle ss, cs, es \rangle.
                                                                                                        \(\langle guard, update, retv\rangle \)
                                       \langle \mathbb{T}, \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
                                addCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
                                enroll(s,c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
                                deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
                                query := \lambda \sigma . \langle \mathbb{T}, \sigma, \sigma \rangle
refintegrity(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')
```

```
Class Courseware
                                 let Student := Set (sid: SId) in
                                 let Course := Set (cid: Cld) in
                                 let Enrolment :=
                                       Set (esid: SId, ecid: CId) in
                                \Sigma := \mathsf{Student} \times \mathsf{Course} \times \mathsf{Enrolment}
                                \mathcal{I} := \lambda \langle ss, cs, es \rangle.
                                       refIntegrity(es, esid, ss, sid) \land
                                       refIntegrity(es, ecid, cs, cid)
                                 register(s) := \lambda \langle ss, cs, es \rangle.
                                                                                                        \(\langle guard, update, retv\rangle \)
                                       \langle \mathbb{T}, \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
                                addCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
                                enroll(s,c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
                                deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
                                query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
refintegrity(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')
```

```
Class Courseware
                                 let Student := Set (sid: SId) in
                                 let Course := Set (cid: Cld) in
                                 let Enrolment :=
                                       Set (esid: SId, ecid: CId) in
                                \Sigma := \mathsf{Student} \times \mathsf{Course} \times \mathsf{Enrolment}
                                \mathcal{I} := \lambda \langle ss, cs, es \rangle.
                                       refIntegrity(es, esid, ss, sid) \land
                                       refIntegrity(es, ecid, cs, cid)
                                register(s) := \lambda \langle ss, cs, es \rangle.
                                                                                                        \(\langle guard, update, retv\rangle \)
                                       \langle \mathbb{T}, \langle ss \cup \{s\}, cs, es \rangle, \perp \rangle
                                addCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \cup \{c\}, es \rangle, \perp \rangle
                                enroll(s,c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs, es \cup \{(s,c)\} \rangle, \perp \rangle
                                deleteCourse(c) := \lambda \langle ss, cs, es \rangle.
                                       \langle \mathbb{T}, \langle ss, cs \setminus \{c\}, es \rangle, \perp \rangle
                                query := \lambda \sigma. \langle \mathbb{T}, \sigma, \sigma \rangle
refintegrity(R, f, R', f') := \forall r. \ r \in R \rightarrow \exists r'. \ r' \in R' \land f(r) = f'(r')
```

Convergence and Consistency

Convergence

Convergence

Convergence

Convergence

 $\sigma_3 = \sigma_5$

Convergence

Consistency Permissibility

$$\mathcal{C}(\sigma_2, c_2) = \\
g(\sigma_2) \land \\
\mathcal{I}(\sigma_2)$$

Consistency Permissibility

$$\mathcal{C}(\sigma_2, c_2) = \begin{pmatrix} \mathcal{P}(\sigma_2, c_2) = \\ g(\sigma_2) \land \\ \mathcal{I}(\sigma_2) \end{pmatrix}$$

Consistency Permissibility

$$\mathcal{C}(\sigma_2, c_2) = \mathcal{P}(\sigma_2, c_2) =
g(\sigma_2) \land g(\sigma_2) \land
\mathcal{I}(\sigma_2) \mathcal{I}(u(\sigma_2))$$

Conflict

 $\mathbf{1}$ S-commute

 \mathcal{P} -concur

2 Permissible-Conflict

\mathcal{P} -conflict

2 Permissible-Conflict

\mathcal{P} -conflict

I-Sufficient

I-Sufficient

I-Sufficient

addCourse(c)

I-Sufficient

I-Sufficient

$$rep_1 \xrightarrow{c \in cs} \begin{array}{c|c} s \in ss \\ c \in cs \\ \hline \langle ss, cs, es \rangle \end{array} & \sigma = \langle ss, cs, es \cup \{\langle s, c \rangle\} \rangle \\ \hline s \in ss \\ c \in cs \\ \hline \langle ss, cs, es \rangle \end{array} & \text{addCourse(c)} \\ \hline rep_2 \xrightarrow{\langle ss, cs, es \rangle} \begin{array}{c|c} \sigma = \langle ss, cs, es \cup \{\langle s, c \rangle\} \rangle \\ \hline \rangle \\ \hline \end{cases} \\ \sigma' = \langle ss, cs \cup \{c\}, es \cup \{\langle s, c \rangle\} \rangle \\ \hline \end{cases}$$

I-Sufficient

I-Sufficient

I-Sufficient

I-Sufficient

I-Sufficient

I-Sufficient

I-Sufficient

 \mathcal{S} -commute

S-commute

 \mathcal{P} -concur

 \mathcal{S} -commute

 \mathcal{P} -concur

Concur

S-commute $\land \mathcal{P}$ -concur

 \mathcal{S} -commute

 \mathcal{P} -concur

Concur

S-commute $\land \mathcal{P}$ -concur

Conflict

¬ Concur

 \mathcal{S} -commute

	r	a	e	d	q
r	√	√	✓	✓	√
a	√	√	✓	×	_
e	/	√	✓	✓	√
d	√	×	√	√	√
q	√	✓	\checkmark	\checkmark	√

 \mathcal{P} -concur

	r	a	e	d	q
r	✓	✓	✓	✓	✓
a	√	√	√	√	√
е	√	√	√	×	√
d	√	√	×	√	√
q	✓	✓	✓	√	√

Concur

S-commute $\land \mathcal{P}$ -concur

	r	a	e	d	q
r	✓	✓	✓	✓	\checkmark
a	✓	\	\	X	✓
e	✓	✓	✓	×	\checkmark
d	✓	×	×	✓	✓
q	√	√	√	√	\checkmark

Conflict

¬ Concur

 \mathcal{S} -commute

	r	a	e	d	q
r	✓	\	✓	\	✓
a	✓	✓	✓	×	√
e	✓	✓	✓	√	√
d	√	×	√	√	√
q	√	√	√	√	√

 \mathcal{P} -concur

	r	a	e	d	q
r	✓	✓	✓	✓	✓
a	√	√	√	√	✓
е	√	√	√	×	√
d	√	√	×	√	√
q	√	√	√	√	√

Concur

S-commute $\land \mathcal{P}$ -concur

	r	a	e	d	q
r	\	\	\	\	✓
a	✓	√	√	×	\checkmark
e	✓	√	√	×	\checkmark
d	√	×	×	√	√
q	√	√	√	√	√

Conflict

¬ Concur

Independence

\mathcal{P} -L-commute

Independent

 \mathcal{I} -Sufficient $\vee \mathcal{P}$ -L-commute

Independent

 \mathcal{I} -Sufficient $\vee \mathcal{P}$ -L-commute

Dependent

 \neg Independent

Independent

 \mathcal{I} -Sufficient $\vee \mathcal{P}$ -L-commute

Dependent

 \neg Independent

	r	a	e	d	q
r	✓	✓	✓	✓	$\overline{}$
a	√	√	√	√	\checkmark
e	×	×	√	√	\checkmark
d	√	√	√	√	\checkmark
q	√	√	√	√	\checkmark

Well-coordination

- Well-coordination
 - Locally Permissible
 - Conflict-Synchronizing
 - Dependency-preserving
- Theorem:
 Well-coordination
 is sufficient for
 integrity and convergence.

Maximal Cliques

Maximal Cliques

Asymmetric Synchronization

Asymmetric Synchronization

Asymmetric Synchronization

Experiments

We execute 500 calls evenly distributed on the methods. We issue one call per millisecond and measure the average response time of the calls on each method.

Hamsaz

- Synthesis of replicated objects that preserve integrity and convergence and minimize coordination
- Reduction of coordination minimization to classical graph optimization
- Well-coordination, a sufficient condition for correctness
- Protocols that implement well-coordination.

Replication Coordination Analysis and Synthesis

Farzin Houshmand, Mohsen Lesani University of California, Riverside