
Replication Coordination Analysis and Synthesis

Anonymous Authors
POPL ’19 Supplement

Contents

1 Proofs 2

2 Use Cases 8

3 Protocols 18
3.1 Dependency Tacking Protocol 18

4 Practical Notes 20

5 Evaluation 21
5.1 Conflict and Dependency Analysis 21
5.2 Performance Results 21

6 Input Specifications 22

1 2018/11/8

1. Proofs
Definition 21 (Execution Fragment). The execution fragment of x
at positions [i..j] written as x[i..j] is the function λk. x(k+ i) from
positions [0..j − i] to requests {x(i), .., x(j)}.
Definition 22 (Execution Projection). The projection of an exe-
cution x to a subset of requests R written as x|R is the bijective
function from positions [0..|R| − 1] to R such that for every r and
r′ in R, if r ≺x r

′, then r ≺x|R r′.

Definition 23 (Execution Concatenation). Given two executions x
and x′, if R(x)∩ R(x′) = ∅, then x · x′ is the bijective function from
[0..|R(x) ∪ R(x′)| − 1] to R(x) ∪ R(x′), such that for every r and
r′ in R(x), if r ≺x r

′, then r ≺x·x′ r
′ and similarly for x′, and for

every r in R(x) and r′ in R(x′), r ≺x·x′ r
′.

An execution x of R defines the total order ≺ on R. A request r
precedes another request r′ in an execution x written as r ≺x r

′ iff
x−1(r) < x−1(r′).

Definition 24 (Locally permissible). A replicated execution xs of
a context c is locally permissible iff for every request r in Rc,
P(s(i), r) where x is xs(origc(r)), s is the state function of x and
i = x−1(r);

Definition 25 (State-conflict-synchronizing). A replicated execu-
tion xs of a context c is S-conflict-synchronizing iff for every pair of
requests r and r′ in Rc, such that callc(r) and callc(r′) S-conflict,
if r ≺xs(n) r

′ then r ≺xs(n′) r
′.

Definition 26 (Permissible-conflict-synchronizing). A replicated
execution xs of a context c is P-conflict-synchronizing iff for every
pair of requests r and r′ in Rc, such that callc(r) and callc(r′)
don’t P-conflict, if r ≺xs(n) r

′ then r ≺xs(n′) r
′.

Definition 27 (Permissible Execution). In a context c, a request
r in an execution x is permissible P(c, x, r) iff, P(s(i), callc(r))
where s is the state function of x, and i is x−1(r), In a context c,
an execution x is permissible P(c, x) iff every request r in R(x)
is permissible in x. A replicated execution xs of a context c is
permissible P(c, xs) iff the execution xs(n) of every node n is
permissible.

llemma 3. For every execution x, the precedence order ≺x is
transitive.

Proof. Immediate from Definition 2.

llemma 4. In a context c, for every pair of executions x and x′ with
state functions s and s′ and every position i, if s′(i) = s(i) and
x′[i..j] = x[i..j] then for every i ≤ k ≤ j + 1, s′(k) = s(k)

Proof.
Simple induction on i and Definition 2.

llemma 5. In every S-conflict-synchronizing replicated execution
xs, for every request r, r′ and r′′, if r precede r′ in the execution of a
node, and r′ precedes r′′ but r does not precede r′′ in the execution
of another node, then r and r′ S-commute.

Formally, for every context c and S-conflict-synchronizing repli-
cated execution xs, for every requests r, r′, r′′ and nodes n and n′,
if

• r ≺xs(n) r
′

• r′ ≺xs(n′) r
′′

• r 6≺xs(n′) r
′′

then callc(r)�S callc(r′).

Proof.
We assume that

(1) xs, a replicated execution

(2) xs is S-conflict-synchronizing
(3) r ≺xs(n) r

′

(4) r′ ≺xs(n′) r
′′

(5) r 6≺xs(n′) r
′′

We show that
callc(r)�S callc(r′).

From [1], we have that
(6) ≺xs(n′) is a total order.

From [6] and [5],
(7) r′′ ≺xs(n′) r

By Lemma 3 on [4] and [7], we have
(8) r′ ≺xs(n′) r

From Definition 25 on [2] and [3], and [8], we have
callc(r)�S callc(r′)

llemma 6. In every P-conflict-synchronizing replicated execution
xs, for every request r, and r′ such that either callc(r) or callc(r′)
is not invariant-sufficient, if r precede r′ in the execution of a node,
but does not precede it in the execution of another node, then r
P-R-commutes with r′.

Formally, for every context c and P-conflict-synchronizing repli-
cated execution xs, for every requests r, and r′ such that either
callc(r) or callc(r′) is not invariant-sufficient, and nodes n and n′,
if

• r ≺xs(n) r
′

• r′ 6≺xs(n′) r

then callc(r) .P callc(r′).

Proof.
Similar to Lemma 5 using Definition 26.

llemma 7. In every dependency-preserving replicated execution xs,
for every request r, and r′, if callc(r′) is not invariant-sufficient
and r precede r′ in the execution of the originating node of r′,
but does not precede it in the execution of another node, then r′

P-L-commutes r.
Formally, for every context c and dependency-preserving repli-

cated execution xs, for every request r and r′ and node n, if callc(r′)
is not invariant-sufficient and

• r ≺xs(origc(r
′)) r

′

• r′ 6≺xs(n) r

then callc(r′)←P callc(r).

Proof.
Similar to Lemma 5 using Definition 19.

llemma 8. In every execution, if a request r at a position i S-
commutes with subsequent requestsR up to and including a position
j, then shifting left R by one position and moving r to j keeps the
post-state of j the same.

Formally, for every context c and execution x, for every position
i and j such that 0 ≤ i < j < |R(x)|, if

• for every position k, i < k ≤ j, callc(x(i))�S callc(x(k)),
• let x′ be x[i 7→ x(i+ 1)]..[j − 1 7→ x(j)][j 7→ x(i)], and
• let s and s′ be the state functions for x and x′,

then s′(j + 1) = s(j + 1).

Proof.
We prove the following stronger statement.

For every context c and execution x, for every position i, j and l
such that 0 ≤ i ≤ l ≤ j < |R(x)|, if

2 2018/11/8

• for every position k, i < k ≤ j, callc(x(i))�S callc(x(k)),
• x′ =
x if l = i
x[i 7→ x(i+ 1)]..[l − 1 7→ x(l)][l 7→ x(i)] otherwise,
• s and s′ are the state functions for x and x′,

then s′(j + 1) = s(j + 1).

The original statement is derived by setting l to j.

We assume that
(1) for every position k, i < k ≤ j,

callc(x(i))�S callc(x(k)).
(2) x′ = x[i 7→ x(i+ 1)]..[l − 1 7→ x(l)][l 7→ x(i)],
(3) s and s′ are the state functions for x and x′,

We prove that
s′(j + 1) = s(j + 1).

Proof by induction on l.
Base case:

l = i
Trivial.

Inductive case:
We assume that

(4) s′(j + 1) = s(j + 1)
(5) x′′ = x[i 7→ x(i+ 1)]..[l 7→ x(l + 1)][l + 1 7→ x(i)],
(6) s′′ is the state function for x′′,

We prove that
s′′(j + 1) = s(j + 1).

From [2] and [5], we have
(7) x′′ = x′[l 7→ x(l + 1)][l + 1 7→ x(i)],

From Definition 4 on [3], [2], we have
(8) s′(l + 2) = update(callc(x(l + 1)))

(update(callc(x(i)))(s
′(l)))

From Definition 4 on [3], [7], we have
(9) s′′(l + 2) = update(callc(x(i)))

(update(callc(x(l + 1)))(s′(l)))
From [1], Definition 11, [8] and [9], we have

(10) s′′(l + 2) = s′(l + 2)
From [2] and [5], we have

(11) x′′[l + 2..j] = x′[l + 2..j]
By Lemma 4 on [10] and [11], we have

(12) s′′(j + 1) = s′(j + 1)
From [4] and [12], we have

s′′(j + 1) = s(j + 1)

llemma 9. In every execution, if a request r at a position j S-
commutes with preceding requests R from position i, then shifting
right R by one position and moving r to i keeps the post-state of j
the same.

Formally, for every context c and execution x, for every position
i and j such that 0 ≤ i < j < |R(x)|, if

• for every position k, i ≤ k < j, callc(x(k))�S callc(x(j)),
• let x′ be x[i 7→ x(j)][i+ 1 7→ x(i)]..[j 7→ x(j − 1)], and
• let s and s′ be the state functions for x and x′,

then s′(j + 1) = s(j + 1).

Proof.
Similar to Lemma 8.

llemma 10. In every S-conflict-synchronizing replicated execution
xs, for every request r, the requests that precede r in the execution
xs(n1) of a node n1 but do not precede r in the execution xs(n2) of

another node n2 can be moved right in xs(n1) to a block before r
and the pre-state of r remains the same.

Formally, for every context c and S-conflict-synchronizing repli-
cated execution xs, for every request r in Rc, and pair of nodes n1

and n2,

• let P (n) be {r′ | r′ ≺xs(n) r}
• let i be xs(n1)−1(r)
• let x′ be xs(n1)|P (n1)∩P (n2) · xs(n1)|P (n1)\P (n2) [i 7→ r]
• let s and s′ be the state functions for xs(n1) and x′,

s′(i) = s(i).

Proof.
We prove the following stronger statement.

For every context c and S-conflict-synchronizing replicated execu-
tion xs, for every request r in Rc, and pair of nodes n1 and n2,

• let P (n) be {r′ | r′ ≺xs(n) r}
• let i be xs(n1)−1(r)

for every 0 ≤ k ≤ |P (n1) \ P (n2)|,

• let R be the k rightmost requests of xs(n1) in P (n1) \ P (n2),
• let x′ be xs(n1)|P (n1)\R · xs(n1)|R [i 7→ r]

• let s and s′ be the state functions for xs(n1) and x′,

s′(i) = s(i).

The original statement is derived by setting k to |P (n1) \ P (n2)|.
R = P (n1) \ P (n2) and P (n1) \R = P (n1) ∩ P (n2).

We assume that
(1) xs is a S-conflict-synchronizing replicated execution.
(2) P (n) = {r′ | r′ ≺xs(n) r}
(3) i = xs(n1)−1(r)
(4) 0 ≤ k ≤ |P (n1) \ P (n2)|,
(5) R is the k rightmost requests of xs(n1) in P (n1) \P (n2),
(6) x′ = xs(n1)|P (n1)\R · xs(n1)|R [i 7→ r]
(7) s and s′ are the state functions for xs(n1) and x′,

We prove that
s′(i) = s(i).

Proof by induction on k.
Base case:

k = 0
Trivial.

Inductive case:
We assume that

(8) s′(i) = s(i).
(9) R′ = R ∪ {r′} is the k + 1 rightmost requests of

xs(n1) in P (n1) \ P (n2),
(10) x′′ = xs(n1)|P (n1)\R′ · xs(n1)|R′ [i 7→ r]
(11) s′′ is the state function for x′′,

We prove that
s′′(i) = s(i).

Let
(12) j = x′−1(r′)

By Definition 2
(13) For every k that j < k,

xs(n1)(j) ≺xs(n1) xs(n1)(k)

From [6], [5], [9] and [12]

3 2018/11/8

(14) For every k that j < k ≤ |P (n1) \R| − 1,
xs(n1)(k) ∈ P (n1) ∧
xs(n1)(k) 6∈ P (n1) \ P (n2)

(15) j = xs(n1)−1(r′)
From [14]

(16) For every k that j < k ≤ |P (n1) \R| − 1,
xs(n1)(k) ∈ P (n1) ∩ P (n2)

From [16] and [2]
(17) For every k that j < k ≤ |P (n1) \R| − 1,

xs(n1)(k) ≺xs(n2) r

From [9], [15] and [2]
(18) xs(n1)(j) 6≺xs(n2) r

By Lemma 5 on [1], [13], [17] and [18]
(19) For every k that j < k ≤ |P (n1) \R| − 1,

callc(xs(n1)(j))�S callc(xs(n1)(k))

By Lemma 8 on [19] and [6]
(20) let x′′′ be x′[j 7→ x′[j + 1]] ..

[|P (n1) \R| − 2 7→ x′[|P (n1) \R| − 1]]
[|P (n1) \R| − 1 7→ x′[j]]·
x′|R [i 7→ r]

(21) let s′′′ be the state function for x′′′

(22) s′′′(|P (n1) \R|) = s′(|P (n1) \R|)
From [20] and [15],

(23) x′′′ = x′[j 7→ x′[j + 1]] ..
[|P (n1) \R| − 2 7→ x′[|P (n1) \R| − 1]]
[|P (n1) \R| − 1 7→ r′]·
x′|R [i 7→ r]

From [6] and [23],
(24) x′′′ = xs(n1)|P (n1)\R∪{r′} ·

xs(n1)|{r′}∪R
[i 7→ r]

From [24], [9], [10],
(25) x′′′ = x′′

From [25], [11], [21],
(26) s′′′ = s′′

From [22] and [26],
(27) s′′(|P (n1) \R|) = s′(|P (n1) \R|)

From [6], [10] and [9],
(28) x′′[|P (n1) \R| .. i− 1] = x′[|P (n1) \R| .. i− 1]

By Lemma 4 on [27] and [28]
(29) s′′(i) = s′(i)

From [8] and [29]
s′′(i) = s(i)

llemma 11. In every execution x, if the request r at position j P-
L-commutes with the immediately preceding requests R and r is
permissible in x then removing R from x keeps r permissible.

Formally, for every context c and execution x, for every position
i and j such that 0 ≤ i < j < |R(x)|, if

• for every position k, i ≤ k < j, callc(x(j))←P callc(x(k)),
• P(c, x, x(j))
• let x′ be (x \ [i..j])[i 7→ x(j)],

then P(c, x′, x′(i))

Proof.
We prove the following stronger statement.

For every context c and execution x, for every position i and j such
that 0 ≤ i < j < |R(x)|, if

• for every position k, i ≤ k < j, callc(x(j))←P callc(x(k)),

• P(c, x, x(j))

for every i ≤ k ≤ j,

• let x′ be (x \ [k..j])[k 7→ x(j)],

then P(c, x′, x′(k))

The original statement is derived by setting k to i.

We assume that
(1) for every k, i ≤ k < j, callc(x(j))←P callc(x(k)),
(2) P(c, x, x(j))
(3) x′ = (x \ [k..j])[k 7→ x(j)],

We prove that
P(c, x′, x′(k))

Proof by induction on k from j down to i.
(equivalently k′ = j − k from 0 to j − i)
Base case:

k = j
Trivial.

Inductive case:
We assume that

(4) P(c, x′, x′(k))
(5) x′′ = (x \ [k − 1..j])[k − 1 7→ x(j)],

We prove that
P(c, x′′, x′′(k − 1))

Let
(6) s, s′ and s′′ be the state functions for x, x′ and x′′.

From [3]
(7) x′[0..k − 1] = x[0..k − 1]

By Lemma 4 on [7]
(8) s′(k − 1) = s(k − 1)

From Definition 27 and Definition 9 on [4]
(9) guard(callc(x′(k)))(s′(k))
(10) I(update(callc(x(j)))(s′(k)))

From [9] and [3]
(11) guard(callc(x(j)))(s′(k))

By Definition 4 on [3] and [6],
(12) s′(k) = update(callc(x(k − 1)))(s′(k − 1))

By [1] on k − 1
(13) callc(x(j))←P callc(x(k − 1))

By Definition 17 and and Definition 9 on [13], [12], [11],
and [10],

(14) guard(callc(x(j)))(s′(k − 1))
(15) I(update(callc(x(j)))(s′(k − 1)))

From [5]
(16) x′′[0..k − 2] = x[0..k − 2]

By Lemma 4 on [16]
(17) s′′(k − 1) = s(k − 1)

From [8] and [17]
(18) s′′(k − 1) = s′(k − 1)

From [18], [14] and [15]
(19) guard(callc(x(j)))(s′′(k − 1))
(20) I(callc(update(x(j)))(s′′(k − 1)))

By Definition 4 on [5] and [6],

4 2018/11/8

(21) x′′(k − 1) = x(j)
From [19], [20], and [21]

(22) guard(callc(x′′(k − 1)))(s′′(k − 1))

From Definition 9 and Definition 27 on [22] and [20]
P(c, x′′, x′′(k − 1))

llemma 12. In every locally permissible, S-conflict-synchronizing
and dependency-preserving replicated execution xs, for every re-
quest r such that callc(r) is not invariant-sufficient, let n1 be its
originating node origc(r), let R be the requests that precede r in
the execution xs(n1) but do not precede r in the execution xs(n2)
of another node n2, R can be removed from xs(n1) and r remains
permissible.

Formally, for every context c and locally permissible, S-conflict-
synchronizing and dependency-preserving replicated execution xs,
for every request r in Rc such that callc(r) is not invariant-sufficient,
and node n2,

• let n1 be origc(r)
• let P (n) be {r′ | r′ ≺xs(n) r}
• let x′ be xs(n1)|P (n1)∩P (n2) [|P (n1) ∩ P (n2)| 7→ r]

then P(c, x′, r).

Proof.
We assume that

(1) xs is a locally permissible replicated execution
(2) xs is a S-conflict-synchronizing replicated execution
(3) xs is a dependency-preserving replicated execution
(4) callc(r) is invariant-sufficient.
(5) n1 = origc(r)
(6) P (n) = {r′ | r′ ≺xs(n) r}
(7) x′ = xs(n1)|P (n1)∩P (n2) [|P (n1) ∩ P (n2)| 7→ r]

We prove that
P(c, x′, r)

By Definition 24 and Definition 27 on [1] and [5]
(8) P(c, xs(n1), r),

By Lemma 10 on [2] and [6],
(9) let i be xs(n1)−1(r)
(10) let x′′ be xs(n1)|P (n1)∩P (n2) ·

xs(n1)|P (n1)\P (n2)

[i 7→ r]
(11) let s and s′′ be the state functions for xs(n1) and x′′,
(12) s′′(i) = s(i).

By Lemma 7 on [3], [5], [6] and [4]
(13) for every r′ in P (n1) \ P (n2), callc(r)←P callc(r′)

From [10] and [13]
(14) for every position k, |P (n1) ∩ P (n2)| ≤ k < i,

callc(x′′(i))←P callc(x′′(k)),

From [8] and [9]
(15) P(c, xs(n1), xs(n1)(i)),

By Definition 27 and Definition 4 on [11], [12] and [15]
(16) P(c, x′′, x′′(i)),

By Lemma 11 on [14] and [16]
(17) let x′′′ be (x′′ \ [|P (n1) ∩ P (n2)|..i])

[|P (n1) ∩ P (n2)| 7→ x′′(i)],
(18) P(c, x′′′, x′′′(|P (n1) ∩ P (n2)|))

From [17] and [10]

(19) x′′′ = xs(n1)|P (n1)∩P (n2) [|P (n1) ∩ P (n2)| 7→ r]
From [7] and [19]

(20) x′′′ = x′

From [18], [20], [7]
P(c, x′, r)

llemma 13. In every execution x, if a request r is P-R-commutative
with a sequence of requests R and is permissible in the state
immediately before them, it is permissible in the state immediately
after them as well.

Formally, for every context c, execution x and request r, for
every position i and j such that 0 ≤ i < j < |R(x)|, if

• for every position k, i ≤ k ≤ j, callc(x(k)) .P callc(r),
• let s be the state function for x
• guard(callc(r))(s(i)),
• I(update(callc(r))(s(i))),

then

• guard(callc(r))(s(j + 1)),
• I(update(callc(r))(s(j + 1))).

Proof.
We prove the following stronger statement.

For every context c, execution x and request r, for every position i
and j such that 0 ≤ i < j < |R(x)|, if

• for every position k, i ≤ k ≤ j, callc(x(k)) .P callc(r),
• let s be the state function for x
• guard(callc(r))(s(i)),
• I(update(callc(r))(s(i))),

for every k, i ≤ k ≤ j + 1,

• guard(callc(r))(s(k)),
• I(update(callc(r))(s(k))).

The original statement is derived by setting k to j + 1.

We assume that
(1) for every position k, i ≤ k ≤ j,

callc(x(k)) .P callc(r),
(2) let s be the state function for x
(3) guard(callc(r))(s(i)),
(4) I(update(callc(r))(s(i))),

We prove that
guard(callc(r))(s(k)),
I(update(callc(r))(s(k))).

Proof by induction on k from i to j + 1.
Base case:

k = i
Trivial.

Inductive case:
We assume that

(5) guard(callc(r))(s(k))
(6) I(update(callc(r))(s(k)))

We prove that
guard(callc(r))(s(k + 1))
I(update(callc(r))(s(k + 1)))

By Definition 4, we have
(7) s(k + 1) = update(callc(x(k)))(s(k))

From [1]

5 2018/11/8

(8) callc(x(k)) .P callc(r)
By Definition 13 and Definition 9 on [8], [5], [6], [7]

guard(callc(r))(s(k + 1))
I(update(callc(r))(s(k + 1)))

llemma 14. For every pair of executions x and x′ of a set of requests
R in a context c, if

• for every r and r′ in R, if callc(r) 6�S callc(r′) and r ≺x r
′,

then r ≺x′ r
′

• let s and s′ be the state functions of x and x′

then s(|R|) = s′(|R|).

Proof.
We prove the following stronger statement.

For every pair of executions x and x′ of a set of requests R in a
context c, if

• for every r and r′ in R, if callc(r) 6�S callc(r′) and r ≺x r
′,

then r ≺x′ r
′

• let s and s′ be the state functions of x and x′

for every k, 0 ≤ k < |R| + 1, there exists an execution xk on R
such that

• if k = 0
xk = x′

else
x1k = x[0..k − 1],
x2k = x′|R\R(x[0..k−1]),
xk = x1k · x2k,
let sk be the state function of xk,
• sk(|R|) = s′(|R|)

The original statement is derived by setting k to |R|.

Proof by induction on k.
Base case: k = 0

Trivial.

Inductive case:
We assume that

(1) for every r and r′ in R,
if callc(r) 6�S callc(r′) and r ≺x r

′, then r ≺x′ r
′

(2) let s and s′ be the state functions of x and x′

(3) x1k = x[0..k − 1],
(4) x2k = x′|R\R(x[0..k−1]),
(5) xk = x1k · x2k,
(6) let sk be the state function of xk,
(7) sk(|R|) = s′(|R|)
(8) x1k+1 = x[0..k],
(9) x2k+1 = x′|R\R(x[0..k]),
(10) xk+1 = x1k+1 · x2k+1,
(11) let sk+1 be the state function of xk+1,

We prove that
sk+1(|R|) = s′(|R|)

(12) let r be x(k)

(13) let i be x−1
k (r)

From [3], [4], and [5],
(14) for every l, k ≤ l < i

xk(l) ≺x′ xk(i)
(15) for every l, k ≤ l < i

xk(l) 6∈ R(x[0..k − 1])
From [15]

(16) for every l, k ≤ l < i
xk(l) 6≺x x(k)

From [16], [12] and [13]
(17) for every l, k ≤ l < i

xk(l) 6≺x xk(i)
From [1], [14] and [17]

(18) for every l, k ≤ l < i
callc(xk(l)) 6�S callc(xk(i))

By Lemma 9 on [3], [4], [5], [18]
(19) x1k

′
= x[0..k][k 7→ xk(i)],

(20) x2k
′

= x′|R\[R(x[0..k−1])∪xk(i)],
(21) x′k = x1k

′ · x2k
′,

(22) let s′k be the state function of x′k,
(23) s′k(i+ 1) = sk(i+ 1)

From [19], [20], [21], [3], [4], [5],
(24) x′k[i+ 1..|R| − 1] = xk[i+ 1..|R| − 1]

By Lemma 4 on [23], [24], [6], [22],
(25) s′k(|R|) = sk(|R|)

From [19], [12], [13] and [8]
(26) x1k

′
= x1k+1,

From [20], [12], [13] and [9]
(27) x1k

′
= x1k+1,

From [26], [27], [21] and [10]
(28) x′k = xk+1,

From [28], [22], and [11]
(29) s′k = sk+1,

From [25], and [29]
(30) sk+1(|R|) = sk(|R|)

From [7], and [30]
sk+1(|R|) = s′(|R|)

Lemma 1. Every S-conflict-synchronizing replicated execution is
convergent.

Proof.
Immediate from Definition 25, Lemma 14, and Definition 5.

llemma 15. Every well-coordinated replicated execution is permis-
sible.

Proof.
We assume that

(1) xs is a replicated execution of a context c.
(2) xs is well-coordinated.

We prove that
xs is permissible.

By Definition 27, we need to show that
for every n1 inN and r in Rc,
P(c, xs(n1), r)

that is
(3) let s1 be the state function of xs(n1),
(4) let i be xs(n1)−1(r)

then
guard(callc(r))(s1(i))
I(update(callc(r))(s1(i)))

Induction on a linear extension of hbxs:
The induction hypothesis is that

(5) For every n′ and r′,

6 2018/11/8

if (n′, r′) hbxs (n, r),
then P(c, xs(n′), r′)

By Definition 20, Definition 16, Definition 15, Definition 25 and
Definition 26 on [2]

(6) xs is locally permissible.
(7) xs is S-conflict-synchronizing.
(8) xs is P-conflict-synchronizing.
(9) xs is dependency-preserving.

We consider two cases:
Case:

(10) callc(r) is invariant-sufficient.
We first show that

(11) I(s1(i))
Let

(12) r′ = xs(n1)(i− 1)
From Definition 3, we have

(13) (n1, r
′) ≺hbxs (n1, r)

From [5] and [13],
(14) P(c, xs(n1), r′)

By Definition 27 on [14] and [12]
(15) I(update(callc(xs(n1)(i− 1)))(s1(i)))

By Definition 4 on [15] and [3]
I(s1(i))

By Definition 12 and Definition 9 on [10], [4] and [11]
guard(callc(r))(s1(i))
I(update(callc(r))(s1(i)))

Case:
(16) callc(r) is not invariant-sufficient.

Now, we consider two nested cases:
Case: n1 = origc(r)

Immediate from [6] and Definition 24.

Case: n1 6= origc(r)
By Lemma 12 on [6], [7], [9], and [16]

(17) let n2 be origc(r)
(18) let P (n) be {r′ | r′ ≺xs(n) r}
(19) let x′2 be xs(n2)|P (n2)∩P (n1)

[|P (n2) ∩ P (n1)| 7→ r]
(20) P(c, x′2, r).

By Lemma 10 on [7], [18], and [4]
(21) let x′1 be xs(n1)|P (n1)∩P (n2) ·

xs(n1)|P (n1)\P (n2)

[i 7→ r].
(22) let s′1 be the state function x′1.
(23) s′1(i) = s1(i).

By Definition 25 on [7]
(24) for every r and r′ in P (n1) ∩ P (n2),

if callc(r)�S callc(r′) and r ≺xs(n1) r
′

then r ≺xs(n2) r
′

By Lemma 14 on [24], [21], [22], and [19]
(25) let s′2 be the state function x′2.
(26) s′1(|P (n1) ∩ P (n2)|) = s′2(|P (n1) ∩ P (n2)|)

By Definition 27 on [20], [19] and [25]
(27) guard(callc(r))(s′2(|P (n1) ∩ P (n2)|))
(28) I(update(callc(r))(s′2(|P (n1) ∩ P (n2)|)))

From [26], [27], and [28]
(29) guard(callc(r))(s′1(|P (n1) ∩ P (n2)|))

(30) I(update(callc(r))(s′1(|P (n1) ∩ P (n2)|)))

By Lemma 6 on [8], [18] and [16]
(31) for every r′ in P (n1) \ P (n2),

callc(r′) .P callc(r)
From [31] and [21]

(32) for every position k, |P (n1) ∩ P (n2)| ≤ k ≤ i− 1,
callc(x(k)) .P callc(r),

By Lemma 13 on [21], [32], [22], [29] and [30]
(33) guard(callc(r))(s′1(i))
(34) I(update(callc(r))(s′1(i)))

From [33], [34] and [23]
(35) guard(callc(r))(s1(i))
(36) I(update(callc(r))(s1(i)))

By Definition 4 on [36], [3] and [4]
(37) I(s1(i+ 1))

The conclusion is [35] and [37].

Lemma 2. Every well-coordinated replicated execution is consis-
tent.

Proof.
We assume that

(1) xs is a replicated execution of a context c.
(2) xs is well-coordinated.

We prove that
xs is consistent.

By Definition 27, we need to show that
for every n1 inN and r in Rc,

consistent(c, xs(n1), r)
that is

(3) let s1 be the state function of xs(n1),
(4) let i be xs(n1)−1(r)

then
guard(callc(r))(s1(i))
I(s1(i))

From Lemma 15 on [1] and [2], we have
guard(callc(r))(s1(i))

If i = 0, then from Definition 1, we have
I(s1(i))

Otherwise,
From Lemma 15 on [1] and [2], we have

(5) I(update(callc(xs(n)(i− 1)))(s1(i− 1)))
From Definition 4 on [3] and [5]
I(s1(i))

Theorem 1. Every well-coordinated replicated execution is correct.

Proof. Immediate from Definition 20, Definition 8, Lemma 2, and
Lemma 1.

7 2018/11/8

2. Use Cases

Class Counter
Σ := Int
I := T
inc := λσ. 〈T, σ + 1, ⊥〉
dec := λσ. 〈T, σ − 1, ⊥〉
read := λσ. 〈T, σ, σ〉

(a) User Specification

i d r
i X X X
d X X X
r X X X

(b) S-commute

i d r
i X X X
d X X X
r X X X

(c) P-concur

i d r
i X X X
d X X X
r X X X

(d) Independent

Figure 1: Counter Use Case

Class NNCounter
Σ := Int
I := σ ≥ 0
inc := λσ. 〈T, σ + 1, ⊥〉
dec := λσ. 〈T, σ − 1, ⊥〉
read := λσ. 〈T, σ, σ〉

(a) User Specification

i d r
i X X X
d X X X
r X X X

(b) S-commute

i d r
i X X X
d X × X
r X X X

(c) P-concur

i d r
i X X X
d × X X
r X X X

(d) Independent

Figure 2: Non-negative Counter Use Case

8 2018/11/8

Class Register
Σ := Int
I := T
write(v) := λσ. 〈T, v, ⊥〉
read := λσ. 〈T, σ, σ〉

(a) User Specification

r w
r X X
w X ×

(b) S-commute

r w
r X X
w X X

(c) P-concur

r w
r X X
w X X

(d) Independent

Figure 3: Non-negative Counter Use Case

Class Account
Σ := Int
I := λb. b ≥ 0
deposit(a) := λb. 〈a ≥ 0 b+ a, ⊥〉
withdraw(a) := λb. 〈a ≥ 0 b− a, ⊥〉
balance := λb. 〈T, b, b〉

(a) User Specification

d w b
d X X X
w X X X
b X X X

(b) S-commute

d w b
d X X X
w X × X
b X X X

(c) P-concur

d w b
d X X X
w × X X
b X X X

(d) Independent

Figure 4: Bank Account Use Case

9 2018/11/8

Class GSet
Σ := Set
I := T
add(e) := λσ. 〈T, σ ∪ {e}, ⊥〉
contains(e) := λσ. 〈T, σ, e ∈ σ〉

(a) User Specification

a c
a X X
c X X

(b) S-commute

a c
a X X
c X X

(c) P-concur

a c
a X X
c X X

(d) Independent

Figure 5: Grow-only Set Use Case

Class CSet
Σ := Set
I := T
add(e) := λσ. 〈T, σ ∪ {e}, ⊥〉
remove(e) := λσ. 〈T, σ \ {e}, ⊥〉
contains(e) := λσ. 〈T, σ, e ∈ σ〉

(a) User Specification

a r c
a X × X
r × X X
c X X X

(b) S-commute

a r c
a X X X
r X X X
c X X X

(c) P-concur

a r c
a X X X
r X X X
c X X X

(d) Independent

Figure 6: Classical Set Use Case

10 2018/11/8

Class FDSet
Σ := 2{e}

I := T
add(e) := λσ. 〈T, σ ∪ {e}, ⊥〉
remove(e) := λσ. 〈T, σ \ {e}, ⊥〉
contains(e) := λσ. 〈T, σ, e ∈ σ〉

(a) User Specification

a(e1) .. a(en) r(e1) .. r(en) c
a(e1) X X X × X X X
..

a(en) X X X X X × X
r(e1) × X X X X X X
..

r(en) X X × X X X X
c X X X X X X X

(b) S-commute

a(e1) .. a(en) r(e1) .. r(en) c
a(e1) X X X X X X X
..

a(en) X X X X X X X
r(e1) X X X X X X X
..

r(en) X X X X X X X
c X X X X X X X

(c) P-concur

a(e1) .. a(en) r(e1) .. r(en) c
a(e1) X X X X X X X
..

a(en) X X X X X X X
r(e1) X X X X X X X
..

r(en) X X X X X X X
c X X X X X X X

(d) Independent

Figure 7: Finite-domain Set Use Case

Class 2PSet
Σ := 〈Set, Set〉
I := T

add(e) := λ〈A,R〉.
〈T, 〈A ∪ {e}, R〉, ⊥〉

remove(e) := λ〈A,R〉.
〈T, 〈A,R ∪ {e}〉, ⊥〉

contains(e) := λ〈A,R〉.
〈T, 〈A,R〉, e ∈ A \R〉

(a) User Specification

a r c
a X X X
r X X X
c X X X

(b) S-commute

a r c
a X X X
r X X X
c X X X

(c) P-concur

a r c
a X X X
r X X X
c X X X

(d) Independent

Figure 8: Two Phase Set Use Case

11 2018/11/8

Class Auction
Σ := 〈bs : Set Int, w : Option Int〉

I := λ〈bs, w〉.
w 6= ⊥ →

(bs 6= ∅ ∧ w = some(max(bs)))

place(b) := λ〈bs, w〉.
〈w = ⊥, 〈bs ∪ {b}, w〉, ⊥〉

close := λ〈bs, w〉.
〈w = ⊥, 〈bs, some(max(bs))〉, ⊥〉

query := λσ.
〈T, σ, σ〉

(a) User Specification

p c q
p X × X
c × X X
q X X X

(b) S-commute

p c q
p X × X
c X × X
q X X X

(c) P-concur

p c q
p X X X
c × X X
q X X X

(d) Independent

Figure 9: Auction Use Case

unique(R, f) :=
∀r, r′. r ∈ R ∧ r′ ∈ R ∧ f(r) = f(r′)→ r = r′

refIntegrity(R, f,R′, f ′) :=
∀r. r ∈ R→ ∃r′. r′ ∈ R′ ∧ f(r) = f ′(r′)

rowIntegrity(R, p) :=
∀r. r ∈ R→ p(r)

Figure 10: Relational Integrity Constrains

12 2018/11/8

Class Courseware
let Student := Set 〈sid : SId〉 in
let Course := Set 〈cid : CId〉 in
let Enrolment := Set 〈esid : SId, ecid : CId〉 in
Student× Course× Enrolment

I := λ〈ss, cs, es〉.
refIntegrity(es, esid, ss, sid) ∧
refIntegrity(es, ecid, cs, cid)

register(s) := λ〈ss, cs, es〉.
〈T, 〈ss ∪ {s}, cs, es〉, ⊥〉

addCourse(c) := λ〈ss, cs, es〉.
〈T, 〈ss, cs ∪ {c}, es〉, ⊥〉

enroll(s, c) := λ〈ss, cs, es〉
〈T, 〈ss, cs, es ∪ {(s, c)}〉, ⊥〉

deleteCourse(c) := λ〈ss, cs, es〉.
〈T, 〈(ss, cs \ {c}, es〉, ⊥〉

query := λσ.
〈T, σ, σ〉

(a) User Specification

r a e d q
r X X X X X
a X X X × X
e X X X X X
d X × X X X
q X X X X X

(b) S-commute

r a e d q
r X X X X X
a X X X X X
e X X X × X
d X X × X X
q X X X X X

(c) P-concur

Graph

(d) Conflict Graph G./

r a e d q
r X X X X X
a X X X X X
e × × X X X
d X X X X X
q X X X X X

(e) Independent

Figure 11: Courseware Use Case

Class 2PCourseware
let Student := Set 〈sid : SId〉 in
let Course := Set 〈cid : CId〉 in
let Enrolment := Set 〈esid : SId, ecid : CId〉 in
Student× (Course× Course)× Enrolment

I := λ〈ss, 〈csa, csr〉, es〉.
refIntegrity(es, esid, ss, sid) ∧
refIntegrity(es, ecid, csa \ csr, cid)

register(s) := λ〈ss, 〈csa, csr〉, es〉.
〈T, 〈ss ∪ {s}, 〈csa, csr〉, es〉, ⊥〉

addCourse(c) := λ〈ss, 〈csa, csr〉, es〉.
〈T, 〈ss, 〈csa ∪ {c}, csr〉, es〉, ⊥〉

enroll(s, c) := λ〈ss, 〈csa, csr〉, es〉
〈T, 〈ss, 〈csa, csr〉, es ∪ {(s, c)}〉, ⊥〉

deleteCourse(c) := λ〈ss, 〈csa, csr〉, es〉.
〈T, 〈(ss, 〈csa, csr ∪ {c}〉, es〉, ⊥〉

query := λσ.
〈T, σ, σ〉

(a) User Specification

r a e d q
r X X X X X
a X X X X X
e X X X X X
d X X X X X
q X X X X X

(b) S-commute

r a e d q
r X X X X X
a X X X X X
e X X X × X
d X X × X X
q X X X X X

(c) P-concur

r a e d q
r X X X X X
a X X X X X
e × × X X X
d X X X X X
q X X X X X

(d) Independent

Figure 12: Courseware Use Case (with 2PSet)

13 2018/11/8

Class Payroll
Σ :=

let Employee := Set 〈eid : N, name : S, edid : N, salary : N〉 in
let Department := Set 〈did : N, title : S〉 in
Employee× Department

I := λ〈es, ds〉.
unique(es, eid) ∧
refIntegrity(es, edid, ds, did) ∧
rowIntegrity(es, λe. name(e) 6= ⊥) ∧
rowIntegrity(es, λe. salary(e) ≥ 0)

addEmp(e) := λ〈es, ds〉
〈T, 〈es ∪ {e}, ds〉, ⊥〉

removeEmp(e) := λ〈es, ds〉
〈T, 〈es \ {e}, ds〉, ⊥〉

addDep(e) := λ〈es, ds〉
〈T, 〈es, ds ∪ {d}〉, ⊥〉

removeDep(d) := λ〈es, ds〉
〈T, 〈es, ds \ {d}〉, ⊥〉

incSalary(e, a) := λ〈es, ds〉
〈e ∈ es ∧ a ≥ 0,
〈es \ {e} ∪ {〈eid(e), name(e), eid(e), salary(e) + a}, ds〉,
⊥〉

decSalary(e, a) := λ〈es, ds〉
〈e ∈ es ∧ a ≥ 0,
〈es \ {e} ∪ {〈eid(e), name(e), eid(e), salary(e)− a}, ds〉,
⊥〉

Figure 13: Payroll Use Case

14 2018/11/8

addE removeE addD removeD incS decS
addE X × X X X X

removeE × X X X X X
addD X X X × X X

removeD X X × X X X
incS X X X X X X
decS X X X X X X

(b) S-commute

addE removeE addD removeD incS decS
addE X X X × X X

removeE X X X X X X
addD X X X X X X

removeD × X X X X X
incS X X X X X X
decS X X X X X X

(c) P-concur

addE removeE addD removeD incS decS
addE X X × X X X

removeE X X X X X X
addD X X X X X X

removeD X X X X X X
incS × X X X X X
decS × X X X X X

(e) Independent

Figure 14: Payroll Use Case

15 2018/11/8

Class Tournament
Σ :=

let Player := Set 〈pid : N, budget : N〉 in
let Tournament := Set 〈tid : N, size : N, active : B〉 in
let Enrolment := Set 〈epid : N, etid : N〉 in
Player× Tournament× Enrolment

I := λ〈ps, ts, es〉.
unique(ps, pid)
unique(ts, tid)
refIntegrity(es, epid, ps, pid)
refIntegrity(es, etid, ts, tid)
rowIntegrity(ps, λp. budget(p) ≥ 0) ∧
rowIntegrity(ts, λt. size(t) ≤ Cap) ∧
rowIntegrity(ts, λt. active(t)→ size(t) ≥ 1)

addPlayer(p) := λ〈ps, ts, es〉
〈T, 〈ps ∪ {p}, ts, es〉, ⊥〉

removePlayer(p) := λ〈ps, ts, es〉.
〈T, 〈ps \ {p}, ts, es〉, ⊥〉

addTour(t) := λ〈ps, ts, es〉.
〈T, 〈ps, ts ∪ {t}, es〉, ⊥〉

removeTour(t) := λ〈ps, ts, es〉.
〈T, 〈ps, ts \ {t}, es〉, ⊥〉

enroll(p, t) := λ〈ps, ts, es〉.
〈T, 〈

ps \ {p} ∪ {〈pid(p), budget(p)− 1〉},
ts \ {t} ∪ {〈tid(t), size(t) + 1, active(t)〉},
es ∪ {〈p, t〉}〉,

⊥〉
disenroll(p, t) := λ〈ps, ts, es〉.
〈T, 〈

ps \ {p} ∪ {〈pid(p), budget(p) + 1〉},
ts \ {t} ∪ {〈tid(t), size(t)− 1, active(t)〉},
es \ {〈p, t〉}〉,

⊥〉
beginTour(t) := λ〈ps, ts, es〉.
〈t ∈ ts, 〈ps, ts \ {t} ∪ {〈tid(t), size(t), true〉}, es〉, ⊥〉

endTour(t) := λ〈ps, ts, es〉
〈t ∈ ts, 〈ps, ts \ {t} ∪ {〈tid(t), size(t), false〉}, es〉, ⊥〉

addFund(p, f) := λ〈ps, ts, es〉.
〈p ∈ ps ∧ f ≥ 0, 〈ps \ {p} ∪ {〈pid(p), budget(p) + f〉}, ts, es〉, ⊥〉

Figure 15: Tournament Use Case

16 2018/11/8

addP removeP addT removeT enrolT disenrolT beginT endT addFund
addP X × X X × X X X ×

removeP × X X X × X X X ×
addT X X X X × × X X X

removeT X X X X × × × × X
enrolT × × × × × × × × ×

disenrolT X X × × × × × × X
beginT X X X × × × X X X
endT X X X × × × X X X

addFund × × X X × X X X ×
(b) S-commute

addP removeP addT removeT enrolT disenrolT beginT endT addFund
addP X X X X X X X X X

removeP X X X X × X X X X
addT X X X X X X X X X

removeT X X X X × X X X X
enrolT X × X × × × × × ×

disenrolT X × X × × × × × ×
beginT X X X × × × × × X
endT X X X × × × × × X

addFund X × X X × X X X ×
(c) P-concur

Figure 16: Tournament Use Case

17 2018/11/8

3. Protocols
3.1 Dependency Tacking Protocol
In the presented synchronization protocols, we assumed that method
calls were independent. However, as we saw in Fig. 2.(e), permissi-
bility of a call at a node may be dependent on the preceding calls at
that node; the call may not be permissible at other nodes.

We saw that method calls may or may not need to synchronize
before execution. If a call did not need synchronization, it was
simply broadcast and was immediately executed on arrival. For the
non-blocking protocol (Fig. 7), this was at N1 and for the blocking
protocol (Fig. 9), this was at N1. However, if it has dependencies,
they should be tracked at the originating node and broadcast together
with the call. The receiving nodes should apply the call only after its
dependencies are applied. On the other hand, some calls go through
synchronization before execution. When synchronization is finished
for a call c, it may or may not be permissible in different nodes.
For the non-blocking protocol (Fig. 7), this is at C5 and for the
blocking protocol (Fig. 9), this is at U4. In this subsection, we show
how the dependencies of a call are propagated after synchronization.
As noted in § 3, if two methods are conflict-synchronizing, their
dependency to each other is implicitly preserved and does not need
to be tracked. Thus, we consider only dependent minus conflicting
pairs of methods.

We remember that if the guard of a call is satisfied in a state
and applying the call preserves the invariant, we say that the call is
permissible in that state. When synchronization is finished for a call
c and it is the time to execute it, c may or may not be permissible
in different nodes. If it is permissible in a node n, it can commit in
n and n is considered to be its originating node. However, it may
not be permissible in another node n′. If the dependencies of c in n
are propagated and executed at n′, then c will be permissible at n′

as well. Thus, if a node finds c permissible, it tries to help others by
sending the dependencies.

If there is a node that can commit c, every node can commit c
(after propagation of the dependencies). The call c should abort only
if it cannot be committed at any node. This is the inverse of the
classical atomic commit protocol that commits if all can commit and
aborts even if one cannot commit. We call this protocol, the inverse
atomic protocol. It can be directly implemented using the classical
atomic commit by inverting both the request and response events at
the interface. We use the inverse atomic protocol as follows. Every
node that finds c permissible votes for commit together with the
dependencies of c and every node that finds it not permissible votes
for abort. If a node receives abort as the decision, it issues the abort
response for c. If a node receives commit as the decision, it waits
for the dependencies. Once the dependencies are already applied,
c is applied without checking permissibility. Local permissibility
of the call at the node with the winning vote guarantees global
permissibility of the call at other nodes once the dependencies are
applied.

The protocol for tracking dependencies is presented in Fig. 17.
Although for clarity, we have explicit request and response events
in this protocol, this protocol can be inlined in the two previous
protocols. The parameter to the protocol is the mapping deps from
each method to the set of methods that it is dependent on. The
protocol uses an instance of the inverse atomic commit protocol per
call ac. It stores the user-defined object state σ and a mapping xed
from each method to the set of executed calls on that method. There
are efficient techniques to represent executed calls [2, 3].

Upon a request to execute a call c (at R0), it is checked whether
its guard is satisfied in the current state and it preserves the invariant
(at R1). If the check is passed, c is applied (at R2), a response of
the returned value is issued (at R3-R4), and c is added to set of the
executed calls (at R5-R6). Then, the subset of the executed calls on

the dependencies of c are calculated (at R7-R8). Finally a commit
vote together with dependencies is issued (at R9). Otherwise, an
abort vote is issued (at R11). Upon receiving the abort decision for c
(at A0), the abort response for c is issued (at A1). On the other hand,
a commit decision is received only when all its dependencies are
already applied (at C0). If the dependencies are not already applied,
receiving the commit decision is postponed. If the call is not already
executed (at C2), it is applied without checking for permissibility
(at C3), a response of the return value is issued (at C4-C5), and it is
added to the executed set (at C6).

18 2018/11/8

DependenceTracking
request : call(C)
response : ret(C,V)

aborted(C)

Params :
deps : M→ Set[M]

Using :
ac : C→ InvAtomicCommit

State :
σ : Σ = σ0

xed : M→ Set[C] = M 7→ ∅

R0 request (call(c))
R1 if (guard(c)(σ) ∧ I(update(c)(σ)))
R2 σ ← update(c)(σ)
R3 v ← retv(c)(σ)
R4 issue response ret(c, v)
R5 m← method(c)

R6 add(xed(m), c)
R7 ds← deps(m)
R8 cs← xed | ds
R9 issue request (ac(c), commit(cs))
R10 else
R11 issue request (ac(c), abort)

A0 response (ac(c), decision(abort))
A1 issue response aborted(c)

C0 response (ac(c), decision(commit(cs))) if cs ⊆ xed
C1 m← method(c)
C2 if (c 6∈ xed(m))
C3 σ ← update(c)(σ)
C4 v ← retv(c)(σ)
C5 issue response ret(c, v)
C6 add(xed(m), c)

Figure 17: Tracking Dependencies

19 2018/11/8

4. Practical Notes
The following optimizations can be added to the Multi-Total-Order
Broadcast protocol of the main paper. If the rank of the last delivered
message of each class is stored, the proposal function can simply
compare of the rank a message to the stored rank of its class to
decide whether it is time to a deliver it. Also, instead of the next
pending message in a class, the next sequence of pending messages
in that class can be proposed in a round as far as the rank in a class
is respected by the local sort algorithm.

20 2018/11/8

5. Evaluation
5.1 Conflict and Dependency Analysis
Fig. 18 presents the time that the tool takes to calculate the coordi-
nation requirements on the use-cases. For each use-case, the table
lists the number of methods, the number of invariants, the time to
calculate P-concur and S-commute for the conflict relation, the
time to calculate the independence relation and the total time. This
figure is an extension of Fig. 11 of the main paper.

5.2 Performance Results
In the second experiment, we increased the workload from 10 to
800 calls per second and measure the average response time over all
the calls. The results for the non-blocking and the SC protocols on
the courseware use-case are shown in Fig. 12.(d) of the main paper.
Fig. 19 shows the effect of increasing workload on the response time
of the blocking protocol on the courseware use-case.

We now study the overhead of our synthesized objects. We
compare the response time of our synthesized objects with a hand-
written implementation on the 2PSet object. We issued 500 calls
equally distributed over 4 nodes of our cluster. Calls were also
equally divided among different types (add, remove, and contains).
Fig. 20 shows the overhead of our proposed protocols compared
to a base 2PSet implementation. The base implementation of the
2PSet uses basic broadcast layer for communication. On the other
hand, our synthesized objects use general protocols although their
coordination mechanisms are unused in this case. We observe that
the base implementation is about 50% faster than the other two
protocols.

Usecase #M1 #I2 P3 S4 Indep Total
NP-Counter
Bank
Auction
Courseware
Tournament
Register
NNCounter
Payroll
2PSet
GSet
CSet
FDSet-10

3 1 283 598 470 1351
3 1 284 695 595 1574
3 2 405 921 571 1897
5 4 950 3256 2597 6803
9 5 3482 25615 24146 53603
2 1 170 262 303 735
3 1 351 784 627 1762
6 3 1541 5023 4093 10657
3 1 394 636 571 1328
2 1 182 292 306 780
3 1 357 641 577 1575
21 1 17035 29948 30909 77892

1 The number of methods
2 The number of invariants

3 P-concure time (ms)
4 S-commute time (ms)

Figure 18: Analysis time

0 200 400 600 800

0

10

20

30

40

50

Throughput (ops/s)

R
es
p
on

se
T
im

e
(m

s)

Blocking

Figure 19: Response time for Courseware with increasing of the
troughput using blocking protocol.

Simple Blocking Non-Blocking

0.6

0.7

0.8

0.9

Algorithm

R
es
p
on

se
T
im

e
(m

s)

2P-Set

Figure 20: Response time for 2PSet using different protocols.

21 2018/11/8

6. Input Specifications
In this section, we demonstrate sample inputs to the tool for the
Courseware, Auction and 2PSet use-case in Fig. 22, Fig. 24 and
Fig. 26 respectively. The input for each example consists of a state
definition and object definition. We used ANTLR[4] V4 first-order-
logic[1] grammar to write invariants in the object definitions. We
augmented the FOL grammar to support basic arithmetic operations.

public class CoursewareState extends
ReplicatedObjectState{

public HashSet<Integer> students = new HashSet();
public HashSet<Integer> courses = new HashSet();
public HashSet<ImmutablePair<Integer, Integer>>

enrolments = new HashSet();
}

Figure 21: Definition of the state for Courseware use-case

public class CoursewareObj extends ReplicatedObject{
public CoursewareObj()
{

super();
state = new CoursewareState();
addInvariant("refIntegrity(state.enrolments,

state.students)");
addInvariant("refIntegrity(state.enrolments,

state.courses)");
}

@Guard("g_register")
public ReplicatedObjectState register(Integer x)
{

CoursewareState state =
(CoursewareState)this.state;

state.students.add(x);
return state;

}

public boolean g_register(Integer x){ return true;}

@Guard("g_addCourse")
public ReplicatedObjectState addCourse(Integer x)
{

CoursewareState state =
(CoursewareState)this.state;

state.courses.add(x);
return state;

}

public boolean g_addCourse(Integer x){return true;}

@Guard("g_enrol")
public ReplicatedObjectState enrol(Integer s,

Integer c)
{

CoursewareState state =
(CoursewareState)this.state;

state.enrolments.add(new ImmutablePair<>(s,c));
return state;

}

public boolean g_enrol(Integer s,Integer c){return
true;}

@Guard("g_deleteCourse")
public ReplicatedObjectState deleteCourse(Integer x)
{

CoursewareState state =
(CoursewareState)this.state;

state.courses.remove(x);
return state;

}

public boolean g_deleteCourse(Integer x){return
true;}

@Guard("g_query")
public ReplicatedObjectState query()
{

CoursewareState state =
(CoursewareState)this.state;

return state;
}

public boolean g_query() { return true;}

Figure 22: Definition of the Courseware object

22 2018/11/8

public class AuctionState extends ReplicatedObjectState
{

public HashSet<Integer> bids = new HashSet();
public Integer w = 0;

}

Figure 23: Definition of the state for Auction use-case

public class AuctionObj extends ReplicatedObject{

public AuctionObj()
{

super();
state = new AuctionState();
//adding user defined utility function
addUtilityFunction("max: (SET OF INT) -> INT");
//additional assertions
addAssertion("Forall(?s:SET OF INT, ?i:INT):

((?i IS_IN ?s) -> (_max(?s) >= ?i))");
addAssertion("Forall(?s:SET OF INT):

((!(CARD(?s) = 0)) -> (_max(?s) IS_IN
?s))");

//add invariant
addInvariant("Forall(?s:State): ((!(?s.w = 0))

-> ((!(CARD(s.bids) = 0)) AND (s.w =
_max(s.bids))))");

}

@Utility("max")
public Integer max(HashSet<Integer> set)
{

return Collections.max(set);
}

public boolean g_place(Integer x) { return true; }

@Guard("g_place")
public ReplicatedObjectState place(Integer x)
{

AuctionState state = (AuctionState) this.state;
state.bids.add(x);
return state;

}

public boolean g_close() { return true; }

@Guard("g_close")
public ReplicatedObjectState close()
{

AuctionState state = (AuctionState) this.state;
state.w = max(state.bids);
return state;

}

public boolean g_query() { return true; }

@Guard("g_query")
public ReplicatedObjectState contains()
{

return state;
}
}

Figure 24: Definition of the Auction object

public class TwoPhaseSetState extends
ReplicatedObjectState {

public HashSet<Integer> avail = new HashSet();
public HashSet<Integer> tomb = new HashSet();

}
}

Figure 25: Definition of the state for 2PSet use-case

public class TwoPhaseSetObj extends ReplicatedObject{

public TwoPhaseSetObj()
{

super();
state = new TwoPhaseSetState();
addInvariant("TRUE");

}

public boolean g_add(Integer x) { return true; }

@Guard("g_add")
public ReplicatedObjectState add(Integer x)
{

TwoPhaseSetState state = (TwoPhaseSetState)
this.state;

state.avail.add(x);
return state;

}

public boolean g_remove(Integer x) { return true; }

@Guard("g_remove")
public ReplicatedObjectState remove(Integer x)
{

TwoPhaseSetState state = (TwoPhaseSetState)
this.state;

state.tomb.add(x);
return state;

}

public boolean g_contains(Integer x) { return true;
}

@Guard("g_add")
public boolean contains(Integer x)
{

TwoPhaseSetState state = (TwoPhaseSetState)
this.state;

if(state.avail.contains(x) &&
!state.tomb.contains(x))

return true;
return false;

}
}

Figure 26: Definition of the 2PSet object

23 2018/11/8

References
[1] grammer-v4. https://github.com/antlr/grammars-v4, 2017.
[2] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7), 1978.
[3] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G

Andersen. Don’t settle for eventual consistency. Communications of the
ACM, 57(5):61–68, 2014.

[4] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf,
2nd edition, 2013.

24 2018/11/8

https://github.com/antlr/grammars-v4

	Proofs
	Use Cases
	Protocols
	Dependency Tacking Protocol

	Practical Notes
	Evaluation
	Conflict and Dependency Analysis
	Performance Results

	Input Specifications

