
A. Implementation 1
The condition WellRec(I), defined in Figure 11, requires us to
provide a function Rec. Given the state of a node, σ, and a node
identifier, n, Rec must return the number of updates that σ has
received from n. In this implementation, clock stores the number
of updates received from other nodes. Therefore, we define Rec to
be clock . Let us define the function clock ′ that mirrors the function
Rec′ in Figure 11 as follows

clock ′(W,n′, n) , let (H[n′ 7→ ( , σ, )], ) =W in
clock(σ)(n)

We first prove the main condition of WellRec, CauseCond. Then,
we sketch the straightforward proof of the other three conditions.

To prove the CauseCond condition, we need to prove the follow-
ing monotonicity property for vector clocks. We refer to the vector
clock of the poststate of a label as the vector clock of that label. If
a label lI causally precedes another label l′I , the clock of lI is less
than or equal to the clock of l′I for every node. Further, if l′I is a put
label, the clock of lI is strictly less than the clock of l′I for the node
identifier of l′I .

Lemma 5 (Clock Monotonicity).
∀p, hI ,WI , lI , l′I , n :
(WI0(p)

hI−−→
∗
I(I1) WI ∧ lI yhI l

′
I)⇒

(clock(LPostState(lI), n) ≤ clock(LPostState(l′I), n)
∧ (LIsPut(l′I) ∧ n = LNode(l′I))⇒

clock(LPostState(lI), n) < clock(LPostState(l′I), n))

Let us see why the above lemma holds. By the definitions of
Figure 12, the causal order holds by either the node order, gets-
from relation, or transitivity. Firstly, if it holds by the node order, the
conclusion is immediate by noting the following facts. On every step,
the mapping of the vector clock for every node is nondecreasing.
On a put step, the vector clock of the node for the node itself is
incremented. Secondly, we consider the case that the causal relation
holds by a gets-from relation from the put label lI to the get label l′I .
Let n and n′ be the node identifiers of lI and l′I respectively. The
get label l′I can get the value put by the put label lI only if there
exists an update label l′′I by n′ before l′I that receives the update of
lI . When the update is being received, the guard function checks
that the vector clock value of lI for every node n′′ other than n is
less than or equal to the current vector clock value for n′′. Then the
update function remaps the current vector clock value for n to the
vector clock value of lI for n. Thus, the vector clock of lI is less
than or equal to the vector clock of l′′I for every node. As mentioned
above, the vector clock of a node in nondecreasing. Therefore, as l′′I
precedes l′I , and they are by the same node n′, the vector clock of
l′′I is less than or equal to the vector clock of l′I for every node. The
inequality of the conclusion is immediate from the transitivity of
the above two inequalities. Thirdly, if the causal order holds by the
transitivity of other causal orders, the conclusion is immediate from
the transitivity of the equalities and inequalities of the induction
hypotheses.

Instantiating Rec′ with the function clock ′, the statement of the
CauseCond condition for this implementation is as follows:

Lemma 6 (CauseCond).
∀p, hI ,WI , lI ,W ′I , l′′I :
(WI0(p)

hI−−→
∗
I(I1) WI ∧ WI

lI−→I(I1) W
′
I

∧ LIsUpdate(lI) ∧
let , , n . update( , , ,m) : = lI

( , , , , , , l′I) = m in
LIsPut(l′′I) ∧ l′′I yhI l

′
I)⇒

let n′′, c′′ . put( , , ) : , = l′′I in
c′′ ≤ clock ′(WI , n, n

′′)
Let us see how the above lemma holds. At a high level, the vector

clock is nondecreasing from l′′I to lI because Lemma 5 implies that
it is nondecreasing from l′′I to l′I and the guard condition implies
that it is nondecreasing from l′I to lI . More precisely, an update
label lI with the prestate WI applies an update originating from the
put label l′I , and another put label l′′I causally precedes l′I . Let n,
n′, and n′′ be the node identifiers of lI , l′I , and l′′I respectively. Let
c and c′ be

c , clock ′(WI , n, n
′′)

c′ , clock(LPostState(l′I))(n
′′)

Let c′′ be the clock of l′′I . We want to show that c′′ ≤ c.
We first show that

c′′ = clock(LPostState(l′′I))(n
′′)

We have a put label l′′I by node n′′ with clock c′′. Therefore, (1)
the clock of the operational semantics for n′′ in the poststate of
l′′I is c′′. (2) The vector clock of n′′ in the poststate of l′′I is
clock(LPostState(l′′I)). We also have that (3) in every state, the
clock of the operational semantics for a node and the vector-clock
value of the node for itself are equal. This is because they are zero in
the initial state and are concurrently incremented only in put steps by
the node. The above three equalities imply the conclusion equality.

As l′′I causally precedes l′I , and l′I is a put label, by Lemma 5,
we have (1) c′′ ≤ c′ and (2) (n′′ = n′)⇒ (c′′ < c′). Furthermore,
by the conditions of the guard function, we have (3) (n′′ 6= n′)⇒
(c′ ≤ c) and (4) (n′′ = n′)⇒ (c′ = c+1). We consider two cases.
Case n′′ 6= n′: by 1 and 3 above, we have c′′ ≤ c. Case n′′ = n′:
by 2 and 4 above, we have c′′ ≤ c.

We now prove the other three conditions of well-reception. The
condition InitCond is immediate from the fact that the init function
returns a constant zero function as the initial vector clock. The
three cases of StepCond follow from the following facts: (1) The
put function only increments the mapping of the vector clock for
the current node self . (2) The get function keeps the vector clock
unchanged. (3) Let clock1 and clock2 be the vector clocks of the
current node in the prestate and the poststate of update label, c′ be the
clock value of the update label, n′ be the sender node, and clock′ be
the sender vector clock. We have to show that clock1(n′) + 1 = c′

and clock2(n′) = clock1(n
′) + 1 and also ∀n′′ : n′′ 6= n′ ⇒

clock2(n
′′) = clock1(n

′′). By a simple induction, it can be shown
that for every node, the clock value for the node that the instrumented
semantics maintains is equal to the vector-clock value of the node for
itself that the implementation maintains. Therefore, it can be shown
that (3.1) c′ = clock′(n′). The guard function checks that (3.2)
clock′(n′) = clock1(n

′)+1. The update function updates only the
mapping of the vector clock for n′ to clock′(n′). Therefore, we have
that (3.3) clock2 = clock1[n

′ 7→ clock′(n′)] . The conclusions
follow from the above three equalities. The condition SeqCond is
proved by a simple induction with the invariant that for every node,
the store map of the implementation is equal to the abstract map.



B. Implementation 2
The condition WellRec(I), defined in Figure 11, requires us to
provide function Rec. In this implementation, the function rec stores
the number of updates received from other nodes. Therefore, we
choose function Rec to be rec. Let us define the function rec′ that
mirrors the definition of Rec′ from Figure 11 as follows

rec′(W,n, n′) , let (H[n 7→ ( , σ, )], ) =W in
rec(σ)(n′)

We now prove the condition CauseCond of well-reception. The
other three conditions of well-reception for this implementation
can be proved similar to the previous implementation. To prove the
condition CauseCond, we first state two important invariants of the
implementation. The first invariant states the transitivity property
explained above that if a label lI is causally dependent on a put
operation l′I , the identifier of l′I is either directly or indirectly in the
dependencies of lI .

Lemma 7 (Update Dependency Transitivity).
∀p, hI ,WI , lI , l′I :
(WI0(p)

hI−−→
∗
I(I2) WI

∧ LIsPut(lI) ∧ LIsPut(l′I) ∧ l′I yhI lI)⇒
let , . put( , , ) : , u = lI in
((LNode(l′I), LClock(l′I)) ∈ udep(u)
∨ (∃l′′I : LIsPut(l′′I) ∧ l′I yhI l

′′
I

∧ (LNode(l′′I), LClock(l′′I)) ∈ udep(u)))

The above lemma states that for every put label lI that emits the
update u and every put label l′I that causally precedes lI , either the
timestamp of l′I is directly in udep(u) or there exists a put label l′′I
that depends on l′I and the timestamp of l′′I is in udep(u).

The second invariant states that, if a put label lI depends on
another put label l′I and some node has received the update for lI ,
then it has received the update for l′I as well.

Lemma 8.
∀p, hI ,WI , lI , l′I , n :
(WI0(p)

hI−−→
∗
I(I2) WI

∧ LIsPut(lI) ∧ LIsPut(l′I) ∧ l′I yhI lI
∧ LClock(lI) ≤ rec′(WI , n, LNode(lI))⇒

LClock(l′I) ≤ rec′(WI , n, LNode(l′I))

The lemma above can be proved by induction on step transitions.
The interesting case is the update transition. Consider an update step
that receives an update u that is originated from a put label lI and
that lI is causally dependent on another put label l′I . We want to
show that the update of l′I is already received. By Lemma 7, we
have two cases. Case 1: The identifier of l′I is directly in udep(u).
The guard method checks that its update is already received. Case
2: The identifier of l′I is indirectly in udep(u); that is, there exists
another label l′′I that is causally dependent on l′I , and the timestamp
of l′′I is in udep(u). As the timestamp of l′′I is in udep(u), from
the guard method checks, we have that the update of l′′I is already
received. As l′′I is causally dependent on l′I , and the update of l′′I
is already received, by the induction hypothesis, we have that the
update of l′I is already received as well.

Instantiating Rec′ with the function rec′, the statement of the
CauseCond condition for this implementation is as follows:

Lemma 9 (CauseCond).
∀p, hI ,WI , lI ,W ′I , l′′I :
(WI0(p)

hI−−→
∗
I(I1) WI ∧ WI

lI−→I(I1) W
′
I

∧ LIsUpdate(lI) ∧
let , , n . update( , , ,m) : = lI

( , , , , , , l′I) = m in
LIsPut(l′′I) ∧ l′′I yhI l

′
I)⇒

let n′′, c′′ . put( , , ) : , = l′′I in
c′′ ≤ rec′(WI , n, n

′′)

If an update is being received that is originated by the put label
l′I , and another put label l′′I causally precedes l′I , then the update of
l′′I is already received. Similar to the proof of Lemma 8, the proof is
based on using Lemma 7 for the case analysis that the identifier of
l′′I is directly or indirectly in the dependencies of the update from l′I .
Then, the conclusion follows by the guard conditions and Lemma 8.



C. Implementation 3
Note that in Algorithm 2 presented in Figure 14, the map clock
keeps track of both the put operations that the node is dependent on
and the put operations that it has received. Thus, every put operation
that a node has received is regarded as a dependency of the node
even if the node has not read the value that it has put. Tracking
dependencies can be made more precise by having separate maps for
dependencies and received put operations. In the algorithm presented
in Figure 17, we have separate maps rec and dep to keep track of
received put operations and the dependencies. For this algorithm,
we have the following lemmas.

Lemma 10 (Clock Monotonicity).
∀p, hI ,WI , lI , l′I , n :
(WI0(p)

hI−−→
∗
I(I3) WI ∧ lI yhI l

′
I)⇒

(dep(LPostState(lI), n) ≤ dep(LPostState(l′I), n)
∧ (LIsPut(l′I) ∧ n = LNode(l′I))⇒

dep(LPostState(lI), n) < dep(LPostState(l′I), n))

Lemma 11 (Dep not above Rec).
∀p, hI ,WI , lI , l′I , n :
WI0(p)

hI−−→
∗
I(I3) WI ⇒ dep(WI , n) ≤ rec(WI , n)

Let us define the function rec′ as follows

rec′(W,n, n′) , let (H[n 7→ ( , σ, )], ) =W in
rec(σ)(n′)

Using the function rec′, we can state the following lemma.

Lemma 12.
∀p, hI ,WI , lI ,W ′I , l′′I :
let , , n . update( , , ,m) : = lI

( , , , , , , l′I) = m
n′′, c′′ . put( , , ) : , = l′′I in

(WI0(p)
hI−−→
∗
I(I3) WI ∧ WI

lI−→I(I3) W
′
I

∧ LIsUpdate(lI) ∧ LIsPut(l′′I) ∧ l′′I yhI l
′
I)⇒

c′′ ≤ rec′(WI , n, n
′′)

The condition WellRec(I) defined in Figure 11 requires the
definition of the function Rec for the algorithm I. In this algorithm,
the map rec stores the number of updates received from the other
nodes. Therefore, we define the function Rec to be rec. By this
definition, Lemma 12 proved the main condition CauseCond of the
WellRec conditions.

Theorem 5. WellRec(I3)

From the above theorem and Theorem 2, we conclude that I3 is
causally consistent. For more details and the proofs, please see our
Coq development.

Corollary 3. CauseConst(I3)

This algorithm can now be optimized by removing the line that
updates the dependencies in the update function. We are working
on the proof for the optimized algorithm.

I3 (ALGORITHM 3)
State
(store : Map[K, (V,N,C)],
rec : Map[N,C],
dep : Map[N,C])

Update
(unode : N,
udep : Map[N,C])

init
ret (λk.(v0, n0, 0), λn.0, λn.0)

put (self , this)(k, v)
(s, r, d)← this;
d′ ← d[self 7→ r[self ] + 1];
r′ ← r[self 7→ r[self ] + 1];
s′ ← s[k 7→ (v, self , d′[self ])];
ret ((s′, r′, d′), (self , d′))

get (self , this)(k)
(s, r, d)← this;
(v, n, c)← s[k];
d′ ← d[n 7→ max(d(n), c)];
ret (v, (s, r, d′))

guard (self , this)(k, v, u)
(s, r, d)← this;
(n′, d′)← u;
ret forall (λn. n 6= n′ ⇒ d′[n] ≤ r[n])N
∧ d′[n′] = r[n′] + 1

update (self , this)(k, v, u)
(s, r, d)← this;
(n′, d′)← u;
r′ ← r[n′ 7→ d′[n′]];
d′′ ← λn.max(d(n), d′(n))
s′ ← s[k 7→ (v, n′, d′[n′])];
ret (s′, r′, d′′)

Figure 17. Causally Consistent Map 3



D. Linked-List Client Example

Program 3 (p3): Linked list client
0→ Construction

put(2,null); . first link
put(1, 3);
put(head , 1); . update head
put(6, 1); . second link
put(5, 2);
put(head , 5); . update head
put(4, 5); . third link
put(3, 1);
put(head , 3) . update head

1→ Traversal
x1 ← get(head);
if x1 6= v0 then

i1 ← get(x1); . item
x2 ← get(x1 + 1); . next-pointer
if x2 6= null then

i2 ← get(x2); . item
x3 ← get(x2 + 1); . next-pointer
assert(i1 < i2);
if x3 6= null then

i3 ← get(x3); . item
x4 ← get(x3 + 1); . next-pointer
assert(i2 < i3);
assert(x4 = null)

We give a third, slightly more complex, example client program
consisting of two nodes that construct and traverse a linked list. The
first node initializes head and adds three links by updating head
once each is constructed. When complete, the linked list has the
following layout:

1 5 2 1 3 null

head :

3 : 5 : 1 :

where boxes denote the contents of memory, and the annotations
above the boxes specify their addresses.

Concurrently, another node reads head and traverses the list. At
any point in time, head is either uninitialized (v0) or else points to
one of the three links. The traversing node checks that the stored
items are in ascending order and that the length of the list is at most
3. Our automated verifier takes just under 8 minutes to check this
program.


