
Brief Announcement:
Fence Insertion for Straight-line Programs is in P

Mohsen Lesani

University of California, Riverside

lesani@cs.ucr.edu

ABSTRACT
Relaxed memory models reorder instructions in the interest of

performance. However, reordering of instructions can jeopardize

correctness and memory fences should be used to preserve speci�c

orders. Programs that carry explicit fences are over-speci�ed as

they are tied to speci�c architectures and memory models and are

hence unportable. On the other hand, once the program speci�es

the high-level required orders, optimizing compilers can allocate

optimum memory fences for multiple architectures. However, the

fence insertion problem for general programs is NP-hard. In this

paper, we consider fence insertion for straight-line programs. We

present a polynomial-time greedy algorithm via reduction to the

chain multi-cut problem.

1 INTRODUCTION
Compilers and processors reorder instructions to gain performance.

However, preservation of the order of speci�c instructions is cru-

cial to correctness. Hardware architectures provide memory fence

instructions that preserve the relative order of speci�c instructions

that come before and a�er them in the program. Synchroniza-

tion programs have been traditionally wri�en with explicit fence

instructions for speci�c architectures. Such a program is an over-

speci�cation as it hard-codes the enforcement of the required orders

for a particular architecture. Further, it is an under-speci�cation as

the required orders that are implicitly provided by the architecture

are not explicitly documented. �us, fences are an implementation

mechanism for a high-level abstraction.

Many authors have presented approaches to insert fences that

enforce sequential consistency, including Lee et al. [10], Fang et al.

[7], and Alglave et al. [1]. Others have tried to infer the required

orders including Kuperstein et al. [9], Meshman et al. [11] and

Dan et al. [6]. We proposed [2] to capture the required orders

as a relation on the operations of each thread. A compiler can

translate these declared orders to optimum fence instructions. �is

approach separates what from how. �e programs can be veri�ed

using architecture-independent and algorithm-level reasoning. �e

compiler can automatically translate the program to multiple target

architectures.

Optimum fence insertion for general programs is NP-hard. �e

compiler of our previous work used an exponential-time algorithm

to insert optimum fences. In this paper, we consider the basic

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PODC ’17, Washington, DC, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-4992-5/17/07. . . $15.00

DOI: h�p://dx.doi.org/10.1145/3087801.3087849

T1 T2

1 : write (l1,1) 1 : write (l2,1)
2 : x1 = read (l2) 2 : x2 = read (l1)
{1→ 2} {1→ 2}

(a) Input Program

T1 T2

1 : write (l1,1) 1 : write (l2,1)
f ence (w ,r) f ence (w ,r)

2 : x1 = read (l2) 2 : x2 = read (l1)
(b) Program with Fences

Figure 1: Dekker

straight-line class of programs. We present a polynomial-time

fence insertion algorithm for this class. �is opens the problem of

whether there are optimum or approximation algorithms for fence

insertion to programs with basic control structures.

As an example, consider the speci�cation of the Dekker synchro-

nization algorithm in Figure 1. Figure 1(a) shows the input program.

Each thread �rst writes to a location and then reads from the loca-

tion that the other thread writes to. It is crucial to the correctness

of the algorithm that the write operation happens before the read

operation in each thread. �is ordering requirement is captured

by a relation on the operations of each thread in Figure 1(a). �e

�rst operation should be ordered before the second operation. Fig-

ure 1(b) shows the allocated fences for the program in Figure 1(a).

We denote the fence instruction that orders write instructions be-

fore read instructions as f ence (w ,r). We use a similar notation for

any pairs of r or w .

As another example, consider Figure 2. �e input program is

depicted in Figure 2(a). It requires the order of two pairs of opera-

tions to be preserved: it requires the �rst operation to be ordered

before the third operation and the second operation to be ordered

before the fourth operation. On the order hand, it does not require

the preservation of the order of other pairs of operations including

the order of the �rst and second operations. Figure 2(b) shows a

suboptimal fence insertion. �is insertion is based on the heuristic

of pu�ing a fence right before the second operation of each pair

of operations in the required order. Figure 2(c) shows the optimal

fence insertion. A single fence a�er the second operation preserves

the order of the two pairs of operations.

In this paper, we present an algorithm for optimal fence insertion

for straight line programs and show that it runs in polynomial time.

1 : write (l1,1)
2 : write (l2,2)
3 : x1 = read (l3)
4 : x1 = read (l4)
{1→ 3,2→ 4}

(a) Input Program

1 : write (l1,1)
2 : write (l2,2)

f ence (w ,r)
3 : x1 = read (l3)

f ence (w ,r)
4 : x1 = read (l4)

(b) Suboptimal Fence Insertion

1 : write (l1,1)
2 : write (l2,2)

f ence (w ,r)
3 : x1 = read (l3)
4 : x1 = read (l4)

(c) Optimal Fence Insertion

Figure 2: Fence Insertion

2 FENCE INSERTION PROBLEM
Notation. For a set s , let |s | denote the size and P(s) denote the

power set of s . Let 〈e1, ..,en〉 denote the tuple of elements e1 to en .

For a tuple t , let |t | denote the length of t and t[i] denote the i-th
element of t .

Concurrent Program. Let D be a �nite data domain, L be a

�nite set of shared memory locations valued in D, and X be a �nite

set of local variables valued in D. Let O be the set of operations

(1) x = read (l), (2) write (l ,x) and (3) write (l ,d) where x ∈ X ,

l ∈ L and d ∈ D. Intuitively, x = read (l) denotes the read of the

value of location l into the variable x andwrite (l ,d) andwrite (l ,x)
denote the write of the value d and the value of the variable x
into the location l respectively. Let τ denote a function from O
to {r ,w } that maps operations to their types: τ (x = read (l)) = r
τ (write (l ,x)) = w , and τ (write (l ,d)) = w for every x ∈ X , l ∈ L,

and d ∈ D. Similarly let ` denote the function from O to L that

maps operations to the memory locations that they access.

A program π is a pair 〈p,→〉 such that p is a tuple of operations

over O and→ is an irre�exive subset of the increasing total order

of numbers {1, .., |p |}. Intuitively, p is the straight-line program of

operations and the relation→ is the set of pairs of operations that

should preserve their order in p. A concurrent system is a tuple of

programs.

Fence Insertion Problem. We now de�ne the fence insertion

problem. We present a de�nition and then revise it based on a

decomposition.

Let F be the set of the following fence types: f ence (r ,r), f ence (r ,w),
f ence (w ,r) and f ence (w ,w). Intuitively, pu�ing the fence f ence (r ,w)
between a read and a write operation prevents them from reorder-

ing. �e e�ect of the other three fence operations is similar.

Intuitively, a fence insertion f for a program 〈p,→〉 speci�es the

set of fences whose addition to p ensures that the required order -¿ is

preserved. A (multi-type) fence insertion f for a program π = 〈p,→
〉 is a function from {1, .., |p |} to P(F) such that for every i and j that

i → j, there exists n, i ≤ n < j such that f ence (τ (p[i]),τ (p[j])) ∈
f (n). For each i ∈ {1, .., |p |}, f (i) speci�es the set of fences that

should be added between the ith and (i + 1)-th operation of p.

For example, the fence insertion for the �rst thread of the Dekker

example depicted in Figure 1(b) is {1 7→ { f ence (w ,r)},2 7→ ∅}. In

other words, the fence f ence (w ,r) should be put a�er the �rst

operation and no fence is needed a�er the second operation. As

another example, the fence insertion depicted in Figure 2(b) is

{1 7→ ∅, 2 7→ { f ence (w ,r)}, 3 7→ { f ence (w ,r)}, 4 7→ ∅}. In other

words, the fence f ence (w ,r) should be put a�er the second and

third operations and no fence is needed a�er the other operations.

�e size of a fence insertion f is the number of fences that

it allocates. More precisely, the size of a fence insertion f is

Σi ∈dom (f) | f (i) |. Given a program π , the fence insertion problem is

to �nd the minimum-size fence insertion of π . LetOptFI (π) denote

the minimum-size fence insertion of π .

Fence Instructions Independence. We divide the required

orders to four disjoint categories based on the fence types needed

to preserve the order. For a program 〈p,→〉, let→ |wr be the subset

of→ where the �rst operation is a write and the second operation

is a read in p. More precisely, the order → |wr is de�ned as the

following relation {i → |wr j | i → j ∧ τ (p[i]) = w ∧ τ (p[j]) = r }.
�e orders→ |r r ,→ |rw and→ |ww are similarly de�ned. Only the

fence type f ence (w ,r) can be used to preserve an order in the subset

→ |wr and it cannot be used to preserve an order in any of the other

three subsets. �e following lemma states that (multi-type) fence

insertion problem can be decomposed to four independent fence

insertion problems for a single fence type.

Lemma 2.1 (Independence of fence types). For every program
〈p,→〉,OptFI (〈p,→〉) = λn,OptFI (〈p,→ |r r 〉) (n) ∪ OptFI (〈p,→ |rw
〉) (n) ∪ OptFI (〈p,→ |wr 〉) (n) ∪ OptFI (〈p,→ |ww 〉) (n)

�e lemma is straightforward from the de�nition of the optimum

fence insertion and the fact that each fence type can only preserve

its corresponding order subset.

Note that in a memory model that implicitly provides a category

of orders, no fence insertion is needed for that category. Equiva-

lently, we can translate the allocated fences for that category to no

operation. In addition, if a memory model provides the same fence

instruction for two or more fence types, we merge the correspond-

ing categories and consider the union of them as a category.

Based on the above lemma, we consider a single fence type f ence
and the following de�nition of fence insertion in the rest of the

paper.

De�nition 2.2 (Fence Insertion). A fence insertion f for a program

π = 〈p,→〉 is a subset f of {1, .., |p |} such that for every i and j that

i → j , there exists n, i ≤ n < j such that n ∈ f . Given a program π ,

the fence insertion problem FenceIns is to �nd the minimum-size

fence insertion of π .

Reduction of Fence Insertion to Multi-cut. We reduce the

fence insertion problem to the graph multi-cut problem. We �rst

de�ne the multi-cut problem.

De�nition 2.3 (Multi-cut). Given a graph G = 〈V ,E〉 with a set of

of terminal node pairs T ∈ P(V ×V), a multi-cut is a set of edges

Algorithm 1 Chain Multi-cut Greedy Algorithm

1: function ChainMultiCut(G〈V , E〉,T) where

2: V = {v1, ...,vn }, E = { {v1,v2 }, ..., {vn−1,vn } },
3: T ∈ P(V ×V)
4:

5: T ′ ← {(vi ,vj) | (〈vi ,vj 〉 ∈ T ∧ i < j) ∨
6: 〈(vj ,vi 〉 ∈ T ∧ j < i) }
7: T ′′ ← Sort pairs 〈vi ,vj 〉 ∈ T ′ by j
8:

9: E′ ← ∅
10: for each 〈vi ,vj 〉 ∈ T ′′ do
11: if (@{vi′,vj′ } ∈ E′ : i ≤ i′ ∧ j′ ≤ j) then
12: E′ ← E′ ∪ {{vj−1,vj } }

13:

14: return E′

E ′ ⊆ E such that for every pair 〈s,t〉 ∈ T , there is no path between

s and t in 〈V ,E \ E ′〉. Given a graph G, the multi-cut problem

MultiCut is to �nd the minimum-size multi-cut of G.

�e fence insertion problem is reduced to the multi-cut problem.

Lemma 2.4. FenceIns ≤p MultiCut

Given an instance 〈p,→〉 of FenceIns , we construct an instance

of MultiCut in polynomial time as follows. �e graph is G =
〈V ,E〉 where V = {1, .., |p |} and E = {{1,2}, ..., {|p | − 1, |p |}} and the

terminal node pairs T =→. We de�ne polynomial transformations

from solutions of each instance to other. Given the solution f for the

FenceIns instance, the solution forMultiCut instance is E ′ = {{i,i+
1} | i ∈ f }. Given the solution E ′ = {{i1,i1 + 1}, ..., {in ,in + 1}} for

MultiCut , the solution for the FenceIns instance is f = {i1, ...,in }.
It is straightforward to see the optimality of one solution from the

the other.

3 CHAIN MULTI-CUT.
�e multi-cut problem is known to be NP-Hard (even for trees)

[3, 8]. But the graph constructed above is a chain, a restricted tree.

In the following section, we describe a polynomial time algorithm

for multi-cut of chains.

Algorithm 1 presents a greedy algorithm for the chain multi-cut

problem. An instance of the problem is represented by the sequence

of nodes V = {v1, ...,vn }, the edges E = {{v1,v2}, ..., {vn−1,vn }}
between the nodes and the set of terminal pair of nodes T . �e

algorithm �rst swaps the terminal pairs, if needed, to have the

larger node of each pair as the second element. It then sorts the

terminal pairs according to the second element. �en, the algorithm

iterates over the sorted terminal pairs. It starts with an empty set

of edges to cut E ′. For each pair 〈vi ,vj 〉 of terminals, it adds the

edge {vj−1,vj } to the cut set E ′ only if there is no edge in E ′ that

already cuts the path between vi and vj .
�e time complexity of the algorithm is dominated by the sort

operation on the terminal pairs; thus, it isO (n·logn). �e optimality

of the algorithm can be proved by the following pair of facts. First,

the size of the minimum cut is at least the size of every disjoint set

of paths between the terminals. Second, the pairs of terminals that

lead to addition of an edge to the cut set during the iteration have

disjoint paths.

Let us see why the second fact holds. Consider a pair of terminals

t1 with the path p1 between them. Assume that iteration over t1
leads to the addition of an edge to the cut set. �e last edge of p1

is added to the cut set. Let the pair of terminals t2 with the path

p2 between them be the pair that leads to the addition of the next

edge to the cut set. �e algorithm adds an edge to the cut set only

if there is no edge in the current cut set that is in the path between

the current pair of terminals. �e last edge of p1 is in the cut set

and yet the pair t2 leads to the addition of a new edge. Hence, the

last edge in p1 is not in the path p2. �is means that either the last

edge of p2 is before the last edge of p1 or the �rst edge of p2 is a�er

the last edge of p1. As the pairs are iterated in the order of their last

edge and the pair t1 is iterated before t2, the last edge of p2 cannot

be before the last edge of p1 Hence, we have that the �rst edge of p2

is a�er the last edge of p1. �us, the �rst edge of p2 is a�er the last

edge of p1. �is means that the path p1 is disjoint from the path p2.

Similarly, by induction on the steps of iteration, it can be shown

that the pairs that lead to addition of an edge to the cut set have

disjoint paths.

4 GENERALIZATION
�e graph multi-cut problem is known to be NP-hard (even for

undirected trees) [3, 8]. However, in contrast to undirected trees,

multi-cut for directed trees is in P [4]. �e result is based on the total

uni-modularity of the linear programming matrix for directed trees.

For a survey of the complexity of multi-cut on di�erent restricted

graph types see [5]. Control �ow graphs of programs are restricted

graph types. If we consider only the if-then-else control structure,

then the graph is a nested composition of diamonds and sequences.

�e question is whether our result can be extended to polynomial-

time optimum or approximation algorithms for programs with basic

control structures.

REFERENCES
[1] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2014. Don’t sit

on the fence: A static analysis approach to automatic fence insertion. In CAV.

h�p://arxiv.org/abs/1312.1411

[2] John Bender, Mohsen Lesani, and Jens Palsberg. 2015. Declarative Fence Insertion.

In OOPSLA.

[3] Julia Chuzhoy and Sanjeev Khanna. 2006. Hardness of Cut Problems in Directed

Graphs. In Proceedings of the �irty-eighth Annual ACM Symposium on �eory of
Computing (STOC ’06). ACM, New York, NY, USA, 527–536.

[4] Marie-Christine Costa, Lucas LéTocart, and FréDéRic Roupin. 2003. A Greedy

Algorithm for Multicut and Integral Multi�ow in Rooted Trees. Oper. Res. Le�.
31, 1 (Jan. 2003), 21–27. h�ps://doi.org/10.1016/S0167-6377(02)00184-0

[5] Marie-Christine Costa, Lucas Ltocart, and Frdric Roupin. 2005. Minimal multicut

and maximal integer multi�ow: A survey. European Journal of Operational
Research 162, 1 (2005), 55 – 69.

[6] Andrei Marian Dan, Yuri Meshman, Martin Vechev, and Eran Yahav. 2013. Predi-
cate Abstraction for Relaxed Memory Models. Springer Berlin Heidelberg, Berlin,

Heidelberg, 84–104. h�ps://doi.org/10.1007/978-3-642-38856-9 7

[7] Xing Fang, Jaejin Lee, and Samuel P. Midki�. 2003. Automatic Fence Insertion for

Shared Memory Multiprocessing. In Proceedings of the 17th Annual International
Conference on Supercomputing (ICS ’03). ACM, New York, NY, USA, 285–294.

[8] N. Garg, V.V. Vazirani, and M. Yannakakis. 1997. Primal-dual approximation

algorithms for integral �ow and multicut in trees. Algorithmica 18, 1 (1997),

3–20. h�ps://doi.org/10.1007/BF02523685

[9] Michael Kuperstein, Martin Vechev, and Eran Yahav. 2010. Automatic Inference

of Memory Fences. In Proceedings of the 2010 Conference on Formal Methods in
Computer-Aided Design (FMCAD ’10). FMCAD Inc, Austin, TX, 111–120.

[10] Jaejin Lee and David A. Padua. 2000. Hiding Relaxed Memory Consistency with

Compilers. In PACT.

[11] Yuri Meshman, Andrei Dan, Martin Vechev, and Eran Yahav. Synthesis of memory
fences via re�nement propagation. Technical Report.

http://arxiv.org/abs/1312.1411
https://doi.org/10.1016/S0167-6377(02)00184-0
https://doi.org/10.1007/978-3-642-38856-9_7
https://doi.org/10.1007/BF02523685

	Abstract
	1 Introduction
	2 Fence Insertion Problem
	3 Chain Multi-cut.
	4 Generalization
	References

