
Hambazi: Spatial Coordination Synthesis for Augmented
Reality
YI-ZHEN TSAI, University of California, Riverside, USA
JIASI CHEN, University of Michigan, USA
MOHSEN LESANI, University of California, Santa Cruz, USA

Augmented reality (AR) seamlessly overlays virtual objects onto the real world, enabling an exciting new
range of applications. Multiple users view and interact with virtual objects, which are replicated and shown
on each user’s display. A key requirement of AR is that the replicas should be quickly updated and converge to
the same state; otherwise, users may have laggy or inconsistent views of the virtual object, which negatively
affects their experience. A second key requirement is that the movements of virtual objects in space should
preserve certain integrity properties either due to physical boundaries in the real world, or privacy and safety
preferences of the user. For example, a virtual cup should not sink into a table, or a private virtual whiteboard
should stay within an office. The challenge tackled in this paper is the coordination of virtual objects with low
latency, spatial integrity properties and convergence. We introduce “well-organized” replicated data types
that guarantee these two properties. Importantly, they capture a local notion of conflict that supports more
concurrency and lower latency. To implement well-organized virtual objects, we introduce a credit scheme
and replication protocol that further facilitate local execution, and prove the protocol’s correctness. Given
an AR environment, we automatically derive conflicting actions through constraint solving, and statically
instantiate the protocol to synthesize custom coordination. We evaluate our implementation, Hambazi, on
off-the-shelf Android AR devices and show a latency reduction of 30.5-88.4% and a location staleness reduction
of 35.6-75.6%, compared to three baselines, for varying numbers of devices, AR environments, request loads,
and network conditions.

CCS Concepts: • Theory of computation→ Distributed computing models; • Software and its en-
gineering→ Distributed systems organizing principles; • Human-centered computing→Mixed /
augmented reality.

Additional Key Words and Phrases: Multi-user Augmented Reality, Distributed Coordination, Coordination
Avoidance, Fault Tolerance, Well-Organization

ACM Reference Format:
Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani. 2025. Hambazi: Spatial Coordination Synthesis for Augmented
Reality. Proc. ACM Program. Lang. 9, OOPSLA1, Article 91 (April 2025), 30 pages. https://doi.org/10.1145/3720425

1 Introduction
Augmented reality (AR) is one of the key technologies driving the next generation of mobile
applications. AR allows users to view virtual objects overlaid on top of the real world, with
applications in entertainment (e.g., Pokemon Go), workspaces (e.g., Apple Vision Pro), education
(e.g., spatial understanding [1]), and public safety (e.g., firefighting [19]), as illustrated in Fig. 1.
Industry has made huge investments in the space, with Apple announcing its own AR headset in
June 2023. In multi-user AR applications,multiple users view and interact with the same set of virtual

Authors’ Contact Information: Yi-Zhen Tsai, University of California, Riverside, Riverside, USA, ytsai036@ucr.edu; Jiasi
Chen, University of Michigan, Ann Arbor, USA, jiasi@umich.edu; Mohsen Lesani, University of California, Santa Cruz,
Santa Cruz, USA, mlesani@ucsc.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/4-ART91
https://doi.org/10.1145/3720425

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

HTTPS://ORCID.ORG/0009-0004-0391-7663
HTTPS://ORCID.ORG/0000-0001-9923-9027
HTTPS://ORCID.ORG/0000-0002-3165-2322
https://doi.org/10.1145/3720425
https://orcid.org/0009-0004-0391-7663
https://orcid.org/0000-0001-9923-9027
https://orcid.org/0000-0001-9923-9027
https://orcid.org/0000-0002-3165-2322
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3720425
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3720425&domain=pdf&date_stamp=2025-04-09

91:2 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

objects simultaneously. For example, two users could attempt to interact with a virtual cheese at
the same time, and move the cheese in opposite directions, as shown in Fig. 1b. User devices need
to coordinate on the position of the virtual objects, and then quickly render them for all users. The
replicas of a virtual object should eventually converge to the same position.

(a) Education [1]:

Users collaboratively

complete 3D puzzles.

(b) Fun: Users

simultaneously

move holograms.

(c) Public safety: Firefight-

ers move the virtual “exit”

sign for safe navigation.

Fig. 1. Examples of multiple AR users interacting with virtual objects.

Unfortunately, coordination
and communication delays
arise in practice, preventing
multiple users from quickly
observing updates to the vir-
tual objects. Glitches, jumps
and rollbacks can affect AR
user experience. In order to
provide the AR users with
the desirable quality-of-experience [4,
21], AR demands low latency
between the time a user interacts with a virtual object to the time it is updated on the display.
Further, a key twist arises from the AR context: virtual objects are overlaid onto the real world, and
should interact with the real world in physically meaningful ways. In particular, virtual objects
are expected to maintain an integrity property: they should never enter restricted zones. Examples
include physical boundaries (e.g., a virtual billiards ball should not enter a wall). Restriction zones
can be further imposed by the user or by the system, such as by user’s privacy policies (e.g., a
private virtual whiteboard should not be moved outside an office [82]), by safety and security
policies (e.g., a virtual object should not leave a user-drawn safe playing area [62]), or by reliability
policies (e.g., preventing occlusion of critical information in a dangerous area during human-robot
interactions [89]). These restriction zones could also be moving (e.g., a virtual object should not
occlude a pedestrian walking in the user’s field of view [50]).
Coordination for emerging user-centric applications [20] that satisfies all three requirements –

convergence on the position of a virtual object, while respecting the restricted zones, and doing
so with low latency – is challenging. ARCore (Google’s Android API for AR) records the state of
the AR session in a Firestore database [34, 35] and can provide optimistic concurrency control
wherein users read the current state, perform a computation and then submit a write. In the
interim, if another user made an update that invalidated the read values, the write is re-tried a
fixed number of times before failing. However, this approach incurs significant latency from two
sources: (a) communication latency to an edge/cloud server can be hundreds of milliseconds; (b)
when multiple users contend to update the same state, it leads to high failure rates and multiple
re-tries, increasing latency. Another approach is “netcode”, deployed by major game engines to
manage player positions, hit points, etc. [31, 58, 90, 91]. Essentially, users optimistically execute
their actions locally and then reconcile their actions with the server, and roll back if consistency
issues arise. The major issue with this approach is that rollback leads to poor user experience (e.g.,
the virtual billiards ball will retrace its path).
In this paper, we take a principled look at multi-user interactions with virtual objects in AR.

We study the following question: can we automatically construct protocols that coordinate
the interactions of multiple users on virtual objects with low-latency and convergence,
and without entering restricted zones and rollbacks? Our main design philosophy is hybrid
consistency [7–9, 26, 36, 40, 41, 51–55, 87], allowing local actions without coordination in order
to meet low latency goals, and coordinating when necessary in order to provide convergence
and integrity (i.e., avoiding restricted zones). We then introduce the notion of well-organized
replicated data types that guarantee convergence and integrity. Well-organization is inspired by

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:3

well-coordination [40] and allows processes to make local updates without coordination wherever
possible. Although some users’ viewsmay be temporarily stale, they eventually converge. Compared
to well-coordination, well-organization introduces two new key ideas that reduce latency: the
notion of conflict is defined locally considering the current state rather than globally for every
state, and it does not track and propagate dependencies.
To preserve integrity and convergence, well-organization requires certain conditions for the

execution and propagation of actions; in particular, conflicting actions should have the same
order across processes. We introduce a credit scheme and replication protocol that implements
well-organized replicated data types for AR applications, and prove that the implementation is
correct. Each action needs to acquire enough credit to prevent its conflicting actions. Importantly,
if the current user’s process already has enough credit, it does not need to communicate with any
other users’ processes to avoid conflicts, thus preserving integrity without global synchronization.
One challenge is that users can launch AR applications in arbitrary environments with unique
restricted zones. The protocol is parametric in terms of these conflicts. We formally define conflicts,
automatically calculate conflicting actions using off-the-shelf constraint solvers, and then statically
instantiate the protocol with the pre-computed conflicting actions. In other words, we synthesize a
custom protocol for a given AR environment.

To evaluate our protocol, we implement it in a system called Hambazi on Google ARCore Android
devices. We compare Hambazi with three baseline methods (well-coordination, netcode principles
from game design, and Google Firestore) and demonstrate up to 88.4% reduction in average latency,
and 75.6% reduction in location staleness. In summary, the main contributions of this paper are:
• Problem formulation of spatial coordination of multi-user AR applications.
• Well-organized replicated data types that guarantee convergence and integrity (§ 3).
• Spatial coordination protocol that implements well-organization without synchronization, with

a fault tolerance mechanism, and proof of correctness (§ 4).
• Implementation of Hambazi that synthesizes correct-by-construction coordination for given
AR environments, and its empirical evaluation on Android devices (§ 5).

Next, we start with an overview with an example and high-level intuitions.

2 Overview
Multi-user AR preliminaries. Consider a multi-user AR application that keeps the current
location 𝑙 of a virtual object. For example, Fig. 2a shows a virtual ball on a real world billiards table.
The spatial integrity property ℐ for the location of the virtual object is to stay within an area 𝐵, and
not enter a restricted zone 𝑅. In our example in Fig. 2a, 𝐵 is the whole rectangular area, and 𝑅 is
the red restricted zone in the right-bottom corner. A user can call the method move(𝑎) at a process
to move the object, which is communicated to the other processes. The action 𝑎 has a direction 𝑑
and magnitude 𝑚 where the directions are𝒟 = {𝑋+ , 𝑋− , 𝑌+ , 𝑌−}, corresponding to right, left, up,
and down respectively. (Our experiments in § 5 consider more general 3D use-cases.) (When clear
from the context, we use method “call” and “action” interchangeably.) The replicated object should
preserve the above integrity property, and the states of all processes should eventually converge.
Conflicting actions and well-organization. Consider the example execution in Fig. 2a.

Process 𝑝1 (blue color) executesmove(𝑎1)which pushes the AR object to the right. The callmove(𝑎1)
is permissible; the resulting location move(𝑎1)(𝑙) satisfies the integrity property as it is within 𝐵
and outside of 𝑅. Simultaneously, process 𝑝2 (purple color) executes the move move(𝑎2) without
𝑝1’s knowledge, pushing the AR object downwards. From 𝑝2’s point of view, 𝑎2 is also permissible.
Now, if move(𝑎1) propagates to process 𝑝2 and is executed there, the resulting final location

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:4 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

move(𝑎1)(move(𝑎2)(𝑙)) is in the restricted zone 𝑅, and thus, violates the integrity property. This is
an example of what we call a permissible-right conflict of the move method with itself: as Fig. 2b
(bottom diagram) shows, at a location 𝑙, the method call move(𝑎1) is permissible; however, when it
moves to the right ofmove(𝑎2), it is not permissible anymore, i.e., violates integrity (¬ℐ). As Fig. 2b
shows (top diagram), starting from the pre-state location 𝑙′, when move(𝑎1) moves to the right of
move(𝑎2), it stays permissible, i.e., preserves integrity (ℐ).

integrity
OK!

integrity
violated!

4 Y-
credits

acquired

108642

8

6

4

2

(a) Conflicting actions.

p2

p1
a1

I

¬Ip2

p1
a1

a2

a1

a1

l0

l

a2

(b) At 𝑙′, 𝑎1 permissible-right commutes with

𝑎2. At 𝑙, 𝑎1 permissible-right conflicts with

𝑎2.

Fig. 2. Conflicting actions in an AR applica-

tion. The integrity property requires the ball

to not enter the red area. At 𝑙, action 𝑎1 is
not right-commutative with 𝑎2: if 𝑎1 occurs
after 𝑎2, the ball enters the red area.

To coordinate replicated virtual objects, we propose
a new hybrid consistency model called well-organization
that builds on prior work on well-coordination [40],
with key differences. Well-coordination requires con-
flicting calls to be synchronized with each other (using
a total order broadcast) while other calls can proceed
without synchronization. However, well-coordination
is overly conservative in its notion of conflict. In brief,
well-coordination defines conflict globally no matter the
state: if there exists any pre-state 𝜎 where a call 𝑐1
permissible-right conflicts with another call 𝑐2, then 𝑐1
conflicts with 𝑐2. In the example above, at the initial
pre-state 𝑙, the two calls move(𝑎1) and move(𝑎2) conflict.
Thus, according to well-coordination, they are consid-
ered conflicting globally in the application. This leaves no
room for concurrency between them (even at pre-state 𝑙′);
they should have the same order across all processes. In
contrast to well-coordination, in this work, we observe
that from a pre-state to another, the set of conflicting
calls can be different, and introduce well-organization
that defines the notion of conflict locally for each pre-
state. In the example in Fig. 2a, starting from the higher
pre-state 𝑙′, if move(𝑎1) propagates to process 𝑝2 and
moves right to after move(𝑎2), it still satisfies integrity
(ℐ). Thus, at the pre-state 𝑙′, move(𝑎1) does not conflict
with move(𝑎2), and processes 𝑝1 and 𝑝2 can execute move(𝑎1) and move(𝑎2) concurrently. There-
fore, well-organization supports more concurrency that leads to lower latency. We formally define
well-organization with this notion of local conflicts, and further a new treatment of dependencies
in § 3, and prove that it guarantees integrity and convergence.
Coordination. Conflicting actions should have the same order across all processes. This is

often achieved by broadcasting conflicting actions to a total-order broadcast instance. In contrast,
Hambazi avoids coordination and thus reduces latency. It allows processes to execute even con-
flicting actions locally wherever possible. We propose a credit scheme where each dimension has a
total amount of credit corresponding to its length in the boundary 𝐵. For example, in Fig. 2a, 𝐵
has width 10 units, and there are a total of 10 credits across the 𝑋+ (right) and 𝑋− (left) directions.
The ownership of credits is equally distributed between processes. A process can transfer credits
to another. If a process owns the required credit for an action, it can take the action locally, and
simply propagate its update to other processes. For example, in Fig. 2a, a process seeking to move
the virtual object right by 7 units must have at least 7 𝑋+ (right) credits available. Moving in a
direction spends credit in that direction, and yields credit in the opposite direction.

Bounded counters [8, 10] similarly escrow values at processes, but their naive application cannot
solve the spatial coordination problem. This is because the integrity property of not entering

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:5

restriction zones is on the values of all dimensions, and cannot be stated as independent invariants
on each dimension. For example, in Fig. 2a, the constraint is that 𝑥 < 2 when 𝑦 < 4, and 𝑥 < 10
when 𝑦 > 4. The constraints on 𝑥 and 𝑦 are coupled, and a single bound on 𝑥, and a single bound
on 𝑦 would fail to capture it. Preserving numeric invariants in a multi-dimensional space is more
involved: actions in one dimension can conflict not only with other actions in the same dimension
but also actions of other dimensions. In Fig. 2a, we saw that, at 𝑙, 𝑎1 in direction 𝑋+ (right) by
process 𝑝1 permissible-right conflicts with orthogonal 𝑌− (down) actions such as 𝑎2 by process
𝑝2. Our key coordination idea is to request and hold sufficient credits to prevent the execution of
conflicting actions. Thus, before 𝑝1 takes action 𝑎1 (blue color), it gathers and keeps 4𝑌− credits out
of a total of 7 available at that location 𝑙. That prevents 𝑝2 (or any other process) from concurrently
making the downward action 𝑎2 that needs 4 𝑌− credits. Once 𝑝1 is done taking action 𝑎1, it can
release those down credits back to other processes. We present the complete protocol and prove
that it implements well-organization in § 4.
We formally define conflicts, and given an AR environment, use constraint solvers to statically

determine for each location the set of conflicting actions, and the number of credits that should be
acquired in each direction to prevent them. The protocol is parametric and is statically instantiated
with the solver results to synthesize efficient protocols for the given AR environments.

3 Well-Organized Replicated Data Types

𝑜 B ⟨Σ,ℐ , 𝑢 B 𝑑, 𝑞 B 𝑑⟩ Object
𝜎 : Σ State
ℐ Invariant (Integrity)
𝑢 : 𝑈 Update Method
𝑞 : 𝑄 Query Method
𝑑 : 𝜆𝑥, 𝜎. 𝑒 Definition
𝑒 Expression
𝑣 : 𝑉 Value
𝑝 : 𝑃 Process or Replica
𝑟 : 𝑅 Request Identifier

𝑐 : 𝐶 ≔ 𝑢(𝑣)𝑟𝑝 Update Method Call
𝑞(𝑣) Query Method Call

ℓ B Call(𝑝, 𝑐) Label
| Prop(𝑝, 𝑐)
| (𝑝, 𝑞(𝑣))

𝜏 B ℓ ∗ Trace

Fig. 3. Syntax

In this section, we introduce well-organized repli-
cated data types. Well-organization is inspired
by well-coordination with two novelties. Firstly,
in contrast to well-coordination that requires
invariant-commutativity globally for all possible
pre-states where a call is being executed, well-
organization requires it locally only for the current
pre-state. This subtle difference allows more con-
currency under well-organization. Secondly, we
observe that, interestingly, certain checks in well-
coordination that track and propagate dependen-
cies are in fact unnecessary. Well-organization pro-
vides the same guarantees of convergence and in-
tegrity more efficiently.

We first present how an object data type, includ-
ing its integrity properties, can be simply specified.
We then present the core operational semantics
for well-organized replicated data types, and prove
that it guarantees integrity and convergence. This abstract semantics will serve as the specification
for our AR replication protocols in the following section (§ 4).

3.1 Replicated Data Types
In this subsection, we adopt and extend basic definitions from well-coordination [40] that we will
use later for the semantics of well-organization.
Data Types. As Fig. 3 shows, a class of objects is a tuple ⟨Σ,ℐ , 𝑢 B 𝑑, 𝑞 B 𝑑⟩ that defines

the state type Σ, the invariant (or integrity property) ℐ on the state, and the definitions of the
update methods 𝑢 and query methods 𝑞. The invariant (or integrity) ℐ is a predicate on the state
(e.g., non-negative balance for a bank account). For example, ℐ(𝜎) states that the invariant ℐ holds

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:6 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

for the state 𝜎. The definition of an update method 𝑢 is a function from the parameter and the
pre-state 𝜎 to the post-state. An update call 𝑐 is an update method 𝑢 applied to an argument value
𝑣. Two calls 𝑐 and 𝑐′ can be composed 𝑐 ◦ 𝑐′ with the standard function composition operator ◦.
Similarly, the definition of a query method is a function from the parameter and the pre-state 𝜎
to the return value. The object is replicated on the set of processes 𝑃. Clients can request update
calls 𝑢(𝑣) or query calls 𝑞(𝑣) at every process 𝑝, and processes coordinate these calls. Calls have
unique request identifiers 𝑟. An update call is decorated with the issuing process 𝑝 and the request
identifier 𝑟. (We omit these decorations when they are not needed or are evident from the context.)
A label ℓ for a call request contains the pair of the issuing process, and an update or query call, and
a trace 𝜏 is a sequence of labels.

ss : 𝑃 ↦→ Σ Replicated State
xs : 𝑃 ↦→ List(𝐶) Replicated Execution
𝑊 B ⟨ss, xs⟩ World
𝑊0 B ⟨[𝑝 ↦→ 𝜎0]𝑝∈𝑃 , [𝑝 ↦→ ∅]𝑝∈𝑃⟩ Initial World

Fig. 4. Replicated State

Replicated State. The state of the
given object is replicated across processes,
as shown in Fig. 4. The replicated state ss is
a mapping from each process 𝑝 to its state
𝜎. The execution history 𝑥 of a process is
modeled as a sequence of calls. Since query
calls do not mutate the state, an execution
history only keeps update calls. We write 𝑐 ∈ 𝑥 to denote that the call 𝑐 is in the history 𝑥. The
application 𝑥(𝜎) of a history 𝑥 to a state 𝜎 is the application of the composition of the sequence of
calls of 𝑥 to 𝜎. Unique identifiers make histories isograms, i.e., strings that contain no repeating
occurrence of the alphabet. An execution history x defines a total order on its calls: we write 𝑐 ≺x 𝑐′
if the call 𝑐 precedes the call 𝑐′ in the execution history x. A replicated execution xs is a mapping
from each process to its execution history. The state𝑊 of our operational semantics is the pair
of the replicated state ss and the replicated execution xs. In the initial state 𝑊0, the state of all
processes is the same state 𝜎0 (which satisfies the invariant ℐ), and their histories are empty.

Coordination Conditions. We now define the coordination conditions in steps. For the sake
of brevity, we elide the definition environments.
State-conflict. We say that a replicated execution is convergent if all processes store the same

state, after all calls are propagated to all processes. Consider a replicated set. As shown in Fig. 6b,
if two processes execute an add call 𝑐 and a remove call 𝑐′ for the same element with different
orders, then their states can diverge. We say that two method calls 𝑐1 and 𝑐2 𝒮-commute, written
as 𝑐1 ⊳⊲𝒮 𝑐2, if 𝑐1 ◦ 𝑐2 = 𝑐2 ◦ 𝑐1. Otherwise, they 𝒮-conflict, written as 𝑐1 ⊲⊳𝒮 𝑐2, and need to
synchronize with each other. An object is 𝒮-commutative if all pairs of calls on it 𝒮-commute.
Integrity and Permissibility. The state of the object is expected to maintain its integrity (i.e.,

satisfy the invariant). For example, the balance of an account is expected to stay non-negative.
The body of each method can rely on the invariant in the pre-state. It is then expected to preserve
the invariant in its post-state. The notion of permissibility requires the invariant to hold in the
post-state: we say that a method call 𝑐 is permissible in a state 𝜎, written as 𝒫(𝜎, 𝑐), if ℐ(𝑐(𝜎)).
(An impermissible call should not be executed; it should be either rejected, or retried later.) In the
execution history of a process, the post-state of a call is the pre-state of the next call. The initial
state 𝜎0 is assumed to satisfy the invariant. Therefore, since every call is permissible in its pre-state,
then by induction, every call enjoys integrity in its pre-state. Permissibility leads to integrity. Thus,
our next definitions are based on permissibility.
Invariant-sufficiency. There are calls that are always permissible as far as they are applied to

a state that has integrity. For example, a deposit call never overdrafts the account. Thus, in order
to keep them permissible when they are propagated to another process, it is sufficient to execute
them on a pre-state that has integrity. We say that a call 𝑐 is invariant-sufficient if for every state 𝜎,
if ℐ(𝜎) then 𝒫(𝜎, 𝑐).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:7

Permissible-Right-Commutativity. However, not all calls are invariant-sufficient. For example,
consider an account with balance state 𝑏. Consider the execution in Fig. 6b. A withdraw(𝑏/2)
call 𝑐 is permissible in process 𝑝 but is impermissible in process 𝑝′ where it is executed after a
racing withdraw(𝑏) call 𝑐′ that depletes the balance. In the process 𝑝′, 𝑐 is pushed to the right of
𝑐′. However, if 𝑐 is withdraw(𝑏/2), and 𝑐′ is withdraw(𝑏/2), then 𝑐 will stay permissible in the
other process when it is executed after 𝑐′. Similarly, if a withdraw(𝑎) call 𝑐 is permissible with a
balance 𝑏, then it will stay permissible in the other process when it is executed after any racing
deposit(𝑎′) call 𝑐′. A call 𝑐 𝒫-R-commutes with another 𝑐′ at a state 𝜎 at the pre-state 𝜎, written
as 𝑐 ⊲𝜎𝒫 𝑐′, if at the pre-state 𝜎, permissibility of 𝑐 holds even after it is pushed right after 𝑐′; more
precisely, if 𝒫(𝜎, 𝑐) then 𝒫(𝑐′(𝜎), 𝑐). For example, the withdraw(𝑏/2) call 𝒫-R-commutes with the
withdraw(𝑏/2) call at the balance 𝑏. A call 𝑐 𝒫-R-commutes with another 𝑐′, written as 𝑐 ⊲𝒫 𝑐′, if
it does so for every pre-state 𝜎. A withdraw(𝑎) call 𝒫-R-commutes with a deposit(𝑎′) call.

Invariant-conflict. We say that 𝑐 ℐ-commutes with 𝑐′ at a pre-state 𝜎, written as 𝑐 ⊲𝜎ℐ 𝑐′, if 𝑐 is
invariant-sufficient, or if 𝑐 ⊲𝜎𝒫 𝑐′. For example, a deposit call ℐ-commutes with any other call at
any balance, and the withdraw(𝑏/2) call ℐ-commutes with the withdraw(𝑏/2) call at the balance 𝑏.
Otherwise, 𝑐 ℐ-conflicts with 𝑐′ at 𝜎. For example, the withdraw(𝑏/2) call ℐ-conflicts with the
withdraw(𝑏) at the balance 𝑏. A call 𝑐 ℐ-commutes with another 𝑐′ written as 𝑐 ⊲ℐ 𝑐′, if it does so
for every pre-state 𝜎. For example, a deposit call ℐ-commutes with any other call. Otherwise, 𝑐
ℐ-conflicts with 𝑐′. For example, a withdraw call ℐ-conflicts with a withdraw call.
Conflict. We say that two calls 𝑐 and 𝑐′ commute, written as 𝑐 ⊳⊲ 𝑐′, if they both 𝒮-commute

and ℐ-commute with each other. Otherwise, we say that they conflict written as 𝑐 ⊲⊳ 𝑐′. A call is
conflict-free if it does not conflict with any other call. For example, a deposit call is conflict-free.
Permissible-Left-Commutativity. There are calls that are dependent on their preceding calls to

preserve the invariant. For example, consider Fig. 6e. The withdraw call 𝑐 at 𝑝′ is dependent on the
money deposited by a preceding deposit call 𝑐′; when the withdraw call 𝑐 propagates to process 𝑝,
it arrives before the deposit call 𝑐′, and it overdrafts. The call 𝑐 is effectively moved to the left of 𝑐′.
A call 𝑐′ 𝒫-L-commutes with a call 𝑐, written as 𝑐′ ⊳𝒫 𝑐, if permissibility of 𝑐′ holds even if it is
moved left before 𝑐; more precisely, for every state 𝜎, if 𝑐′ is permissible in the post-state of the
call 𝑐 on 𝜎, i.e., 𝒫(𝑐(𝜎), 𝑐′), then 𝑐′ is permissible in 𝜎, as well, i.e., 𝒫(𝜎, 𝑐′). For example, a deposit
call 𝒫-L-commutes with a withdraw call.

Dependency. A call 𝑐′ is independent of 𝑐, written as 𝑐′ ⊥⊥ 𝑐, if 𝑐′ is invariant-sufficient, or 𝑐′⊳𝒫 𝑐.
Otherwise, 𝑐′ is dependent on 𝑐, written as 𝑐′ ⊥̸⊥ 𝑐. If 𝑐 is executed before 𝑐′ in the issuing process
of 𝑐′, and 𝑐′ ⊥̸⊥ 𝑐, then 𝑐′ can become impermissible in another process if 𝑐 is not already executed
in that process. For example, a deposit call is independent of a withdraw call, but a withdraw call is
dependent on a deposit call.

3.2 Semantics
The operational semantics of well-organized replicated data types is presented in Fig. 5. It presents
the rules Call to execute an update call locally, Prop to propagate calls to other processes, and
Query to execute a query call. We will prove that the semantics guarantees convergence and
integrity.

As the label captures, the rule Call accepts an update method call 𝑐 at the process 𝑝, and executes
it locally. The call 𝑐 = 𝑢(𝑣)𝑟𝑝 is decorated with the identifier 𝑟 and the issuing process 𝑝. The rule
first checks that the call 𝑐 is locally permissible 𝒫(𝜎, 𝑐) in the current state 𝜎: if 𝑐 does not preserve
the invariant, it is not accepted. The application can either cancel such a call or retry it later. In
order to synchronize state-conflicts, the rule then checks a condition called CallSComm. Consider
Fig. 6.(a). If the current process 𝑝 has not executed a call 𝑐′ that another process 𝑝′ has executed,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:8 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

Call
𝑐 = 𝑢(𝑣)𝑟𝑝 𝒫(𝜎, 𝑐)
CallSComm(xs, 𝑝, 𝑐)

xs′ = xs [𝑝 ↦→ (xs(𝑝) ::: 𝑐)]
CallIComm(xs′, 𝑐)

𝜎′ = 𝑢(𝑣)(𝜎)

⟨ss[𝑝 ↦→ 𝜎], xs⟩
Call(𝑝, 𝑐)
−−−−−−−−→

⟨ss[𝑝 ↦→ 𝜎′], xs′⟩

Prop
𝑐 = 𝑢(𝑣)𝑟𝑝′ 𝑐 ∈ xs(𝑝′) \ xs(𝑝)

𝒫(𝜎, 𝑐)
PropSComm(xs, 𝑝′, 𝑝, 𝑐)
xs′ = xs [𝑝 ↦→ (xs(𝑝) ::: 𝑐)]

𝜎′ = 𝑢(𝑣)(𝜎)

⟨ss[𝑝 ↦→ 𝜎], xs⟩
Prop(𝑝, 𝑐)
−−−−−−−−→

⟨ss[𝑝 ↦→ 𝜎′], xs′⟩

Query
𝑣′ = 𝑞(𝑣)(𝜎)

⟨ss[𝑝 ↦→ 𝜎], _⟩
𝑝, 𝑞(𝑣):𝑣′
−−−−−−−→

⟨ss[𝑝 ↦→ 𝜎], _⟩

CallSComm (xs, 𝑝, 𝑐) B ∀𝑝′, 𝑐′.
𝑐′ ∈ xs(𝑝′) ∧ 𝑐′ ∉ xs(𝑝) → 𝑐 ⊳⊲𝒮 𝑐′

PropSComm (xs, 𝑝′, 𝑝, 𝑐) B ∀𝑐′.
𝑐′ ≺xs(𝑝′) 𝑐 ∧ 𝑐′ ∉ xs(𝑝) → 𝑐 ⊳⊲𝒮 𝑐′

Pending(xs) B
xs \ ∩𝑝 xs(𝑝)

CallIComm(xs, 𝑐) B
∀𝑐 = 𝑢(𝑣)𝑝 ∈ Pending(xs).
PRCommAll(xs, 𝑝, 𝑐)

PRCommAll(xs, 𝑝, 𝑐) B
let 𝑥 B pre(xs(𝑝), 𝑐), 𝜎 B 𝑥(𝜎0) in
∀𝑝′. 𝑐 ∉ xs(𝑝′) →
∀𝐶 ⊆ xs \ (xs(𝑝′) ∪ 𝑥 ::: 𝑐). ∀𝑐′ ∈ compositions(𝐶).
𝑐 ⊲𝜎ℐ (xs(𝑝

′) \ 𝑥) ◦ 𝑐′

Fig. 5. Well-organization semantics. The append operation on lists is written as :::. For histories xs and history

𝑥, we lift set operators to histories. For example, xs \ 𝑥 is the set of calls in xs but not in 𝑥. For a history 𝑥

and a call 𝑐 in 𝑥, pre(𝑥, 𝑐) is the prefix of 𝑥 before 𝑐. For a set of calls 𝐶, compositions(𝐶) is the set of all
(sequential) compositions of 𝐶.

then 𝑐 and 𝑐′ should state-commute. Consider when each of the two calls propagate to the other
process as shown in Fig. 6.(b). If they state-commute, then the two processes converge; otherwise
they can diverge. Therefore, if the two calls state-conflict, the current process 𝑝 should wait for
𝑐′ before executing 𝑐. Thus, as shown in Fig. 6.(c), when 𝑐 is propagated to 𝑝, the two processes
converge. The rule Call also requires the condition CallIComm that we describe below. If the
conditions hold, the new call 𝑐 is appended to the execution history xs(𝑝) of the current process 𝑝,
and the state ss(𝑝) of 𝑝 is updated to the result of applying the call 𝑢(𝑣) to the current state 𝜎 of 𝑝.
The rule Prop propagates a call 𝑐 = 𝑢(𝑣)𝑟𝑝′ (from a process 𝑝′) to the current process 𝑝. The

call 𝑐 is in the history of 𝑝′ but not yet in the history of 𝑝. The rule checks a condition called
PropSComm. Consider Fig. 6.(d). It checks that if there is a call 𝑐′ that is executed before 𝑐 in the
other process 𝑝′, but is not executed in the current process 𝑝, then the two calls 𝑐 and 𝑐′ should
state-commute. Consider Fig. 6.(e), where 𝑐′ propagates to 𝑝 after 𝑐. If the two calls state-commute,
the two processes converge; otherwise, they can diverge. If the two calls state-conflict, the current
process 𝑝 should wait to execute 𝑐′ before 𝑐. As Fig. 6.(f) shows, the two processes execute the two
calls in the same order, and converge. The rule further checks that the call 𝑐 is permissible 𝒫(𝜎, 𝑐)
in the current state 𝜎. If the conditions hold, the call is locally applied at the current process 𝑝.
Let us now consider the condition CallIComm of the Call rule. Consider the execution shown

in Fig. 7.(a) where the new call 𝑐 is being executed. As we saw, the rule Call checks that 𝑐 is
permissible at the issuing process 𝑝. The question is whether 𝑐 will be eventually permissible at 𝑝′,
and delivered there as well. The condition CallIComm leads to this property. Let us see how this
condition supports permissibility of 𝑐 at 𝑝′. Consider the calls that 𝑝 has already executed; in our
example, these calls are 𝑐1 and 𝑐2. We move these calls to the left of 𝑝′ in the same order as 𝑝. (By
induction, they will be eventually propagated and executed at 𝑝′.) We also move the calls that 𝑝′
has executed but 𝑝 has not, to the right of 𝑝′. In our example, these calls are 𝑐′1 and 𝑐′2. Consider
the calls 𝑐1 and 𝑐′1. When 𝑐′1 is executed at 𝑝′, the call 𝑐1 was already executed at 𝑝 but not at 𝑝′.
Therefore, by the state-commutativity conditions above, they can commute in 𝑝′ without changing

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:9

c 0
p0

p
c

(a)

c 0
p0

p
c c 0

c

(b)

p0

p

c 0 c

cc 0

(c)

p0

p

c 0 c

c

(d)

p0

p

c 0 c

c c 0

(e)

p0

p

c 0 c

cc 0

(f)

Fig. 6. State-Commutativity

p0

p

p00

c1 c

c 02c 01c2 c1

c2

c 01c1 c 02

(a)

p0

p
c1 c

c 02c 01c2 c1

c2

(b)

p0
c 02c 01c2c1 c

p
c1 cc2

(c)

p0
c 02c 01c2c1

p
c1 cc2

c 03

(d)

Fig. 7. Invariant-Commutativity

the post-state. The histories resulting from this commute are shown in Fig. 7.(b). (We elide the
process 𝑝′′ and the message passing arrows.) Similarly, the calls 𝑐1 and 𝑐2 have different orders in
the two processes 𝑝 and 𝑝′. Therefore, they can commute in 𝑝′ without changing the post-state.
The histories resulting from this commute (and the execution of 𝑐 at 𝑝′) are shown in Fig. 7.(c). In
this execution, the calls before the new call 𝑐 in 𝑝 are 𝑐1 and 𝑐2. These calls now have moved to the
left in 𝑝′, where they have the same order as 𝑝. Let 𝜎 be the post-state of the composition of 𝑐1
and 𝑐2 at both 𝑝 and 𝑝′. We know that 𝑐 is permissible at the issuing process 𝑝 at its pre-state 𝜎.
Therefore, 𝑐 is permissible after the two calls 𝑐1 and 𝑐2 at 𝑝′ as well. For 𝑐 to be permissible in 𝑝′, it
should be invariant-commutative with respect to the composition of 𝑐′1 and 𝑐′2. Let the composition
of 𝑐′1 and 𝑐′2 be 𝑐

′ = 𝑐′1 ◦ 𝑐′2. Starting from 𝜎, the call 𝑐 should be invariant-commutative with 𝑐′

i.e., 𝑐 ⊲𝜎ℐ 𝑐′. More generally, when 𝑐 is issued, let 𝑥 be the current history xs𝑝 of 𝑝. Consider the
process 𝑝′. The sequence of calls that 𝑝′ has already executed except calls in 𝑥 is xs(𝑝′) \ 𝑥. Let 𝐴
be the set of issued calls that are not executed at 𝑝′ yet. When 𝑐 arrives at 𝑝′, the process 𝑝′ may
have further executed any subset of 𝐴 in any order. Thus, 𝑐 should be invariant-commutative with
xs(𝑝′) \ 𝑥, and then any composition 𝑐′ of any subset 𝐶 of 𝐴. This is the condition PRCommAll for
the pending call 𝑐 itself that CallIComm requires.

CallIComm further requires the condition PRCommAll for the other pending calls. Let us consider
how this condition supports permissibility of 𝑐 at 𝑝′. The set of calls 𝐴 above are already issued
when 𝑐 is being executed at 𝑝. What about calls that are issued after 𝑐 is executed at 𝑝, and before
𝑐 arrives at 𝑝′? For example, consider Fig. 7.(d). The call 𝑐′3 is executed at process 𝑝′ after 𝑐 is
executed at 𝑝 but before 𝑐 is propagated from 𝑝 to 𝑝′. The call 𝑐 should now invariant-commute
with 𝑐′1 ◦ 𝑐′2 ◦ 𝑐′3. Consider when the rule Call is executing the call 𝑐′3 at 𝑝

′. The call 𝑐 is still
pending. The rule Call makes sure that after the call 𝑐′3 is added to 𝑝′, the condition PRCommAll

is maintained for the pending call 𝑐. Thus, when the call 𝑐 propagates to 𝑝′, it can stay permissible
after 𝑐′1, 𝑐

′
2 and 𝑐′3.

Finally, the ruleQuery executes a query call 𝑞(𝑣) at a process 𝑝. The return value 𝑣′ is the result
of applying the call to the current state 𝜎 of 𝑝.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:10 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

Difference with Well-coordination. We next discuss the two differences between well-
coordination and well-organization: the local notion of conflict, and not keeping track of dependen-
cies. The former makes well-organization less conservative than well-coordination, and reduces
the pairs of methods that are deemed conflicting and need synchronization. The latter reduces the
space and time overhead of tracking dependencies. Both differences contribute to lower latency.
Well-coordination required invariant-commutativity globally for all possible states, but well-

organization requires it locally only for the current state. Well-coordination checks the following
invariant-commutativity condition for a new call. Consider a call 𝑐 that is issued at a process 𝑝. If a
call 𝑐′ is executed at another process 𝑝′, but is not already executed at 𝑝, then 𝑐 should invariant-
commute with 𝑐′, i.e., ∀𝑐′. 𝑐′ ∈ xs(𝑝′) ∧ 𝑐′ ∉ xs(𝑝) → 𝑐 ⊲ℐ 𝑐′. Otherwise, 𝑝 should wait for 𝑐′.
Invariant-commutativity requires commutativity from any pre-state: a call 𝑐 invariant-commutes
with 𝑐′ if either 𝑐 is invariant-sufficient, or starting from any pre-state 𝜎, if 𝑐 is permissible in 𝜎, then
it is permissible in the post-state of executing 𝑐′ on 𝜎 as well. Therefore, invariant-commutativity
and -conflict are globally defined on all states. For example, in our AR app use-case in Fig. 2,
consider the initial pre-state 𝑙. The call two calls move(𝑎1) and move(𝑎2) don’t 𝒫-R-commute with
respect to each other at 𝑙. Thus, the two calls ℐ-conflict at 𝑙. Thus, according to well-coordination,
the two calls are considered conflicting globally in the application. However, in order to execute a
call 𝑐 at a process 𝑝, well-organization (in the condition PRCommAll) requires 𝑐 to be invariant-
commutative with calls of other processes starting from only the current state 𝜎 of the issuing process
𝑝. Therefore, the notions of invariant-commutativity and -conflict are locally defined for each state.
This subtle difference lets well-organization be much less conservative, and avoid synchronizations
that are not needed for the current state. In our running example in Fig. 2, consider the pre-state
𝑙′. If move(𝑎1) propagates to process 𝑝2 and moves right to after move(𝑎2), the ball does not enter
restricted zones. The call move(𝑎1) 𝒫-R-commutes with respect to move(𝑎2) at 𝑙′. Similarly, the
call move(𝑎2) 𝒫-R-commutes with respect to move(𝑎1) at 𝑙′. Thus, the two calls ℐ-commute at 𝑙′.
Thus under well-organization, at the pre-state 𝑙′, processes 𝑝1 and 𝑝2 can execute move(𝑎1) and
move(𝑎2) concurrently. This example illustrates how, starting from a certain location, a move may
only conflict with a subset of other moves. The conflicting moves that can derail the current move
into restricted zones can be identified according to the current location.
The second difference is that in contrast to well-organization, well-coordination required a

condition called dependency-preservation: when calls are propagated, their dependencies should
be preserved. More precisely, consider a call 𝑐 issued in a process 𝑝. Let 𝑐′ be a call preceding 𝑐 in 𝑝
that 𝑐 depends on. If 𝑐 is executed at another process 𝑝′, then 𝑐′ is expected to have been executed
before 𝑐 in 𝑝′, i.e., ∀𝑐′. 𝑐′ ≺xs(𝑝) 𝑐 ∧ 𝑐 ⊥̸⊥ 𝑐′ → 𝑐′ ∈ xs(𝑝′). For example, in our AR use-case, a
𝑚𝑜𝑣𝑒 call may be dependent on the preceding move call to be permissible. For instance, in our
running example in Fig. 2, if the pre-state is ⟨1, 1⟩, consider a move 4 steps up and then a move 2
steps right. The move to the right is permissible but it needs the move up before it; otherwise, the
ball can enter the restricted zone. Therefore, well-coordination requires tracking and enforcing
these orders. The rule Prop for well-organization that we saw above does not check this condition.
Instead, it requires the call 𝑐 to be permissible in the current state 𝜎 of the receiving process 𝑝′.
(Thus, a call is checked to be permissible not only when the issuing process executes it, but also
when it is propagated to another process.) This optimization is based on the following observation.
A call can become impermissible if its dependencies are missing; the condition above prevented calls
from missing their dependencies. However, there is an easier and less expensive way of ensuring
permissibility: directly checking permissibility. Let a process execute a call that it receives only
if it is permissible at the current state of that process. If the call is not permissible, buffer it and
check again later, similar to calls whose dependencies were not satisfied. By the reliable delivery
guarantees, the dependencies will eventually arrive, and make the call permissible. In fact, the call

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:11

may become permissible even before its (conservative) dependencies arrive, and can be executed
earlier. In our AR use case, well-organization avoids tracking dependencies between move calls,
and instead queues move calls that are received and executes them when they are permissible.

3.3 Guarantees
Every well-organized execution enjoys integrity, convergence and eventual delivery properties.
The detailed proofs of the following theorems are in the appendix.

Integrity is the safety property that the invariant predicate holds for all reachable states of every
process.

Lemma 3.1 (Integrity). For all ss and 𝑝, if𝑊0 →∗ ⟨ss, _⟩ then ℐ(ss(𝑝)).
Convergence is the safety property that processes which have applied the same set of calls have

the same state. We say that two histories 𝑥 and 𝑥′ are equivalent 𝑥 ∼ 𝑥′ if they have the same set
of calls.

Lemma 3.2 (Convergence). For all ss, xs, 𝑝 and 𝑝′, if 𝑊0 →∗ ⟨ss, xs⟩ and xs(𝑝) ∼ xs(𝑝′) then
ss(𝑝) = ss(𝑝′).

As the rule Prop (in Fig. 5) defines, delivering a call 𝑐 has the pre-condition that 𝑐 is permissible
in the current state 𝜎. Therefore, an immediate question is whether every pending call is eventually
delivered. The following theorem answers this question positively: every pending call at any
reachable state can be eventually delivered. More precisely, if at a reachable state 𝑊 , a call 𝑐 is
delivered to 𝑝 but not 𝑝′, then there are steps from𝑊 that deliver 𝑐 to 𝑝′ as well.

Lemma 3.3 (Delivery). For all𝑊 , 𝜏, 𝑝, 𝑝′ and 𝑐, if𝑊0
𝜏−→
∗
𝑊 , (𝑝, 𝑐) ∈ 𝜏, and (𝑝′, 𝑐) ∉ 𝜏, then

there exists 𝜏′ and𝑊 ′ such that𝑊
𝜏′·(𝑝′ , 𝑐)
−−−−−−→

∗
𝑊 ′.

In fact, the same reasoning as the lemma above can show that every pending call will be eventually
delivered in every fair infinite execution. An execution is fair if whenever a rule is enabled, either
it eventually executes, or it becomes permanently disabled. A rule is enabled in a state if that state
satisfies its pre-conditions. More details are available in the appendix.

4 AR Replication
In this section, we first consider AR applications and their conflicting operations. Then, we present
the credit scheme and replication protocol. The protocol is fault-tolerant and can reclaim credits of
failed processes. We state and prove that the protocol refines the well-organization semantics that
we defined in § 3.2. (Detailed proofs are available in the Appendix, § 9.2.)

4.1 AR Apps

Algorithm 1: AR app for board
𝐵 and restricted zone 𝑅

1 class AR-App (𝐵, 𝑅)
2 𝑙 : Location
3 ℐ(𝑙) B 𝑙 ∈ 𝐵 ∧ 𝑙 ∉ 𝑅

4 function move(𝑎 : Action, 𝑙).
5 return 𝑙 + 𝑎

We now define a core AR application and present how
its conflicting actions are automatically calculated.
Core App Specification. Alg. 1 captures the spec-

ification of a core AR app. An AR app is parametric in
terms of the pair ⟨𝐵, 𝑅⟩ of the board 𝐵 and the restricted
zones 𝑅. A virtual object has a location 𝑙. The integrity
property ℐ requires the location 𝑙 of the object to be
within the board 𝐵, and further not enter the restricted
zone 𝑅. Users can call the move(𝑎) method to execute an
action 𝑎 that relocates the object. An action 𝑎 is a pair ⟨𝑑, 𝑚⟩ where 𝑑 is the direction and 𝑚 is the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:12 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

magnitude of the action. A direction 𝑑 ∈ 𝒟 is either right 𝑋+, left 𝑋−, up 𝑌+, down 𝑌−, inward
𝑍+, or outward 𝑍−. The operator + is lifted to vector addition.
Conflicts. We now consider conflicts for the AR app that we just defined. First, we show

state-commutativity:

Lemma 4.1. AR-App is 𝒮-commutative.

This is straightforward from the definition of move and the commutativity of vector addition.
The AR-App class does not experience state-conflicts. Let us now consider invariant-conflicts. As
we saw in the Call rule (in Fig. 5), a move should invariant-commute with respect to the moves
that other processes have executed but the current process has not. By definition, a call invariant-
conflicts with another if it is not invariant-sufficient, and does not permissible-right-commute with
respect to the other call. The method move is obviously not invariant-sufficient: even if the starting
location 𝑙 is in the allowed areas, a call move(𝑎) can push the object out of the board or into the
restricted zone. Therefore, invariant-conflict reduces to permissible-right-conflict. Two move calls
can permissible-right-conflict with respect to each other. We saw an example in Fig. 2: move(𝑎1)
(which moves right) is permissible at 𝑙, but not after it is pushed to the right of move(𝑎2) (which
moves 4 units down) or larger down moves. In fact, the action 𝑎2 is the smallest down action that
𝑎1 conflicts with.
Similar to the example in Fig. 7(c), consider a call 𝑐 = move(𝑎) at a location 𝑙, and two other calls

𝑐′1 = move(𝑎′1) and 𝑐′2 = move(𝑎′2) by another process. We want 𝑐 to permissible-right-commute
with respect to 𝑐′1 and 𝑐′2 so that when 𝑐 is propagated to the other process, 𝑐 is permissible in that
process as well, i.e., move(𝑎) ⊲𝑙𝒫 move(𝑎′1) ◦move(𝑎′2). What are the actions 𝑎1 and 𝑎2 that fail this
condition? We want to find those actions and prevent them.

ℐ(move(𝑎, 𝑙)) ∧
ℐ(move(𝑎′1 , 𝑙)) ∧ ℐ(move(𝑎′2 ,move(𝑎′1 , 𝑙))) ∧ ¬ℐ(move(𝑎,move(𝑎′2 ,move(𝑎′1 , 𝑙))))

(1)

The condition fails when the action 𝑎 is permissible at 𝑙, and the sequences of actions 𝑎′1 and
𝑎′2 are permissible at 𝑙, but then 𝑎′1 and 𝑎′2 make 𝑎 impermissible. These constraints fall in the
theory of integer linear arithmetic. Let 𝑎′1 = ⟨𝑑′1 , 𝑚′1⟩ and 𝑎′2 = ⟨𝑑′2 , 𝑚′2⟩. The implementation
uses the Z3 optimizing solver [25] to find the minimum magnitudes 𝑚′1 and 𝑚′2 that make 𝑎 not
permissible-right-commutative.
In the next subsection, we present a protocol that prevents the minimum actions by acquiring

enough credits from other processes. This prevents larger conflicting actions in the same direction
as well, since the credits required to prevent the minimum actions are more than the credits
required to prevent larger actions. Manual calculation of conflicting actions is time-consuming and
error-prone. Given an AR environment, a location 𝑙 and action 𝑎, the implementation automatically
calculates the function conflict-actions that returns the minimum conflicting actions, stores it as a
table, and queries the table during execution. It repeats the above calculation for each sequence
of actions that can make the call 𝑐 not permissible-right-commutative, calculating the minimum
magnitude for each direction.

4.2 Replication Protocol
In § 4.1, we described how the conflicting actions for each current location and action are calculated.
We now present a protocol that is parametric for the conflicting actions.

Conflict-synchronizing Credits. As presented in § 3, in order to preserve the integrity
property, conflicting calls should be synchronized. Classical synchronization mechanisms apply
total-order broadcast and consensus protocols to preserve the same order for conflicting calls
across processes; however, these protocols require multiple rounds of communication. On the other

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:13

hand, multi-user AR applications generally require low response times. Our experiments later
on show that classical protocols cannot meet these requirements. Therefore, in order to reduce
communication, we present a credit mechanism to synchronize between conflicting calls. In brief,
calls need to acquire certain amount of credit to execute. Therefore, synchronization of the current
call with a remote conflicting call is reduced to acquiring enough credit to inhibit the execution of
the other call while the current call is executing. If the process already has the credit required to
prevent conflicting calls, it doesn’t need to communicate with other processes, saving time. Thus,
the credit mechanism facilitates local execution of calls.

Consider the horizontal distance 𝑥+ of a virtual object to a wall (boundary of 𝐵) on its right-hand
side. The object can move 𝑥+ units to the right; we say that there are 𝑥+ credits to move right.
The credits are partitioned and distributed between processes. Further, processes can request and
acquire credit from each other. If a process 𝑖 holds 𝑥+

𝑖
credits, then it can move right up to 𝑥+

𝑖
units locally without communicating with others. Since the total amount of credit in the system is
fixed, the process is certain that it will not push the object past the wall even if other processes
move the object at the same time. Similarly, a process keeps a credit for each other direction. Each
process stores a mapping holding from each direction to the amount of credit in that direction
that it holds. For example, in a three dimensional board, holding is a map from the directions 𝑋+,
𝑋−, 𝑌+, 𝑌−, 𝑍+, and 𝑍−. We note that credits in opposite directions are dependent: moving in a
direction creates credit in the opposite direction. For example, when a process 𝑖 moves an object
right by a magnitude 𝑚, it decreases the credit for 𝑥+

𝑖
by 𝑚, and increases the credit for 𝑥−

𝑖
by 𝑚.

Consider a process that wants to execute an action 𝑎 = ⟨𝑑, 𝑚⟩ to move the object in the direction
𝑑 by the magnitude 𝑚. If the credit holding(𝑑) that the process holds for the direction 𝑑 is more
than 𝑚, it doesn’t need to acquire any more credit to do the action. However, it should first make
sure that the action 𝑎 is synchronized with other actions that conflict with it: we say that the
action 𝑎 should be conflict-synchronizing. If the action is conflict-free, no coordination is needed.
However, if there are conflicting actions (possibly in orthogonal directions), then those actions can
be taken concurrently by other processes, and push the object through the boundaries. Thus, they
should be prevented. Consider an action 𝑎′ that conflicts with 𝑎. Before executing the action 𝑎,
the process acquires enough credit from other processes to leave their credits insufficient to take
the action 𝑎′. For example, in the Fig. 2 scenario, before moving the object right by 𝑎1 from 𝑙, the
process has to acquire 4 down credits to prevent other processes from moving the object down
past the horizontal boundary of the restricted zone.
The function conflict-sync-credit (in Alg. 2 at L. 13) presents the procedure of calculating the

amount of credit that should be acquired to prevent conflicting actions. Given a location 𝑙 and an
action 𝑎, it returns pairs ⟨𝑑, 𝑚⟩ of direction 𝑑 and magnitude 𝑚, such that acquiring 𝑚 credits for
direction 𝑑 prevents conflicting actions. It first retrieves the actions that conflict with 𝑎 (at L. 49).
For example, in Fig. 2, the minimum conflicting action downwards is 4 units at location 𝑙. For each
such action ⟨𝑑, 𝑚⟩, it then calculates the amount of credit that can prevent it (at L. 50). The function
bound(𝑑) is an upper bound on the number of credits available in the system in the direction 𝑑.
In our example, the downward bound is 7 units. To prevent the action ⟨𝑑, 𝑚⟩, less than 𝑚 credits
from the total bound(𝑙 , 𝑑) should be left out. Thus, the current process needs to have more than the
difference of bound(𝑙 , 𝑑) and 𝑚. In our example, 7− 4+ 1 = 4 units of downward credit are needed.

Replication Protocol. We now consider the replication protocol. As Alg. 2 shows, the protocol
uses reliable broadcast rb, and point-to-point links p2p as sub-protocols. Fig. 8 shows a running
example of the replication protocol that we will use to illustrate its main points, following Fig. 2.
The protocol accepts a Move(𝑎𝑟) request to move the object by the action 𝑎. The requests are
decorated with unique identifiers 𝑟 (that can be simply the process identifier and a local request

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:14 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

Algorithm 2: Credit-based Replication Protocol
1 sub-protocol:
2 rb : ReliableBroadcast
3 p2p : Point2PointLinks
4 vars:
5 loc : Location ⊲ Current location
6 active : Identifier = ⊥
7 holding : 𝒟 ↦→ N ⊲ Local credit map
8 kept : Identifier ↦→ List[Action]

⊲ Credits kept for an action
9 𝑤 : Set[⟨Action, 𝑃⟩] ⊲Waiting updates

10 acks : Identifier ↦→ N
11 ⊲ # of acks received for an action
12 length : 𝒟 ↦→ N
13 upon request Move(𝑎𝑟) where active = ⊥
14 active← 𝑟

15 𝑎 ← make-permissible(loc, 𝑎)
16 𝑎𝑠 ← conflict-sync-credit(loc, 𝑎)
17 acquire-credit(𝑎 + 𝑎𝑠𝑟)
18 withdraw-from-holding(𝑎 + 𝑎𝑠)
19 kept ← kept[𝑟 ↦→ 𝑎𝑠]
20 loc← move(𝑎, loc)
21 bound = bound + (−𝑎)
22 acks(𝑟) ← 1
23 rb request broadcast(𝑎𝑟)
24 active← ⊥
25 response OK
26 upon rb response deliver(𝑝𝑠 , 𝑎𝑟)
27 if 𝑝𝑠 ≠ self then
28 if ¬𝒫(loc, 𝑎) then
29 𝑤 ← 𝑤 ∪ {⟨𝑎𝑟 , 𝑝𝑠⟩}
30 else
31 loc← move(𝑎, loc)
32 bound = bound + (−𝑎)
33 p2p request send(𝑠,Ack(r))
34 foreach ⟨𝑎𝑟 , 𝑝𝑠⟩ ∈ 𝑤
35 if 𝒫(loc, 𝑎) then
36 loc← move(𝑎, loc)
37 bound = bound + (−𝑎)
38 p2p request send(𝑝𝑠 ,Ack(r))
39 𝑤 ← 𝑤 \ {⟨𝑎𝑟 , 𝑝𝑠⟩}
40 retry foreach

41 upon p2p response deliver(𝑠,Ack(𝑟))
42 acks(𝑟) ← acks(𝑟) + 1
43 if acks(𝑟) = 𝑛 then
44 ⊲ 𝑛 is # of processes
45 𝑎𝑠 ← kept(𝑟)
46 deposit-to-holding(𝑎𝑠)
47 deposit-to-holding(−𝑎) ⊲ opposite of 𝑎
48 function conflict-sync-credit (𝑙 : Location, 𝑎 :

Action)
49 𝑎𝑠1 ← conflict-actions(𝑎, 𝑙)

⊲ Retrieve actions 𝑎𝑠1 that conflict with 𝑎

50 𝑎𝑠2 ← map

51 (𝜆⟨𝑑, 𝑚⟩. ⟨𝑑, bound(𝑑) − 𝑚 + 1⟩)
52 𝑎𝑠1 ⊲ Calculate credits that prevent 𝑎𝑠1
53 return 𝑎𝑠2
54 function acquire-credit(𝑎𝑠𝑟 : List[Action])
55 foreach ⟨𝑑, 𝑚⟩ ∈ 𝑎𝑠

56 if holding(𝑑) < 𝑚 then
57 𝑚′← fraction(𝑚 − holding(𝑑))
58 rb request broadcast(Debit(⟨𝑑, 𝑚′⟩𝑟))
59 vars:
60 𝑞 ⊲ Priority Queue of credit requests
61 upon rb response deliver(𝑝𝑠 , Debit(𝑎𝑟))
62 𝑞 ← 𝑞 + (⟨𝑝𝑠 , 𝑎⟩, 𝑟)

⊲ Add with the identifier 𝑟 as priority
63 upon periodic
64 foreach ⟨𝑝𝑠 , ⟨𝑑, 𝑚⟩⟩𝑟 ∈ 𝑞 ⊲ priority order
65 if active = ⊥ ∨ active ≺ 𝑟 then
66 𝑚 ← min(𝑚, holding(𝑑))
67 withdraw-from-holding(⟨𝑑, 𝑚⟩)
68 p2p request send(𝑝𝑠 , Credit(⟨𝑑, 𝑚⟩))
69 upon p2p response deliver(𝑝𝑠 , Credit(𝑎))
70 deposit-to-holding(𝑎)

1 sub-protocol:
2 rb : ReliableBroadcast
3 p2p : Point2PointLinks
4 vars:
5 loc : Location ⊲ Current location
6 active : Identifier = ⊥
7 holding : 𝒟 ↦→ N ⊲ Local credit map
8 kept : Identifier ↦→ List[Action]

⊲ Credits kept for an action
9 𝑤 : Set[⟨Action, 𝑃⟩] ⊲ Waiting updates

10 acks : Identifier ↦→ N
11 ⊲ # of acks received for an action
12 length : 𝒟 ↦→ N
13 upon request Move(𝑎𝑟) where active = ⊥
14 active← 𝑟

15 𝑎 ← make-permissible(loc, 𝑎)
16 𝑎𝑠 ← conflict-sync-credit(loc, 𝑎)
17 acquire-credit(𝑎 + 𝑎𝑠𝑟)
18 withdraw-from-holding(𝑎 + 𝑎𝑠)
19 kept ← kept[𝑟 ↦→ 𝑎𝑠]
20 loc← move(𝑎, loc)
21 bound = bound + (−𝑎)
22 acks(𝑟) ← 1
23 rb request broadcast(𝑎𝑟)
24 active← ⊥
25 response OK
26 upon rb response deliver(𝑝𝑠 , 𝑎𝑟)
27 if 𝑝𝑠 ≠ self then
28 if ¬𝒫(loc, 𝑎) then
29 𝑤 ← 𝑤 ∪ {⟨𝑎𝑟 , 𝑝𝑠⟩}
30 else
31 loc← move(𝑎, loc)
32 bound = bound + (−𝑎)
33 p2p request send(𝑠,Ack(r))
34 foreach ⟨𝑎𝑟 , 𝑝𝑠⟩ ∈ 𝑤
35 if 𝒫(loc, 𝑎) then
36 loc← move(𝑎, loc)
37 bound = bound + (−𝑎)
38 p2p request send(𝑝𝑠 ,Ack(r))
39 𝑤 ← 𝑤 \ {⟨𝑎𝑟 , 𝑝𝑠⟩}
40 retry foreach

41 upon p2p response deliver(𝑠,Ack(𝑟))
42 acks(𝑟) ← acks(𝑟) + 1
43 if acks(𝑟) = 𝑛 then
44 ⊲ 𝑛 is # of processes
45 𝑎𝑠 ← kept(𝑟)
46 deposit-to-holding(𝑎𝑠)
47 deposit-to-holding(−𝑎) ⊲ opposite of 𝑎
48 function conflict-sync-credit (𝑙 : Location, 𝑎 :

Action)
49 𝑎𝑠1 ← conflict-actions(𝑎, 𝑙)

⊲ Retrieve actions 𝑎𝑠1 that conflict with 𝑎

50 𝑎𝑠2 ← map

51 (𝜆⟨𝑑, 𝑚⟩. ⟨𝑑, bound(𝑑) − 𝑚 + 1⟩)
52 𝑎𝑠1 ⊲ Calculate credits that prevent 𝑎𝑠1
53 return 𝑎𝑠2
54 function acquire-credit(𝑎𝑠𝑟 : List[Action])
55 foreach ⟨𝑑, 𝑚⟩ ∈ 𝑎𝑠

56 if holding(𝑑) < 𝑚 then
57 𝑚′← fraction(𝑚 − holding(𝑑))
58 rb request broadcast(Debit(⟨𝑑, 𝑚′⟩𝑟))
59 vars:
60 𝑞 ⊲ Priority Queue of credit requests
61 upon rb response deliver(𝑝𝑠 , Debit(𝑎𝑟))
62 𝑞 ← 𝑞 + (⟨𝑝𝑠 , 𝑎⟩, 𝑟)

⊲ Add with the identifier 𝑟 as priority
63 upon periodic
64 foreach ⟨𝑝𝑠 , ⟨𝑑, 𝑚⟩⟩𝑟 ∈ 𝑞 ⊲ priority order
65 if active = ⊥ ∨ active ≺ 𝑟 then
66 𝑚 ← min(𝑚, holding(𝑑))
67 withdraw-from-holding(⟨𝑑, 𝑚⟩)
68 p2p request send(𝑝𝑠 , Credit(⟨𝑑, 𝑚⟩))
69 upon p2p response deliver(𝑝𝑠 , Credit(𝑎))
70 deposit-to-holding(𝑎)

The add operation + is lifted to the list of actions: for 𝑎 + 𝑎𝑠, if 𝑎𝑠 includes an action with the same direction as 𝑎,
then the magnitude of 𝑎 is added to that action; otherwise, 𝑎 is appended to 𝑎𝑠.

counter). In the example, at location 𝑙, the request is to move 6 units in the 𝑋+ direction. A request
Move(𝑎𝑟) is processed only when processing of another request is not active (at L. 13). As we saw
in the rule Call of Fig. 5, every call should be permissible at the issuing process. Therefore, as
the first step (at L. 15), the requested action 𝑎 is shrunk so that it does not push the object outside
allowed areas. Alternatively, the action could be rejected.

Next, in order to make the action conflict-synchronizing, the process calls the conflict-sync-credit
function that we considered above (at L. 13) to calculate the credits that it should possess (at L. 16).
The result is the pairs 𝑎𝑠 of direction and magnitude. In Fig. 8, conflict-sync-credit determines that
4 credits in the 𝑌− direction are needed. Then, if the process doesn’t have enough credit for both

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:15

move(<X+, 6>r)

holding = {Y- ↦ 0,
 X+ ↦ 7,
 X- ↦ 1, …}
(X, Y) = (1,7)

conflict-sync-credit
returns that 4 Y-
credits needed

holding = {Y- ↦ 4, …}
(X, Y) = (1,7)

holding = {Y- ↦ 3, …}
(X, Y) = (1,7)

Debit(<Y-, 2>)

Debit(<Y-, 2>)

Credit(<Y-, 2>)

Credit(<Y-, 2>)

holding = {Y- ↦ 4,
 X+ ↦ 7,
 X- ↦ 1, …}
(X, Y) = (1,7)

holding = {Y- ↦ 2, …}
(X, Y) = (1,7)

holding = {Y- ↦ 1, …}
(X, Y) = (1,7)

holding = {Y- ↦ 0,
 X+ ↦ 1,
 X- ↦ 1, …}
kept(r) = {Y- ↦ 4,
 X+ ↦ 6}
(X, Y) = (7,7)

<X+,6>

holding = {Y- ↦ 2, …}
(X, Y) = (7,7)

holding = {Y- ↦ 1, …}
(X, Y) = (7,7)

<X+,6>

ACK

ACK

holding = {Y- ↦ 4,
 X+ ↦ 1,
 X- ↦ 7, …}
(X, Y) = (7,7)

execute
move

p

p'

p''

OK

Fig. 8. Run-through of the replication protocol, following the example from Fig. 2.

𝑎 and 𝑎𝑠, it acquires credit from other processes (at L. 17). The function acquire-credit (at L. 54)
takes a list of actions, and for each action ⟨𝑑, 𝑚⟩, if the local holding has less than the required
amount 𝑚, it broadcasts a Debit request to other processes. Each Debit request asks for a fraction
of the missing number of credits. (The fraction function, and further, the number of processes that
the request is sent to are configurable.) In the example in Fig. 8, Debit requests for 2 𝑌− credits
each are sent from 𝑝 to the other processes. When a process receives a Debit(𝑎𝑟) request (at L. 61),
it adds 𝑎 to a priority queue. (The identifier 𝑟 or other properties of the request can serve as the
priority.) Each process periodically traverses its queue in the priority order (at L. 63). It processes a
request ⟨𝑑, 𝑚⟩ with priority 𝑟 if it doesn’t have an active call, or if its active call has lower priority
than 𝑟. If the process doesn’t currently hold the requested number of credits 𝑚 for the direction 𝑑,
it contributes the amount that it holds. It withdraws credit from its local holding, and sends it in a
Credit message to the requesting process. In the example, 𝑝′ and 𝑝′′ both hold a sufficient number
of credits in holding to satisfy the request, so they each send 2 𝑌− credits to 𝑝, and reduce their
holding accordingly. When a process receives a Credit message (at L. 69), it deposits the credit in its
holding. This is shown in the example where 𝑝 updates its 𝑌−holding from 0 to 4 credits. If multiple
processes request credits for the same direction, the process that is requesting the call with the
highest priority gets the credits, and temporarily refuses to release them until it finishes its call.

Next, the process withdraws the credit needed for 𝑎 and 𝑎𝑠 from its own holding (at L. 18). The
function withdraw-from-holding is atomic, and returns only when enough credit becomes available,
and is deducted from the holding. The process keeps the credits 𝑎𝑠 in its kept map (at L. 19 in
Alg. 2), In Fig. 8, 𝑝 transfers 4 𝑌− credits from holding to kept. It deposits them back later once the
action 𝑎 is executed at all processes. The action 𝑎 is then executed to update the location loc (L. 20),
to (𝑋,𝑌) = (7, 7) at process 𝑝 in the example. Then, the action 𝑎 is broadcast to other processes (at
L. 23). In the example, a ⟨𝑋+ , 6⟩ action is broadcast from 𝑝 to the other processes.
As we saw in the rule Prop of Fig. 5, a call received from other processes can be executed only

when it becomes permissible. Therefore, when an action 𝑎𝑟 from another process is delivered (at
L. 26), the process checks that 𝑎 is permissible in the current location loc (at L. 28). If it is not, then
the action 𝑎 together with its sender 𝑠 are added to the set of waiting calls 𝑤 (at L. 29). If the action
is permissible, the process applies it to the current location, and sends an acknowledgment to the
sender (at L. 31-33). This is shown in Fig. 8 where 𝑝′ and 𝑝′′ each update the object’s position to (7, 7)
and send an ACK to 𝑝. Later after 𝑎 is executed at all processes, the sender issues the opposite credit
−𝑎. Therefore, after sending the acknowledgment, the current process conservatively increases the
bound in the opposite direction (at L. 32). The execution of the action can make the waiting actions

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:16 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

permissible. Therefore, the process iterates over its waiting set, and checks if any other action is
permissible (at L. 34-35). If such an action is found, it is processed (at L. 36-40).

When a process receives an acknowledgment for a request 𝑟 (at L. 41), it increments the number
of acknowledgments for 𝑟 in the map acks. Once acknowledgments for 𝑎 are received from all
processes, the credits that were held in the kept map for conflict-synchronization of 𝑎 are retrieved
and deposited back to the holding (at L. 43-46). This is shown in Fig. 8 when 𝑝 transfers 4 𝑌− credits
from kept back to holding. Further, credit in the opposite direction of 𝑎 with the same magnitude
is issued locally (at L. 47). In the example, the 𝑋− credits in holding increase from 1 to 7, and the
Move is complete. We note that issuing this credit before 𝑎 is executed at all processes compromises
the correctness of the protocol.

pa pb

pc pd

3

1

41

10 10
move(⟨d, 2⟩)

1010

(I)
(II) (III)

(IV)
(V)

(VI)

Fig. 9. Example fault toler-

ance. Arcs show exchanges

between processes

Fault Tolerance. We described above that each process has a
holding of credits. If the process fails, those credits may become inac-
cessible to other processes; thus, some moves may be inhibited. We
now extend the protocol to tolerate faults. We start with an example
execution with four processes 𝑝𝑎 , 𝑝𝑏 , 𝑝𝑐 and 𝑝𝑑 . We consider only
the credits in one direction 𝑑, say right. As Fig. 9 shows, let (I) the
initial holding of each process be 10 for right: init(𝑝𝑎) = 10. (II) The
process 𝑝𝑎 moves 2 steps right, and then broadcasts the move to oth-
ers: moved(𝑝𝑎) = 2. It also has exchanges with other processes: (III) it
receives 3 credits from 𝑝𝑏 , and later (IV) sends 1 credit to 𝑝𝑐 , and (V) 1
credit to 𝑝𝑏 . Then, (VI) 𝑝𝑑 sends 4 credits to 𝑝𝑏 . At this point, 𝑝𝑎 fails.
How can each other process calculate the credits that 𝑝𝑎 had? When a process realizes that 𝑝𝑎 failed,
it can communicate the exchanges that it had with 𝑝𝑎 with other processes. Since 𝑝𝑏 sent 3 credits
to and received 1 credit from 𝑝𝑎 , the net exchange of 𝑝𝑏 with 𝑝𝑎 was exchange(𝑝𝑏 , 𝑝𝑎) = 3 − 1 = 2.
The net exchanges of 𝑝𝑐 and 𝑝𝑑 with 𝑝𝑎 were exchange(𝑝𝑐 , 𝑝𝑎) = −1 and exchange(𝑝𝑑 , 𝑝𝑎) = 0
respectively. The sum of the exchanges is Σ𝑝 exchange(𝑝, 𝑝𝑎) = 2 + (−1) + 0 = 1. Each process
knows that the initial value of 𝑝𝑎 was 10. It also knows that 𝑝𝑎 spent 2 credits for a move, and
that it had a sum of 1 exchanges. Thus, each process can calculate that when 𝑝𝑎 failed, it had
init(𝑝𝑎) − moved(𝑝𝑎) + Σ𝑝 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒(𝑝, 𝑝𝑎) = 10 − 2 + 1 = 9 right credits. There are 3 correct
processes; thus, each takes a share of 3 credits. We note that each process can locally calculate the
credits to be recovered without expensive synchronization.

What happens if 𝑝𝑏 fails too? Then, the processes communicate their exchanges with 𝑝𝑏 as well.
The net exchange of the two correct processes 𝑝𝑐 and 𝑝𝑑 with 𝑝𝑏 was 0 and 4 respectively. The net
exchange of 𝑝𝑐 and 𝑝𝑑 with 𝑝𝑎 was -1 and 0 respectively. The exchanges between failed processes
𝑝𝑎 and 𝑝𝑏 are not available. We consider the credits that the two failed processes 𝑝𝑎 and 𝑝𝑏 had
together as a whole; therefore, we don’t need to consider the individual exchanges between them.
The correct processes 𝑝𝑐 and 𝑝𝑑 had a net exchange of 0 + 4 + (-1) + 0 = 3 with failed processes.
The sum of their initial credits was 20, and 𝑝𝑎 moved 2 steps. Thus, each process can calculate that
𝑝𝑎 and 𝑝𝑏 had 20 - 2 + 3 = 21 credits. The 9 credits from 𝑝𝑎 were already recovered. Thus, the new
credits to be recovered are 21 - 9 = 12. Each correct process takes a share of 12 / 2 = 6 credits.
We now present the fault tolerance protocol to recover the credits that failed processes held.

Following a similar argument as the CAP theorem [32], in a partially synchronous network that
can be partitioned for an unbounded amount of time, it is impossible to both make the credits of
failed processes available, and preserve the bound on the number of credits. In fact, since delays are
unbounded, if a heartbeat does not arrive, the process cannot decide whether the other process failed,
or the network just partitioned. For co-located AR users that are connected via a local network, the
message transmission time can be bounded. This leads to a synchronous network where heartbeat
messages can implement a failure detector: if a process fails, it eventually informs every correct

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:17

Algorithm 3: Fault Tolerance
71 sub-protocol:
72 fd : FailureDetector
73 vars:
74 ℱ ⊲ Failed processes
75 ⊲ 4 maps from a process 𝑝 and a direction 𝑑:
76 init(𝑝)(𝑑)
77 ⊲ initial # of credits that 𝑝 has for 𝑑.
78 moved(𝑝)(𝑑), opposite(𝑝)(𝑑)
79 ⊲ # of credits that 𝑝 spent for move in 𝑑.
80 ⊲ # of opposite credits that 𝑝 issued in 𝑑.
81 sent(𝑝)(𝑑), received(𝑝)(𝑑)
82 ⊲ exchange of self with 𝑝 for 𝑑.
83 exchange(𝑝)(𝑝′)(𝑑)
84 ⊲ net exchange of 𝑝 with 𝑝′ for 𝑑.
85 lrc ⊲ last recovered credits

86 after executing received action 𝑎 = ⟨𝑑, 𝑚⟩ from
sender 𝑝𝑠 (after L. 31 and L. 36):

87 moved(𝑝𝑠)(𝑑) ← moved(𝑝𝑠)(𝑑) + 𝑚

88 opposite(𝑝𝑠)(−𝑑) ← opposite(𝑝𝑠)(−𝑑) + 𝑚

⊲ −𝑑 is opposite of 𝑑
89 after sending credit 𝑎 = ⟨𝑑, 𝑚⟩ to process 𝑝𝑠
(after L. 68):

90 sent(𝑝𝑠)(𝑑) ← sent(𝑝𝑠)(𝑑) + 𝑚

91 after receiving credit 𝑎 = ⟨𝑑, 𝑚⟩ from process
𝑝𝑠 (after L. 70):

92 received(𝑝𝑠)(𝑑) ← received(𝑝𝑠)(𝑑) + 𝑚

93 upon fd response Fail(𝑝)
94 ℱ ← ℱ ∪ {𝑝}
95 𝑒 ← sent(𝑝) − received(𝑝)
96 rb request broadcast(Exchange(𝑝, 𝑒))
97 upon rb response deliver(𝑝, Exchange(𝑝′, 𝑒))
98 r-exchange(𝑝)(𝑝′) ← 𝑒

99 𝒞 = Π \ ℱ ⊲ Correct processes
100 if ∀𝑝 ∈ 𝒞 , 𝑝′ ∈ ℱ . exchange(𝑝)(𝑝′) ≠ ⊥

then
101 wait until Δ is passed since the last fail
102 rc← Σ𝑝′∈ℱ (init(𝑝′)
103 −moved(𝑝′) + opposite(𝑝′) +
104 Σ𝑝∈𝒞 exchange(𝑝)(𝑝′))

⊲ recovered credits.
⊲ The operator + is overloaded on maps
from directions 𝑑 to # of credits.

105 nrc← rc − lrc ⊲ new recovered credits
106 lrc← rc ⊲ save last recovered credits
107 𝑠 ← nrc / |𝒞| ⊲ This process’ share
108 holding← holding + 𝑠

71 sub-protocol:
72 fd : FailureDetector
73 vars:
74 ℱ ⊲ Failed processes
75 ⊲ 4 maps from a process 𝑝 and a direction 𝑑:
76 init(𝑝)(𝑑)
77 ⊲ initial # of credits that 𝑝 has for 𝑑.
78 moved(𝑝)(𝑑), opposite(𝑝)(𝑑)
79 ⊲ # of credits that 𝑝 spent for move in 𝑑.
80 ⊲ # of opposite credits that 𝑝 issued in 𝑑.
81 sent(𝑝)(𝑑), received(𝑝)(𝑑)
82 ⊲ exchange of self with 𝑝 for 𝑑.
83 exchange(𝑝)(𝑝′)(𝑑)
84 ⊲ net exchange of 𝑝 with 𝑝′ for 𝑑.
85 lrc ⊲ last recovered credits

86 after executing received action 𝑎 = ⟨𝑑, 𝑚⟩ from
sender 𝑝𝑠 (after L. 31 and L. 36):

87 moved(𝑝𝑠)(𝑑) ← moved(𝑝𝑠)(𝑑) + 𝑚

88 opposite(𝑝𝑠)(−𝑑) ← opposite(𝑝𝑠)(−𝑑) + 𝑚

⊲ −𝑑 is opposite of 𝑑
89 after sending credit 𝑎 = ⟨𝑑, 𝑚⟩ to process 𝑝𝑠
(after L. 68):

90 sent(𝑝𝑠)(𝑑) ← sent(𝑝𝑠)(𝑑) + 𝑚

91 after receiving credit 𝑎 = ⟨𝑑, 𝑚⟩ from process
𝑝𝑠 (after L. 70):

92 received(𝑝𝑠)(𝑑) ← received(𝑝𝑠)(𝑑) + 𝑚

93 upon fd response Fail(𝑝)
94 ℱ ← ℱ ∪ {𝑝}
95 𝑒 ← sent(𝑝) − received(𝑝)
96 rb request broadcast(Exchange(𝑝, 𝑒))
97 upon rb response deliver(𝑝, Exchange(𝑝′, 𝑒))
98 r-exchange(𝑝)(𝑝′) ← 𝑒

99 𝒞 = Π \ ℱ ⊲ Correct processes
100 if ∀𝑝 ∈ 𝒞 , 𝑝′ ∈ ℱ . exchange(𝑝)(𝑝′) ≠ ⊥

then
101 wait until Δ is passed since the last fail
102 rc← Σ𝑝′∈ℱ (init(𝑝′)
103 −moved(𝑝′) + opposite(𝑝′) +
104 Σ𝑝∈𝒞 exchange(𝑝)(𝑝′))

⊲ recovered credits.
⊲ The operator + is overloaded on maps
from directions 𝑑 to # of credits.

105 nrc← rc − lrc ⊲ new recovered credits
106 lrc← rc ⊲ save last recovered credits
107 𝑠 ← nrc / |𝒞| ⊲ This process’ share
108 holding← holding + 𝑠

process, and it informs about the failure of a process only if it has failed. The protocol presented
in Alg. 3 uses a failure detector sub-protocol. Each process stores the set of processes that he is
informed to have failed ℱ . It also stores several maps: (1) init(𝑝)(𝑑): the initial number of credits
that process 𝑝 has for direction 𝑑. Each process is initialized with the init map. (2)moved(𝑝)(𝑑): the
number of credits that 𝑝 spent for moves in direction 𝑑. (3) opposite(𝑝)(𝑑): the number of opposite
credits that 𝑝 issued in direction 𝑑. After a process receives and executes an action 𝑎 = ⟨𝑑, 𝑚⟩ from
sender process 𝑝𝑠 (at L. 31 and L. 36), it increases bothmoved(𝑝𝑠)(𝑑) and opposite(𝑝𝑠)(−𝑑) by 𝑚 (at
L. 87-L. 88). The opposite of direction 𝑑 is −𝑑. (3) sent(𝑝)(𝑑) and received(𝑝)(𝑑): the exchange that
the current process had with 𝑝 for 𝑑. After a process sends a credit 𝑎 = ⟨𝑑, 𝑚⟩ to a process 𝑝𝑠 (at
L. 68), it increases sent(𝑝𝑠)(𝑑) by 𝑚 (at L. 90). Dually, after a process receives a credit 𝑎 = ⟨𝑑, 𝑚⟩
from a process 𝑝𝑠 (at L. 70), it increments received(𝑝𝑠)(𝑑) by 𝑚 (at L. 92).
When a process is informed of the failure of 𝑝 (at L. 93), it adds 𝑝 to the set of failed processes
ℱ , and broadcasts the net exchange that it has had with 𝑝. When a process receives the remote
exchange 𝑒 of a process 𝑝 with a process 𝑝′ (at L. 97), it stores it as r-exchange(𝑝)(𝑝′) (at L. 98). The
exchanges of correct processes with failed processes are collected once the entries r-exchange(𝑝)(𝑝′)
are populated for correct process 𝑝 and each failed process 𝑝′ (at L. 100). In order to make sure that
reliable broadcast has delivered all the pending messages from failed processes, the process first
waits until a period Δ is passed since it was informed of the last failure (at L. 101).1 It then calculates
the credits to be recovered rc as the sum of the initial credits of failed processes minus the credits
they spent for moves plus the opposite credit they issued plus the sum of collected exchanges (at
L. 102). (In the Appendix, Lemma 9.10, we proved that this sum is the amount of credit that is held

1To deliver even in a chain of 𝑛 − 1 failures, Δ is (𝑛 − 1) × 𝛿 where 𝛿 is the bounded message transmission time.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:18 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

by failed processes.) Each process stores the last recovered credits lrc. The new recovered credits
are the difference of rc and lrc. Correct processes take equal shares, and add them to their holding.

Correctness. In the Appendix, § 9.2, we capture the protocol as a transition system Ω1 ⇒ Ω2,
and prove that it refines the well-organization semantics𝑊0 →𝑊 . The immediate result of the
refinement is trace inclusion: every trace of the protocol is a trace of the semantics.

Theorem 4.1 (Trace Inclusion). For all Ω and 𝜏, if Ω0
𝜏
⇒∗ Ω, then there exists 𝑊 such that

𝑊0
𝜏
→∗ 𝑊 .

Let us intuitively consider how a refinement holds. A Call step is taken in the Move(𝑎) request
handler when themovemethod is locally executed (at L. 20). A Prop step is taken in the deliver(𝑠, 𝑎)
response handler when the move method is remotely executed (at L. 31 and L. 36). We show
that these rules are enabled at these lines. For a Call step, permissibility holds directly by the
preceding make-permissible function call (at L. 15). For a Prop step, permissibility holds directly
by the preceding if statements (at L. 28 and L. 35). Further, the protocol trivially satisfies the two
conflict-synchronization conditions CallSComm and PropSComm since by Lemma 4.1, AR-App is
state-commutative.
We now show that the condition CallIComm is satisfied when a Call step is taken: we show

that the PRCommAll condition holds firstly, for the call 𝑐 itself, and then for the pending calls.
The protocol executes the call 𝑐 = move(𝑎) at a process 𝑝 (at L. 20) only after calculating the
conflict-synchronizing credits (at L. 16), and acquiring, withdrawing and keeping them (at L. 17-
L. 19). These credits prevent calls that 𝑐 cannot invariant-commute with respect to. The call 𝑐 can
invariant-commute with any number of calls that can be executed with the remaining credits in
any order. Let 𝐴 be the set of calls that are executed at other processes but not the current process
𝑝, and let 𝐶 be a subset of 𝐴. For example, in Fig. 7(a) and (b), the set of calls executed at 𝑝′ but
not 𝑝 is 𝐶 = {𝑐′1 , 𝑐′2}. The call 𝑐 can invariant-commute with any composition 𝑐′ of 𝐶, i.e., 𝑐 ⊲𝜎ℐ 𝑐′.
Therefore, the condition PRCommAll holds for 𝑐.

Further, as we saw in Fig. 7(d) that when a Call step is taken, it should keep the PRCommAll

condition for other pending calls as well. When the call 𝑐′ is executed at the current process 𝑝′ (at
L. 20), consider a pending call 𝑐 at another process 𝑝 that is not yet propagated to a process 𝑝′′. We
show by contradiction that the call 𝑐 invariant-commutes with 𝑐′. Otherwise, if 𝑐 invariant-conflicts
with 𝑐′, then 𝑐 has acquired enough credit to prevent the execution of 𝑐′. A process releases acquired
credit (at L. 46) after receiving acknowledgment from all processes (at L. 43). Since 𝑝′′ has not yet
received 𝑐 (at L. 31 or L. 36), it has not sent an acknowledgment to 𝑝 (at L. 33 or L. 38). Therefore, 𝑝
has not released the credits yet. The protocol executes 𝑐′ at 𝑝′ only after acquiring and withdrawing
credit for 𝑐′ itself (at L. 17-18). Therefore, the call 𝑐′ is not executed which contradicts the initial
assumption. Thus, the call 𝑐 invariant-commutes with 𝑐′. Thus, when a Call step is taken, the
condition PRCommAll is maintained for other pending calls as well.

5 Evaluation
In this section, we detail and evaluate our implementation, which we call Hambazi.

5.1 Implementation
We implemented the Hambazi runtime in Java with the Android framework, and the application was
developed based on Google’s ARCore SDK CloudAnchor demo app [34]. We used Python Z3 SMT
solver API [25] to implement the static calculation in order to find conflicting actions. Specifically,
given an AR board and its restricted zones, we use the solver to determine the conflicting actions
for the current location 𝑙 of the virtual object and an action 𝑎. As described in § 4, Hambazi inputs
the constraints in Eq. 1 to the solver and finds the minimal conflicting actions. It repeats this

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:19

for each location 𝑙, and action 𝑎 in each direction, to generate a JSON table of conflicts that it
queries at runtime. Our experiments showed that naively generating the table by calling the solver
exhaustively for all possible locations and combinations of other actions is time-consuming. To
accelerate the calculation of the table, Hambazi makes several optimizations. First, the actions
of a potentially conflicting sequence might be infeasible due to the bounded nature of other
requests. With the knowledge of human finger tapping frequency [86], the number of users, and the
magnitude of their actions, we can bound the possible actions of other users. Therefore, other users’
aggregated actions may not be large enough to cause a conflict, so we can avoid acquiring credit
for such infeasible conflicting sequences. Second, for simple topologies (e.g., a single restricted
zone), we notice that conflicting actions follow simple algebraic rules. Thus, we compute these
actions directly from these rules instead of calling the solver. As a sanity check, we compared the
solver’s results to the rules’ results, and confirmed that they matched perfectly. For more complex
topologies (e.g., with multiple restricted zones), we use the algebraic rules wherever possible, and
the solver only in intermediate regions that are in the vicinity of more than one restricted zone.
More details of these calculations are available in the Appendix (§ 10).

5.2 Experimental Results
We evaluate Hambazi, seeking to answer the following questions:
• How is AR user experience in terms of latency, and how recent is her local view in terms of the
virtual object’s position? (§ 5.3)
• How well does the system handle an increasing volume of user actions (§ 5.4), and increasing

number of users (§ 5.5)?
• How do different topologies (e.g., with more, irregular or moving restricted zones) impact the

amount of coordination needed and hence system performance? (§ 5.6)
• If users have different network latencies, do they experience fairness in terms of how long it

takes their actions to be viewed by other users? (§ 5.7)
• What is the impact of failures on the system in terms of latency and throughput? (§ 5.8)

(a) Experiment setup (b) Device screenshot

Fig. 10. Example setup with 5 devices, manip-

ulating the same virtual object (green charac-

ter). Restricted zones are outlined in red, and

AR board boundaries are outlined in green.

Setup. As Fig. 10 shows, the experiments were con-
ducted with up to 7 Android smartphones (a mix of
Google Pixel 4, 5, and Samsung S10 devices) as replicas in
a set of 3D AR game boards with restricted zones shown
in Fig. 14b, including one with a moving restricted zone.
During a 5-minute trial, each device continuously calls
move(𝑎) to modify the same virtual object’s position
(the green character in Fig. 10b) with an action 𝑎 in ran-
dom direction (up, down, left, right, inward, outward)
and magnitude (uniformly between [0%, 5%] of the total
board width and length), with call frequency following
an exponential distribution with a mean inter-arrival time of 140 milliseconds by default. 140 ms
was chosen because the finger tapping frequency of humans is around 5.62 Hz (178 ms) [86]. The
credits are initially distributed equally. Credit requests for 100% of the needed credits are sent to
(𝑁 + 1)/2 of the devices (these parameters are set based on our empirical evaluations that are
available in the Appendix, § 10). Each experiment was performed 3 times. Devices communicate
over WiFi with TCP connections. The experiments were conducted on a home WiFi network with
an average download (upload) bandwidth of 340 (10) Mbps, and an average round trip time (RTT)
of 187 ms with a standard deviation of 143 ms between a pair of devices.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:20 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

Baselines. We compare Hambazi with three baselines. (1) Hamsaz (well-coordination [40]) uses
total-order-broadcast to deliver conflicting calls (such as AR move calls) in the same order to all
processes. To run Hamsaz on Android, we modified MicroRaft [30], an open-source implementation
of Raft [72] with minimal dependencies on external libraries. The expected latency is at least 2
RTT between devices (one RTT for the device that issues a call to send it to the leader, and the
leader to broadcast it to all devices, plus one RTT for the leader to gather the majority responses
and then broadcast the result to all devices). (2) Netcode is a set of principles used by major game
engines, such as Unity, that rely on a host to receive and reconcile client actions [31, 90]. We
adopted client-hosted network architecture, where one client acts as the host, and call results are
immediately displayed and possibly rolled back later (reconciled) if conflicts are discovered later by
the host. The latency for a call to be confirmed with the host is at least 1 RTT between devices.
(3) Finally, Firestore is a server-based approach that relies on black box transaction services
provided by the Google Cloud Firestore database [35]. This baseline is the default implementation
in Google’s AR demo apps. To preserve the integrity property, calls are sent to Firestore as atomic
transactions. A call succeeds in overwriting the object’s position in the database only if no other
device has updated the position in the interim. Thus the expected latency for each call is at least 1
RTT between the Firestore server and the device, plus the server-side processing delay.
Evaluation metrics. We evaluate Hambazi in terms of several measures of AR user experience.

The latency of a call measures the time spent between when a device submits a call to move the
virtual object until the movement (which respects integrity) is confirmed and rendered on display.
The location staleness measures the distance between virtual object’s local position and an “oracle”
view, and is represented as a percentage of the AR board length. By “oracle” view, we refer to a
hypothetical system that instantaneously accepts and propagates all devices’ calls in the order they
are issued. Finally, we evaluate the throughput of the system, indicating the rate with which the
system can successfully process calls (without dropping them). The full-sized plots of all results in
subsequent subsections and additional 2D AR game boards results are in the Appendix (§ 11).

5.3 Latency, Location Staleness, and Throughput

100 101 102 103 104

Latency (ms)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

HAMBAZI
NETCODE
HAMSAZ
FIRESTORE

(a) Latency (ms)

0 2 4 6 8 10
Staleness (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

HAMBAZI
NETCODE
HAMSAZ
FIRESTORE

(b) Staleness (%)

Fig. 11. Compared to baselines, Hambazi has lower

latency 90% of the time, and the lowest location stal-

eness. (Full-sized plots are in the Appendix Fig. 24.)

We first evaluate the key metrics of latency, lo-
cation staleness, and throughput. We focus on
the “Middle3D” board topology (Fig. 14b); results
for other boards are similar and are available in
the Appendix, Fig. 31-33. Fig. 11a shows the cu-
mulative distribution function (CDF) of the la-
tency. Hambazi (with an average/median latency
of 119.8/53.0 ms) outperforms the Netcode and
Hamsaz baselines (with average/median latency
of 172.3/142.0 ms and 260.7/237.0 ms, respectively)

90% of the time, which is a reduction of the average latency by 30.5% and 54.1% respectively. Ham-
bazi avoids communication by performing local actions as often as possible (46.4% of the actions),
resulting in nearly zero latency for those local actions. Note that for Netcode, the latency is for the
result to be confirmed by the host. Alternatively, actions could be immediately applied resulting in
a lower display latency (9.7 ms) but such actions may violate the integrity property and expose
rollbacks to AR users. For the Firestore baseline, due to transaction contention on the server, the
latency is significantly higher, with an average/median latency of 1033.5/369.0 ms and a long tail
of up to 13 seconds. For location staleness in Fig. 11b. Hambazi (with average/median location
staleness of 0.67%/0.0% of the board) keeps the users’ local views best synchronized. Compared
to Netcode and Hamsaz, Hambazi reduces location staleness by an average of 36.8% and 35.6%

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:21

respectively. In terms of absolute numbers, 1.0% corresponds to a physical distance of 2 cm, which
is within the error range currently seen in off-the-shelf server-based AR [78].

In terms of system throughput, Hambazi successfully completes all calls while Netcode, Hamsaz,
and Firestore baselines tend to drop a small number of calls, with 0.3%, 0.3%, and 0.6% unfinished
calls per minute respectively. (The plots are available in the Appendix, Fig. 24c.) We also experi-
mentally verified that the integrity and convergence properties are satisfied except for Netcode,
when it is allowed to roll back.

5.4 Impact of Request Load

100 101 102 103 104 105

Latency (ms)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Inter-arrival
210ms
140ms
70ms

Method
HAMBAZI
NETCODE
HAMSAZ
FIRESTORE

(a) Latency

210 140 70
Avg. inter-arrival time (ms)

0
100
200
300
400
500
600

Th
ro

ug
hp

ut
(c

al
ls/

m
in

ut
e)

HAMBAZI
NETCODE
HAMSAZ
FIRESTORE

(b) System throughput

Fig. 12. Varying the mean inter-arrival times from light load (210

ms) to intense load (70 ms). Even with the intense load, Hambazi

yields the lowest latency 70% of the time and finishes all calls.

(Full-sized plot is available in the Appendix, Fig. 26.)

Next, we study the impact of the re-
quest load by varying the mean inter-
arrival call time from 70 ms (intense
load) to 140 ms (moderate load), to
210 ms (light load). As Fig. 12a shows,
Hambazi outperforms Hamsaz and
Netcode 72% and 70% of the time, re-
spectively, withHambazi having ame-
dian latency of 92.0 ms vs. 206.0 ms
and 161.0 ms for the two baselines un-
der the intense load. Firestore has difficulty handling the contention and has a median latency of
257.0 ms. This is because Firestore’s ordering of conflicting action calls causes a sequential wait
for the older actions to be finished. Increasing load impacts Hambazi minimally with a slightly
longer tail up to around 1700 ms under the heaviest load.
In Fig. 12b, even with the intense load, Hambazi outperforms the system throughput of all the

baselines. Hambazi can maintain the service and finish all calls, while Hamsaz and Netcode cannot
complete 0.2% of the calls. Even with the higher loads, Hambazi can finish almost all calls since
pending actions can be batch-processed as other actions are issued. Also, due to the calls being
issued continuously (based on the inter-arrival time), there is idle time in between for the system to
process the pending calls. However, Firestore fails to complete 27.8% of the requested calls, due to
the high read-then-modify contention on the server. For location staleness, even with the intense
load, Hambazi outperforms all the baselines. (The plot is available in the Appendix, Fig. 26b.)

5.5 Scalability

1 2 3 4 5 6 7
Number of devices

0

200

400

600

800

1000

La
te

nc
y

(m
s)

Method
HAMBAZI
NETCODE
HAMSAZ
FIRESTORE

Fig. 13. With an increase of devices

issuing calls, Hambazi still benefits

from conflict-free actions and re-

sults in the lowest latency. (Full-

sized plot is available in the Appen-

dix, Fig. 28.)

In this subsection, we examine the scalability of Hambazi as
more devices join the AR session and issue calls. In Fig. 13, we
plot the median latency for different numbers of users (1 to
7) participating in the session. (Note that Hamsaz requires at
least two devices in order to perform the leader election, as
does Netcode for the host-client architecture.) The results show
that Hambazi’s latency remains stable, with a median latency
of under 135.0 ms even with 7 devices. For the case of 1 device,
all the actions are conflict-free and have a median latency of
8.0 ms for Hambazi, corresponding purely to computation and
not communication time. In contrast, with 2 or more devices,
Netcode requires 1 RTT and has a median latency between 137
to 160 ms while Hamsaz requires at least 2 RTT to commit an
action, resulting in a median latency between 207 to 280 ms. The latency for Hamsaz slightly
decreases from 2 to 3 devices because the Hamsaz leader can process calls in batches if it receives

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:22 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

them while waiting for a majority to respond to the previous call. Therefore, for a fixed inter-
arrival time, when more users issue calls, more calls can be batched, yielding slightly lower latency.
However, these benefits subside as the number of users grows to 7.
Our experiments also show that as the number of devices increases, Hambazi and Hamsaz

slightly increase location staleness, but keep it under 1.0%, and Hambazi is more accurate. On
the other hand, Netcode increases up to 1.5% as users make tentative local moves. (The plots for
location staleness and throughput are available in the Appendix, Fig. 28b.)

5.6 Impact of Board Topology

100 101 102 103 104

Latency (ms)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Topology
middle3D
corner3D
dynamic3D
triangle3D

Method
HAMBAZI
NETCODE
HAMSAZ
FIRESTORE

(a) Latency

Middle3D

DynDmic3D

Corner3D

TriDngle3D

(b) Boards

Fig. 14. Board topology affects the amount of conflict-free

actions, but even for more challenging boards, Hambazi out-

performs the latency of the baselines. (Full-sized figure is

available in the Appendix, Fig. 30.)

We examine the impact of different board
topologies on performance, as some topolo-
gies may require more coordination, im-
pacting performance. We experiment with
four sample 3D AR boards (200 cm x 200
cm x 200 cm) with different shapes of
the restricted zones, shown in Fig. 14b.
Boards with more space between restricted
zones tend to be more difficult because
movements in that space often require
acquiring credit in orthogonal directions.
We also include one dynamic board where
the restricted zone moves back and forth
horizontally at a constant speed (5 cm/s), simulating the scenario where a virtual object should not
intersect with a moving object/person. To account for a moving zone, Hambazi predicts the future
location of the zone, and acquires credits accordingly. Since the time to acquire credits may vary, it
reconsiders the location of the zone right before taking action. Similar results with five additional
2D topologies are presented in the Appendix, Fig. 33, 34.

Table 1. The time to generate

the table with Z3 SMT solver

and algebraic rules.

Topology
(Fig. 14b)

Optimized
time

Middle3D 6 hrs
Corner3D 6 hrs
Dynamic3D
(1 frame)

2 hrs

Triangle3D 26 mins

As Fig. 14a shows, Hambazi improves latency even for challenging
topologies since it avoids communication for conflict-free actions.
The Middle3D topology, which benefits from 46.4% conflict-free ac-
tions, yields a median latency of 53.0 ms. The Triangle3D topology
has the most conflict-free actions among all topologies, at 75.8%, and
is the easiest topology; therefore, it has a median latency of 5.0 ms.
Since Netcode, Hamsaz and Firestore do not benefit from conflict-
free actions, the topology difficulty does not impact them, yielding
a median latencies 86.0, 143.0, and 170.0 ms, respectively, which are
higher than Hambazi’s. Considering location staleness, more difficult
boards generally have higher location staleness, across the three methods. However, the location
staleness of all topologies are all under 4% with only small differences between board topologies.
The throughput of all three methods for different board topologies behaves similarly, with Hambazi
finishing all calls while Netcode and Hamsaz have 0.3-0.4% and Firestore has 0.2-0.8% unfinished
calls. (The plots are in the Appendix, Fig. 30-31.)

Finally, we report on the offline computation time for our solver optimizations (§ 5.1) to generate
the conflict table for each board topology. Although we calculate accurate conflicts for each location,
we note that precision can be traded for speed by conservatively calculating conflicts for subspaces
rather than individual locations. This table is computed statically only once, and is then queried
repeatedly at runtime, alongside the algebraic rules described in § 5.1.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:23

5.7 Impact of Network Latency

0.1x 0.3x 0.5x 1x 2x 3x 4x 5x
RTT

0
50

100
150
200
250
300

La
te

nc
y

(m
s)

Method
HAMBAZI
NETCODE
HAMSAZ

Fig. 15. Slower networks impact

baselines, while Hambazi achieves

a median latency of 67.3 ms. (Full-

sized plot is available in the Appen-

dix, Fig. 35.)

We seek to understand the impact of slower networks on action
latency, both when devices have homogeneous and heteroge-
neous network latencies. To systematically evaluate the impact
of networks, we simulate controlled network environments. The
simulator uses the same Java code as the Android app, running
each client as a separate process on a local machine, and replac-
ing WiFi communications with an emulated link to match the
RTT statistics from the previous experiments, which had a mean
RTT of 20 ms with a standard deviation of 100 ms labeled as “1x
RTT” in the following experiments.

Homogeneous network latencies. Fig. 15 shows the impact of increasing the mean RTT from 0.1x
up to 5x with the median latency. The results show that Hambazi still benefits from the conflict-free
actions and is less impacted by network RTT, achieving a median latency of 67.3 ms even with 5x
RTT. In contrast, Netcode and Hamsaz have greater reliance on the network, and their median
latency grows as the network RTT increases.

0 1 2 3 4
Device ID

0
50

100
150
200
250
300

La
te

nc
y

(m
s)

HAMBAZI
NETCODE
HAMSAZ

Fig. 16. Device0 has slower net-

works. Hambazi is less impacted by

network heterogeneity, while Net-

code and Hamsaz have up to 1.6x

and 1.5x of the latency for Device0

compared to other devices. (Full-

sized plot is in the Appendix, Fig. 37.)

Heterogeneous network latencies. We seek to understand the
fairness of the latencies experienced by the devices when one
of the devices has poor network conditions. In this experiment,
Device 0 has an average RTT of 200 ms (corresponding to the 10x
RTT setting) while the others remain at 20 ms (corresponding
to the 1x RTT setting). In Fig. 16, we present the median latency
of performing an action from each device’s perspective. In Ham-
bazi, all devices have around 50 ms median latency. Hambazi
benefits from conflict-free actions to avoid communication, and
thus, is less affected by heterogeneous RTT. In contrast, Netcode
and Hamsaz have a substantially higher median latency, with a
greater disparity between Device 0 and the other devices, indi-
cating greater unfairness. Note that Device 2 is the leader/host
device in the Hamsaz/Netcode. Therefore, Device 2 has a lower
median latency with Hamsaz and display latency with Netcode.

5.8 Fault Tolerance

100 101 102 103 104

LDtenFy (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
) HAMBAZI

HAMSAZ

(a) Latency

None 1 Failure 2 Indept. 2 Conc.
Number of failures

0
50

100
150
200
250
300

Th
ro

ug
hp

ut
(c

al
ls/

m
in

ut
e)

HAMSAZ
Follower
Leader
Both

HAMBAZI HAMSAZ

(b) Throughput

Fig. 17. Hambazi continues operations in the presence of failures.

The overall latency is not affected, with slightly longer tails depend-

ing on the pre-configured recovery wait time. Throughput decreases

because failed devices cannot contribute calls. (Full-sized plots are

in the Appendix, Fig. 39.)

Finally, we evaluate the impact of
device failures on Hambazi com-
pared to Hamsaz. (Netcode does
not have a built-in failure recov-
ery mechanism.) Both Hambazi and
Hamsaz trigger a failure detector
every 10 seconds. The configurable
wait period Δ of Alg. 3 is set to 4
seconds. During the 5-minute trial
in Middle3D topology, we suspend
different combinations of devices
to simulate failure. Specifically, we
suspended 1 or 2 devices midway
through a trial, denoted as “1 Failure” and “2 Concurrent Failures”. We suspended 1 device midway

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:24 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

and the second device 90 seconds later, denoted as “2 Independent Failures” in Fig. 17. For compari-
son, we suspended either a leader or follower device while running Hamsaz, marked as “Leader
Failure” and “1 Follower Failure”. Additionally, we suspended two devices simultaneously: either
two followers (“2 Conc. Followers”) or the leader and a follower (“2 Conc. (1 Leader 1 Follower)”).
We also tested the same setup for two independent failures, denoted as “2 Indept. Followers” and “2
Indept. (1 Leader 1 Follower)”.
As Fig. 17a shows, Hambazi’s latency is generally not greatly impacted by failures, because it

does not pause system operation when failures are present, and devices can still perform local
actions during recovery. Further, since failures reduce the total number of devices present, the
remaining devices have more credits on hand, and gathering credits becomes easier. Therefore the
fraction of local actions increases, e.g., from 46.6% (no failures) to 54.4% (2 concurrent failures),
resulting in slightly improved latency in Fig. 17a. However, the presence of failures results in a
longer tail of up to 11 seconds, due to conflicting actions that are issued when failures occur and
cannot be executed before failures are detected and recovered. For example, the maximum latency
is 2141.0 ms in the no failure case, versus a higher maximum of 11.13 s with 2 concurrent failures.
The throughput of Hambazi in Fig. 17b decreases with more failures, because failed devices cannot
process calls. (Results for other boards are similar and available in Appendix, Fig. 40-Fig. 47.)
In contrast, when the leader device in Hamsaz fails, the system becomes unavailable for at

least 3 seconds until a new leader is re-elected. Requested actions cannot be processed during this
interval, resulting in a decreased throughput in Fig. 17b. Similarly, suspending a follower impacts
the throughput since the follower is unable to contribute calls to the system. Regarding latency,
Fig. 17a captures the latency of the calls processed when a correct leader is present, and thus it
remains 2 RTT even with failure cases.

6 Related Work
Coordination in AR and Games. Approaches in practice typically involve centralized coor-
dination in the cloud and optimistic concurrency models. Popular game engines like Unity [90]
follow netcode principles [31, 91], where clients make local actions (e.g., updating hit points, player
movements) and roll back if conflicts are discovered later at the central server. However, such
rollbacks can be detrimental to user experience. For AR, Microsoft Hololens [63] and Google
ARCore/Firebase [34, 35] follow optimistic concurrency models, where the first write wins, and
other replicas must refresh their state before re-trying a write. However, such approaches are
insufficient because AR application cannot tolerate high latencies from communication with the
cloud or contention in optimistic concurrency models. In contrast, Hambazi uses a peer-to-peer
coordination-avoiding protocol with formal guarantees of convergence and integrity.
Several works avoid cloud communication and propose peer-to-peer systems for massively

multiplayer online games [11, 12, 43]. These works focus on system design, and interest management
techniques that only propagate objects/player updates to relevant replicas. Our protocol coordinates
the updates within a given interest set defined by such works. Nomad [37] proposes consensus for
latency-sensitive applications but conservatively requires total ordering, and adjusts the leader
in a Paxos-like approach, and thus cannot enjoy speedups from local operations as in Hambazi.
DyConits [27] takes inspiration from TACT [98] and designs centralized coordination protocols for
virtual environments, but only handles synchronization after all calls are accepted. This is unlike
our work that determines and prevents conflicting calls. Finally, none of the above works account
for AR-specific properties such as its restricted play areas.

Replicated Data Types. Consensus and total-order broadcast protocols [24, 28, 48, 70, 72, 73]
provide strong consistency [38, 74]. However, practitioners [23, 47, 75, 92] soon realized that they
do not provide the required low latency [2, 14, 15] for industrial applications, and opted for relaxed

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:25

notations of consistency. On the other hand, the large collection of relaxed consistency notions
[83] can be more efficiently provided [49, 76]. However, the safety of replication on top of these
notions is more subtle. Convergent and Commutative Replicated Data Types (CRDTs) [84, 85] and
similar notions [3, 46, 80] formally define replicated data types that eventually converge. Followup
works define specifications for the functional correctness of these types [56, 93], their composition
[22, 61, 94], and verification [13, 18, 29, 33, 59, 65, 66, 68, 69, 88, 99, 100]. They were later followed
by more expressive convergent types such as cloud, mergeable, and reactive types [16, 17, 42, 42, 64].
In this paper, we proved that well-organization guarantees convergence as well.
In addition to convergence, integrity is an important required property. Certain operations

[5, 67] can preserve integrity under relaxed consistency, while others [6] need strong consistency.
Therefore, several hybrid models including IPA [7], Sieve [52–54], Indigo [8, 9], CISE [36], Quelea
[87], Carol [51], Hamsaz (well-coordination) [40, 41, 55], ECRO [26] and ConSysT [44] consider
the semantics of each operation to execute it under either relaxed or strong consistency. Well-
organization that this paper presents is inspired bywell-coordinationwith two important differences
(described in § 3) that are crucial to support more local executions, and lower latency. In particular,
the above models define the notion of conflict conservatively for all states. In contrast, well-
organization is based on a local notion of conflict for the current state. Further, this paper presents
a credit-based protocol to implement well-organization that further supports local execution of
even conflicting operations.

Escrow and reservation mechanisms [10, 39, 45, 71, 77, 79, 97] split resources between processes
that each can locally consume without violating integrity. Similarly, our protocol uses credits to
enforce limits for each spatial direction. However, not entering the restricted zones is an integrity
property on the values of multiple dimensions. Multiple separate bounded counters from previous
works would be insufficient to enforce it: concurrent moves in different directions can misplace
the virtual objects, as illustrated through the example in § 2. This paper presents a protocol that
considers conflicting actions across counters (directions), and acquires credit from other counters to
prevent conflicts. Escrow has been generalized to logical assertions and locks [8, 57, 60, 81, 95, 96] to
accelerate storage systems. Each process preserves a predicate that restricts its state to a subspace;
if a process finds that it cannot execute an operation without violating its predicate, it performs
a global synchronization across processes and installs new predicates. This paper avoids global
synchronization: for a given operation, a process acquires enough credit such that other processes
are unable to violate integrity. Finally, in contrast to this paper, previous works did not consider
fault tolerance and recovery of escrows, or assumed that the hosting data centers [8, 81] maintain
the stability of each replica.

7 Conclusions
This paper posed the new problem of multi-user spatial coordination for AR capturing their in-
tegrity, convergence, and latency requirements. In particular, a virtual object should respect spatial
boundaries. The paper introduced well-organized replicated data types to meet these requirements,
supporting low latency through a local notion of conflict. The paper then develops a credit scheme
and replication protocol that formally implements well-organized virtual objects. It further presents
a tool that, given an AR environment, applies constraint solvers to automatically derive conflicts,
and instantiates the replication protocol to synthesize custom correct-by-construction coordina-
tion. Empirical evaluation on Android devices demonstrates significant improvements in latency,
staleness, throughput, and scalability compared to baselines from the literature and from practice.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

91:26 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

Acknowledgments
This work was partially funded by NSF CAREER 1942700, NSF CAREER 2437238, and DARPA YFA
D22AP00146-00.

Data-Availability Statement
All the code and data produced in this paper are available on Zenodo https://zenodo.org/records/
14941458.

References
[1] 2025. Cubism. https://www.cubism-vr.com/.
[2] Daniel Abadi. 2012. Consistency Tradeoffs in Modern Distributed Database System Design. Computer 45, 2 (2012),

6 pages. https://doi.org/10.1109/MC.2012.33
[3] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. 2011. Consistency analysis in Bloom: A

CALM and collected approach. In Conference on Innovative Data Systems Research. 249–260.
[4] Kittipat Apicharttrisorn, Bharath Balasubramanian, Jiasi Chen, Rajarajan Sivaraj, Yi-Zhen Tsai, Rittwik Jana, Srikanth

Krishnamurthy, Tuyen Tran, and Yu Zhou. 2020. Characterization of multi-user augmented reality over cellular
networks. In IEEE SECON. https://doi.org/10.1109/SECON48991.2020.9158434

[5] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2014. Coordination
Avoidance in Database Systems. Proc. VLDB Endow. 8, 3 (Nov. 2014), 185–196. https://doi.org/10.14778/2735508.2735509

[6] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. 2015. Feral concur-
rency control: An empirical investigation of modern application integrity. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 1327–1342. https://doi.org/10.1145/2723372.2737784

[7] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, and Nuno Preguiça. [n. d.]. IPA: Invariant-Preserving
Applications for Weakly Consistent Replicated Databases. Proceedings of the VLDB Endowment 12, 4 ([n. d.]). https:
//doi.org/10.14778/3297753.3297760

[8] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguica, Mahsa Najafzadeh, and Marc Shapiro.
2015. Putting Consistency Back into Eventual Consistency. In European Conference on Computer Systems (Bordeaux,
France) (EuroSys ’15). ACM, New York, NY, USA, Article 6, 16 pages. https://doi.org/10.1145/2741948.2741972

[9] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguica, Mahsa Najafzadeh, and Marc Shapiro.
2015. Towards Fast Invariant Preservation in Geo-replicated Systems. SIGOPS Oper. Syst. Rev. 49, 1 (Jan. 2015), 121–125.
https://doi.org/10.1145/2723872.2723889

[10] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro, Rodrigo Rodrigues, and Nuno Preguiça.
2015. Extending eventually consistent cloud databases for enforcing numeric invariants. In 2015 IEEE 34th Symposium
on Reliable Distributed Systems (SRDS). IEEE, 31–36. https://doi.org/10.1109/SRDS.2015.32

[11] Ashwin Bharambe, John R Douceur, Jacob R Lorch, Thomas Moscibroda, Jeffrey Pang, Srinivasan Seshan, and Xinyu
Zhuang. 2008. Donnybrook: Enabling large-scale, high-speed, peer-to-peer games. ACM SIGCOMM Computer
Communication Review 38, 4 (2008), 389–400. https://doi.org/10.1145/1402958.1403002

[12] Ashwin R Bharambe, Jeffrey Pang, and Srinivasan Seshan. 2006. Colyseus: A Distributed Architecture for Online
Multiplayer Games. In NSDI, Vol. 6. 12–12.

[13] A. Bouajjani, C. Enea, and J. Hamza. 2014. Verifying Eventual Consistency of Optimistic Replication Systems. In Proc.
POPL. https://doi.org/10.1145/2535838.2535877

[14] Eric Brewer. 2012. CAP twelve years later: How the" rules" have changed. Computer 45, 2 (2012), 23–29. https:
//doi.org/10.1109/MC.2012.37

[15] Eric A Brewer. 2000. Towards robust distributed systems. In PODC, Vol. 7. Portland, OR, 343477–343502. https:
//doi.org/10.1145/343477.343502

[16] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. 2010. Concurrent programming with revisions and
isolation types. In Proceedings of the ACM international conference on Object oriented programming systems languages
and applications. 691–707. https://doi.org/10.1145/1869459.1869515

[17] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P Wood. 2012. Cloud types for eventual
consistency. In European Conference on Object-Oriented Programming. Springer, 283–307. https://doi.org/10.1007/978-
3-642-31057-7_14

[18] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated Data Types: Specifica-
tion, Verification, Optimality. In Proc. POPL. https://doi.org/10.1145/2578855.2535848

[19] CBS News. 2018. New augmented reality technology could help firefighters save lives. https://www.cbsnews.com/
news/c-thru-new-augmented-reality-technology-would-aid-firefighters/.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

https://zenodo.org/records/14941458
https://zenodo.org/records/14941458
https://www.cubism-vr.com/
https://doi.org/10.1109/MC.2012.33
https://doi.org/10.1109/SECON48991.2020.9158434
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2723372.2737784
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/2723872.2723889
https://doi.org/10.1109/SRDS.2015.32
https://doi.org/10.1145/1402958.1403002
https://doi.org/10.1145/2535838.2535877
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/1869459.1869515
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1145/2578855.2535848
https://www.cbsnews.com/news/c-thru-new-augmented-reality-technology-would-aid-firefighters/
https://www.cbsnews.com/news/c-thru-new-augmented-reality-technology-would-aid-firefighters/

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:27

[20] Sarah E Chasins, Elena L Glassman, and Joshua Sunshine. 2021. PL and HCI: Better together. Commun. ACM 64, 8
(2021), 98–106. https://doi.org/10.1145/3469279

[21] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang Wu, Kiryong Ha, Khalid Elgazzar,
Padmanabhan Pillai, Roberta Klatzky, et al. 2017. An empirical study of latency in an emerging class of edge
computing applications for wearable cognitive assistance. In ACM/IEEE Symposium on Edge Computing. https:
//doi.org/10.1145/3132211.3134458

[22] Kevin Clancy and Heather Miller. 2017. Monotonicity Types for Distributed Dataflow. In Proceedings of the Program-
ming Models and Languages for Distributed Computing. ACM, 2. https://doi.org/10.1145/3166089.3166090

[23] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen,
Nick Puz, Daniel Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s hosted data serving platform. Proceedings of
the VLDB Endowment 1, 2 (2008), 1277–1288. https://doi.org/10.14778/1454159.1454167

[24] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat,
Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,
Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 22 pages. https://doi.org/10.1145/2463676.2465288

[25] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-
3_24

[26] Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix. 2021. ECROs: building global scale systems
from sequential code. Proceedings of the ACM on Programming Languages 5, OOPSLA (2021), 1–30. https://doi.org/10.
1145/3485484

[27] Jesse Donkervliet, Jim Cuijpers, and Alexandru Iosup. 2021. Dyconits: Scaling Minecraft-like Services through
Dynamically Managed Inconsistency. In 2021 IEEE 41st International Conference on Distributed Computing Systems
(ICDCS). IEEE, 126–137. https://doi.org/10.1109/ICDCS51616.2021.00021

[28] Cezara Drăgoi, Josef Widder, and Damien Zufferey. 2020. Programming at the edge of synchrony. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020), 1–30. https://doi.org/10.1145/3428281

[29] Michael Emmi and Constantin Enea. 2018. Monitoring Weak Consistency. In Proc. CAV. https://doi.org/10.1007/978-
3-319-96145-3_26

[30] Kahveci Ensar. 2021. MicroRaft. https://microraft.io/.
[31] Gabriel Gambetta. 2022. Fast-Paced Multiplayer. https://www.gabrielgambetta.com/client-server-game-architecture.

html.
[32] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-tolerant

Web Services. SIGACT News 33, 2 (June 2002), 9 pages. https://doi.org/10.1145/564585.564601
[33] Victor BF Gomes, Martin Kleppmann, Dominic P Mulligan, and Alastair R Beresford. 2017. Verifying strong eventual

consistency in distributed systems. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–28.
https://doi.org/10.1145/3133933

[34] Google. 2023. Cloud Anchors allow different users to share AR experiences. https://developers.google.com/ar/develop/
cloud-anchors.

[35] Google. 2023. Transaction serializability and isolation. https://firebase.google.com/docs/firestore/transaction-data-
contention.

[36] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I’M Strong
Enough: Reasoning About Consistency Choices in Distributed Systems. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16). ACM,
New York, NY, USA, 371–384. https://doi.org/10.1145/2837614.2837625

[37] Zijiang Hao, Shanhe Yi, and Qun Li. 2019. Nomad: An efficient consensus approach for latency-sensitive edge-
cloud applications. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, 2539–2547. https:
//doi.org/10.1109/INFOCOM.2019.8737658

[38] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems (TOPLAS) 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.
78972

[39] Brandon Holt, James Bornholt, Irene Zhang, Dan Ports, Mark Oskin, and Luis Ceze. 2016. Disciplined Inconsistency
with Consistency Types. In Proceedings of the Seventh ACM Symposium on Cloud Computing (Santa Clara, CA, USA)
(SoCC ’16). ACM, New York, NY, USA, 279–293. https://doi.org/10.1145/2987550.2987559

[40] Farzin Houshmand andMohsen Lesani. 2019. Hamsaz: Replication Coordination Analysis and Synthesis. In Proceedings
of Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’19). ACM, New York,
NY, USA. https://doi.org/10.1145/3290387

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

https://doi.org/10.1145/3469279
https://doi.org/10.1145/3132211.3134458
https://doi.org/10.1145/3132211.3134458
https://doi.org/10.1145/3166089.3166090
https://doi.org/10.14778/1454159.1454167
https://doi.org/10.1145/2463676.2465288
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3485484
https://doi.org/10.1145/3485484
https://doi.org/10.1109/ICDCS51616.2021.00021
https://doi.org/10.1145/3428281
https://doi.org/10.1007/978-3-319-96145-3_26
https://doi.org/10.1007/978-3-319-96145-3_26
https://microraft.io/
 https://www.gabrielgambetta.com/client-server-game-architecture.html
 https://www.gabrielgambetta.com/client-server-game-architecture.html
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3133933
https://developers.google.com/ar/develop/cloud-anchors
https://developers.google.com/ar/develop/cloud-anchors
https://firebase.google.com/docs/firestore/transaction-data-contention
https://firebase.google.com/docs/firestore/transaction-data-contention
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1109/INFOCOM.2019.8737658
https://doi.org/10.1109/INFOCOM.2019.8737658
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2987550.2987559
https://doi.org/10.1145/3290387

91:28 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

[41] Farzin Houshmand, Javad Saberlatibari, and Mohsen Lesani. 2022. Hamband: RDMA replicated data types. In
Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation.
348–363. https://doi.org/10.1145/3519939.3523426

[42] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagannathan. 2019. Mergeable replicated data types.
Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–29. https://doi.org/10.1145/3360580

[43] Bjorn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. 2004. Peer-to-peer support for massively multiplayer
games. In IEEE INFOCOM 2004, Vol. 1. IEEE. https://doi.org/10.1109/INFCOM.2004.1354485

[44] Mirko Köhler, Nafise Eskandani, Pascal Weisenburger, Alessandro Margara, and Guido Salvaneschi. 2020. Rethinking
safe consistency in distributed object-oriented programming. Proceedings of the ACM on Programming Languages 4,
OOPSLA (2020), 1–30. https://doi.org/10.1145/3428256

[45] Narayanan Krishnakumar and Arthur J Bernstein. 1992. High throughput escrow algorithms for replicated databases.
In VLDB, Vol. 1992. 175–186.

[46] Shadaj Laddad, Conor Power, MaeMilano, Alvin Cheung, Natacha Crooks, and JosephMHellerstein. 2022. Keep CALM
and CRDT On. Proceedings of the VLDB Endowment 16, 4 (2022), 856–863. https://doi.org/10.14778/3574245.3574268

[47] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage system. ACM SIGOPS
Operating Systems Review 44, 2 (2010), 35–40. https://doi.org/10.1145/1773912.1773922

[48] Leslie Lamport. 1998. The Part-time Parliament. ACM Trans. Comput. Syst. 16, 2 (1998). https://doi.org/10.1145/
279227.279229

[49] Leslie Lamport. 2004. Generalized Consensus and Paxos. (2004).
[50] Kiron Lebeck, Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner. 2017. Securing Augmented Reality Output.

In IEEE Symposium on Security and Privacy (SP). https://doi.org/10.1109/SP.2017.13
[51] Nicholas V Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černỳ. 2019. Sequential programming for

replicated data stores. Proceedings of the ACM on Programming Languages 3, ICFP (2019), 1–28. https://doi.org/10.
1145/3341710

[52] Cheng Li, João Leitão, Allen Clement, Nuno Preguica, Rodrigo Rodrigues, and Viktor Vafeiadis. 2014. Automating the
Choice of Consistency Levels in Replicated Systems. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX Association, Berkeley, CA, USA, 281–292.

[53] Cheng Li, João Leitão, Allen Clement, Nuno Preguica, and Rodrigo Rodrigues. 2015. Minimizing coordination in
replicated systems. In Proceedings of the First Workshop on Principles and Practice of Consistency for Distributed Data.
ACM, 8. https://doi.org/10.1145/2745947.2745955

[54] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguica, and Rodrigo Rodrigues. 2012. Making
Geo-replicated Systems Fast As Possible, Consistent when Necessary. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (Hollywood, CA, USA) (OSDI’12). USENIX Association, Berkeley, CA,
USA, 265–278. http://dl.acm.org/citation.cfm?id=2387880.2387906

[55] Xiao Li, Farzin Houshmand, and Mohsen Lesani. 2020. Hampa: Solver-Aided Recency-Aware Replication. In Interna-
tional Conference on Computer Aided Verification. Springer, 324–349. https://doi.org/10.1007/978-3-030-53288-8_16

[56] Hongjin Liang and Xinyu Feng. 2021. Abstraction for conflict-free replicated data types. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation. 636–650. https:
//doi.org/10.1145/3453483.3454067

[57] Jed Liu, Tom Magrino, Owen Arden, Michael D. George, and Andrew C. Myers. 2014. Warranties for Faster Strong
Consistency. In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation (Seattle,
WA) (NSDI’14). USENIX Association, Berkeley, CA, USA, 503–517. http://dl.acm.org/citation.cfm?id=2616448.2616495

[58] Shengmei Liu, Xiaokun Xu, and Mark Claypool. 2022. A survey and taxonomy of latency compensation techniques
for network computer games. ACM Computing Surveys (CSUR) 54, 11s (2022), 1–34. https://doi.org/10.1145/3519023

[59] Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou. 2020. Verifying replicated
data types with typeclass refinements in Liquid Haskell. Proceedings of the ACM on Programming Languages 4,
OOPSLA (2020), 1–30. https://doi.org/10.1145/3428284

[60] Tom Magrino, Jed Liu, Nate Foster, Johannes Gehrke, and Andrew C Myers. 2019. Efficient, consistent distributed
computation with predictive treaties. In Proceedings of the Fourteenth EuroSys Conference 2019. 1–16. https://doi.org/
10.1145/3302424.3303987

[61] Christopher Meiklejohn and Peter Van Roy. 2015. Lasp: A language for distributed, coordination-free programming.
In Proceedings of the 17th International Symposium on Principles and Practice of Declarative Programming. 184–195.
https://doi.org/10.1145/2790449.2790525

[62] Meta. 2022. Guardian System - Oculus Developer Center. https://developer.oculus.com/documentation/native/pc/dg-
guardian-system/.

[63] Microsoft. 2022. How to create and locate anchors using Azure Spatial Anchors in Unity. https://learn.microsoft.com/
en-us/azure/spatial-anchors/how-tos/create-locate-anchors-unity.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

https://doi.org/10.1145/3519939.3523426
https://doi.org/10.1145/3360580
https://doi.org/10.1109/INFCOM.2004.1354485
https://doi.org/10.1145/3428256
https://doi.org/10.14778/3574245.3574268
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1109/SP.2017.13
https://doi.org/10.1145/3341710
https://doi.org/10.1145/3341710
https://doi.org/10.1145/2745947.2745955
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://doi.org/10.1007/978-3-030-53288-8_16
https://doi.org/10.1145/3453483.3454067
https://doi.org/10.1145/3453483.3454067
http://dl.acm.org/citation.cfm?id=2616448.2616495
https://doi.org/10.1145/3519023
https://doi.org/10.1145/3428284
https://doi.org/10.1145/3302424.3303987
https://doi.org/10.1145/3302424.3303987
https://doi.org/10.1145/2790449.2790525
https://developer.oculus.com/documentation/native/pc/dg-guardian-system/
https://developer.oculus.com/documentation/native/pc/dg-guardian-system/
https://learn.microsoft.com/en-us/azure/spatial-anchors/how-tos/create-locate-anchors-unity
https://learn.microsoft.com/en-us/azure/spatial-anchors/how-tos/create-locate-anchors-unity

Hambazi: Spatial Coordination Synthesis for Augmented Reality 91:29

[64] Ragnar Mogk, Joscha Drechsler, Guido Salvaneschi, and Mira Mezini. 2019. A fault-tolerant programming model
for distributed interactive applications. Proceedings of the ACM on Programming Languages OOPSLA (2019), 1–29.
https://doi.org/10.1145/3360570

[65] Kartik Nagar and Suresh Jagannathan. 2019. Automated parameterized verification of crdts. In International Conference
on Computer Aided Verification. Springer, 459–477. https://doi.org/10.1007/978-3-030-25543-5_26

[66] Kartik Nagar, Prasita Mukherjee, and Suresh Jagannathan. 2020. Semantics, Specification, and Bounded Verification
of Concurrent Libraries in Replicated Systems. In International Conference on Computer Aided Verification. Springer,
251–274. https://doi.org/10.1007/978-3-030-53288-8_13

[67] Sreeja Nair, Gustavo Petri, and Marc Shapiro. 2020. Proving the safety of highly-available distributed objects. In ESOP
2020-29th European Symposium on Programming. https://doi.org/10.1007/978-3-030-44914-8_20

[68] Abel Nieto, Arnaud Daby-Seesaram, Léon Gondelman, Amin Timany, and Lars Birkedal. 2023. Modular Verification
of State-Based CRDTs in Separation Logic. In 37th European Conference on Object-Oriented Programming (ECOOP
2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2023.22

[69] Abel Nieto, Léon Gondelman, Alban Reynaud, Amin Timany, and Lars Birkedal. 2022. Modular verification of op-
based CRDTs in separation logic. Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 1788–1816.
https://doi.org/10.1145/3563351

[70] Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped Replication: A New Primary Copy Method to Support Highly-
Available Distributed Systems. In Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed
Computing (Toronto, Ontario, Canada) (PODC ’88). ACM, New York, NY, USA, 8–17. https://doi.org/10.1145/62546.
62549

[71] Patrick E O’Neil. 1986. The escrow transactional method. ACM Transactions on Database Systems (TODS) 11, 4 (1986),
405–430. https://doi.org/10.1145/7239.7265

[72] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Consensus Algorithm. In Proceedings of
the 2014 USENIX Conference on USENIX Annual Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX
Association, Berkeley, CA, USA, 305–320.

[73] Haochen Pan, Jesse Tuglu, Neo Zhou, Tianshu Wang, Yicheng Shen, Xiong Zheng, Joseph Tassarotti, Lewis Tseng,
and Roberto Palmieri. 2021. Rabia: Simplifying state-machine replication through randomization. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles. 472–487. https://doi.org/10.1145/3477132.3483582

[74] Christos H Papadimitriou. 1979. The serializability of concurrent database updates. Journal of the ACM (JACM) 26, 4
(1979), 631–653. https://doi.org/10.1145/322154.322158

[75] Seo Jin Park and John Ousterhout. 2019. Exploiting commutativity for practical fast replication. In 16th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 19). 47–64.

[76] Fernando Pedone and André Schiper. 2002. Handling message semantics with generic broadcast protocols. Distributed
Computing 15, 2 (2002), 97–107. https://doi.org/10.1007/s004460100061

[77] Nuno Preguiça, J Legatheaux Martins, Miguel Cunha, and Henrique Domingos. 2003. Reservations for conflict
avoidance in a mobile database system. In Proceedings of the 1st international conference on Mobile systems, applications
and services. 43–56. https://doi.org/10.1145/1066116.1189038

[78] Xukan Ran, Carter Slocum, Yi-Zhen Tsai, Kittipat Apicharttrisorn, Maria Gorlatova, and Jiasi Chen. 2020. Multi-user
augmented reality with communication efficient and spatially consistent virtual objects. In Proc. ACM CoNEXT.
https://doi.org/10.1145/3386367.3431312

[79] Andreas Reuter. 1982. Concurrency on high-traffic data elements. In Proceedings of the 1st ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems. 83–92. https://doi.org/10.1145/588111.588126

[80] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011. Replicated abstract data types: Building blocks
for collaborative applications. J. Parallel and Distrib. Comput. 71, 3 (2011), 354–368.

[81] Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch, Nate Foster, and Johannes Gehrke.
2015. The Homeostasis Protocol: Avoiding Transaction Coordination Through Program Analysis. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD
’15). ACM, New York, NY, USA, 1311–1326. https://doi.org/10.1145/2723372.2723720

[82] Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner. 2019. Secure Multi-User Content Sharing for Augmented
Reality Applications. In USENIX Security.

[83] Marc Shapiro, Masoud Saeida Ardekani, and Gustavo Petri. 2016. Consistency in 3D. Ph. D. Dissertation. Institut
National de la Recherche en Informatique et Automatique (Inria).

[84] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011. A comprehensive study of Convergent and
Commutative Replicated Data Types. Technical Report RR-7506. INRIA.

[85] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-free replicated data types. In
Symposium on Self-Stabilizing Systems. Springer, 386–400.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

https://doi.org/10.1145/3360570
https://doi.org/10.1007/978-3-030-25543-5_26
https://doi.org/10.1007/978-3-030-53288-8_13
https://doi.org/10.1007/978-3-030-44914-8_20
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://doi.org/10.1145/3563351
https://doi.org/10.1145/62546.62549
https://doi.org/10.1145/62546.62549
https://doi.org/10.1145/7239.7265
https://doi.org/10.1145/3477132.3483582
https://doi.org/10.1145/322154.322158
https://doi.org/10.1007/s004460100061
https://doi.org/10.1145/1066116.1189038
https://doi.org/10.1145/3386367.3431312
https://doi.org/10.1145/588111.588126
https://doi.org/10.1145/2723372.2723720

91:30 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

[86] Ichiro Shimoyama, Toshiaki Ninchoji, and Kenichi Uemura. 1990. The finger-tapping test: a quantitative analysis.
Archives of neurology 47, 6 (1990), 681–684. https://doi.org/10.1001/ARCHNEUR.1990.00530060095025

[87] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative Programming over Eventually
Consistent Data Stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Portland, OR, USA) (PLDI ’15). ACM, New York, NY, USA, 413–424. https://doi.org/10.1145/2737924.
2737981

[88] Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan. 2022. Certified mergeable
replicated data types. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. 332–347. https://doi.org/10.1145/3519939.3523735

[89] Ryo Suzuki, Adnan Karim, Tian Xia, Hooman Hedayati, and Nicolai Marquardt. 2022. Augmented reality and robotics:
A survey and taxonomy for ar-enhanced human-robot interaction and robotic interfaces. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems. 1–33. https://doi.org/10.1145/3491102.3517719

[90] Unity. 2023. Tricks and patterns to deal with latency. https://docs-multiplayer.unity3d.com/netcode/current/learn/
dealing-with-latency/index.html.

[91] Valve Developer Community. 2023. Source Multiplayer Networking. https://developer.valvesoftware.com/wiki/
Source_Multiplayer_Networking.

[92] Werner Vogels. 2008. Eventually Consistent: Building reliable distributed systems at a worldwide scale demands
trade-offs?between consistency and availability. ACM Queue 6, 6 (2008). https://doi.org/10.1145/1466443.1466448

[93] Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo Petri. 2019. Replication-aware linearizability. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. 980–993.
https://doi.org/10.1145/3314221.3314617

[94] Matthew Weidner, Heather Miller, and Christopher Meiklejohn. 2020. Composing and decomposing op-based
CRDTs with semidirect products. Proceedings of the ACM on Programming Languages 4, ICFP (2020), 1–27. https:
//doi.org/10.1145/3408976

[95] Michael Whittaker and Joseph M Hellerstein. 2018. Interactive checks for coordination avoidance. Proceedings of the
VLDB Endowment 12, 1 (2018), 14–27. https://doi.org/10.14778/3275536.3275538

[96] Michael Whittaker and Joseph M Hellerstein. 2020. Checking invariant confluence, in whole or in parts. ACM
SIGMOD Record 49, 1 (2020), 7–14. https://doi.org/10.1145/3422648.3422651

[97] Haifeng Yu and Amin Vahdat. 2000. Efficient numerical error bounding for replicated network services. In VLDB.
Citeseer, 123–133.

[98] Haifeng Yu andAmin Vahdat. 2002. Design and evaluation of a conit-based continuous consistencymodel for replicated
services. ACM Transactions on Computer Systems (TOCS) 20, 3 (2002), 239–282. https://doi.org/10.1145/566340.566342

[99] George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2023. Type-checking CRDT convergence. Proceedings
of the ACM on Programming Languages 7, PLDI (2023), 1365–1388. https://doi.org/10.1145/3591276

[100] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. 2014. Formal specification and verification of crdts. In
International Conference on Formal Techniques for Distributed Objects, Components, and Systems. Springer, 33–48.
https://doi.org/10.1007/978-3-662-43613-4_3

Received 2024-10-14; accepted 2025-02-18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.

https://doi.org/10.1001/ARCHNEUR.1990.00530060095025
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/3519939.3523735
https://doi.org/10.1145/3491102.3517719
https://docs-multiplayer.unity3d.com/netcode/current/learn/dealing-with-latency/index.html
https://docs-multiplayer.unity3d.com/netcode/current/learn/dealing-with-latency/index.html
 https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
 https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://doi.org/10.1145/1466443.1466448
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1145/3408976
https://doi.org/10.1145/3408976
https://doi.org/10.14778/3275536.3275538
https://doi.org/10.1145/3422648.3422651
https://doi.org/10.1145/566340.566342
https://doi.org/10.1145/3591276
https://doi.org/10.1007/978-3-662-43613-4_3

	Abstract
	1 Introduction
	2 Overview
	3 Well-Organized Replicated Data Types
	3.1 Replicated Data Types
	3.2 Semantics
	3.3 Guarantees

	4 AR Replication
	4.1 AR Apps
	4.2 Replication Protocol

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Results
	5.3 Latency, Location Staleness, and Throughput
	5.4 Impact of Request Load
	5.5 Scalability
	5.6 Impact of Board Topology
	5.7 Impact of Network Latency
	5.8 Fault Tolerance

	6 Related Work
	7 Conclusions
	References

