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8 Proofs
8.1 Proof of Well-Organization Properties
Application of a call 𝑐 to a state 𝜎, 𝑐(𝜎) is naturally lifted to application 𝑥(𝜎) of an execution history
𝑥 to a state 𝜎.

Definition 8.1 (Permissible Execution). A replicated execution xs is permissible, written as
𝒫(xs), iff for every process 𝑝, every call 𝑐 ∈ xs(𝑝) is permissible in the state resulting from the
sub-history of xs(𝑝) before 𝑐, i.e., 𝒫(pre(xs(𝑝), 𝑐)(𝜎0), 𝑐).

Definition 8.2 (State-Conflict-Synchronizing). A replicated execution xs is state-conflict-
synchronizing, written as SConfSync(xs), iff for every pair of processes 𝑝 and 𝑝′ and pair of calls 𝑐
and 𝑐′ such that 𝑐 ⊲⊳𝒮 𝑐′,
1. 𝑐 ∈ xs(𝑝) ∧ 𝑐′ ∈ xs(𝑝′) →
𝑐 ∈ 𝑥𝑠(𝑝′) ∨ 𝑐′ ∈ xs(𝑝)

2. 𝑐′ ≺xs(𝑝) 𝑐 ∧ 𝑐 ∈ xs(𝑝′) → 𝑐′ ≺xs(𝑝′) 𝑐

Lemma 8.1 (Invariant).
For all𝑊 and 𝜏, if𝑊0

𝜏
→∗ 𝑊 , then

let ⟨ss, xs⟩ B 𝑊 in
let [𝑝𝑖 ↦→ 𝜎𝑖]𝑖∈{1..|𝑃 |} B ss in

let [𝑝𝑖 ↦→ 𝑥𝑖]𝑖∈{1..|𝑃 |} B xs in
(𝐴0) For all 𝑖 , 𝑗 ∈ {1..|𝑃 |}, 𝑢, 𝑣, and 𝑟,

𝑢(𝑣)𝑟𝑝𝑖 ∈ 𝑥 𝑗 → (𝑝𝑖 , 𝑢(𝑣)𝑟𝑝𝑖 𝑟) ∈ 𝜏 ∧
𝑢(𝑣)𝑟𝑝𝑖 ∈ 𝑥 𝑗 ↔ (𝑝 𝑗 , 𝑢(𝑣)𝑟𝑝𝑖 𝑟) ∈ 𝜏

(𝐴1) For all 𝑖 ∈ {1..|𝑃 |},
𝜎𝑖 = 𝑥𝑖(𝜎0)

(𝐴2) 𝒫(xs)
(𝐴3) SConfSync(xs)
(𝐴4) ∀𝑐 = 𝑢(𝑣)𝑟𝑝 ∈ Pending(xs).

PRCommAll(xs, 𝑝, 𝑐)
(𝐴5) ∀𝑢, 𝑣, 𝑝, 𝑟, 𝑐, 𝑝′.

𝑐 = 𝑢(𝑣)𝑟𝑝 ∈ xs(𝑝′) → 𝑐 ∈ xs(𝑝)

Proof. The proof is by induction on the steps.
Case analysis on the step:

Case Call:

𝐴0:
The call is on the label and is added to xs(𝑝).

𝐴1:
By the induction hypothesis and the premise 𝜎′ = 𝑢(𝑣)(𝜎) of the Call rule.

𝐴2:
Immediate from the premise 𝒫(𝜎, 𝑐) of the Call rule.
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𝐴3:
The condition 1 of SConfSync for the new call 𝑐:
We have
𝑐 ∈ xs(𝑝) ∧ 𝑐′ ∈ xs(𝑝′)
We should show
𝑐 ∈ 𝑥𝑠(𝑝′) ∨ 𝑐′ ∈ 𝑥𝑠(𝑝)
By the contra-positive of the premise CallSConfSync, we have
𝑐′ ∈ xs(𝑝′) ∧ 𝑐 ⊲⊳𝒮 𝑐′ → 𝑐′ ∈ xs(𝑝)
Thus, we have
𝑐′ ∈ xs(𝑝).

The condition 2 of SConfSync for the new call 𝑐:
Since the identifier 𝑟 of the call 𝑐 is unique, from the contra-positive of 𝐴0, we have that for all 𝑝′,
𝑐 ∉ xs(𝑝′)
Therefore, the implication trivially holds.

𝐴4:
Immediate from the two premises of the Call rule:
CallIComm(xs′, 𝑐) and
xs′ = xs [𝑝 ↦→ (xs(𝑝) ::: 𝑐)]

𝐴5:
The call 𝑐 = 𝑢(𝑣)𝑟𝑝 is added to xs(𝑝) itself.

Case Prop:

𝐴0:
𝑐 = 𝑢(𝑣)𝑟𝑝′
By the premise of the Prop rule, we have
𝑐 ∈ xs(𝑝′)
By the induction hypothesis of 𝐴0,
(𝑝′, 𝑢(𝑣)𝑟) ∈ 𝜏

𝐴1:
By the induction hypothesis of 𝐴1 and the premise 𝜎′ = 𝑢(𝑣)(𝜎).

𝐴2:
Immediate from the premise 𝒫(𝜎, 𝑐) of the Call rule.

𝐴3:
The condition 1 of SConfSync for the new call 𝑐:
We have
(1) 𝑐 ∈ xs(𝑝) ::: 𝑐
(2) 𝑐′ ∈ xs(𝑝′)
We should show that
𝑐 ∈ xs(𝑝′) ∨ 𝑐′ ∈ xs(𝑝) ::: 𝑐
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Let 𝑝𝑐 be the origin of 𝑐. We have that
(3) 𝑐 ∈ xs(𝑝𝑐)
By induction hypothesis for 𝐴3.1 on [2] and [3], we have
𝑐 ∈ xs(𝑝′) ∨ 𝑐′ ∈ xs(𝑝𝑐)
We consider each conjunct in turn:
Case 1: 𝑐′ ∈ xs(𝑝)
Thus,
𝑐′ ∈ xs(𝑝) :: 𝑐
That is the first disjunct of the goal.
Case 2: (4) 𝑐′ ∈ xs(𝑝𝑐)
From [3] and [4], we consider two cases:
Case 2.1: (5) 𝑐 ≺xs(𝑝𝑐 ) 𝑐′
By induction hypothesis for 𝐴3.2 on [5] and [2], we have
𝑐 ≺xs(𝑝′) 𝑐′
that is
𝑐 ∈ xs(𝑝′)
Case 2.2: (6) 𝑐′ ≺xs(𝑝𝑐 ) 𝑐
By the contra-positive of the premise PropSConfSync, we have
𝑐′ ≺xs(𝑝𝑐 ) 𝑐 ∧ 𝑐 ⊲⊳𝒮 𝑐′ → 𝑐′ ∈ xs(𝑝)
Therefore
𝑐′ ∈ xs(𝑝)
Thus,
𝑐′ ∈ xs(𝑝) :: 𝑐

The condition 2 of SConfSync for the new call 𝑐:
𝑐 = 𝑢(𝑣)𝑟𝑝′
We have that
(1) 𝑐′ ≺xs(𝑝′′) 𝑐
(2) 𝑐 ∈ xs(𝑝) ::: 𝑐
We show that
𝑐′ ≺xs(𝑝):::𝑐 𝑐
By 𝐴5, we have
(3) 𝑐 ∈ xs(𝑝′)
By induction hypothesis for 𝐴3.2 on [1] and [3], we have
(4) 𝑐′ ≺xs(𝑝′) 𝑐
By the contra-positive of the premise PropSConfSync, we have that
(5) 𝑐′ ≺xs(𝑝′) 𝑐 ∧ 𝑐 ⊲⊳𝒮 𝑐′ → 𝑐′ ∈ xs(𝑝)
By [5] on [4], we have
𝑐′ ∈ xs(𝑝)
Therefore,
𝑐′ ≺xs(𝑝):::𝑐 𝑐

𝐴4:
By delivering 𝑐, the set of Pending calls can only shrink but not grow.
Further, for the process 𝑝 that delivered 𝑐, in the sequence (xs(𝑝) \ 𝑥) ◦ 𝑐′, 𝑐 is added to the end of
(xs(𝑝) \ 𝑥) and is removed form 𝑐′, resulting in the same post-state.
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𝐴5:
The call 𝑐 = 𝑢(𝑣)𝑟𝑝′ that is added to xs(𝑝) is taken from xs(𝑝′) itself.

CaseQuery:

𝐴0:
The histories and the states stay the same.

𝐴1:
The histories and the states stay the same.

𝐴2:
The histories stay the same.

𝐴3:
The histories stay the same.

𝐴4:
The histories and the set of Pending calls stay the same.

𝐴5:
The histories stay the same.

□

Lemma 8.2 (Convergence). For all ss, xs, 𝑝 and 𝑝′, if 𝑊0 →∗ ⟨ss, xs⟩ and xs(𝑝) ∼ xs(𝑝′) then
ss(𝑝) = ss(𝑝′).
Proof. By xs(𝑝) ∼ xs(𝑝′), the two histories xs(𝑝) and xs(𝑝′) have the same set of calls. By the

invariant 𝐴3.2 of Lemma 8.1, their conflicting calls have the same orders. Therefore, one can be
converted to the other without changing its post state by reordering its commutative calls (as
shown Lemma 1 of [40]). Therefore, the post-states of the two histories are equal, i.e., xs(𝑝)(𝜎0)
and xs(𝑝′)(𝜎0). Thus, by the invariant 𝐴1 of Lemma 8.1, we have ss(𝑝) = ss(𝑝′). □

Lemma 8.3 (Integrity). For all ss and 𝑝, if𝑊0 →∗ ⟨ss, _⟩ then ℐ(ss(𝑝)).
Proof. This lemma is immediate from the invariant 𝐴2 of Lemma 8.1, and the facts that (1) the

initial state has integrity, i.e., ℐ(𝜎0), and (2) the post-state of a call is the pre-state of the next call.
□

Lemma 8.4 (Eventual Delivery). For all 𝑊 , 𝜏, 𝑝, 𝑝′ and 𝑐, if 𝑊0
𝜏−→
∗
𝑊 , (𝑝, 𝑐) ∉ 𝜏, and

(𝑝′, 𝑐) ∈ 𝜏, then there exists 𝜏′ and𝑊 ′ such that𝑊
𝜏′·(𝑝, 𝑐)
−−−−−→

∗
𝑊 ′.

Proof.
We have

𝑊0
𝜏−→
∗
𝑊

(𝑝′, 𝑐) ∈ 𝜏
(𝑝, 𝑐) ∉ 𝜏

By invariant 𝐴𝑜 ,
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∀𝑐, 𝑝. 𝑐 ∈ xs(𝑝) ↔ (𝑝, 𝑐) ∈ 𝜏.
Thus, we have that

𝑐 ∈ xs(𝑝′) ∧ 𝑐 ∉ xs(𝑝)
Thus,

𝑐 ∈ Pending(xs)
We prove that every call 𝑐 ∈ Pending(xs) can be delivered to all processes by induction on a linear
extension of their causal order in xs:

𝑐1 , 𝑐2 , ..., 𝑐𝑛
The induction hypothesis is that

There exists𝑊 ′ such that
⟨ss, xs⟩ 𝜏′−→

∗
𝑊 ′ where𝑊 ′ = ⟨ss′, xs′⟩

∀𝑗 < 𝑖 , 𝑝. (𝑝, 𝑐 𝑗) ∉ 𝜏→ (𝑝, 𝑐 𝑗) ∈ 𝜏′
We show that

There exists𝑊 ′′ such that
⟨ss, xs⟩ 𝜏′·𝜏′′−−−→

∗
𝑊 ′′ where𝑊 ′′ = ⟨ss′′, xs′′⟩

∀𝑝. (𝑝, 𝑐𝑖) ∉ 𝜏→ (𝑝, 𝑐𝑖) ∈ 𝜏′ · 𝜏′′
Consider the call 𝑐𝑖 = 𝑢(𝑣)𝑟𝑝′ such that (𝑝′, 𝑐𝑖) ∈ 𝜏, and a process 𝑝 such that (𝑝, 𝑐𝑖) ∉ 𝜏 · 𝜏′.
By invariant 𝐴𝑜 ,

(1) 𝑐𝑖 ∈ xs′(𝑝′) \ 𝑥𝑠′(𝑝)
Let 𝐴 be the set of calls in xs′(𝑝):

𝐴 B {𝑐 | 𝑐 ∈ xs′(𝑝)}
Let xs∗ be the sub-history before 𝑐𝑖 in xs′(𝑝′).

xs∗ B pre(xs′(𝑝′), 𝑐𝑖)
Let 𝐿 be the calls in xs∗:

𝐿 B {𝑐 | 𝑐 ∈ xs∗}
Let 𝜎 be the pre-state of 𝑐𝑖 in xs(𝑝′):

(2) 𝜎 = xs∗(𝜎0)
Consider a call 𝑐′ ∈ 𝐿.
Thus, we have

𝑐′ ≺xs′(𝑝′) 𝑐𝑖
Thus, 𝑐′ is causally before 𝑐𝑖 .
By the induction hypothesis
(𝑝, 𝑐′) ∈ 𝜏′

Thus, by the 𝐴0 property
𝑐′ ∈ xs′(𝑝)

Therefore,
𝐿 ⊆ 𝐴

and
∀𝑐′. 𝑐′ ≺xs(𝑝′) 𝑐𝑖 → 𝑐′ ∈ xs(𝑝)

thus, it trivially holds that
(3) PropSComm (xs′, 𝑝′, 𝑝, 𝑐𝑖)

Let 𝑅 be the set of calls in xs′(𝑝) but not in xs∗:
𝑅 B 𝐴 \ 𝐿

By the contra-positive of invariant 𝐴3.2, we have
∀𝑐1 , 𝑐2.
𝑐2 ≺xs′(𝑝) 𝑐1 ∧ 𝑐1 ∈ xs′(𝑝′) ∧ 𝑐2 ⊀xs′(𝑝′) 𝑐1 →
𝑐1 ⊳⊲𝒮 𝑐2
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Thus,
For all 𝑐1 ∈ 𝐿, 𝑐2 ∈ 𝑅, such that 𝑐2 ≺xs′(𝑝) 𝑐1, we have 𝑐1 ⊳⊲𝒮 𝑐2.
Therefore,
by commuting these calls with each other, the history xs′(𝑝) can be converted to the history
xs′(𝑝)|𝐿 · xs′(𝑝)|𝑅 with the same post-state:

xs′(𝑝)(𝜎0) = (xs′(𝑝)|𝐿 · xs′(𝑝)|𝑅)(𝜎0)
(For a history 𝑥 and a set of calls 𝐶, let the projected sub-history 𝑥 |𝐶 be the subsequence of the
calls 𝐶 in 𝑥.)
By simple rewriting, we have
(xs′(𝑝)|𝐿 · xs′(𝑝)|𝑅)(𝜎0) =
(xs′(𝑝)|𝑅)((xs′(𝑝)|𝐿)(𝜎0))

Thus
(4) xs′(𝑝)(𝜎0) = (xs′(𝑝)|𝑅)((xs′(𝑝)|𝐿)(𝜎0))

By invariant 𝐴3.2, we have
Any conflicting pair of calls in 𝐿 have the same order in both xs∗ and xs′(𝑝).
Therefore, similar to Lemma 8.2, commuting calls in one can convert it to the other without changing
the post-state.
Thus,

(5) (xs′(𝑝)|𝐿)(𝜎0) = xs∗(𝜎0)
From [2] and [5],

(6) (xs′(𝑝)|𝐿)(𝜎0) = 𝜎
From [4] and [6], we have

(7) xs′(𝑝)(𝜎0) = (xs′(𝑝)|𝑅)(𝜎)
That is the post-state of xs′(𝑝) is equal to applying the 𝑅 calls to the pre-state of 𝑐𝑖 in xs(𝑝′).
By invariant 𝐴4 (PRCommAll) with 𝐶 = ∅, we have

𝑐𝑖 ⊲𝜎ℐ xs′(𝑝)|𝑅
Thus,

𝑐𝑖 is permissible in the state (xs′(𝑝)|𝑅)(𝜎)
Thus, from [7], we have

𝑐𝑖 is permissible in the state xs′(𝑝)(𝜎0)
By invariant 𝐴1,

ss′(𝑝) = xs′(𝑝)(𝜎0)
Thus,

𝑐𝑖 is permissible in the state ss′(𝑝):
(8) 𝒫(𝑐𝑖 , ss′(𝑝))

From [1], [8] and [3], we have that
The rule Prop is enabled for 𝑝 and 𝑐𝑖 at the state𝑊 ′ and can be executed:

𝑊 ′
𝑝, 𝑐𝑖−−−→𝑊 ∗

Similarly 𝑐𝑖 can be delivered to other processes in steps 𝜏′′, and
by concatenating these steps to the steps given by the induction hypothesis, we get

⟨ss, xs⟩ 𝜏′·𝜏′′−−−→
∗
𝑊 ′′. where𝑊 ′′ = ⟨ss′′, xs′′⟩

∀𝑝. (𝑝, 𝑐𝑖) ∉ 𝜏→ (𝑝, 𝑐𝑖) ∈ 𝜏 · 𝜏′′
□
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A rule is enabled in a state if that state satisfies its pre-conditions. An infinite execution from a

state𝑊 is an infinite sequence of steps starting from𝑊 that we write as𝑊
𝜏′−→
∗
. An infinite execu-

tion is fair if whenever a rule is enabled, either it eventually executes or it becomes permanently
disabled.

Lemma 8.5 (Eventual Delivery). For all 𝑊 , 𝜏, 𝑝, 𝑝′ and 𝑐, if 𝑊0
𝜏−→
∗
𝑊 , (𝑝, 𝑐) ∉ 𝜏, and

(𝑝′, 𝑐) ∈ 𝜏, then for every fair infinite execution𝑊
𝜏′−→
∗
, we have (𝑝, 𝑐) ∈ 𝜏′.

Proof. The reasoning follows similar to Lemma 8.4. Consider a linear extension of the causal
order of the Pending calls: 𝑐1 , 𝑐2 , ..., 𝑐𝑛 . As shown in the proof of Lemma 8.4, by induction, the
delivery of 𝑐1 to 𝑐𝑖−1 in 𝑝′ makes 𝑐𝑖 enabled at 𝑝′. Since the execution is fair, the rule Prop is
eventually executed for 𝑐𝑖 at 𝑝′.

The induction hypothesis is that
For all 𝜏′ such that
⟨ss, xs⟩ 𝜏′−→

∗

∀𝑗 < 𝑖 , 𝑝. (𝑝, 𝑐 𝑗) ∉ 𝜏→ (𝑝, 𝑐 𝑗) ∈ 𝜏′
Thus,

There exists𝑊 ′ such that
⟨ss, xs⟩

𝜏′1−→
∗
𝑊 ′

𝜏′1−→
∗
where

𝑊 ′ = ⟨ss′, xs′⟩
𝜏′ = 𝜏′1 · 𝜏′2
∀𝑗 < 𝑖 , 𝑝. (𝑝, 𝑐 𝑗) ∉ 𝜏→ (𝑝, 𝑐 𝑗) ∈ 𝜏′1

This is the same as the induction hypothesis of the proof of Lemma 8.4.
Thus, it can be similarly shown that
The rule Prop is enabled for 𝑝 and 𝑐𝑖 at the state𝑊 ′.
Thus, by the fairness of the infinite execution, it will be eventually executed
Thus, (𝑝, 𝑐𝑖) ∈ 𝜏′ □
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8.2 Proof of Correctness of the Protocol
For brevity in this section, since the only method of our object is move(𝑎), we elide move, and
abbreviate a call 𝑐 = move(𝑎) as 𝑎. We use the bar notation 𝑒 for a set of elements 𝑒 , and 𝑒𝑖 for a set
of elements 𝑒 indexed by 𝑖. When needed, we make the range of indices 𝑖 explicit as a superscript
for the bar: 𝑒𝑖 𝑖 We use the notation ◦ 𝑎 as the composition 𝑎1 ◦ 𝑎2 ◦ .. ◦ 𝑎𝑛 of 𝑎. For a map 𝑀 from
processes 𝑝, we write𝑀𝑝 as the value for process 𝑝. Similar to § 3.2, we lift set operators to histories;
for example, in Π = xs \ xs𝑝 , Π is the set of actions of the execution history of all processes except
𝑝. We write the length of the dimension 𝑑 as length(𝑑). For an action 𝑎 = ⟨𝑚, 𝑑⟩, the opposite
action −𝑎 = ⟨𝑚,−𝑑⟩ is the action with the same magnitude 𝑚 in the opposite direction −𝑑. For
every vector 𝑙, we write the element in the direction 𝑑 as 𝑙𝑑 . Similarly, for a multi-set of actions
𝐴, we write 𝐴|𝑑 for the subset of actions in 𝐴 in the direction 𝑑. We lift the addition 𝐴1 + 𝐴2
and subtractions 𝐴1 − 𝐴2 operations on multi-sets of actions 𝐴1 and 𝐴2 to point-wise addition
and subtraction on directions. We note that opposite directions such as right 𝑋+ and left 𝑋− are
considered separately. The result is a set of actions, one per direction; thus, it can be seen as a
2 × |𝑋 | vector where 𝑋 is the number of axes. For a single multi-set of actions 𝐴, we write +𝐴 as
the result of adding the actions in 𝐴. Similarly, two sets of actions can be compared by point-wise
comparison on directions. A multi-set of actions 𝐴1 is larger than another 𝐴2, written as 𝐴1 > 𝐴2,
if for every action ⟨𝑚1 , 𝑑⟩ ∈ +𝐴1, there exists 𝑚2, such that ⟨𝑚2 , 𝑑⟩ ∈ +𝐴2 and 𝑚2 > 𝑚1.

Fig. 19 presents the transition system of the protocol in Alg. 2. The state of the transition system
mirrors the state the protocol and is defined in Fig. 18.
The rule P-Call captures the Move request handler (at L. 13). A pre-processing step (at L. 15)

shrinks the action to make it permissible if it’s not already. Therefore, the handler continues with
only permissible calls. This condition is captured as 𝒫(loc, 𝑎) in the rule P-Call. The rule further
checks that the process owns enough credits in holding, and moves them to kept, updates the loca-
tion, and further sends update messages to each other process. It records a trivial acknowledgment
from itself for this action. Further, the available credits in the system in the opposite direction is
increased. The steps (starting at L. 17) that obtain enough credit are modeled as the rules P-Deb,
P-Cred, and P-Dep. The rule P-Deb captures requesting credit (at L. 54). It sends debit messages to
other processes. The pool of debit messages 𝐷 acts as a priority queue. The rule P-Cred captures
sending credit to requesting processes (at L. 63). It deducts as much credit as it can from its holding
for the request with the highest priority, and sends a credit message to the requesting process. The
rule P-Dep captures receiving credit (at L. 69). The process receives a credit message, and adds the
credit to its holding. The rule P-Prop captures receiving and applying an action (at L. 26). The pool
of pending actions Π acts as the waiting queue. If an action sent to the process is permissible, it is

𝜃 B ⟨loc, holding, kept , bound⟩ Local State
Θ B 𝑝 ↦→ 𝜃 Local States
Π B 𝑝 ↦→ {𝑎} Pending messages
𝐴 B 𝑝 ↦→ {𝑎} Ack messages

𝐷 B 𝑝 ↦→ {⟨𝑝, 𝑎⟩} Debit Requests
𝐶 B 𝑝 ↦→ {𝑎} Credit Requests
Ω B ⟨Θ,Π, 𝐴, 𝐷, 𝐶⟩ Global state
Ω𝑜 B ⟨𝑝 ↦→ ⟨𝑙0 , 𝑏𝑜𝑢𝑛𝑑𝑜/𝑛, ∅, 𝑏𝑜𝑢𝑛𝑑0⟩

𝑝
, ∅, ∅, ∅, ∅⟩ Global state

bound𝑜 = length(𝑑)𝑑 − 𝑙0

Fig. 18. Replicated State
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P-Call
𝒫(loc, 𝑎) 𝑎𝑠 = bound − conflict-actions(loc, 𝑎) + 1 holding ≥ 𝑎𝑠

holding′ = holding − (𝑎 + 𝑎𝑠) kept′ = kept[𝑟 ↦→ 𝑎𝑠] loc′ = move(𝑎, loc)
Π′ = Π[𝑝 ↦→ Π𝑝 ∪ {𝑎𝑟𝑝∗}

𝑝≠𝑝∗

] 𝐴′ = 𝐴[𝑝∗ ↦→ 𝐴(𝑝∗) ∪ {𝑎𝑟𝑝∗}] bound′ = bound + (−𝑎)
⟨Θ[𝑝∗ ↦→ ⟨loc, holding, kept , bound⟩],Π, 𝐴, _, _⟩

Call(𝑝∗ , 𝑎)
========⇒

⟨Θ[𝑝∗ ↦→ ⟨loc′, holding′, kept′, bound′⟩],Π′, 𝐴′, _, _⟩

P-Prop
𝒫(loc, 𝑎) loc′ = move(𝑎, loc) 𝐴′ = 𝐴[𝑝∗ ↦→ 𝐴(𝑝∗) ∪ {𝑎𝑟𝑝}] bound′ = bound + (−𝑎)

⟨Θ[𝑝∗ ↦→ ⟨loc, _, _, bound⟩],Π[𝑝∗ ↦→ 𝜋 ∪ {𝑎𝑟𝑝}], 𝐴, _, _]⟩
Prop(𝑝∗ , 𝑎)
========⇒

⟨Θ[𝑝∗ ↦→ ⟨loc′, _, _, bound′⟩],Π[𝑝∗ ↦→ 𝜋], 𝐴′, _, _⟩

P-Rel
holding′ = holding + kept(𝑟) + (−𝑎) kept = kept \ {𝑟}

⟨Θ[𝑝∗ ↦→ ⟨_, holding, kept , _⟩], _, 𝐴[𝑝 ↦→ 𝑆𝑝 ∪ {𝑎𝑟𝑝∗}
𝑝
], _, _⟩

=⇒
⟨Θ[𝑝∗ ↦→ ⟨_, holding′, kept′, _⟩], _, 𝐴[𝑝 ↦→ 𝑆𝑝

𝑝], _, _⟩

P-Deb
𝑎𝑠 |𝑑 = bound(𝑑) − conflict-actions(loc, 𝑎)|𝑑 + 1

¬(holding ≥ 𝑎𝑠) 𝐷′ = 𝐷[𝑝 ↦→ 𝐷(𝑝) ∪ ⟨𝑝∗ , 𝑎𝑠 |𝑑 − fraction(max(holding |𝑑 , 0))⟩
𝑑
𝑝≠𝑝∗

]
⟨Θ[𝑝∗ ↦→ ⟨loc, holding, _, _⟩], _, _, 𝐷, _⟩

=⇒
⟨Θ[𝑝∗ ↦→ ⟨loc, holding, _, _⟩], _, _, 𝐷′, _⟩

P-Cred
⟨𝑝, 𝑎⟩ = max-priority(𝐷) 𝐷′ = 𝐷 \ {⟨𝑝, 𝑎⟩}

𝑎′ = min(𝑎, holding) holding′ = holding − 𝑎′ 𝐶′ = 𝐶[𝑝 ↦→ 𝐶(𝑝) ∪ {𝑎′}]
⟨Θ[𝑝∗ ↦→ ⟨_, holding, _, _⟩], _, _, 𝐷, 𝐶⟩

=⇒
⟨Θ[𝑝∗ ↦→ ⟨_, holding′, _, _⟩], _, _, 𝐷′, 𝐶′⟩

P-Dep
holding′ = holding + 𝑎

⟨Θ[𝑝∗ ↦→ ⟨_, holding, _, _⟩], _, _, _, 𝐶[𝑝∗ ↦→ 𝑆 ∪ {𝑎}]⟩
=⇒

⟨Θ[𝑝∗ ↦→ ⟨_, holding′, _, _⟩], _, _, _, 𝐶[𝑝∗ ↦→ 𝑆]⟩

Fig. 19. Protocol Transition System
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applied to the current location, and an acknowledgment is sent to the sender. Further, the available
credits in the system in the opposite direction is increased. The rule P-Rel captures releasing the
kept credit for an action (at L. 41). If an acknowledgment for an action is received from all processes,
the kept credit for the action, and further credit in the opposite of the action is returned to the
holding.

Theorem 8.1 (Trace Inclusion). For all Ω and 𝜏, if Ω0
𝜏
⇒∗ Ω, then there exists 𝑊 such that

𝑊0
𝜏
→∗ 𝑊 .

Proof. Immediate by induction on the steps using Lemma 8.6, and the trivial fact that the
refinement relation initially holds: Refinement(Ω𝑜 ,𝑊0). □

Definition 8.3 (Refinement relation).
Refinement(⟨Θ,Π, 𝐴, _, 𝐶⟩, ⟨ss, xs⟩) B
(𝑅1) ∀𝑝. loc(Θ𝑝) = ss𝑝 ∧
(𝑅2) ∀𝑝. Π𝑝 = xs \ xs𝑝 ∧
(𝑅3) ∀𝑎𝑟𝑝 ∈ Π. 𝑎𝑟𝑝 ∈ xs𝑝
(𝑅4) ∀𝑝. bound(Θ𝑝) = bound0 + (−xs𝑝)
(𝑅5) ∀𝑎𝑟𝑝 ∈ Pending(xs). ∃Θ∗ , 𝑥.

kept(Θ𝑝) ≥ bound(Θ∗𝑝) − conflict-actions(loc(Θ∗𝑝), 𝑎) + 1 ∧
let 𝑥 B pre(xs𝑝 , 𝑎), in
loc(Θ∗𝑝) = 𝑥(𝑙0) ∧
bound(Θ∗𝑝) = bound0 + (−𝑥)

(𝑅6) 𝐴𝑝 ⊆ xs𝑝
(𝑅7) {𝑎 | 𝑎 ∈ xs} +Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝) ≤ bound0 + (−∩ xs𝑝𝑝) − (− ∩𝐴𝑝

𝑝)
Lemma 8.6 (Refinement). For all Ω1,𝑊 , Ω′ and ℓ , if

Ω0 =⇒∗ Ω,

𝑊0 −→∗ 𝑊 ,
Refinement(Ω,𝑊) and
Ω ℓ⇒ Ω′,

then there exists𝑊 ′ such that
𝑊 ℓ→𝑊 ′ and
Refinement(Ω′,𝑊 ′).

Proof.
We have

(A0) Ω0 =⇒∗ Ω,𝑊0 −→∗ 𝑊
(A1) ⟨Θ,Π, 𝐴, 𝐷, 𝐶⟩ B Ω

(A2) ⟨Θ′,Π′, 𝐴′, 𝐷′, 𝐶′⟩ B Ω′

(A3) ⟨ss, xs⟩ B 𝑊
(A4) Refinement(Ω,𝑊)
(A5) Ω ℓ⇒ Ω′

By Definition 8.3 on [A4], [A1], and [A3],
(A6) (𝑅1) ∀𝑝. loc(Θ𝑝) = ss𝑝
(A7) (𝑅2) ∀𝑝. Π𝑝 = xs \ xs𝑝
(A8) (𝑅3) ∀𝑎𝑟𝑝 ∈ Π. 𝑎𝑟𝑝 ∈ xs𝑝
(A9) (𝑅4) ∀𝑝. bound(Θ𝑝) = bound0 + (−xs𝑝)
(A10) (𝑅5) ∀𝑎𝑟𝑝 ∈ Pending(xs). ∃Θ∗ , 𝑥.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.



91:42 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

kept(Θ𝑝) ≥ bound(Θ∗𝑝) − conflict-actions(loc(Θ∗𝑝), 𝑎) + 1 ∧
let 𝑥 B pre(xs𝑝 , 𝑎), in
loc(Θ∗𝑝) = 𝑥(𝑙0) ∧
bound(Θ∗𝑝) = bound0 + (−𝑥)

(A11) (𝑅6) 𝐴𝑝 ⊆ xs𝑝
(A12) (𝑅7) {𝑎 | 𝑎 ∈ xs}+Σ𝑝(holding(Θ𝑝)+kept(Θ𝑝)+𝐶𝑝) ≤ bound0+(−∩xs𝑝𝑝)−(−∩𝐴𝑝

𝑝)

The proof is by case analysis on the step [A5].

Case rule P-Call:
(1) 𝒫(𝑙 , 𝑎)
(2) 𝑎𝑠 = bound(Θ𝑝) − conflict-actions(𝑙 , 𝑎) + 1
(3) holding ≥ 𝑎𝑠
(4) holding′ = holding − (𝑎 + 𝑎𝑠)
(5) kept′ = kept[𝑟 ↦→ 𝑎𝑠]
(6) 𝑙′ = move(𝑎, 𝑙)
(7) Π′ = Π[𝑝′ ↦→ Π𝑝′ ∪ {𝑎𝑟𝑝}

𝑝′≠𝑝
]

(8) Θ = Θ∗[𝑝 ↦→ ⟨𝑙 , holding, kept , bound⟩]
(9) ℓ = Call(𝑝, 𝑎)
(10) Θ′ = Θ∗[𝑝 ↦→ ⟨𝑙′, holding′, kept′, bound + (−𝑎)⟩]
(11) 𝐴′ = 𝐴[𝑝 ↦→ 𝐴(𝑝) ∪ {𝑎𝑟𝑝}]

By Lemma 4.1,
∀𝑎, 𝑎′. 𝑎 ⊳⊲𝒮 𝑎′

Thus,
(12) CallSComm(xs, 𝑝, 𝑎)

By [8]
(13) loc(Θ𝑝) = 𝑙

By [A0], [A1],
(14.1) Ω0 =⇒∗ ⟨Θ,Π, _, _, _⟩,

By A6, A0, Lemma 8.1.𝐴1,
(14.2) loc(Θ𝑝) = xs𝑝(𝑙0),

By [2], [3], [13],
(14.3) holding(Θ𝑝) + kept(Θ𝑝) ≥ bound(Θ𝑝) − conflict-actions(loc(Θ𝑝), 𝑎) + 1

By [A9]
(14.4) bound(Θ𝑝) = bound0 + (−xs𝑝)

By Lemma 8.7 on (14.1)-(14.4)
(14) ∀𝐴 ⊆ Π𝑝 . 𝑎

′ ∈ compositions(𝐴). 𝑎′ ⊲𝑙ℐ 𝑎.
By [A7],

(15) Π𝑝 = xs \ xs𝑝
By [A6],

(16) loc(Θ𝑝) = ss𝑝
Lemma 8.1.𝐴1

(17) ss𝑝 = xs𝑝(𝑙0)
By [13], [16] and [17],
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(18) 𝑙 = xs𝑝(𝑙0)
By [14], [15], and [18],

(19) let 𝑥 B xs𝑝 , 𝑙 B 𝑥(𝑙0) in
∀𝐴 ⊆ xs \ 𝑥.
∀𝑎′ ∈ compositions(𝐴).
𝑎 ⊲𝑙ℐ 𝑎′

Let
(20) xs′ = xs [𝑝 ↦→ (xs(𝑝) ::: 𝑎)], 𝑎 ∉ xs

By [19] and [20],
let 𝑥 B pre(xs′𝑝 , 𝑎), 𝑙 B 𝑥(𝑙0) in
∀𝑝′. 𝑎 ∉ xs′𝑝′ →
∀𝐶 ⊆ xs′ \ (xs′𝑝′ ∪ 𝑥 ::: 𝑎). ∀𝑎′ ∈ compositions(𝐶).
𝑎 ⊲𝜎ℐ (xs𝑝′ \ 𝑥) ◦ 𝑎

′

Thus,
(20.1) PRCommAll(xs′, 𝑝, 𝑎)

Next, we show that
∀𝑎1𝑝1 ∈ Pending(xs′) \ {𝑎𝑝}. PRCommAll(xs′, 𝑝1 , 𝑎1)

Let
(21) 𝑎1𝑝1 ∈ Pending(xs′) \ {𝑎𝑝}
(22) 𝐶 ⊆ xs′ \ (xs′𝑝′ ∪ 𝑥 ::: 𝑎).
(23) 𝑎′ ∈ compositions(𝐶).

From [20], [A10] on [21], there exists Θ∗ and 𝑥,
(24) kept(Θ𝑝) ≥ bound(Θ∗𝑝) − conflict-actions(loc(Θ∗𝑝), 𝑎) + 1
(25) 𝑥 = pre(xs′𝑝 , 𝑎1) ∧ loc(Θ∗𝑝) = 𝑥(𝑙0)
(26) bound(Θ∗𝑝) = bound0 + (−𝑥)

By Lemma 8.8 on [A12] (after dropping −(− ∩ 𝐴𝑝
𝑝)), [24], [26], [22], [23],

(27) 𝑎1 ⊲
loc(Θ∗𝑝 )
ℐ (xs′𝑝1 \ 𝑥) ◦ 𝑎′.

By [27] and [25]
let 𝑥 B pre(xs′𝑝 , 𝑐), 𝑙 B 𝑥(𝑙0) in
𝑎1 ⊲𝑙ℐ (xs

′
𝑝1 \ 𝑥) ◦ 𝑎′.

Thus,
(28) ∀𝑎1𝑝1 ∈ Pending(xs′) \ {𝑎𝑝}. PRCommAll(xs′, 𝑝1 , 𝑎1)

From [20.1] and [28],
(29) ∀𝑎𝑝 ∈ Pending(xs′). PRCommAll(xs′, 𝑝, 𝑎)

Therefore,
(30) CallIComm(xs′, 𝑎)

By rule Call on [1], [12], [20], [30], [6],

(31) ⟨ss[𝑝 ↦→ 𝑙], xs⟩
Call(𝑝, 𝑎)
−−−−−−−→ ⟨ss[𝑝 ↦→ 𝑙′], xs′⟩

By [A6], [8],
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ss𝑝 = 𝑙
Thus,

(32) ss[𝑝 ↦→ 𝑙] = ss
Let

(33) ss′ = ss[𝑝 ↦→ 𝑙′]
(34)𝑊 ′ = ⟨ss′, xs′⟩

By [31], [32], [A3], [33], [34], [9],
(35)𝑊 ℓ→𝑊 ′

By [A6], [8], [10], [33]
(36) ∀𝑞 ≠ 𝑝. loc(Θ′𝑞) = ss′𝑞

By [10] and [33],
(37) loc(Θ′𝑝) = ss′𝑝

By [36] and [37]
(38) ∀𝑝. loc(Θ′𝑝) = ss′𝑝

By [7]
(39) Π′𝑝 = Π𝑝 ∧ ∀𝑝′ ≠ 𝑝. Π′𝑝′ = Π𝑝′ ∪ {𝑎𝑟𝑝}

By [A7], [39], and [30],
(40) ∀𝑝. Π′𝑝 = xs′ \ xs′𝑝

By [A8], [7],
(41) ∀𝑎∗ ∈ Π′ \ {𝑎𝑟𝑝}. 𝑎∗ ∈ xs𝑝

By [20],
(42) 𝑎𝑟𝑝 ∈ xs𝑝

By [41] and [42],
(43) ∀𝑎∗ ∈ Π′. 𝑎∗ ∈ xs𝑝

By [A9], [10], [20],
(44) ∀𝑝. bound(Θ′𝑝) = bound0 + (−xs′𝑝)

From [20],
(45) Pending(xs′) = Pending(xs) ∪ {𝑎}

From [5], [8], [10],
(46) kept(Θ′𝑝) ≥ kept(Θ𝑝)

From [46], [A10]
(47) (𝑅5) ∀𝑎𝑟𝑝 ∈ Pending(xs). ∃Θ∗ , 𝑥.

kept(Θ′𝑝) ≥ bound(Θ∗𝑝) − conflict-actions(loc(Θ∗𝑝), 𝑎) + 1 ∧
let 𝑥 B pre(xs𝑝 , 𝑎), in
loc(Θ∗𝑝) = 𝑥(𝑙0) ∧
bound(Θ∗𝑝) = bound0 + (−𝑥)

The new pending call is 𝑎. We show that for 𝑎, there exists Θ𝑝 and xs𝑝 such
that the following properties [48]-[51] hold.
From [2], [5], [10], [13],

(48) kept(Θ′𝑝) ≥ bound(Θ𝑝) − conflict-actions(loc(Θ𝑝), 𝑎) + 1
From [20]
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(49) pre(xs′𝑝 , 𝑎) = xs𝑝
From [20], [14.2],

(50) let 𝑥 B pre(xs′𝑝 , 𝑎) in loc(Θ𝑝) = 𝑥(𝑙0)
From [A9],

(51) bound(Θ𝑝) = bound0 + (−xs𝑝)
Thus,

(52) ∀𝑎𝑟𝑝 ∈ Pending(xs) ∪ {𝑎}. ∃Θ∗ , 𝑥.
kept(Θ′𝑝) ≥ bound(Θ∗𝑝) − conflict-actions(loc(Θ∗𝑝), 𝑎) + 1 ∧
let 𝑥 B pre(xs𝑝 , 𝑎), in
loc(Θ∗𝑝) = 𝑥(𝑙0) ∧
bound(Θ∗𝑝) = bound0 + (−𝑥)

(53) The relation 𝑅6 is preserved by [A11], and further, since by [11] and [20], 𝑎 is added
to both 𝐴𝑝 and xs𝑝 .

By [20], [4], [5]
(54) [{𝑎 | 𝑎 ∈ xs′}+Σ𝑝(holding(Θ′𝑝)+kept(Θ′𝑝)+𝐶′𝑝) ≤ bound0+(−∩xs′𝑝

𝑝)−(−∩𝐴′𝑝
𝑝)] =

[{𝑎 | 𝑎 ∈ xs} + 𝑎 + Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝) − (𝑎 + 𝑎𝑠) + 𝑎𝑠 ≤ bound0 +
(− ∩ xs𝑝

𝑝) − (− ∩ 𝐴𝑝
𝑝)] =

{𝑎 | 𝑎 ∈ xs} + Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝) ≤ bound0 + (− ∩ xs𝑝
𝑝) − (− ∩ 𝐴𝑝

𝑝)
(55) The relation 𝑅6 is preserved by [54] and [A12].

By [A2], [34], [38], [40], [43], [44], [52], [53], [55]
(56) Refinement(Ω′,𝑊 ′).

The conclusion is [35] and [56]

Case rule P-Prop:
(1) 𝒫(𝑙 , 𝑎)
(2) 𝑙′ = move(𝑎, 𝑙)
(3) 𝐴′ = 𝐴[𝑝 ↦→ 𝐴(𝑝) ∪ {𝑎𝑟𝑝}]
(4) Θ = Θ∗[𝑝∗ ↦→ ⟨𝑙 , _, _, bound⟩]
(5) Π = Π∗[𝑝∗ ↦→ 𝜋 ∪ {𝑎𝑟𝑝}]
(6) ℓ = Prop(𝑝∗ , 𝑎)
(7) Θ′ = Θ∗[𝑝∗ ↦→ ⟨𝑙′, _, _, bound + (−𝑎)⟩]
(8) Π′ = Π∗[𝑝∗ ↦→ 𝜋]

By [5]
(9) 𝑎𝑟𝑝 ∈ Π𝑝∗

By [A7], [9]
(10) 𝑎𝑟𝑝 ∉ xs𝑝∗

By [A8], [9]
(11) 𝑎𝑟𝑝 ∈ xs𝑝

By [11], [10]
(12) 𝑎𝑟𝑝 ∈ xs𝑝 \ xs𝑝∗
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By Lemma 4.1,
∀𝑎, 𝑎′. 𝑎 ⊳⊲𝒮 𝑎′

Thus,
(13) PropSComm(xs, 𝑝, 𝑝∗ , 𝑎)

Let
(14) xs′ = xs [𝑝∗ ↦→ (xs(𝑝∗) ::: 𝑎)]

By [11], [1], [13], [14], and [2]

(15) ⟨ss[𝑝∗ ↦→ 𝑙], xs⟩
Prop(𝑝, 𝑎)
−−−−−−−→ ⟨ss[𝑝∗ ↦→ 𝑙′], xs′⟩

By [A6], [4],
ss𝑝∗ = 𝑙

Thus,
(16) ss[𝑝 ↦→ 𝑙] = ss

Let
(17) ss′ = ss[𝑝∗ ↦→ 𝑙′]
(18)𝑊 ′ = ⟨ss′, xs′⟩

By [15], [16], [A3], [17], [18], [6],
(19)𝑊 ℓ→𝑊 ′

By [A6], [4], [7], [17]
(20) ∀𝑞 ≠ 𝑝∗. loc(Θ′𝑞) = ss′𝑞

By [8] and [17],
(21) loc(Θ′𝑝∗) = ss′𝑝∗

By [20] and [21]
(22) (𝑅1) ∀𝑝. loc(Θ′𝑝) = ss′𝑝

By [5], [8]
(23) ∀𝑝 ≠ 𝑝∗. Π′𝑝 = Π𝑝

(24) Π′𝑝∗ = Π𝑝∗ \ {𝑎𝑟𝑝}
By [A7], [23], [24], and [14],

(25) (𝑅2)$∀𝑝. Π′𝑝 = xs′ \ xs′𝑝

By [5], [8],
(26) Π′ ⊆ Π

By [A8], [26], [14]
(27) (𝑅3) ∀𝑎 ∈ Π′. 𝑎 ∈ xs𝑝

By [A9], [7], [14],
(28) (𝑅4) ∀𝑝. bound(Θ′𝑝) = bound0 + (−xs′𝑝)

(29) The relation 𝑅5 is preserved since the set of pending calls can only shrink, kept
is unchanged, and xs is only extended.
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(30) The relation 𝑅6 is preserved by [A11], and further, since by [3] and [14], 𝑎 is added
to both 𝐴𝑝∗ and xs𝑝∗ .

If 𝑎 ∈ ∩𝑝 𝐴𝑝 , by [A11], 𝑎 ∈ ∩𝑝xs𝑝 , then by [14], [11], [4], [7],
(31) [{𝑎 | 𝑎 ∈ xs′}+Σ𝑝(holding(Θ′𝑝)+kept(Θ′𝑝)+𝐶′𝑝) ≤ bound0+(−∩xs′𝑝

𝑝)−(−∩𝐴𝑝
𝑝)] =

{𝑎 | 𝑎 ∈ xs} + Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝) ≤ bound0 + (− ∩ xs𝑝
𝑝 − 𝑎) − (− ∩

𝐴𝑝
𝑝 − 𝑎) =

{𝑎 | 𝑎 ∈ xs} +Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝) ≤ bound0 + (−∩ xs𝑝𝑝) − (− ∩𝐴𝑝
𝑝)

(32) The relation 𝑅6 is preserved by [31] and [A12].
If 𝑎 ∉ ∩𝑝 𝐴𝑝 , by [14], [11], [4], [7]

(33) {𝑎 | 𝑎 ∈ xs′} + Σ𝑝(holding(Θ′𝑝) + kept(Θ′𝑝) + 𝐶′𝑝) =
{𝑎 | 𝑎 ∈ xs} + Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝) ≤
bound0 + (− ∩ xs𝑝

𝑝) − (− ∩ 𝐴𝑝
𝑝) =

bound0 + (− ∩ xs𝑝
𝑝) − (− ∩ 𝐴′𝑝

𝑝) ≤
bound0 + (− ∩ xs′𝑝

𝑝) − (− ∩ 𝐴𝑝
𝑝)

(34) The relation 𝑅6 is preserved in either case.

By [A2], [18], [22], [25], [27], [28], [29], [30], [34],
(35) Refinement(Ω′,𝑊 ′).

The conclusion is [19] and [35].

Case rule P-Rel:
The abstract semantics takes an 𝜖 step:𝑊 →𝑊 .
The relations 𝑅1, 𝑅2, 𝑅3, 𝑅4 is simply preserved since loc, Π and bound stay
unchanged in P-Rel.

The relation 𝑅5 is preserved since the set kept is changed only for 𝑎𝑟𝑝∗ , and we show
that 𝑎𝑟𝑝∗ ∉ Pending(xs).
For all 𝑝, 𝑎𝑟𝑝∗ is in 𝐴𝑝 , and by [A11], for all 𝑝, 𝑎𝑟𝑝∗ ∈ 𝑥𝑠𝑝 ; therefore,
𝑎𝑟𝑝∗ ∈ ∩𝑝xs𝑝 . Thus, 𝑎𝑟𝑝∗ ∉ Pending(xs).

The relation 𝑅6 is preserved since 𝐴 is only shrinking.

The relation 𝑅7 is preserved:
[{𝑎 | 𝑎 ∈ xs′} + Σ𝑝(holding(Θ′𝑝) + kept(Θ′𝑝) + 𝐶′𝑝) ≤ bound0 + (− ∩ xs′𝑝

𝑝) − (− ∩ 𝐴′𝑝
𝑝)] =

[{𝑎 | 𝑎 ∈ xs} + Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝) + kept(𝑟) + (−𝑎) + −kept(𝑟) ≤ bound0 +
(− ∩ xs𝑝

𝑝) − (− ∩ 𝐴𝑝
𝑝) − (−𝑎)] =

{𝑎 | 𝑎 ∈ xs} + Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝) ≤ bound0 + (− ∩ xs𝑝
𝑝) − (− ∩ 𝐴𝑝

𝑝)

Case rule P-Deb:
The abstract semantics takes an 𝜖 step:𝑊 →𝑊 .
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The relations 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6, 𝑅7 is simply preserved since loc, Π, bound, kept, xs, 𝐴
holding and 𝐶 stay unchanged in P-Deb and the 𝜖 transition.

Case rule P-Cred:
The abstract semantics takes an 𝜖 step:𝑊 →𝑊 .
The relations 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6 is simply preserved since loc, Π, bound, kept, xs and 𝐴
stay unchanged in P-Cred and the 𝜖 transition.

The relation 𝑅7 is preserved since the decrease from holding and the increase in 𝐶
cancel each other.

Case rule P-Dep:
The abstract semantics takes an 𝜖 step:𝑊 →𝑊 .
The relations 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6 is simply preserved since loc, Π, bound, kept, xs and 𝐴
stay unchanged in P-Dep and the 𝜖 transition.

The relation 𝑅7 is preserved since the increase from holding and the decrease in 𝐶
cancel each other. □

Lemma 8.7. For all Θ, Π, 𝑝, 𝑎 and 𝑥, if
Ω0 =⇒∗ ⟨Θ,Π, _, _, _⟩,
loc(Θ𝑝) = 𝑥(𝑙0),
holding(Θ𝑝) + kept(Θ𝑝) ≥ bound(Θ𝑝) − conflict-actions(loc(Θ𝑝), 𝑎) + 1, and
bound(Θ𝑝) = bound0 + (−𝑥)

then
∀𝐴 ⊆ Π𝑝 . 𝑎

′ ∈ compositions(𝐴). 𝑎′ ⊲𝑙ℐ 𝑎.

Proof.
We assume

(1) Ω0 =⇒∗ ⟨Θ,Π, _, _, _⟩
(2) loc(Θ𝑝) = 𝑥(𝑙0)
(3) holding(Θ𝑝) + kept(Θ𝑝) ≥ bound(Θ𝑝) − conflict-actions(loc(Θ𝑝), 𝑎) + 1
(4) bound(Θ𝑝) = bound0 + (−𝑥)

By Lemma 8.9 on [1],
(5) Π𝑝 |𝑑 = length(𝑑) − loc(Θ𝑝)𝑑 − Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝)|𝑑 − (−𝐴𝑝)|𝑑

By [5] and [2],
(6) Π𝑝 |𝑑 = length(𝑑) − (𝑙0 + 𝑥)|𝑑 − Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝)|𝑑 − (−𝐴𝑝)|𝑑

that is
(7)Π𝑝 |𝑑 = length(𝑑) − (𝑙0(𝑑) + 𝑥 |𝑑 − 𝑥 |−𝑑) −Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) +𝐶𝑝)|𝑑 − (−𝐴𝑝)|𝑑

thus,
(8) Π𝑝 |𝑑 ≤ length(𝑑) − (𝑙0(𝑑) − 𝑥 |−𝑑) − (holding(Θ𝑝) + kept(Θ𝑝))|𝑑

By aggregating [8] over all 𝑑

(9) Π𝑝 ≤ length(𝑑)
𝑑
− 𝑙0 + (−𝑥) − (holding(Θ𝑝) + kept(Θ𝑝))

that is
(10) Π𝑝 ≤ bound0 + (−𝑥) − (holding(Θ𝑝) + kept(Θ𝑝))

By [10] and [4]
(11) Π𝑝 ≤ bound(Θ𝑝) − (holding(Θ𝑝) + kept(Θ𝑝))

By [11] and [3],
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(12) Π𝑝 < conflict-actions(loc(Θ𝑝), 𝑎)
By Property 8.1 on [12]

(13) ∀𝑎′ ⊆ Π𝑝 . 𝑎 ⊲𝑙ℐ ◦ 𝑎′
By [13],
∀𝐴 ⊆ Π𝑝 . 𝑎

′ ∈ compositions(𝐴). 𝑎 ⊲𝑙ℐ 𝑎′ □

Lemma 8.8. For all Θ, 𝐶, xs, 𝑝′, 𝑎, 𝑎′ and 𝑥, if
{𝑎 | 𝑎 ∈ xs} + Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝) ≤ bound0 + (− ∩ xs𝑝

𝑝)
kept(Θ𝑝) ≥ bound(Θ∗𝑝) − conflict-actions(loc(Θ∗𝑝), 𝑎) + 1
bound(Θ∗𝑝) = bound0 + (−𝑥)
𝐶 ⊆ xs \ (xs(𝑝′) ∪ 𝑥 ::: 𝑎)
𝑎′ ∈ compositions(𝐶)

then
𝑎 ⊲

loc(Θ∗𝑝 )
ℐ (xs(𝑝′) \ 𝑥) ◦ 𝑎′.

Proof.
We assume

(A1) {𝑎 | 𝑎 ∈ xs} + Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝) ≤ bound0 + (− ∩ xs𝑝
𝑝)

(A2) kept(Θ𝑝) ≥ bound(Θ∗𝑝) − conflict-actions(loc(Θ∗𝑝), 𝑎) + 1
(A3) bound(Θ∗𝑝) = bound0 + (−𝑥)
(A4) 𝐶 ⊆ xs \ (xs(𝑝′) ∪ 𝑥 ::: 𝑎)
(A5) 𝑎′ ∈ compositions(𝐶)

From [A1]
(1) {𝑎 | 𝑎 ∈ xs} + Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝) ≤ bound0 + (− ∩ xs𝑝

𝑝)
thus,

(2) {𝑎 | 𝑎 ∈ xs} ≤ bound0 + (− ∩ xs𝑝
𝑝) − Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝)

Let
(3) 𝐼𝑥 = −[(∩xs𝑝𝑝) ∩ 𝑥]
(4) 𝐼𝑥′ = −[(∩xs𝑝𝑝) \ 𝑥]

From [3], and [4],
(5) (− ∩ xs𝑝

𝑝) = 𝐼𝑥 + 𝐼𝑥′

From [2] and [5],
(6) {𝑎 | 𝑎 ∈ xs} ≤ bound0 + 𝐼𝑥 + 𝐼𝑥′ − Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝)

From [3],
(7) 𝐼𝑥 ≤ (−𝑥)

From [6] and [7], and simplification
(8) {𝑎 | 𝑎 ∈ xs} ≤ bound0 + (−𝑥) + 𝐼𝑥′ − kept(Θ𝑝)

From [8], [A3]
(9) {𝑎 | 𝑎 ∈ xs} ≤ bound(Θ∗𝑝) + 𝐼𝑥′ − kept(Θ𝑝)

thus,
(10) {𝑎 | 𝑎 ∈ xs} − 𝐼𝑥′ ≤ bound(Θ∗𝑝) − kept(Θ𝑝)

From [10], [A2],
(11) {𝑎 | 𝑎 ∈ xs} − 𝐼𝑥′ < conflict-actions(loc(Θ∗𝑝), 𝑎)

By Property 8.1 on [11]
(12) ∀𝑎∗ ≤ {𝑎 | 𝑎 ∈ xs} − 𝐼𝑥′ . 𝑎 ⊲

loc(Θ∗𝑝 )
ℐ ◦ 𝑎∗

Let us now consider the sequence (xs(𝑝′) \ 𝑥) ◦ 𝑎′ where [A4] and [A5].
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Let
(13) 𝑅′ = 𝑅 ◦ 𝑎′ where 𝑅 = xs(𝑝′) \ 𝑥.

If 𝑅 ∩ 𝐼𝑥′ = ∅ then, by [18], we immediately have
𝑎 ⊲

loc(Θ∗𝑝 )
ℐ (xs(𝑝′) \ 𝑥) ◦ 𝑎′

Now consider an action −𝑎 ∈ 𝑅 ∩ 𝐼𝑥′ .
Since −𝑎 ∈ 𝐼𝑥′ , by [3],

(14) 𝑎 ∉ 𝑥
The opposite credit −𝑎 is issued only after 𝑎 is executed at every process. Thus,

(15) 𝑎 ∈ xs𝑝′
From [14] and [15],

(16) 𝑎 ∈ (xs(𝑝′) \ 𝑥)
Thus, in the sequence 𝑅, the two opposite actions 𝑎 and then −𝑎 can be removed without
affecting the post-state. This process can be repeated for every such action −𝑎 ∈ 𝐼𝑥′ .
Let the resulting sequence be 𝑅∗. It has no action in 𝐼𝑥′ . Therefore, by [18]

𝑎 ⊲
loc(Θ∗𝑝 )
ℐ (xs(𝑝′) \ 𝑥) ◦ 𝑎′.

We also note that even if the opposite action uses a part of the opposite credit −𝑎,
then part of the preceding 𝑎 action can be canceled, to similarly result in the
same post-state. The size of 𝑅 is smaller than {𝑎 | 𝑎 ∈ xs}, and [18] still applies. □

By construction, for any location 𝑙 and action 𝑎1, any sequence of actions 𝑎2 that sum to less
than conflict-actions(𝑙 , 𝑎1) invariant-commute with 𝑎1. We capture this property as follows:

Property 8.1 (Property of conflict-actions). For all location 𝑙, actions 𝑎1 and 𝑎2, if + 𝑎2 <
conflict-actions(𝑙 , 𝑎1). then 𝑎1 ⊲𝑙𝒫 ◦ 𝑎2.

Lemma 8.9 (Preservation of credits). For all Θ, Π, 𝐴, 𝐷, and 𝐶, if Ω0 =⇒∗ ⟨Θ,Π, 𝐴, 𝐷, 𝐶⟩,
then
for all 𝑝∗ and 𝑑, loc(Θ𝑝∗)𝑑 +Π𝑝∗ |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑝(holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝)|𝑑 = length(𝑑).

Proof.
Proof is by induction on the steps.

Base case: Ω0
𝑙0(𝑑) + Σ𝑝(length(𝑑) − 𝑙0(𝑑))/𝑛 = length(𝑑)

Induction Hypothesis:
⟨Θ,Π, 𝐴, 𝐷, 𝐶⟩ =⇒ ⟨Θ′,Π′, 𝐴′, 𝐷′, 𝐶′⟩
(IH) For all 𝑝 and 𝑑,

loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 = length(𝑑).
We show that
For all 𝑝 and 𝑑,

loc(Θ′𝑝)𝑑 +Π′𝑝 |𝑑 + (−𝐴′𝑝)|𝑑 + Σ𝑞(holding(Θ′𝑞) + kept(Θ′𝑞) + 𝐶′𝑞)|𝑑 = length(𝑑).

Case rule P-Call:
If 𝑑 is orthogonal to 𝑎, the conclusion directly reduces to IH.
We consider two cases (where 𝑝∗ is the stepping process):
Case 𝑝 = 𝑝∗

loc(Θ′𝑝)𝑑 +Π′𝑝 |𝑑 + (−𝐴𝑞)|𝑑 + Σ𝑞(holding(Θ′𝑞) + kept(Θ′𝑞) + 𝐶′𝑞)|𝑑 =
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(loc(Θ𝑝) + 𝑎)𝑑 +Π𝑝 |𝑑 + (−(𝐴𝑝∗ + 𝑎))|𝑑 +
Σ𝑞≠𝑝∗(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 +
(holding(Θ𝑝∗) − (𝑎 + conflict-sync-credit(loc(Θ𝑝∗), 𝑎)) +
kept(Θ𝑝∗) + conflict-sync-credit(loc(Θ𝑝∗), 𝑎) + 𝐶𝑝∗))|𝑑 =

We consider two cases:
Case: 𝑎 is in the direction 𝑑:
(loc(Θ𝑝) + 𝑎)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝∗)|𝑑 +

Σ𝑞≠𝑝∗(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 +
(holding(Θ𝑝∗) − (𝑎 + conflict-sync-credit(loc(Θ𝑝∗), 𝑎)) +
kept(Θ𝑝∗) + conflict-sync-credit(loc(Θ𝑝∗), 𝑎) + 𝐶𝑝∗)|𝑑 =

loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
length(𝑑)
Case: 𝑎 is in the opposite direction of 𝑑:
(loc(Θ𝑝) + 𝑎)𝑑 +Π𝑝 |𝑑 + (−(𝐴𝑝∗ + 𝑎))|𝑑 +

Σ𝑞≠𝑝∗(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 +
(holding(Θ𝑝∗) − conflict-sync-credit(loc(Θ𝑝∗), 𝑎) +
kept(Θ𝑝∗) + conflict-sync-credit(loc(Θ𝑝∗), 𝑎) + 𝐶𝑝∗)|𝑑 =

loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
length(𝑑)

Case 𝑝 ≠ 𝑝∗

loc(Θ′𝑝)𝑑 +Π′𝑝 |𝑑 + (−𝐴′𝑝)|𝑑 + Σ𝑞(holding(Θ′𝑞) + kept(Θ′𝑞) + 𝐶′𝑞)|𝑑 =
(loc(Θ𝑝)𝑑 + (Π𝑝 + 𝑎)|𝑑 + (−𝐴′𝑝)|𝑑 +

Σ𝑞≠𝑝∗(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 +
(holding(Θ𝑝∗) − (𝑎 + conflict-sync-credit(loc(Θ𝑝∗), 𝑎)) +
kept(Θ𝑝∗) + conflict-sync-credit(loc(Θ𝑝∗), 𝑎) + 𝐶𝑝∗)|𝑑 =

loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
length(𝑑)

Case rule P-Prop:
We consider two cases (where 𝑝∗ is the stepping process):
Case 𝑝 = 𝑝∗

loc(Θ′𝑝)𝑑 +Π′𝑝 |𝑑 + (−𝐴′𝑝)|𝑑 + Σ𝑞(holding(Θ′𝑞) + kept(Θ′𝑞) + 𝐶′𝑞)|𝑑 =
(loc(Θ𝑝) + 𝑎)𝑑 + (Π𝑝 − 𝑎)|𝑑 + (−(𝐴𝑝 + 𝑎))|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
We consider two cases:
Case: 𝑎 is in the direction 𝑑:
(loc(Θ𝑝) + 𝑎)𝑑 + (Π𝑝 − 𝑎)|𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
length(𝑑)
Case: 𝑎 is in the opposite direction of 𝑑:
(loc(Θ𝑝) + 𝑎)𝑑 +Π𝑝 |𝑑 + (−(𝐴𝑝 + 𝑎))|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
length(𝑑)

Case 𝑝 ≠ 𝑝∗

loc(Θ′𝑝)𝑑 +Π′𝑝 |𝑑 + (−𝐴′𝑝)|𝑑 + Σ𝑞(holding(Θ′𝑞) + kept(Θ′𝑞) + 𝐶′𝑞)|𝑑 =
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loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
length(𝑑)

Case rule P-Rel:
loc(Θ′𝑝)𝑑 +Π′𝑝 |𝑑 + (−𝐴′𝑝)|𝑑 + Σ𝑞(holding(Θ′𝑞) + kept(Θ′𝑞) + 𝐶′𝑞)|𝑑 =
loc(Θ′𝑝)𝑑 +Π′𝑝 |𝑑 + (−(𝐴𝑝 − 𝑎))|𝑑 +
Σ𝑞≠𝑝∗(holding(Θ′𝑞) + kept(Θ′𝑞) + 𝐶′𝑞)|𝑑 +
(holding(Θ𝑝∗) + kept(𝑟) + (−𝑎) + kept(Θ𝑝∗) − kept(𝑟) + 𝐶′𝑞)|𝑑 =
loc(Θ′𝑝)𝑑 +Π′𝑝 |𝑑 + (−𝐴𝑝)|𝑑 − (−𝑎)|𝑑 +
Σ𝑞≠𝑝∗(holding(Θ′𝑞) + kept(Θ′𝑞) + 𝐶′𝑞)|𝑑 +
(holding(Θ𝑝∗) + kept(𝑟) + (−𝑎) + kept(Θ𝑝∗) − kept(𝑟) + 𝐶′𝑞)|𝑑 =
loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
length(𝑑)

Case rule P-Deb:
The elements loc Π, 𝐴, holding, kept and 𝐶 all stay the same.

Case rule P-Cred:
loc(Θ′𝑝)𝑑 +Π′𝑝 |𝑑 + (−𝐴′𝑝)|𝑑 + Σ𝑞(holding(Θ′𝑞) + kept(Θ′𝑞) + 𝐶′𝑞)|𝑑 =
loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞∉{𝑝∗ ,𝑝}(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 +
holding(Θ𝑝∗) − 𝑎′ + kept(Θ𝑝∗) + 𝐶𝑝∗)|𝑑 +
holding(Θ𝑝) + kept(Θ𝑝) + 𝐶𝑝 + 𝑎′)|𝑑 =
loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
length(𝑑)

Case rule P-Dep:
loc(Θ′𝑝)𝑑 +Π′𝑝 |𝑑 + (−𝐴′𝑝)|𝑑 + Σ𝑞(holding(Θ′𝑞) + kept(Θ′𝑞) + 𝐶′𝑞)|𝑑 =
loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞≠𝑝∗}(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 +
holding(Θ𝑝∗) + 𝑎 + kept(Θ𝑝∗) + 𝐶𝑝∗ − 𝑎)|𝑑 =
loc(Θ𝑝)𝑑 +Π𝑝 |𝑑 + (−𝐴𝑝)|𝑑 + Σ𝑞(holding(Θ𝑞) + kept(Θ𝑞) + 𝐶𝑞)|𝑑 =
length(𝑑) □
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P-Call
𝒫(loc, 𝑎) 𝑎𝑠 = bound − conflict-actions(loc, 𝑎) + 1 holding ≥ 𝑎𝑠

holding′ = holding − (𝑎 + 𝑎𝑠) kept′ = kept[𝑟 ↦→ 𝑎𝑠] loc′ = move(𝑎, loc)
Π′ = Π[𝑝 ↦→ Π𝑝 ∪ {𝑎𝑟𝑝∗}

𝑝≠𝑝∗

] 𝐴′ = 𝐴[𝑝∗ ↦→ 𝐴(𝑝∗) ∪ {𝑎𝑟𝑝∗}] bound′ = bound + (−𝑎)
⟨Θ[𝑝∗ ↦→ ⟨loc, holding, kept , bound , _, _, _, _⟩],Π, 𝐴, _, _⟩

Call(𝑝∗ , 𝑎)
========⇒

⟨Θ[𝑝∗ ↦→ ⟨loc′, holding′, kept′, bound , _, _, _, _⟩],Π′, 𝐴′, _, _⟩

P-Prop
𝒫(loc, 𝑎) loc′ = move(𝑎, loc) 𝐴′ = 𝐴[𝑝∗ ↦→ 𝐴(𝑝∗) ∪ {𝑎𝑟𝑝}]

bound′ = bound + (−𝑎) moved = moved(𝑝) ∪ {𝑎} opposite = opposite(𝑝) ∪ {−𝑎}
⟨Θ[𝑝∗ ↦→ ⟨loc, _, _, bound ,moved , opposite, _, _⟩],Π[𝑝∗ ↦→ 𝜋 ∪ {𝑎𝑟𝑝}], 𝐴, _, _]⟩

Prop(𝑝∗ , 𝑎)
========⇒

⟨Θ[𝑝∗ ↦→ ⟨loc′, _, _, bound′,moved′, opposite′, _, _⟩],Π[𝑝∗ ↦→ 𝜋], 𝐴′, _, _⟩

P-Rel
holding′ = holding + kept(𝑟) + (−𝑎) kept = kept \ {𝑟}

⟨Θ[𝑝∗ ↦→ ⟨_, holding, kept , _, _, _, _, _⟩], _, 𝐴[𝑝 ↦→ 𝑆𝑝 ∪ {𝑎𝑟𝑝∗}
𝑝
], _, _⟩

=⇒
⟨Θ[𝑝∗ ↦→ ⟨_, holding′, kept′, _, _, _, _, _⟩], _, 𝐴[𝑝 ↦→ 𝑆𝑝

𝑝], _, _⟩

P-Deb
𝑎𝑠 |𝑑 = bound(𝑑) − conflict-actions(loc, 𝑎)|𝑑 + 1

¬(holding ≥ 𝑎𝑠) 𝐷′ = 𝐷[𝑝 ↦→ 𝐷(𝑝) ∪ ⟨𝑝∗ , 𝑎𝑠 |𝑑 − fraction(max(holding |𝑑 , 0))⟩
𝑑
𝑝≠𝑝∗

]
⟨Θ[𝑝∗ ↦→ ⟨loc, holding, _, _, _, _, _, _⟩], _, _, 𝐷, _⟩

=⇒
⟨Θ[𝑝∗ ↦→ ⟨loc, holding, _, _, _, _, _, _⟩], _, _, 𝐷′, _⟩

P-Cred
⟨𝑝, 𝑎⟩ = max-priority(𝐷)

𝐷′ = 𝐷 \ {⟨𝑝, 𝑎⟩} 𝑎′ = min(𝑎, holding) holding′ = holding − 𝑎′

𝐶′ = 𝐶[𝑝, 𝑝∗ ↦→ 𝐶(𝑝, 𝑝∗) ∪ {𝑎′}] sent = sent[𝑝 ↦→ sent(𝑝) ∪ {𝑎′}]
⟨Θ[𝑝∗ ↦→ ⟨_, holding, _, _, _, _, sent , _⟩], _, _, 𝐷, 𝐶⟩

=⇒
⟨Θ[𝑝∗ ↦→ ⟨_, holding′, _, _, _, _, sent′, _⟩], _, _, 𝐷′, 𝐶′⟩

P-Dep
holding′ = holding + 𝑎 received = received[𝑝 ↦→ received(𝑝) ∪ {𝑎}]
⟨Θ[𝑝∗ ↦→ ⟨_, holding, _, _, _, _, _, received⟩], _, _, _, 𝐶[𝑝∗ , 𝑝 ↦→ 𝑆 ∪ {𝑎}]⟩

=⇒
⟨Θ[𝑝∗ ↦→ ⟨_, holding′, _, _, _, _, _, received′⟩], _, _, _, 𝐶[𝑝∗ , 𝑝 ↦→ 𝑆]⟩

Fig. 20. Protocol Transition System
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Similar to the incremental presentation in the main body, we now extend the transition system
with fault-tolerance in Fig. 20. We write the additional state variables that track credits in blue.
In the following theorems, let exchangeΘ𝑝′)(𝑝) = sent(Θ𝑝′)(𝑝) − received(Θ𝑝′)(𝑝). Further, let
Π𝑝1 |𝑝2 = {𝑎𝑟𝑝′ ∈ Π𝑝1 | 𝑝′ = 𝑝2}. Similarly, let 𝐴𝑝1 |𝑝2 = {𝑎𝑟𝑝′ ∈ 𝐴𝑝1 | 𝑝′ = 𝑝2}.

Lemma 8.10. For all Θ, Π, 𝐴, 𝐷, 𝐶 and 𝑝′ if Ω0 =⇒∗ ⟨Θ,Π, 𝐴, 𝐷, 𝐶⟩ is an execution where the

processes ℱ have failed, and time Δ is past since the last one failed, then the total credit that ℱ held
is Σ𝑝∈ℱ (init −moved(Θ𝑝′(𝑝)) + opposite(Θ𝑝′(𝑝)) + Σ𝑝′∈𝑃\ℱ exchange(Θ𝑝′)(𝑝)).

Proof.
Let the sum of the credits in failed processes be

(1) 𝑆 = Σ𝑝∈ℱ (holding(Θ𝑝) + kept(Θ𝑝) + 𝐶(𝑝))
By Lemma 8.11.(I1)

(2) 𝑆 = Σ𝑝∈ℱ (init −Π𝑝′ |𝑝 −moved(Θ𝑝′)(𝑝) + (opposite(Θ𝑝′(𝑝)) \ (− ∪𝑝′ 𝐴𝑝′)|𝑝)) +
Σ𝑝′ sent(Θ𝑝′)(𝑝) − Σ𝑝′ sent(Θ𝑝)(𝑝′)) =

Since processes communicate with reliable broadcast, and time Δ is past since the last
one failed, all the messages from failed processes 𝑝 ∈ ℱ are delivered to correct
processes 𝑝′ ∈ 𝑃 \ ℱ . Thus,

(3) Π𝑝′ |𝑝 = ∅
(4) 𝐴𝑝′ |𝑝 = ∅
(5) 𝐶(𝑝′)(𝑝) = ∅

By [2], [3], and [4],
(6) 𝑆 = Σ𝑝∈ℱ (init−moved(Θ𝑝′)(𝑝)+opposite(Θ𝑝′)(𝑝)+Σ𝑝′ sent(Θ𝑝′)(𝑝)−Σ𝑝′ sent(Θ𝑝)(𝑝′))

By Lemma 8.11.(I2) and [5],
(7) sent(Θ𝑝)(𝑝′) = received(Θ𝑝′)(𝑝)

By [6] and [7]
(8) 𝑆 = Σ𝑝∈ℱ (init−moved(Θ𝑝′)(𝑝)+opposite(Θ𝑝′)(𝑝)+Σ𝑝′ sent(Θ𝑝′)(𝑝)−Σ𝑝′ received(Θ𝑝′)(𝑝))

By [8] and [7] (canceling sent and received for failed processes ℱ
(9) 𝑆 = Σ𝑝∈ℱ (init−moved(Θ𝑝′)(𝑝)+opposite(Θ𝑝′)(𝑝)+Σ𝑝′∈𝑃\ℱ sent(Θ𝑝′)(𝑝)−Σ𝑝′∈𝑃\ℱ received(Θ𝑝′)(𝑝))

By [9] and definition of exchange
Σ𝑝∈ℱ (init −moved(Θ𝑝′(𝑝)) + opposite(Θ𝑝′(𝑝)) + Σ𝑝′∈𝑃\ℱ exchange(Θ𝑝′)(𝑝)) □

Lemma 8.11. For all Θ, Π, 𝐴, 𝐷, and 𝐶 if Ω0 =⇒∗ ⟨Θ,Π, 𝐴, 𝐷, 𝐶⟩, then
(I1) holding(Θ𝑝) + kept(Θ𝑝) + 𝐶(𝑝) =

init −Π𝑝′ |𝑝 −moved(Θ𝑝′)(𝑝) +
(opposite(Θ𝑝′)(𝑝) \ (− ∪𝑝′ 𝐴𝑝′ |𝑝)) +
Σ𝑝′ sent(Θ𝑝′)(𝑝) − Σ𝑝′ sent(Θ𝑝)(𝑝′)

(I2) sent(Θ𝑝)(𝑝′) − received(Θ𝑝′)(𝑝) = 𝐶(𝑝′)(𝑝).
Proof.
Proof is by induction on the steps.

First invariant (1):
Base case: Ω0

holding(Θ𝑝) = init

Case rule P-Call:
Actions 𝑎 and 𝑎𝑠 are removed from holding, and action 𝑎𝑠 is added to kept on the left.
Action −𝑎 is added to −Π𝑝′ on the right.
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Case rule P-Prop:
Action 𝑎 is removed from Π𝑝′ , and added to moved(Θ𝑝′) on the right.
Action −𝑎 is added to opposite, and added to (− ∪𝑝′ 𝐴(𝑝′)) if not already in it on the right.

Case rule P-Rel:
Actions kept(𝑟) and −𝑎 are added to holding, and action kept(𝑟) is removed
from kept on the left.
Action −𝑎 is removed from \(− ∪𝑝′ 𝐴(𝑝′)) on the right.

Case rule P-Deb:
No change

Case rule P-Cred:
For 𝑝∗:

Action 𝑎′ is removed from holding(Θ𝑝∗) on the left.
Action 𝑎′ is added to −sent(Θ𝑝∗)(𝑝) on the right.

For 𝑝
Action 𝑎′ is added to 𝐶(𝑝) on the left.
Action 𝑎′ is added to sent(Θ(𝑝∗)(𝑝) on the right.

Case rule P-Dep:
For 𝑝∗:

Action 𝑎 is added to holding(Θ𝑝∗ on the left.
Action 𝑎 is removed from 𝐶(𝑝∗) on the left.

For 𝑝
No change

First invariant (2):
sent(Θ𝑝)(𝑝′) − received(Θ𝑝′)(𝑝) = 𝐶(𝑝′)(𝑝).
Base case: Ω0
∅ − ∅ = ∅

Case rule P-Call:
No Change

Case rule P-Prop:
No Change

Case rule P-Rel:
No Change

Case rule P-Deb:
No Change

Case rule P-Cred:
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Action 𝑎′ is added to sent(Θ𝑝∗)(𝑝) on the left.
Action 𝑎′ is added to 𝐶(𝑝)(𝑝∗) on the right.

Case rule P-Dep:
Action 𝑎 is added to received(Θ𝑝∗)(𝑝) on the left.
Action 𝑎 is removed from 𝐶(𝑝)(𝑝∗) on the right.

□
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9 Implementation details
In this section, we detail the implementation of our protocol presented in § 4. The implementation
consists of two main parts: (1) pre-computing the conflicting actions and storing them in a table;
and (2) executing the runtime protocol (Alg. 1-Alg. 2), including querying the table.

move(a01)
move(a02)

move(a01) move(a02)

move(a)

move(a)

Fig. 21. An example of conflicting actions when

performing action 𝑎. There are two sets (blue

and green) of actions that can cause conflict.

We slightly displace the 𝑎′1 actions so that they
do not fully overlap.

(1) Pre-computing conflicts. Given the AR
board and its restricted zones, we use the Z3 SMT
solver [25] to determine the conflicting actions for
the current location 𝑙 of the virtual object and the
action 𝑎. We illustrate this through the following
2D example. In Fig. 21, a replica wants to perform
action 𝑎 shown in orange. Two examples from the
space of conflicting sequences of actions in the 𝑋+
and 𝑌+ directions are shown in blue and green. Blue
is a sequence of 12.5 units of 𝑋+, and 87.5 units of
𝑌+. Green is 75 units of 𝑋+, and 12.5 units of 𝑌+.
Both are conflicting sequences: when combined with
𝑎, the result is in a restricted zone. If we calculate
the minimum magnitude in the 𝑋+ direction, we get
12.5. The minimum conflicting action is ⟨𝑋+ , 12.5⟩.
To prevent conflicts, we need to prevent actions of
at least 12.5 units in the 𝑋+ direction. Alternatively,
if we calculate the minimum magnitude in the 𝑌+
direction, we get 12.5, and the minimum conflicting
action is ⟨𝑌+ , 12.5⟩. To prevent conflicts, we need to prevent actions of at least 12.5 units in the 𝑌+
direction. Both solutions are correct. We pre-compute the minimum conflicting actions for each
location 𝑙 and action 𝑎 using the Python Z3 API, and generate a JSON table of conflicts.

However, it is time-consuming to generate all conflicting actions using Z3 SMT solver. To accel-
erate the time of generating table of conflicts, we learned the rule of the solver when generating
conflicting actions. We find that the conflicting actions generated by Z3 SMT solver can be general-
ized into computation when only a single restricted zone is presented in the AR board. Although
different set of conflicting actions are generated by Z3 SMT solver, they provide the same hint that
given the current location 𝑙 and action 𝑎, the conflicting actions are the minimum magnitude of
aggregated action that brings the action 𝑎 into the restricted zone.

We illustrate this rule in details, Fig. 22 presents three cases with different locations 𝑙 and action
𝑎. In Fig. 22a, the conflicting actions 𝑎′1 and 𝑎′2 can be computed by finding the closest point inside
the restricted zone that action 𝑎 can enter potentially which is the coordinate of (-50, 0). We then
take this point and subtracts the action 𝑎 (right, 12,5) starting from location 𝑙 (-75, -25) to get the
conflicting actions 𝑎′1 (right, 12.5) and 𝑎′2 (up, 25). The same rule can be applied to example Fig. 22b,
where the closest point inside the restricted zone is (-12.5, 25). Another case in example Fig. 22c
yields the closest point of (-50, 0) because the action 𝑎 itself has a direction of right, and to enter
the restricted zone, it must also enter from the right.
Therefore, given any topology, we can synthesize the conflicting tables by combining the com-

putation results from the single restricted zone topology and only utilize Z3 SMT solver when in
complex regions where more than two restricted zones are nearby. With this optimization, the
pre-computation time can be reduced up to 97% for the Corner topology (from 14.8 hours to 0.4
hours).
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move(a01)

move(a02)
move(a)

(a)

move(a)
move(a01)

move(a02)
(b)

move(a)

move(a01)

move(a02)

(c)

Fig. 22. Example of conflicts actions (blue) when only one restricted zone presents. These can be generalized

given current location 𝑙 and action 𝑎 (orange), the conflicting actions (blue) lead to the closest point in the

restricted zone.

Besides table generating time, we also make several optimizations to accelerate the credit-sharing
process. We discretize the board, action magnitude, and action direction (left, right, up, down).

We only check likely compositions of other replicas’ actions. One could naively generate the table
by checking integrity violation constraints for all possible numbers of and compositions of other
actions exhaustively. However, in practice, we find that this is unnecessary. First, for a given board,
location, and action, certain orders of other replicas’ actions cannot cause conflicts. Second, the
actions of a potentially conflicting sequence might be infeasible. Considering the request frequency
in AR applications, the number of concurrent actions can be bounded. Further, the number of users,
and the magnitude of each action that users can take can be bounded. Therefore, their aggregated
action may not be large enough to cause a conflict. In our example in Fig. 21, while the orange
action 𝑎 is performed, the actions of blue or green might be too large and infeasible. No credit is
acquired for an infeasible conflicting sequence.
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(2) Executing the protocol. We implemented
the protocols presented in § 4 in Java for both the
Android and desktop simulations. When a user seeks
to take an action (in Alg. 2 at L. 15), the table from the
previous step is queried with the current location of
the virtual object, and the action to find the conflict-
ing actions of other users (at L. 16). If needed, credits
are then acquired (at L. 17).
Efficiently acquiring credits. Efficiently acquir-

ing these credits is challenging because a replica does
not know who to request credits from. We examined
two configurable parameters: the fraction of credits to
request from each replica, and the number of replicas
(users) to acquire credits from, as a refinement of the
broadcast that requests credits in Alg. 2 (at L. 58). Requesting too many credits from too many
replicas results in credits being unfairly distributed most of the time, preventing replicas from
performing conflict-free actions. On the other hand, requesting too few credits will lead to multiple
rounds of communication, and hence increased latency. We systematically test the parameters
to see the impact on the average latency of each action. We performed a grid search of fraction
(50%, 60%, .., 100%) and the number of replicas to request from (1, 2, 3, 4) in a simulation with 7
replicas. In Fig. 23, we present the results, showing that the higher fraction and more users per
request, the lower the average latency. In the rest of the experiments, we request from 4 replicas
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with 100% fraction of the total credit needed, as it yields the lowest average latency of 132.61 ms in
the simulation.

Further, to provide additional support, we implemented a complementary mechanism of selecting
users that are likely to have credits. Rather than opting for a random user when requesting credits,
each replica maintains a list of other replicas who have recently borrowed credits from it, and tends
to choose those replicas to request from. Furthermore, when receiving credits, each replica keeps
a record of which other replicas replied with fewer than requested credits, as an indication that
they have insufficient credits. With these techniques, replicas can make smarter decisions when
requesting credits from other replicas. Finally, to prevent a few replicas from holding all credits in
the system, each replica randomly distributes their held credits when finishing actions and sensing
that they hold more than 80% of the total system credits.

Waiting set. Next, we detail the implementation of our waiting set 𝑤 in Alg. 2 (at L. 29). When
receiving an action from another replica, it is possible that this action is not permissible at the
current location (at L. 28) although it is rarely the case. Instead of recording individual pending
actions in the waiting set, we summarize the pending actions in the waiting set into one aggregate
action. This is more efficient at the slight risk of a potential delay, due to waiting for the aggregate
action rather than the small sub-actions to become permissible.
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10 Additional Results
In this section, we present the Full-sized plot
of our experimental results in § 5 and also a
corresponding 2D topology (Middle in Fig. 32b)
results. Each subsection describes the location
staleness and system throughput results for the
corresponding subsections.

10.1 Impact of Request Load
Under different request loads in Fig. 26, all four
methods are less responsive and have a higher
location staleness with Hambazi having a me-
dian staleness percentage of 1.5%, compared to
1.41%, 1.5%, and 15.0% for Netcode, Hamsaz,
and Firestore respectively.

10.2 Scalability
In terms of system throughput (Fig. 28c), Ham-
bazi can finish almost all calls even with 7 de-
vices issuing nearly simultaneous calls, while
Netcode and Hamsaz both have unfinished
calls 0.4% for all number of devices. For the Fire-
store baseline, although it is capable of com-
pleting calls with fewer devices (unfinished rate
grows from 0%to 10.7%), note that the median
latency grows significantly after more than 3
devices, with a median latency of 304.0 ms for
3 devices and 1012.0 ms for 7 devices. This in-
dicates that while the throughput is still high,
the server-based approach can only handle the
contention at a slow pace resulting in a high
location staleness of 7.5% with 7 devices.

10.3 Impact of Board Topology
As shown in Fig. 30b, the Corner3D and Mid-
dle3D have an average location staleness of
0.69% and 0.67% respectively, and the easiest
Triangle3D has 0.33%. For the Dynamic3D topol-
ogy, it has 0.39%. Fig. 31 shows the throughput
results.

10.4 Impact of Network Latency -
Homogeneous

In terms of the location staleness (Fig. 35b),
baseline methods experience increased staleness
as the RTT increases. However, Hambazi still
maintains zero staleness even with 5x RTT.

10.5 Impact of Network Latency -
Heterogeneous

The location staleness of Hambazi (Fig. 37b)
also remains zero staleness on the slower De-
vice 0.Similarly, for Hamsaz, location staleness
is higher for Device 0 with poor network con-
ditions with a median staleness of 1.0%. Net-
code, generally have poor staleness among all
devices with a median latency of up to 1.2%.
Note that Device 2 is the leader/host device in
Hamsaz/Netcode and hence has zero staleness.

10.6 Fault Tolerance
The location staleness of Hambazi (Fig. 39b)
sometimes decreases when failures are present
because there are fewer devices in the system
that contribute action calls. Similar results are
shown in different topologies in Fig. 40-Fig. 47.
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Fig. 24. Compared to Netcode, Hamsaz, and Firestore, Hambazi has lower latency 90% of the time, the

lowest location staleness, and similar throughput.
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Fig. 25. In 2D case, compared to Netcode, Hamsaz, and Firestore, Hambazi has lower latency 99% of the

time, the lowest location staleness, and similar throughput.
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(c) System throughput

Fig. 26. Varying the mean inter-arrival times from light load (210 ms) to intense load (70 ms). With the intense

load, Hambazi yields the lowest latency 70% of the time and maintains reasonably low location staleness

compared to the baselines. In terms of system throughput, Hambazi is capable of finishing all calls while

Netcode, Hamsaz and Firestore have 0.2%, 0.2%, and 27.8% unfinished calls per minute respectively.
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Fig. 27. In 2D case, with the intense load, Hambazi yields the lowest latency 75% of the time and maintains

reasonably low location staleness compared to the baselines. In terms of system throughput, Hambazi is

capable of finishing all calls while Netcode, Hamsaz and Firestore have 0.2%, 0.2%, and 30.5% unfinished

calls per minute respectively.
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Fig. 28. With an increasing number of devices issuing requests, Hambazi still benefits from conflict-free

actions and results in the lowest latency and staleness compared to baselines.
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Fig. 29. In 2D case, Hambazi still benefits from conflict-free actions and results in the lowest latency and

staleness.
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Fig. 30. Hambazi outperforms the baselines in terms of latency and location staleness.
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Fig. 31. Different topologies impact the amount of conflict-free actions, but the system can still handle all

action calls.
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Fig. 32. Four 3D and five 2D AR game boards topologies are evaluated. With one dynamic topology in both

3D and 2D.
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Fig. 33. In 2D case, even with more challenging topologies (Corner, Ladder), Hambazi outperforms the

baselines in terms of latency and location staleness.
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Fig. 34. In 2D case, the system can still handle all action calls.
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Fig. 35. Slower network impacts the Netcode and Hamsaz with increasing latency and location staleness,

while Hambazi can still achieve a median latency of 67.3 ms and zero staleness when 5x RTT is applied.
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Fig. 36. In 2D case, Hambazi can still achieve a median latency of 1 ms and zero staleness when 5x RTT is

applied.
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Fig. 37. Device 0 has slower networks. Hambazi is less impacted by network heterogeneity, while Netcode

and Hamsaz have up to 1.6x and 1.5x of the median latency for Device 0 compared to other devices.
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Fig. 38. In 2D case, Device 0 has slower networks. Hambazi is less impacted by network heterogeneity with a

median latency of 1 ms to all devices, while Netcode and Hamsaz have up to 1.6x and 1.5x of the median

latency for Device 0 compared to other devices.
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Fig. 39. Latency, staleness, and throughput comparison when failures are present in Middle3D topology.

Hambazi can continue the operations even when failures are present. The overall latency is not affected, with

slightly long tails depending on the pre-configured recovery wait time. Throughput decreases as the failed

devices can not contribute calls to the system.
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Fig. 40. In 2D case, Latency, staleness, and throughput comparison when failures are present in Middle

topology. Hambazi can continue the operations even when failures are present. Throughput decreases as the

failed devices can not contribute calls to the system.
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Fig. 41. Latency, staleness, and throughput comparison when failures are present in the “Corner3D” topology.
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Fig. 42. Latency, staleness, and throughput comparison when failures are present in the “Triangle3D” topology.
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Fig. 43. Latency, staleness, and throughput comparison when failures are present in the “Dynamic3D”

topology.
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Fig. 44. Latency, staleness, and throughput comparison when failures are present in the “Corner” topology.
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Fig. 45. Latency, staleness, and throughput comparison when failures are present in the “Ladder” topology.
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Fig. 46. Latency, staleness, and throughput comparison when failures are present in the “Triangle” topology.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 91. Publication date: April 2025.



91:80 Yi-Zhen Tsai, Jiasi Chen, and Mohsen Lesani

100 101 102 103 104

Latency (ms)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F No Failure

1 Failure
2 Independent 
Failures
2 Concurrent 
 Failures

(a) Latency

0 2 4 6 8 10
Staleness (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F No Failure

1 Failure
2 Independent 
Failures
2 Concurrent 
 Failures

(b) Staleness

No F
ailu

re

1 F
ailu

re

2 I
nd

ep
en

de
nt 

Fai
lur

es

2 C
on

cur
ren

t 

 Fa
ilur

es
0

50
100
150
200
250
300

Th
ro

ug
hp

ut
(c

al
ls/

m
in

ut
e)

(c) Throughput

Fig. 47. Latency, staleness, and throughput comparison when failures are present in the “Dynamic” topology.
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