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1 Encryption Calculus

This section formally defines the encryption scheme inference problem on an
extended simply-typed lambda calculus, formalizes our solution, and proves
various correctness and security properties of the approach.

Our formalism is parameterized by a set M of arithmetic operations
and a set R of logical predicates, whose union we denote O. The formalism
is also parameterized by a lattice L of encryption schemes, each of which
supports some subset of the operations in O, with associated partial order v.
We assume that if l1 v l2 and encryption scheme l2 supports some operation
f ∈ O, then l1 also supports that operation. Also, for each operation f ∈ O
we assume there is a unique maximal element of L that supports f , which
we denote lf .

In our implementation, M = {+,×} and R = {<,=, >} and We have
the set of encryption schemes L ={RAND, OP, DET, MH, AH, FHE}.
RAND encryption supports no operations, OP supports {=, <, >}, DET
supports {=}, MH supports {×}, AH supports {+}, FHE supports all of
these operations. We define the encryption lattice on L as follows: FHE v
OP , FHE v MH, FHE v AH, OP v DET , DET v RAND, MH v
RAND, AH v RAND. In this lattice, FHE is ⊥ and RAND is >.

1.1 Source Programs

We define the set of expressions as follows

e ::= e1 e2 | e1 f e2 | Program
v | x

v ::= λx:ρ.e | n | nl Value

In our implementation, M = {+,×} and R = {<,=, >}. The set of types
is defined as follows:

τ ::= Int | α | ρ→ ρ Type
κ ::= l | ◦ | γ Qualifier
ρ ::= κ τ Qualified Type

A program is a closed function. Given the program, the type inferencer
will automatically infer the optimum encryption schemes for the input vari-
ables. Note that the type of a lambda abstraction parameter can be a type
variable and the type inferencer can infer the type. Constants can appear
in programs. n is a natural number. nl denotes an encrypted value of the
natural number n with the encryption scheme l. Instead of encoding con-
stants in the program, they can be given as inputs to the program so that
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the type inferencer automatically infers their encryption schemes.
α denotes a type variable, γ denotes a qualifier variable. ◦ is the qualifier

for unencrypted data. As any operation is supported on unencrypted data,
v is extended such that ∀f : ◦ v lf

We define decr(e) that decrypts the the encrypted numbers in e, as
follows: decr(e1 e2) = decr(e1) decr(e2), decr(e1 f e2) = decr(e1) f decr(e2),
decr(λx:ρ.e) = λx:ρ.decr(e), decr(nl) = n, decr(n) = n and decr(x) = x.

1.2 Plaintext Domain

1.2.1 Operational Semantics

R ::= [ ] | Reduction Context
R e | v R |
R f e2 | v f R

We characterize the transitions of these operations as follows:

App-Trans
R[(λx:ρ.e) v]→ R[e[x 7→ v]]

Math-Trans
n f n′ = n′′ f ∈M
R[n′ f n′′]→p R[n′′]

Rel-Trans

n′′ =

{
1 if (n f n′)
0 if ¬(n f n′)

f ∈ R

R[n f n′]→p R[n′′]

1.3 Encrypted Domain

1.3.1 Typing

The typing environment is a mapping from a set of variables x to types
ρ. The typing rules are defined as follows: The judgments are of the form
Γ ` e : ρ i.e. in the type environment Γ, the expression e has type ρ.
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Q-Lam

Γ[x 7→ ρ1] ` e : ρ2

Γ ` λx:ρ1.e : ◦ (ρ1 → ρ2)

Q-Math

Γ ` e′ : κ Int Γ ` e′′ : κ Int
κ v lf f ∈M
Γ ` e′ f e′′ : κ Int

Q-Int-l

Γ ` nl : l Int

Q-Var

Γ(x) = ρ

Γ ` x : ρ

Q-App

Γ ` e1 : κ (ρ1 → ρ2) Γ ` e2 : ρ1

Γ ` e1 e2 : ρ2

Q-Rel

Γ ` e′ : κ Int Γ ` e′′ : κ Int
κ v lf f ∈ R

Γ ` e′ f e′′ : ◦ Int

Q-Int

Γ ` n : ◦ Int

The typing rules enforce that operations should be applied to the operands
of the same encryption scheme and that the encryption scheme should sup-
port the operation. Also for assertion expressions, the encryption of the
asserted expression is enforced to be at least as strong as the the asserted
scheme.

1.3.2 Operational Semantics

R ::= [ ] | Reduction Context
R e | v R |
R f e2 | v f R

We characterize the transitions of these operations as follows:
The transition rules are defined as follows.
Q-App-Trans

R[(λx:ρ.e) v]→ R[e[x 7→ v]]

Q-Math-Trans

n f n′ = n′′ f ∈M
l v lf

R[nl f n
′
l]→ R[n′′l]

Q-Rel-Trans

n′′ =

{
1 if (n f n′)
0 if ¬(n f n′)

f ∈ R

l v lf
R[nl f n

′
l]→ R[n′′]
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1.3.3 Type Inference

The judgments are of the form Γ ` e : ρ;C;X i.e. in the type environment
Γ, the expression e has type ρ under the constraints C. The set of variables
X keeps track of the variables that are introduced in each subderivarion.
The set of constraints is defined as

C ::= {τ1 = τ2} | Constraint
{κ1 = κ2} | {γ v l} |
C1 ∪ C2

Equality constraints of the form κ1 τ1 = κ2 τ2 can be desugared to {κ1 =
κ2, τ1 = τ2}.

The type inference rules are defined as:

Q-Lam-Inf

Γ[x 7→ ρ1] ` e : ρ2;C;X
C ′ = C ∪ {γ = ◦, α = ρ1 → ρ2}
X ′ = X ∪ {γ, α} γ, α fresh

Γ ` λx:ρ1.e : (γ α);C ′;X ′

Q-App-Inf

Γ ` e1 : ρ1;C1;X1 Γ ` e2 : ρ2;C2;X2

C = C1 ∪ C2 ∪ {ρ1 = γ (ρ2 → γ′ α)}
X = X1 ∪ X2 ∪ {γ, γ′, α}

X1 ∩ X2 = X1 ∩ FV (ρ2) = X2 ∩ FV (ρ1) = ∅
γ, γ′, α fresh

Γ ` e1 e2 : (γ′ α);C;X

Q-Math-Inf

f ∈M
Γ ` e1 : (κ1 τ1);C1;X1 Γ ` e2 : (κ2 τ2);C2;X2

C = C1 ∪ C2 ∪ {κ1 = κ2 = γ, γ v lf , τ1 = τ2 = Int = α}
X = X1 ∪ X2 ∪ {γ, α}

X1 ∩ X2 = X1 ∩ FV (κ2 τ2) = X2 ∩ FV (κ1 τ1) = ∅
γ, α fresh

Γ ` (e1 f e2) : (γ α);C;X
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Q-Rel-Inf

f ∈ R
Γ ` e1 : (κ1 τ1);C1;X1 Γ ` e2 : (κ2 τ2);C2;X2

C = C1 ∪ C2 ∪ {κ1 = κ2, γ = ◦, κ1 v lf , τ1 = τ2 = Int = α}
X = X1 ∪ X2 ∪ {γ, α}

X1 ∩ X2 = X1 ∩ FV (κ2 τ2) = X2 ∩ FV (κ1 τ1) = ∅
γ, α fresh

Γ ` (e1 f e2) : (γ α);C;X

Q-Var-Inf

Γ(x) = ρ

Γ ` x : ρ; ∅; ∅

Q-Int-l-Inf

C = {γ = l, α = Int} X = {γ, α}
γ, α fresh

Γ ` nl : (γ α);C;X

Q-Int-Inf

C = {γ = ◦, α = Int} X = {γ, α}
γ, α fresh

Γ ` n : (γ α);C;X

Encryption Scheme Inference. The encryption scheme inference prob-
lem is defined as the following type inference problem. Consider a program
(a closed expression) e. Let ρ, C and X be a type, a set of constraints and
a set of variables such that ∅ ` e : ρ;C;X . Let the mapping σ be a solution
for C. An encryption scheme for e is the restriction of σ to the qualifier
variables of e.

1.4 Soundness

Lemma 1 (Progress). If ∅ ` e : ρ, then either e is a value or there is some
e′ such that e→ e′.

Lemma 2 (Preservation). If Γ ` e : ρ and e→ e′ then Γ ` e′ : ρ.

Intuitively, these two lemma state that a well-typed program never gets
stuck during transition. This means that, at runtime, operations are applied
to operands of the same encryption scheme.
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Now, we show that the computation in the encrypted domain parallels
the computation in the plaintext domain.

Lemma 3 (Encryption Domain Soundness). If e→ e′, then decr(e)→p

decr(e′).

Intuitively this means that any transition in the encrypted domain has
a corresponding transition in the plaintext domain.

Lemma 4 (Encryption Domain Completeness). If ∅ ` e1 : ρ, e′1 =
decr(e1) and e′1 →p e

′
2, then e1 → e2 and e′2 = decr(e2).

Intuitively, this means that any transition in plaintext domain has a
corresponding transition in encrypted domain.

Lemma 5 (Soundness of Type Inference). If Γ ` e : ρ;C;X and σ is
a substitution such that σ(C) is valid, then σ(Γ) ` σ(e) : σ(ρ).

The soundness of type inference intuitively means that once the inferred
types are applied to the program, the program is well-typed.

A write σ \ X for a substitution that is undefined for all the variables in
X and otherwise behaves like σ.

Lemma 6 (Completeness of Type Inference). If Γ ` e : ρ;C;X and
there is a substitution σ such that σ(Γ) ` σ(e) : ρ′ and dom(σ) ∩ X = ∅
then there is a substitution σ′ such that σ′(C) is valid and σ′(ρ) = ρ′ (and
σ′ \ X = σ).

The completeness of type inference intuitively means that if there is a
typing for a program, then type inference can find it.

1.5 Security Guarantees

We assume an honest-but-curious adversary model, where the server ob-
serves the data, the program, and the program execution and can perform
polynomial-time computation over the observations. However, the server
does not change the data or the computation. One caveat is that the server
should run in polynomial time in the size of the data and the input, but not
in the potentially exponential program trace. If we allow the adversary to
run in time polynomial in the program trace, it may be able to execute an
exponentially long computation in the security parameter, and so to decrypt
all the encrypted values trivially.
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We formalize our security guarantees in terms of indistinguishability [5].
Indistinguishability is formalized using an adversary A = (A1, A2), perform-
ing a sequence of two (potentially randomized) polynomial-time algorithms.
Initially keys (pk , sk) = K(λ) are generated based on a security parameter λ.
First, algorithm A1 takes as input the public key pk and outputs two plain-
text messages x0 and x1, together with some additional state information s.
Next, a bit b ∈ {0, 1} is chosen at random, and message xb is encrypted as
a challenge ciphertext y using pk . Finally, algorithm A2 runs on (y, s) and
has to guess the bit b. The advantage of the adversary is defined as

AdvE(A) = Pr[A2(y, s) = b]− 1

2
where the random variables are distributed uniformly.

An encryption scheme E = (K,E,D) satisfies single-use indistinguisha-
bility against chosen plaintext attacks (IND-CPA) if for each adversary A
we have that AdvE(A) is negligible (recall that a function f(n) is negligible
if |f(n)| < 1

poly(n) for all sufficiently large n). Intuitively, a polynomial-time
adversary cannot identify the plaintext from a ciphertext with advantage
significantly better than that obtained by flipping a coin. For example, it is
known that the El Gamal and Paillier cryptosystems satisfy IND-CPA.

Unfortunately, IND-CPA is too strong a requirement for deterministic
encryption schemes: for example, the adversary can store the encryptions
of x0 and x1 and compare the challenge ciphertext y against the stored ci-
phertexts. Similarly, IND-CPA is too strong for order-preserving schemes.
Thus, one defines weaker notions of indistinguishability for such schemes.
We omit detailed definitions (see, e.g., [2, 3, 4]), but assume that each indi-
vidual encryption scheme E has an associated indistinguishability property
IND(E).

In our context, we have a set of inputs x1, . . . , xn to the program, and use
possibly different encryption schemes E1, . . . , En for them. We ask, given that
each scheme Ei satisfies IND(Ei), what we can guarantee about the full en-
crypted data. To do this, we define the notion of program-indistinguishability
for a tuple of encryption schemes. Intuitively, the adversary now chooses
two sequences of plaintexts, according to possible restrictions placed by the
IND conditions. Now one of the two is chosen at random and component-
wise encoded using its encryption scheme. The adversary has to guess which
of the two sequences was encoded by looking at the encrypted vector. No-
tice that we do not consider the encrypted program in the definition, since
the adversary can perform an arbitrary polynomial-time computation, in
particular, it can run the program for a polynomial number of steps. The
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following theorem generalizes a result from [1].

Lemma 7. Given encryption schemes Ei satisfying IND(Ei) for i = 1, . . . , n,
(E1, . . . , En) is program-indistinguishable.

Thus, MrCrypt provides a security guarantee that is as strong as the indi-
vidual encryption schemes used for each data item.
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2 Proofs

2.1 Helper Lemmas

Lemma 8 (Inversion of Typing).

• If Γ ` λx:ρ1.e : ρ then ρ = ◦ (ρ1 → ρ2) for some ρ2 with Γ, x:ρ1 `
e : ρ2.

• If Γ ` nl : ρ then ρ = l int.

• If Γ ` n : ρ then ρ = int.

Proof. Immediate form typing derivation rules.

Lemma 9 (Canonical Forms).

• If v is a value of type ρ1 → ρ2 then v = λx:ρ1.e for some e.

• If v is a value of type l int then v = nl for some n.

• If v is a value of type int then v = n for some n.

Proof. Immediate by case analysis on the structure of v and using the in-
version lemma, Lemma 8.

Lemma 10 (Type Preservation Under Substitution). If Γ, x:ρ ` e : ρ′

and Γ ` v : ρ, then Γ ` e[x 7→ v] : ρ′.

Proof. Immediate by induction on the derivation of Γ, x:ρ ` e : ρ′.

Lemma 11 (Inversion of Decryption).

• decr(e) = λx:ρ1.e
′
1 then e = λx:ρ1.e1 where decr(e1) = e′1.

• decr(e) = n then either e = n or e = nl for some l.

Proof. Immediate form the definition of decr.
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2.2 Main Lemmas

Lemma 1 (Progress)
Hypothesis:
∅ ` e : ρ

Conclusion:
either e is a value
or there is some e′ such that e→ e′

Proof.
Induction on the derivation of ∅ ` e : ρ.
Case the rule Q-Lam:

λx:.e is a value.
Case the rule Q-App:

e1 and e2 are typed.
Induction hypothesis is applied to e1 and e2.
If both are values, using the canonical lemma (Lemma 9),
the rule Q-App-Trans can be applied.
Otherwise, by reduction contexts R e and v R,
the transitions of e1 or e2, yield transitions for e1 e2.

Case the rule Q-Math:
This is similar to the rule Q-App case, except that
for the case where both e and e′ are values,
the required condition l v lf of the rule Q-Math-Trans
is given by the rule Q-Math.

Case the rule Q-Rel:
Similar to the case of the rule Q-Math.

Case the rule Q-Int-L:
nl is a value.

Case the rule Q-Int:
n is a value.

Case the rule Q-Var:
A variable in not typed under empty environment.

Lemma 2 (Preservation)
Hypothesis:

Γ ` e : ρ
e→ e′

Conclusion:
Γ ` e′ : ρ
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Proof.
Straightforward induction on the derivation of Γ ` e : ρ and then case anal-
ysis on the final rule in the derivation of e→ e′.
Case the rule Q-Lam:

No reduction rule can be applied to λx:.e.
Case the rule Q-App:

e1 and e2 are typed.
If the transition is by the rule Q-App-Trans,

As the type of e1 is a function type, it is
typed by the rule Q-Lam. From the premise of
the rule Q-Lam and type preservation under substitution
lemma, Lemma 10, we get the result.

Otherwise, the transitions are in reduction contexts R e or v R,
By the induction hypothesis, the type of e1 or e2 is preserved
after the transition. Thus, the rule Q-App yields the result.

Case the rule Q-Op-Math:
This is similar to the case of the rule Q-App, except that
for the case where both e and e′ are values,
the rule Q-Int-L yields the result.

Case the rule Q-Op-Rel:
Similar to the case of the rule Q-Op-Math.

Case the rule Q-Int-L:
No reduction rule can be applied to nl.

Case the rule Q-Int:
No reduction rule can be applied to n.

Case the rule Q-Var:
No reduction rule can be applied to a variable x.

Lemma 3 (Encryption Domain Soundness)
Hypothesis:

e→ e′

Conclusion:
decr(e)→p decr(e

′)

Proof.
Straightforward induction on the derivation of e→ e′.
Case the rule Q-App-Trans

Immediate from the rule App-Trans.
Case the rule Q-Math-Trans
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Immediate from the rule Math-Trans.
Case the rule Q-Rel-Trans

Immediate from the rule Rel-Trans.

Lemma 4 (Encryption Domain Completeness)
Hypothesis:
∅ ` e1 : ρ,
e′1 = decr(e1)
e′1 →p e

′
2

Conclusion:
e1 → e2
e′2 = decr(e2)

Proof.
Straightforward induction on the derivation of ∅ ` e1 : ρ.
Case the rule Q-Lam:

decr(e1) is a lambda term. It cannot be reduced.
Case the rule Q-App:

e1 = e11 e12
e′1 = decr(e1) = e′11 e

′
12 where

e′11 = decr(e11) and e′12 = decr(e12)
If e′1 → e′2 is by the rule App-Trans,

We have that e′11 = λx:ρ.e′, e′12 = v′, e′2 = e′[x 7→ v′]
By the inversion lemma, Lemma 11, we have

e11 = λx:ρ.e such that decr(e) = e′ and
e12 = v such that decr(v) = v′.

Thus, e′2 = e′[x 7→ v′] = decr(e)[x 7→ decr(v)]
By the rule Q-App-Trans, e1 → e2 where e2 = e[x 7→ v]
which yields the result.

Otherwise,
Either e′11 = decr(e11) or e′12 = decr(e12) makes a transition.
The result follow from the induction hypothesis.

Case the rule Q-Math:
Similar to the case of the rule Q-App.
The important difference is that
in the case that e′1 → e′2 is by the rule Math-Trans, the fact that
the two operands have the same encryption scheme l
comes from the premises of the rule Q-Math.

Case the rule Q-Rel:
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Similar to the case of the rule Q-Math.
Case the rule Q-Int-L:

decr(e1) is an n. It cannot be reduced.
Case the rule Q-Int:

decr(e1) is an n. It cannot be reduced.
Case the rule Q-Var:

A variable cannot be typed under an empty environment.

Lemma 5 (Soundness of Type Inference)
Hypothesis:

(1) Γ ` e : ρ;C;X
(2) σ(C) is valid

Conclusion:
σ(Γ) ` σ(e) : σ(ρ)

Proof.
Structural induction on e:
Case e = e1 f e2:

From [1] and Q-Math-Inf (Q-Rel-Inf is similar), we have
(3) ρ = γ α
(4) Γ ` e1 : (κ1 τ1);C1

(5) Γ ` e2 : (κ2 τ2);C2

(6) C = C1 ∪ C2 ∪ {κ1 = κ2 = γ, γ v lf , τ1 = τ2 = Int = α}
From [2] and [6], we have

(7) σ(C1) is valid
(8) σ(C2) is valid

From IH on [4], [7], we have
(9) σ(Γ) ` σ(e1) : σ(κ1 τ1)

Similarly, from IH on [5], [8], we have
(10) σ(Γ) ` σ(e2) : σ(κ2 τ2)

From [6], [2], we have
(11) σ(κ1) = σ(κ2) = σ(γ)
(12) σ(κ) v lf
(13) σ(τ1) = σ(τ2) = σ(α)

From [9], [11], [13], we have
(14) σ(Γ) ` σ(e1) : σ(γ) σ(α)

From [10], [11], [13], (and α = Int), we have
(15) σ(Γ) ` σ(e2) : σ(γ) σ(α)

From Q-Math, [14], [15], [12], we have
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(16) σ(Γ) ` σ(e1 f e2) : σ(γ) σ(α)
From [3], [16], we have

σ(Γ) ` σ(e1 f e2) : σ(ρ)
Case e = e1 e2:

Similar to the case e1 f e2. Application of IH on the subexpressions.
Case e = λx:ρ1.e

′:
Application of IH to Γ[x 7→ ρ1] ` e′ : ρ2;C.

Case e = x:
Trivial. Γ(x) = ρ. Thus, σ(Γ) = σ(ρ) .

Case e = nl:
Trivial.

Case e = n:
Trivial.

Lemma 6 (Completeness of Type Inference)
Hypothesis:

(0) Γ ` e : (γ α);C;X and
There is a substitution σ such that
(1) σ(Γ) ` σ(e) : (κ τ)
(2) dom(σ) ∩ X = ∅

Conclusion:
There is a substitution σ′ such that
σ′(C) is valid and
σ′(γ α) = κ τ and
σ′ \ X = σ.

Proof.
Structural induction on e:
Case e = e1 f e2:

From the rule Q-Math-Inf (the rule Q-Rel-Inf is similar) and [0],
we have

(3) Γ ` e1 : (κ1 τ1);C1;X1

(4) Γ ` e2 : (κ2 τ2);C2;X2

(5) C = C1 ∪ C2 ∪ {κ1 = κ2 = γ, γ v lf , τ1 = τ2 = Int = α}
(6) X = X1 ∪ X2 ∪ {γ, α}
(7) X1 ∩ X2 = X1 ∩ FV (κ2 τ2) = X2 ∩ FV (κ1 τ1) = ∅
(8) γ, α fresh

From Q-Op, [1], we have
(9) σ(Γ) ` σ(e1) : (κ τ)
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(10) σ(Γ) ` σ(e2) : (κ τ)
(11) κ v lf

From [2], [6], we have
(12) dom(σ) ∩ X1 = ∅
(13) dom(σ) ∩ X2 = ∅

By IH on [3], [9], [12] we have
There exists σ1 such that
(14) σ1(C1) is valid.
(15) σ1(κ1 τ1) = (κ τ)
(16) σ1 \ X1 = σ

By IH on [4], [10], [13] we have
There exists σ2 such that
(17) σ2(C2) is valid.
(18) σ2(κ2 τ2) = (κ τ)
(19) σ2 \ X2 = σ

As we have [7] (X1 ∩ X2 = ∅), [8], we can define σ′ as follows:

(20) σ′ =


Y 7→ U if Y /∈ X ∧ (Y 7→ U) ∈ σ
Y1 7→ U1 if Y1 ∈ X1 ∧ (Y1 7→ U1) ∈ σ1
Y2 7→ U2 if Y2 ∈ X2 ∧ (Y2 7→ U2) ∈ σ2
γ 7→ κ
α 7→ τ

From [20], we have
σ′(γ α) = κ τ

From [20], [2], we have
σ′ \ X = σ.

Thus, what is remained to be proved is
σ′(C) is valid.

Thus, from [5], we need to prove
σ′(C1) is valid.
σ′(C2) is valid.
σ′({κ1 = κ2 = γ, γ v lf , τ1 = τ2 = α}) is valid.

From [20], [8] (γ and α not in C1), no Y2 in X2 is in C1, [6], [16], [14],
σ′(C1) is valid.

From [20], [8] (γ and α not in C2), no Y1 in X1 is in C2, [6], [19], [17],
σ′(C2) is valid.

Thus, what is remained to be proved is
σ′({κ1 = κ2 = γ, γ v lf , τ1 = τ2 = α}) is valid.

We need to prove
σ′(γ) v lf
σ′(κ1) = σ′(γ)
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σ′(κ2) = σ′(γ)
σ′(τ1) = σ′(α)
σ′(τ2) = σ′(α)

From [20], [11] we have
σ′(γ) v lf

From [20], [7] (X2 ∩ FV (κ1 τ1) = ∅), [8] ({γ, α} ∩ FV (κ1 τ1) = ∅) and
[16], we have

(21) σ′(κ1) = σ1(κ1)
From [15], we have

(22) σ1(κ1) = κ
From (20), we have

(23) σ′(γ) = κ
From [21], [22], [23], we have

σ′(κ1) = σ′(γ)
The proofs of the remained equations are the same.

σ′(κ2) = σ′(γ)
σ′(τ1) = σ′(α)
σ′(τ2) = σ′(α)

Case e = e1 e2:
Similar to the case e = e1 f e2.
σ′ is defined as follows:

σ′ =


Y 7→ U if Y /∈ X ∧ (Y 7→ U) ∈ σ
Y1 7→ U1 if Y1 ∈ X1 ∧ (Y1 7→ U1) ∈ σ1
Y2 7→ U2 if Y2 ∈ X2 ∧ (Y2 7→ U2) ∈ σ2
γ′ 7→ κ
α 7→ τ

Case e = λx:ρ1.e
′:

From the premises of the rule Q-Lam-Inf on
Γ ` λx:ρ1.e

′ : (γ α);C ′;X ′, we have
Γ[x 7→ ρ1] ` e′ : ρ2;C;X

By the inversion lemma on σ(Γ) ` λx:σ(ρ1).σ(e′) : (κ τ),
κ = ◦, τ = σ(ρ1)→ ρ′2 and σ(Γ)[x 7→ σ(ρ1)] ` σ(e′) : ρ′2 for some ρ′2,

Thus, IH gives a σ′′ such that
σ′′(C ′) is valid.
σ′′(ρ2) = ρ′2
σ′′ \ X = σ

σ′ is defined as follows:
σ′ = σ′′[γ 7→ ◦][α 7→ (ρ1 → ρ2)].

The result follows by substitutions.
σ′(γ α) = σ′(◦) σ′(ρ1 → ρ2) = ◦ (σ′′(ρ1)→ σ′′(ρ2)) =
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κ (σ(ρ1)→ ρ′2) = κ τ
Note that σ′′(ρ1) = σ(ρ1) because
X does not contain any type variables of ρ1 and σ′′ \ X = σ

σ′(C ′) is valid because σ′′(C) is valid and direct substitution.
σ′ \ X ′ = σ by the definition of σ′ and σ′′ \ X = σ.

Case e = x:
σ′ = σ. Trivial.

Case e = nl:
σ′ = [γ 7→ l][α 7→ Int]. Trivial.

Case e = n:
Similar to the case e = nl. Trivial.

Lemma 7 (Security)

Proof. LetA = (A1, A2) be an adversary attacking program-indistinguishability,
with advantage at least ε. For each encryption scheme i = 1, . . . , n, we build
an adversary (Bi

1, B
i
2) as follows. The algorithm Bi

1 takes a public key pki
and uses the key generation algorithm to generate (n − 1) public keys and
calls A1 with the tuple (pk1, . . . , pki, . . . , pkn). It returns the ith component
of the output of A1. Next, when the adversary receives the challenge yi,
she picks b′ ∈ {0, 1} at random. Let b′′ = 1 − b′. She generates a vector
(y1, . . . , yi, . . . , yn) so that for all components 1 < k < i, yk is the encryp-
tion of xb

′
k and for components i < l < n, yl is the encryption of xb

′′
l . These

encryptions are performed using the keys generated in the first step. The
calculation of [1] shows that choosing an adversary Bi uniformly at random
gives an adversary with advantage ε/n.

3 Constraint Solving

Given an encryption lattice L with elements l and a set of constraints C
of the following form, the goal is to find a solution that assigns the largest
possible element of L to each qualifier variable. Note that a τ can be a
type variable α or a constant type t and a κ can be qualifier variable γ or a
qualifier constant q (l or ◦).

C ::= {τ1 = τ2} | {κ1 = κ2} | Constraint
{γ v l} |
C1 ∪ C2

We first apply unification to the type constraints τ1 = τ2. There is no
solution if the unification fails. For the set of qualifier constraints, we find

18



the equivalence classes of variables based on the equal pairs κ1 = κ2 in C.
If more than one constant is in a class, the constraints are inconsistent and
there is no solution. If there is only one constant in a class, we assign the
constant to each element of the class. (Note that when the constant ◦ is in a
class (of qualifier variables), no encryption l can be assigned to the variables
of the class and ◦ is assigned to them.) For the classes that contain no
constant, we proceed as follows. For each class of qualifier variables Q, let
LQ be the set of lattice elements l for which there is a variable γ ∈ Q such
that (γ v l) ∈ C. The greatest lower bound of LQ in L is assigned to each
element of Q.
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