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Abstract. Synchronization algorithms that provide the transaction in-
terface are intricate. We present an algorithm description language that
explicitly captures the type of the used synchronization objects and as-
sociates labels to method calls to explicitly capture their intra-thread
order. We use the language to capture architecture independent repre-
sentations of transactional memory (TM) algorithms. We present a novel
logic that enables reasoning about synchronization algorithms that are
described in the language. The logic quantifies over program labels and
provides specific predicates and intuitive inference rules to reason about
the inter-thread execution and linearization orders of labeled method
calls. In particular, the logic assertions can directly capture orders that
are fundamental to the correctness of transactions. We present a deno-
tational semantics for the language and prove the soundness of the logic.
We have formalized the logic in the PVS proof assistant and mechanically
constructed the challenging correctness proof of the TL2 TM algorithm.

1 Introduction

Synchronization algorithms such as mutual exclusion, concurrent data structures
and transactional memory are subtle. Designing a synchronization algorithm in-
volves choosing synchronization objects and programming the coordination logic
using them. There is a trade-off in the choice between consistency and efficiency
of a synchronization object. For example, although an atomic register maintains
consistency in every concurrent execution, it is less efficient than a basic reg-
ister that does not provide any guarantee in the presence of race. In addition,
algorithm designers have to decide and properly program the order of method
calls in each thread. These orders are crucial to the correctness of the algorithm
in every possible interleaving. Intra-thread orders are usually specified using
architecture-dependent fence instructions. As a result, a synchronization algo-
rithm is complicated, low-level and prone to bugs. Engineering reliable software
stacks built on top of these algorithms requires their precise description and
rigorous verification. In this paper, we present a description language for syn-
chronization algorithms, a novel logic to reason about synchronization algorithm
descriptions and apply the logic to mechanize the verification of TM algorithms.

Dekker Example in the Description Language. The language explicitly
captures the type of the base synchronization objects and the intra-thread order
of method calls on them. As an example, consider the description of the Dekker
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(a)

T : f1, f2 : AtomicRegister

D :
def init() def tryLock1() def tryLock2()
W01 . f1.write(0), W1 . f1.write(1), W2 . f2.write(1),
W02 . f2.write(0), R2 . x2 = f2.read(), R1 . x1 = f1.read(),

if (x2 = 0), if (x1 = 0)
C1t . return true C2t . return true

else else
C1f . return false, C2f . return false,
{W1 → R2}, {W2 → R1},

P : L0 . init(),
L1 . l1 = tryLock1() ‖ L2 . l2 = tryLock2()

X2L
T (o) ∈ LT

π, Γ ` obj(l) = obj(l′) = o π, Γ ` l ≺ l′

π, Γ ` l ≺o l′

P2X
c1 →π c2

π, Γ ` exec(ς’c1) π, Γ ` exec(ς’c2)

π, Γ ` ς’c1 ≺ ς’c2
(b)

Fig. 1: (a) Dekker Description πD = (T ,D,P). (b) Example inference rules.

mutual exclusion algorithm [10] in Figure 1.(a). The description comprises three
sections. The first section, typing T , describes the base synchronization objects
that the algorithm uses. Dekker uses two atomic registers as flags. Using basic
registers as flags can lead to a race and violation of mutual exclusion. The second
section, definitions D, describes the definition of methods. The initialization
method initializes the two flags to zero. In the two try-lock methods, each thread
first writes to its own flag and then reads from the flag of the other thread. Each
try-lock method allows entry to the critical region only if it finds the flag of
the other thread unset. Every method call in the description is uniquely marked
with a label. The order of writing the flag of the current thread and then reading
the flag of the other thread is crucial to the correctness. Reordering these two
method calls can violate mutual exclusion. The required orders for the body
of each method definition are declared after the body. For example, the order
W1 → R2 requires the methods call W1 to be executed before the method call
R2. The third section, program P, represents the concurrent client program
for the defined methods. First, the initialization method is called and then two
concurrent threads are executed, each calling one of the try-lock methods.

Reasoning and Orders. The mutual exclusion property states that at most
one of the two threads can enter the critical section. More precisely, if either of the
two methods calls labeled L1 and L2 returns true, the other one returns false.
An intuitive classical proof for the mutual exclusion property of the Dekker
algorithm is as follows. We directly reason about execution and linearization
orders across threads and use the properties of linearizable registers such as the
totality of the linearization order. In particular, we use the real-time-preservation
property [19] of linearizability that states that if a method call is executed before
another on a linearizable object, then the former is linearized before the latter
as well. Assume that L1 returns true, we prove that L2 does not return true.
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If L1 has returned true, it should have been by C1t. Therefore, the condition
of the if statement is satisfied (that is x2 = 0). Therefore, the read operation
R2 from the flag f2 returns 0. There are two write method calls W02 and W2

on f2. The initialization method call W02 is executed before both R2 and W2;
therefore, by the real-time preservation property, is linearized before them. Now,
W2 can either linearize before or after R2. The first case is not possible because
otherwise, W2 would be the last write to f2 before R2. Therefore, R2 would
return the value that W2 writes. However, W2 writes 1, and R2 has returned 0.

In the second case, the method call R2 linearizes before W2. Therefore, (1)
R2 is executed before or concurrent to W2. (This holds because otherwise, R2

would be executed after W2. Thus, by the real-time-preservation property, R2

would be linearized before W2 as well that contradicts the assumption of this
case.) According to the explicit program orders, (2) W1 is executed before R2

and (3) W2 is executed before R1. From the transitivity of the execution order
on the three orders 2, 1, and 3 above, we have that W1 is executed before R1.
Therefore, W1 linearizes before R1 as well. The initialization method call W01 is
executed before R1 and W1 and is therefore linearized before the two. Therefore,
W1 is the last write to f1 before R1. Therefore, R1 returns the value that W1

writes that is 1. Therefore, x1 = 1. Therefore, as the condition of the if statement
is not satisfied, C2f is executed. Therefore, L2 returns false.

Labeled Synchronization Logic. Can we build a rigorous foundation for
this intuitive style of reasoning? Is it possible to construct formal proofs in this
style? We present a novel first-order logic called labeled synchronization logic
(LSL) that enables reasoning about synchronization algorithms based on the
execution and linearization orders of method calls on the base synchronization
objects. It quantifies over program labels and provides specific predicates for
execution order, execution overlap and linearization orders of labeled method
calls across threads. These assertions capture critical orders between concurrent
operations. In addition, LSL provides simple-to-use inference rules to reason
about these orders and deduce algorithm correctness. For example, we applied
LSL to stated and prove the mutual exclusion property of the Dekker algorithm.
The following theorem states that for the Dekker description (πD) with no prior
assumptions (·), it can be inferred that if L1 returns true, then L2 returns false.
If the first thread can enter the critical section, then the second cannot. The
symmetric property can be state and proved similarly.

Theorem 1. πD, · ` (retv(L1) = true)⇒ (retv(L2) = false).

The full proof is available in the appendix [27] § 10 and the mechanised
proof is available at [26]. We show two inference rules of LSL as examples in
Figure 1.(b). LSL uses dynamic labels l to uniquely identify method call in-
stances. For example, the label L2’W2 is a call string that refers to the instance
of the method call labeled W2 (in the definitions section D) that is executed in
the body of the caller method labeled L2 (in the program section P).

The rule X2L states the real-time-preservation property of linearizability
[19]: the execution order ≺ of method calls on an object o of a linearizable type
LT is preserved in the linearization order ≺o of the object o. If a method call
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Fig. 2: Illustration of Read-Preservation

is executed before another on a linearizable object, then the former is linearized
before the latter as well. Using the rule X2L, a step that we saw in the informal
proof of the Dekker algorithm can be formalized as follows. From the fact that
method call L0’W02 is executed before ≺ the method call L2’W2 and that both
are on the atomic register f2,

πD, Γ ` obj(L0’W02) = obj(L2’W2) = f2 ∧ L0’W02 ≺ L2’W2

we can deduce that L0’W02 is before L2’W2 in the linearization order ≺f2 of the
atomic register f2

πD, Γ ` L0’W02 ≺f2 L2’W2

In the sequent, Γ is any set of assumption assertions.
The the rule P2X states the program-order-preservation property: the pro-

gram order is preserved in the execution order. (The prefix label variable is
denoted by ς.) For example, the Dekker description πD declares the method call
W1 to be ordered before the method call R2 i.e. W1 →π R2. Using the rule P2X,
from the declared order and that both L1’W1 and L1’R2 are executed

πD, Γ ` exec(L1’W1) ∧ exec(L1’R2)

we can deduce that L1’W1 is executed before L1’R2

πD, Γ ` L1’W1 ≺ L1’R2

Correctness of Transactional Memory. Execution and linearization or-
ders of method calls on the base synchronization objects play a critical role in
the reasoning about the correctness of transactional memory algorithms. In a
previous work [30], we represented a decomposition called markability of the TM
correctness condition opacity [14]. Markability decomposes opacity to separate
intuitive invariants that can be separately verified. An execution history is mark-
able if there is a specific ordering relation on the set of transactions and their
read operations called marking such that three invariants are satisfied.

A marking of a transaction history is a relation on the union of the transac-
tions and the read operations in the history. We can think of the marking as the
union of a collection of orders: The effect order : The effect order is a total order
of the transactions. It represents the order in which the transactions appear to
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take effect. The access orders: Let us refer to the committed transactions that
have write operation(s) to location i as writers of i. Consider an unaborted read
operation R on a location i. For each such R, the access order is an antisymmet-
ric relation that orders R and every writer of i. The access order of R represents
where R has read i between the writers of i.

For example, Figure 2 presents the sketch of a transaction history with two
transactions T1 and T2. The horizontal lines from left to right show the time for
the two threads executing T1 and T2, and the boxes show execution of method
calls on the transactional interface. These method calls may call multiple meth-
ods on the base synchronization objects. The dark circles show the effect points
of the two transactions and the solid arrow shows the effect order. The transac-
tion T2 takes effect before T1. The transaction T2 is a writer of both i1 and i2.
The white circles show the access points for the two reads R1 and R2. The read
R1 reads i1 before T2 writes to it. Similarly, the read R2 reads i2 after T2 writes
to it. The relation is called marking as these points can be usually marked as
particular method calls on the base synchronization objects in the algorithm and
the orders are defined as execution and linearization orders on these calls.

As an example, the second invariant of markability called read-preservation
requires that the location read by a read operation is not overwritten between the
two points that the read takes place and the transaction takes effect. Consider
an unaborted read operation R from a location i by a transaction T . Intuitively,
read-preservation requires that no writer of i comes between R and T in the
marking relation. The read-preservation property is violated in Figure 2. The
read R1 is an unaborted read from i1 in T1. The transaction T2 is a writer of
i1. The read R1 is before T2 in the access order and T2 is before T1 in the effect
order. The value that R1 reads is overwritten by T2 before T1 is committed. The
transaction T2 writes a new value to both i1 and i2. The read R1 reads the old
value of i1 and R2 reads the new value of i2 that can be inconsistent. Read-
preservation is usually simply verified by the validations checks in the commit
and read operations.

In this project, we have used LSL to construct a new mechanized proof of
TL2 [9], in the PVS proof assistant. Specifically, we have expressed markability
in the assertion language and then applied LSL inference rules to deduce the
markability assertion. This result shows that LSL is scalable to complicated
transactional memory algorithms. We have proved the soundness of LSL: If an
assertion is deduced using valid assumptions, then the deduced assertion is valid
as well. An assertion is valid if it evaluates to true in every execution.

The Structure of the Paper. In § 2 and 3, we present the description lan-
guage and LSL, and In § 4, we state a marking for TL2 and prove the markability
of TL2 in LSL. We present the related works in § 5 before conclusion.

2 Description Language

We now present the language that we describe concurrent algorithms in. An
algorithm description π is a triple (T ,D,P) where T is the type declarations
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for the used synchronization objects, D is the method definitions, and P is a
concurrent client program that calls the defined methods. The set of descriptions
Π is defined as follows:

π ∈ Π ::= (T ,D,P)
T ::= (φ : ot)∗

D ::= d∗

d ::= def nt(x
∗) s, r

s ::= s, s | if (b) s else s | q | c . foreach (i ∈ set) s
q ::= c . x = o.nτ (u∗) | c . return u
b ::= ¬b | b ∧ b | u = u | u = u+ u | u < u
r ::= ‘{’ (c→ c)∗ ‘}’
P ::= p0, (p1‖p2‖...‖pn)
p ::= p; p | if (b) p else p | c . x = nτ (u∗)

The description of the Dekker algorithm is presented in Figure 1.(a) as an ex-
ample. We look at each section in turn.

A typing T is a mapping from object names φ to object types ot. We use x∗

to denote a finite sequence of x’s. An object type ot is either a scalar or an array
type. A scalar type is either a basic type BT such as BasicRegister, BasicSet, or
BasicMap, or a linearizable type LT such as AtomicRegister, AtomicCASRegister,
Lock, TryLock, or strong counter SCounter. As an example, in the Dekker de-
scription of Figure 1.(a), both flags f1 and f2 are declared to be atomic registers.
Using basic registers can lead to a race and violation of mutual exclusion. We
will revisit synchronization object types when we present their specific inference
rules. An array type of a scalar type st is of the form st[ ]. A thread-local type
is an array type and the well-formedness conditions enforce that a thread-local
object is only indexed by the identifier of the calling thread.

The definitions D is a sequence of method definitions d. We denote a method
name by n, a value by v, a variable by x, a value or variable by u, a thread
value by T , a thread variable by t, and a thread value or variable by τ . The
method definition def nt(x

∗) s, r defines a method named n with thread pa-
rameter t and data parameters x∗ with the body s and the declared order r.
The Dekker description of Figure 1.(a) defines three methods: init, tryLock1
and tryLock2. A statement s is either a sequence, a conditional, a method call
or a return statement. A condition b is a boolean expression on variables and
values. In a method call c . x = o.nτ (u∗), c is the label, x is the return vari-
able, o is the receiving object, n is the method name, τ is the current thread
argument, and u∗ are the data arguments. The labels of statements are unique
in π. Every variable is uniquely bound. An object o is either a single object
φ or an an element of an array φ[u]. In a return statement c . return u, c is
the label and u is the returned value or variable. In the appendix [27] § 7, we
define the foreach iteration statement on sets and maps as a syntactic sugar.
As we will see, the semantics of the language supports out-of-order or relaxed
execution. Any two labels that are left unordered by the description may be
reordered in the execution. Data and control dependencies in the method body
s impose order between statements. However, the programmer can explicitly re-
quire additional orders. The declared program order r of a method definition is
a binary relation on the set of labels in the body s. For example, the Dekker
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description of Figure 1.(a) declares the orders W1 → R2 and W2 → R1 that are
crucial to the correctness. Programming fences is complicated and error-prone.
This platform-independent description of the required orders can be used by
compilers to optimize fence insertion [4] for different target architectures. The
declared order facilitates architecture-independent verification. Further, if the
order of two statements that is unnecessary for correctness is changed, the proof
stays unchanged.

The client program section P is of the form p0, (p1‖p2‖...‖pn) where p0 is
the initialization program, and p1, p2, . . ., and pn are the parallel programs.
For example, the program section of the Dekker description in Figure 1.(a) has
two parallel programs that each call one of the two defined try-lock methods.
A sequential program p is either a sequence, a conditional or a method call. In
a method call c . x = nτ (u∗), n is name of a method that is defined in the
method definitions section D. The object this is the default receiver object and
is therefore elided in the client calls. We use θ to denote a synchronization object
o or the this object.

Let →n denote the irreflexive transitive closure of the data and control de-
pendencies and the declared order of method n. Let the program order →π be
the irreflexive partial order on Labels(π) defined as the union of the following:
(1) the initialization order (that orders the labels of p0 before the labels of par-
allel programs), (2) the sequential order of the sequential programs pi, and (3)
For each method definition n, the order →n.

LSL uses the following functions that are directly derived from the program
description. The names of methods defined in a description are unique. Thus,
we define the functions par1π and par2π that map method names to their first
and second parameters. Similarly, tparπ maps method names to their thread
parameter. As the labels in a description are unique, we define the function
objπ that maps the label of a method call to its receiver object. Similarly, the
functions indexπ, nameπ, threadπ, arg1π, arg2π and retvπ map the label of a
call to the array index of the receiver object, the name of the method, the thread
identifier, first and second arguments and the return variable of the method call.
For a return statement, we let nameπ and arg1π map to the name return and
the argument of the return statement respectively.

We call the conjunction of all the enclosing if (and else) conditions of a
statement, its enclosing condition. Let the function condπ map statement labels
to their enclosing conditions. Let Labelsπ(n) denote the set of labels in the body
of the method n. Let Returnsπ(n) denote the set of labels of return statements
in the body of n. Let PreReturnsπ(c) denote the set of labels of the return
statements before the statement labeled c in π.

3 Labeled Synchronization Logic

Now, we present our first-order logic to reason about synchronization algorithm
descriptions.
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XASym
π, Γ ` l ≺ l′

π, Γ ` ¬(l′ ≺ l) ∧ ¬(l′ ∼ l) ∧ ¬(l′ = l)

XTrans
π, Γ ` l ≺ l′ π, Γ ` l′ ≺ l′′

π, Γ ` l ≺ l′′

X2Trans
π, Γ ` l1 ≺ l2 π, Γ ` l2 ∼ l3 π, Γ ` l3 ≺ l4

π, Γ ` l1 ≺ l4

XTotal
π, Γ ` exec(l) ∧ exec(l′)

π, Γ ` (l ≺ l′) ∨ (l′ ≺ l) ∨ (l ∼ l′) ∨ (l = l′)
(a)

X2L
T (o) ∈ LT

π, Γ ` obj(l) = obj(l′) = o π, Γ ` l ≺ l′

π, Γ ` l ≺o l′
LASym

π, Γ ` l ≺o l′

π, Γ ` ¬(l′ ≺o l) ∧ ¬(l = l′)

LTrans
π, Γ ` l ≺o l′ π, Γ ` l′ ≺o l′′

π, Γ ` l ≺o l′′
LTotal
T (o) ∈ LT π, Γ ` exec(l) ∧ exec(l′)

π, Γ ` obj(l) = obj(l′) = o

π, Γ ` (l ≺o l′) ∨ (l′ ≺o l) ∨ (l = l′)
(b)

X2X
π, Γ ` l ≺ l′

π, Γ ` exec(l) ∧ exec(l′)

L2X
π, Γ ` l ≺o l′

π, Γ ` exec(l) ∧ exec(l′) ∧
obj(l) = obj(l′) = o

(c)

Fig. 3: The Basic Inference Rules. (a) properties of execution orders, (b) lin-
earization orders, and (c) derived rules.

Assertions. We first define the set of dynamic labels that uniquely identify
method call instances. As an example, in execution histories for the Dekker
algorithm (Figure 1.(a)), we have the two labels L1 and L1’W1. The label L1

refers to a call site in the program section P. On the other hand, the label L1’W1

is a call string that refers to the instance of the method call labeled W1 (in the
definitions section D) that is executed in the body of the client method call
labeled L1. Thus, a dynamic label l is of the form ς’c where the pre-label ς is
either a static label c or no label ε. The symbol ε is the left identity element of
the prefixing operator.

A method can be called several times in the program. To have unique lo-
cal variable names, every variable (including the parameters) of the method is
prefixed by the caller label. The labeled variable c’x denotes the instance of the
local variable x in the body of the method call labeled with c. Similarly, the
prefixing operator is lifted to expressions over variables. The assertions language
of LSL is described by the following grammar.

e ::= obj(`) | name(`) | thread(`) | Expression
arg1(`) | arg2(`) | retv(`) |
initOf(τ) | commitOf(τ) |
o | n | ς’x | v | ς’t | T

R ::= e = e | e < e | ` = `′ | c = c | Proposition
exec(`) | ` ≺ `′ | ` ∼ `′ | ` ≺o `′ | τ ≺≺ τ ′

A ::= R | ¬A | A ∧ A | ∀` : A | ∀t : A Assertion
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Here, c is a program label (such as C1t in the Dekker description of Figure 1.(a)),
l is a constant label (such as the dynamic labels L1 and L1’C1t for the Dekker
description), ` is a label variable, T is a thread (or transaction) identifier value, t
is a thread identifier variable, τ is a thread value or variable, x is a variable, v is a
value, o is an object name, and n is a method name. Expressions use six function
symbols. The functions obj, name, thread, arg1, arg2 and retv map a label of the
program to its object, method name, thread name, first and second argument,
and return value. The function initOf maps each transaction to the label of its
init method call. The function commitOf maps each committed transaction to
the label of its commit method call. Propositions use seven predicates. The first
two are equality (=) and integer comparison (<). The proposition exec(`) states
that the method call labeled ` is executed. The proposition ` ≺ `′ asserts that ` is
executed before `′. the proposition ` ∼ `′ asserts that ` is executed concurrent to
`′. For a linearizable object o, the proposition `1 ≺o `2 states that `1 is linearized
before `2 in the linearization order of o. (As we will describe in the semantics
section, any concurrent execution on a linearizable object is equivalent to a
correct sequential execution. The total order of method calls in that sequential
execution is called the linearization order.) The proposition τ ≺≺ τ ′ asserts that
all the labels of thread τ are executed before all the labels of thread τ ′. This
assertion is used to state that a transaction is executed before another.

An assertion is either a proposition, negation of an assertion, conjunction of
two assertions, or existential quantification over labels or transactions. As usual,
we can define, disjunction ∨, universal quantification ∀, less than or equal ≤,
executes before or equal �, linearized before or equal �o, thread executed before
or equal �� as syntactic sugar.

For an algorithm description π, a judgement is of the form π, Γ ` A, where
Γ is the context, that is, a list of assertions, and A is a closed assertion. The
judgement is read as for every execution of the program π, if the assertions in
Γ hold, then the assertion A holds. For example, π, Γ ` l ≺ l′ says that in every
execution of π where Γ holds, the statement labeled l is executed before the
statement labeled l′.

Algorithms can be verified modularly. The client program section P of an al-
gorithm description π can specify general clients. For example a lock algorithm
description π (such as Dekker) can be verified separately. Then, the lock object
(with its abstracted implementation) can be used to implement a TM. Verifica-
tion of the description π′ of the TM is restricted to the labels of π′ and does not
involve π.

Inference Rules. We now present the inference rules of LSL. The infer-
ence rules can be conceptually divided into four groups. First, the first-order
logic rules (which are standard and omitted here). Second, the basic rules that
axiomatize the properties of execution and linearization orders and their inter-
dependence (Figure 3). Third, the synchronization object rules that axiomatize
the properties of common synchronization object types (Figure 4). Fourth, the
inference rules that axiomatize the relation of the algorithm description and
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AReg
T (r) = AtomicRegister
π, Γ ` isReadr(lR)

π, Γ ` ∃`W : isWriterr(`W , lR) ∧
retv(lR) = arg1(`W )

BReg
T (r) = BasicRegister

π, Γ ` isSingleWriter(r)
π, Γ ` isReadr(lR)

π, Γ ` isRaceFreer(lR)

π, Γ ` ∃`W : isEWriterr(`W , lR) ∧
retv(lR) = arg1(`W )

isReadr(`R)⇔
exec(`R) ∧ obj(`R) = r ∧ name(`R) = read

isWriter(`W )⇔
exec(`W ) ∧ obj(`W ) = r ∧ name(`W ) = write

isWriterr(`W , `R)⇔
isWriter(`W ) ∧ `W ≺r `R ∧
∀`′W : isWriter(`

′
W )⇒ (`′W �r `W ∨ `R ≺r `′W )

isEWriterr(`W , `R)⇔
isWriter(`W ) ∧ `W ≺ `R ∧
∀`′W : isWriter(`

′
W )⇒ (`′W � `W ∨ `R ≺ `′W )

isRaceFreer(`)⇔
∀`W : isWriter(`W )⇒ (`W ≺ ` ∨ ` ≺ `W )

isSingleWriter(r)⇔
∀`w : isWriter(`w)⇒ isRaceFreer(`w)

LockUnlockPair
T (o) = Lock

π, Γ ` isOwnerRespect(o)
π, Γ ` isLocko(la1)
π, Γ ` isUnlocko(lr2)
π, Γ ` la1 ≺o lr2
π, Γ ` ∃`r1 , `a2 :

isUnlocko(`r1) ∧ thread(`r1) = thread(la1) ∧
isLocko(`a2) ∧ thread(`a2) = thread(lr2) ∧

`r1 ≺o `a2
CountSeq

T (o) = SCounter
π, Γ ` exec(l1) ∧ obj(l1) = o ∧ name(l1) = iaf

π, Γ ` exec(l2) ∧ obj(l2) = o
π, Γ ` retv(l1) < retv(l2)

π, Γ ` l1 ≺o l2

isLocko(l)⇔
exec(l) ∧ obj(l) = o ∧
name(l) = lock

isUnlocko(l)⇔
exec(l) ∧ obj(l) = o ∧
name(l) = unlock

isOwnerRespect(o)⇔
∀` : isUnlocko(`)⇒ ∃`′ :

isLocko(`
′) ∧

thread(`′) = thread(`) ∧
`′ ≺ ` ∧
∀`′′ :

(isUnLocko(`
′′) ∧

thread(`′′) = thread(`))⇒
`′′ ≺ `′ ∨ ` � `′′

Fig. 4: Synchronization Object Inference Rules. Four of the rules for atomic and
basic registers, lock and strong counter.

the execution. We showcase a few rules. The full set of rules for the common
synchronization objects is available in the appendix [27] § 9.

Figure 3 represents the set of basic inference rules that intuitively capture
the properties of execution and linearization orders and their relation. The
rule XASym states the asymmetry property of the execution order. If a method
call is executed before another method call, then the latter is not executed be-
fore the former and they are not executed concurrently. The rule XTrans states
the transitivity property of the execution order. The rule X2Trans states the
transitivity of the sequence of precedence, concurrency and precedence execu-
tion relations. If l1 is executed before l2, l2 is executed concurrent to l3 and l3 is
executed before l4, then l1 is executed before l4. The rule XTotal states the to-
tality property of the precedence and concurrency execution relations. Every pair
of executed method calls either execute in order or concurrently. The rule X2L
states the real-time-preservation property of linearization orders: The execution
order of two method calls on a linearizable object (specified by T (o) ∈ LT )
is preserved in the linearization order. The rule LASym states the asymmetry
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property of linearization orders. If a method call is linearized before another one,
then the latter is not linearized before the former. The rule LTrans states the
transitivity property of linearization orders. The rule LTotal states the totality
property of linearization orders. Every two executed method calls on a lineariz-
able object are ordered in its linearization order. The two derived rules X2X and
L2X can be established by an inductive reasoning on the length of the proof of
l ≺o l′. The rule X2X states that if a method call is executed before another
one, then clearly both are executed. The rule L2X states that if a method call
is linearized before another one, then clearly both are executed.

Now let us look at a few synchronization object rules in Figure 4. First, the
rule AReg states that for every read method call lR on an atomic register, there
is a write method call `W on it that writes the same value that lR reads and `W
is the last write method call that is linearized before lR. Second, the rule BReg
states that if a basic register r is single-writer, for every race-free read method
call lR on r, there is a write method call `W on r that writes the same value
that lR reads and `W is the last write method call that is executed before lR. A
register r is single-writer if and only if every pair of write method calls on it are
ordered in the execution order or in other words, every write method call on it is
race-free. A method call r is race-free if an only if there is no write method call
on r that executes concurrent to it. The rules AReg and BReg model Lamport’s
notion of atomic and safe registers [25]. Third, the rule LockUnlockPair states
the lock-unlock-pair property: if ownership of a lock object o is respected and
a lock method call on o by a thread τ1 is linearized before an unlock method
call on o by a thread τ2, then an unlock method call on o by τ1 is linearized
before a lock method call on o by τ2. The rule is derived from the fact that
if the ownership of a lock is respected, its linearization order is a sequence of
matching pairs of lock and unlock method calls. Intuitively, ownership for a lock
o is respected, if and only if every thread unlocks o only if it has already locked
o and has not unlocked o since then. Fourth, the rule CountSeq states the
count-sequence property: for a strong counter object co, if the return value of
an iaf (inc-and-fetch) method call on co is less than the return value of another
method call on co, then the former is linearized before the latter. The rule is
derived from the fact that the return values of method calls in the linearization
order of a strong counter is non-decreasing.

P2X
c1 →π c2 π, Γ ` exec(ς’c1) π, Γ ` exec(ς’c2)

π, Γ ` ς’c1 ≺ ς’c2
Callee
c′ ∈ Labelsπ(n) tparπ(n) = t par1π(n) = x π, Γ ` exec(ς’c′)

π, Γ ` ¬(ς = ε) ∧ exec(ς) ∧
obj(ς) = this ∧ name(ς) = n ∧ thread(ς) = ς’t ∧ arg(ς) = ς’x

The rules presented above refer to the algorithm description. The rule P2X
states the program-order-preservation property: the program order is preserved
in the execution order. If the algorithm description requires a method call l1 to
be ordered before another method call l2, the order is preserved in the execution
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of them from any call site ς. That is if ς’l1 and ς’l2 are executed, then ς’l1 is
executed before ς’l2. The rule Callee states that if a method call c′ in the body
of the caller method call ς is executed, then the later is also executed, is a this
method call and its parameters and arguments are equal.

We define the semantics [[π]] of a description π as a set of execution histories
X . A specification π models an assertion A, written as π |= A, iff every execution
X of π models A written as X |= A. The soundness theorem states that if
LSL deduces an assertion A for a description π using valid assumptions for π,
then the deduced assertion A is valid for π as well. Formally, ∀π,A : (π, Γ `
A ∧ π |= Γ ) ⇒ (π |= A). The semantics and soundness of LSL is available in
the appendix [27] § 8 & 11.

4 TM Verification

We now state the correctness of TM algorithms as an LSL assertion and apply
LSL to prove the correctness of the TL2 [9] algorithm. The challenge is to verify
that any concurrent execution of any set of well-formed transactions on TL2 is
opaque. Markability factors out a large part of the proof, allows specification
of the critical points of the algorithm and reduces verification to separate proof
obligations about the order of these points. LSL inference rules can be easily
used to prove the obligations based on the validation checks in the algorithm.

Transactional Memory. A TM object encapsulates a set of locations and
provides four methods initt(), readt(i), writet(i, v), and committ(). A well-
formed transaction first calls initt() and then calls a sequence of readt(i) and
writet(i, v) methods, and finally calls committ(). The method committ() tries
to commit transaction t and returns C (if it is successful). A TM object should
detect if an inconsistency is about to happen between two concurrent transac-
tions and should at least abort one of them. All methods may return abort A
and terminate the transaction.

Correctness Assertion. We presented a decomposition called markability
[30] of the correctness condition opacity [14]. Markability restates opacity in
terms of three intuitive invariants. We state Markability as an assertion in LSL.
The markability assertion isMarking(v) is parametric with the marking relation
v. The marking assertion is available in the appendix [27] § 13. We briefly explain
markability. A TM algorithm is markable iff there exists a marking relation for
it that is write-observant, read-preserving, and real-time-preserving.

A marking is a relation on the union of the transactions and the read method
calls. We can think of the marking relation as the union of a collection of orders:
(1) The effect order : The effect order is a total order of the transactions. The
effect order represents the order in which the transactions appear to take effect,
that is, the order that justifies the correctness of the execution. (2) The access
orders: Let writers of location i be the committed transactions that have write
method call(s) to i. Consider a read method call lR that reads from a location
i and doesn’t abort. For each such lR, the access order is an antisymmetric



Transaction Protocol Verification with Labeled Synchronization Logic 13

TTL2 :
reg : BasicReg[ ], rver : ThreadLocal BasiccReg,
ver : AtomiccReg[ ], rset : ThreadLocal BasicSet,
lock : TryLock[ ], wset : ThreadLocal BasicMap,
clock : SCounter, lset : ThreadLocal BasicSet

DTL2 :
def initt() def committ()
I01 . snap = clock.read(), C01 . foreach (i ∈ wset[t])
I02 . rver[t].write(snap), C02i . l′ = lock[i].trylock(),
I03 . return if (¬l′)
def readt(i) C03i . lset[t].add(i)
R01 . pv = wset[t].get(i), else

if (pv 6= ⊥) C04j . foreach (j ∈ lset[t])
R02 . return pv, C05i,j . lock[j].unlock(),

C06i . return A,
R03 . t1 = ver[i].read(),
R04 . v = reg[i].read(), C07 . wver = clock.iaf(),
R05 . l = lock[i].read(),
R06 . t2 = ver[i].read(), C08 . s = rver[t].read(),
R07 . s = rver[t].read(), if (wver 6= s+ 1)

if (¬(¬l ∧ t1 = t2 C09 . foreach (i ∈ rset[t])
∧ t2 ≤ s)) C10i . l = lock[i].read(),

R08 . return A, C11i . cver = ver[i].read(),
if (¬(¬l ∧ cver ≤ s))

R09 . rset[t].add(i), C12i . foreach (j ∈ lset[t])
R10 . return v, C13i,j . lock[j].unlock(),
{R03→ R04, R04→ R05, C14i . return A,
R05→ R06},
def writet(i, v) C15 . foreach ((i, v)∈wset[t])
W01 . wset[t].put(i, v), C16i . reg[i].write(v),
W02 . return ok, C17i . ver[i].write(wver),

C18i . lock[i].unlock(),

C19 . return C,
{C01→ C07, C10→ C11,
C09→ C15, C16→ C17,
C17→ C18},

P : tran0, (tran1 ‖ tran2 ‖ ... ‖ trann)

Fig. 5: TL2 Algorithm Description πTL2 = (TTL2,DTL2,P)

relation that orders lR and every writer of i. The access order represents where
lR’s access to location i has happened between the accesses by the writers of i.

Write-observation requires that each read method call should read the most
current value. Read-preservation requires that the location read by a read method
call is not overwritten between the read accesses the location and the transac-
tion takes effect. The real-time-preservation condition requires that the marking
relation preserves the real-time order of transactions.

Algorithm Description. We have represented the TL2 algorithm [9] in our
description language in Figure 5. The description πTL2 provides implementations
of the four TM methods initt(), readt(i), writet(i, v), and committ() in the
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definitions section D. The program in section P represents well-formed general
client transactions. A client program first runs tran0 to initialize the shared
variables and then concurrently runs n well-formed transactions tran1, .., trann.
A well-formed transaction t executes initt(), then a sequence of readt(i) and
writet(i, v) calls and finally a committ(); it finishes if any call returns A.

TL2 is a subtle algorithm. We briefly review how it works. TL2 uses the basic
register reg[i] to store the value of a location i. The algorithm reads reg[i] at
R04 and writes to reg[i] at C16. Additionally, TL2 uses synchronization objects
to help abort executions that would violate consistency. The idea is to give the
value written in reg[i] a version number that is stored in the ver[i] register.
TL2 uses a strong counter clock, whose value increases monotonically, to create
such version numbers. Specifically, TL2 takes snapshots of clock both at I01
when a transaction starts and at C07 (with an increment-and-fetch operation,
abbreviated iaf) during commit. TL2 validates the versions of read values before
completing both the read and commit methods.

Verification. We state the marking relation for the TL2 algorithm as an
assertion in LSL as follows:

The marking v is the reflexive closure of <.The relation < is defined as follows:
∀t, t′ : t < t′ ⇔ Eff(t) ≺clock Eff(t′)
∀`R, t : isTRead(`R) ∧ isTWriteri(t)⇒

Let i = arg1(`R) :
t < `R ⇔ writeAcci(t) - readAcc(`R)
`R < t⇔ readAcc(`R) ≺ writeAcci(t)

where

Eff(τ) =

{
initOf(τ)’I01 if isAborted(τ)
commitOf(τ)’C07 if isCommitted(τ)

readAcc(`R) = `R’R04
writeAcci(τ) = commitOf(τ)’C16i

Intuitively, the effect order of transactions is the linearization order of their
calls to clock at I01 and C07. The access order of read operations and writer
transactions to location i is the execution order of their access to the reg[i]
register at R04 and C16. The following theorem states that the relationv defined
above is a marking relation for TL2. The assertions Γ0 are the properties of well-
formed client transactions. We have mechanically checked the proof in PVS. The
PVS theories for TL2 and Dekker are available [26].

Theorem 2 (TL2 Correctness). πTL2, Γ0 ` isMarking(v).

5 Related Works and Conclusion

Manovit et al. [35] applied random testing to the TCC TM system. Lourenco
et al. [32] reported several bugs during the porting of the TL2 algorithm. Given
a TM algorithm and a bug pattern, our previous work [29] constructs a bug
trace if the algorithm is prone to the bug pattern. It showed the incorrectness
of algorithms that were deemed verified.

Although testing can find bugs, it does not prove their absence. To verify
the correctness of TM algorithms, researchers have employed model checking
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and theorem proving. Model checkers from Cohen et al. [5,6], and Guerraoui et
al. [15,17,16] are the pioneering approach to verification of TM. Subsequently,
the same approach was taken by O’Leary et al. [39] and Baek et al. [3]. Model
checking can automate the verification process but it has been dependent on
assuming properties about the TM algorithm and only scalable to a finite number
of threads and locations or simplified algorithms. Later, Emmi et al. [12] tried to
infer algorithm invariants from small number of threads and memory locations.
However, it worked on simplified algorithms due to scalability issues.

Attiya et al. [2] proved that opacity is sufficient for observational refinement
of high-level atomic block semantics. Our previous work [30] showed the equiv-
alence of opacity and markability and an informal proof of correctness for TL2.
Koskinen and Parkinson presented a semantic model of serializability based on
pulls from and pushes to an abstract shared log. Khyzha et al. [24] extended
opacity to account for non-transactional accesses. In contrast to the current
work, these works consider the correctness criteria, include only informal or
non-mechanized proofs and do not include a logic and its soundness.

Singh [40] developed a runtime verification tool for TM algorithms. Although
the tool is optimized with sound approximation techniques, the runtime over-
head is still not negligible. Our previous work [28] presented a machine-checked
theorem proving framework based on simulation between specifications and im-
plementations [33,18] represented as IOA [34] and verified the NORec algorithm
[7]. Doherty et al. [11] adopted the same approach and proved the correctness
of a pessimistic TM algorithm [36]. In follow-up works, Derrick et. al and Arm-
strong et al. [8,1] simplified their simulation proofs by first model checking or
proving the linearizability of the TM algorithm. In contrast to LSL that can
reason about the algorithm description, these works require the algorithm to be
translated to a transition system. In addition, they do not feature a logic.

To the best of our knowledge, LSL is the first logic that is applied to verifi-
cation of transaction algorithms. In particular, it provides assertions for inter-
thread execution and linearization orders that can directly capture the marking
relation and the markability condition. Leveraging the proof of sufficiency of
markability for opacity, verification of opacity is reduced to separate markability
conditions that can be proved by the logic based on the validation checks in the
algorithm. Logics based on concurrent separation logic [38,20] and rely-guarantee
reasoning [21] such as RGSep [42], LRG [13,31], FCSL [37], GPS [41] and Iris
[22,23] require the specification of inter-thread relations as complicated global
rely and guarantee conditions. Further, they need auxiliary variables even for the
simple Dekker algorithm which may obscure the underlying design intuitions of
the algorithms.

Conclusion. We presented a logic that supports syntactic reasoning about
synchronization algorithm descriptions and features novel assertions and infer-
ence rules for execution and linearization orders. These assertions enable captur-
ing critical orders between concurrent operations and in particular markability
orders between transactions. We proved the soundness of the logic and used it
to machine-check a significant proof of TL2.
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