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T :

lock : Lock
clock : SCounter
ver : BasicReдister

P :

L1 ▷ lock .lockT1 () L2 ▷ lock .lockT2 ()
C1 ▷ v1 = clock .iafT1 () ∥ C2 ▷ v2 = clock .iafT2 ()
R1 ▷ ver .writeT1 (v1) R2 ▷ ver .writeT2 (v2)
U1 ▷ lock .unlockT1 () U2 ▷ lock .unlockT2 ()

Figure 12. Example Specification π

8 Simple Example
We introduce the program logic via a simple example. In

this section, we present, first, an example specification in

a subset of the specification language, then, the simplified

program logic and finally, the deduction of a lemma for the

example specification.

8.1 Algorithm Specification
Figure 12 specifies a simple algorithm that updates a regis-

ter to ascending version numbers. In fact, it is a miniature

version of the TL2 commit procedure. This specification has

two sections: the type declaration section at the top and

the concurrent program section at the bottom. In general,

a specification can have a procedure definition section and

call procedures that we postpone to the next section.

The type declaration section declares the type of each syn-

chronization object used by the concurrent program. Three

object types are used in this program: lock Lock , strong
counter SCounter and basic register BasicReдister . Lock and
strong counter are linearizable object types and basic regis-

ter is a basic object type. In the general sense, linearizable

objects can maintain consistency even if they are accessed

concurrently while basic objects maintain consistency if they

are not accessed concurrently. A register has two methods:

write and read . For example, r .write (v ) writes the value v
to r , while x = r .read () reads the value of r and binds x to

that value. The language enforces unique binding for vari-

ables. A lock has two methods lock and unlock that lock and

unlock it respectively. A strong counter has two methods:

read and iaf (increment-and-fetch). For a strong counter c ,
x = c .read () reads the value of c and binds x to that value

and x = c .iaf () increments and then reads the value of c
and binds x to that value. The objects lock , clock andver are
declared of Lock , SCounter , and BasicReдister types.
The second section is the concurrent program. It is the

parallel composition of a set of sequential programs. In this

specification, there are two sequential programs where ev-

ery statement is a method call. A method call is of the form

l ▷ x = o.nτ (u) where l is the unique label of the method

call. We define the following functions on labels that are

immediately derived from the specification. objπ maps l to

Control

π ,Γ ⊢ exec (l ) ⇔ condπ (l )

Id

objπ (l ) = o nameπ (l ) = n
threadπ (l ) = τ arд1π (l ) = u retvπ (l ) = x

π ,Γ ⊢ exec (l )

π ,Γ ⊢ obj (l ) = o ∧ name (l ) = n ∧
thread (l ) = τ ∧ arд1(l ) = u ∧ retv (l ) = x

P2X

l1 →π l2 π ,Γ ⊢ exec (l1) π ,Γ ⊢ exec (l2)

π ,Γ ⊢ l1 ≺ l2

Src

π ,Γ ⊢ exec (l ) π ,Γ ⊢ obj (l ) = o π ,Γ ⊢ name (l ) = n

Callsπ (o,n) = {li }

π ,Γ ⊢
∨

i=1..n

l = li

Each rule has the side condition π = (T ,D,P)

Figure 13. Structure Inference Rules.

X2L

T (o) ∈ LT π ,Γ ⊢ obj (l ) = obj (l ′) = o π ,Γ ⊢ l ≺ l ′

π ,Γ ⊢ l ≺o l
′

XLTrans

π ,Γ ⊢ l1 ≺ l2 π ,Γ ⊢ l2 ≺o l3 π ,Γ ⊢ l3 ≺ l4

π ,Γ ⊢ l1 ≺ l4

Each rule has the side condition π = (T ,D,P)

Figure 14. Basic inference rules.

the receiving object o, nameπ maps l to the method name n,
threadπ maps l to the calling thread identifier τ , arд1π maps

l to the first argument u (that is either a variable x or a value

v), and retvπ maps l to the return variable x . The function
condπ maps l to the enclosing condition of the method call

labeled l . In this specification, we do not have if-then-else

statements, therefore, condπ (l ) = true for every label l . Ev-
ery specification π , defines a program order→π on the labels.

Intuitively, l1 →π l2 means that the specification requires

that if both l1 and l2 are executed, then l1 must be executed

before l2. In this specification, we assume sequential consis-

tency. Therefore, the program order→π simply represents

the order of labels in the program.We postpone relaxed order

of method calls to next later section.
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CountSeq

T (o) = SCounter
π ,Γ ⊢ exec (l1) ∧ obj (l1) = o ∧ name (l1) = iaf

π ,Γ ⊢ exec (l2) ∧ obj (l2) = o
π ,Γ ⊢ retv (l1) < retv (l2)

π ,Γ ⊢ l1 ≺o l2

LockUnlockPair

T (o) = Lock
π ,Γ ⊢ isOwnerRespect (o)

π ,Γ ⊢ isLocko (ll1 ) π ,Γ ⊢ isUnlocko (lu2 )
π ,Γ ⊢ ll1 ≺o lu2

π ,Γ ⊢ ∃ℓu1 , ℓl2 :
isUnlocklo (ℓu1 ) ∧ thread (ℓu1 ) = thread (ll1 ) ∧
isLocklo (ℓl2 ) ∧ thread (ℓl2 ) = thread (lu2 ) ∧

ℓu1 ≺o ℓl2
isLocko (l ) ⇔

exec (l ) ∧ obj (l ) = o ∧ name (l ) = lock

isUnlocko (l ) ⇔

exec (l ) ∧ obj (l ) = o ∧ name (l ) = unlock

isOwnerRespect (o) ⇔

∀ℓ : isUnlocko (ℓ) ⇒ ∃ℓ
′
:

isLocko (ℓ
′) ∧

thread (ℓ′) = thread (ℓ) ∧ ℓ′ ≺ ℓ ∧

∀ℓ′′ :

(isUnLocko (ℓ
′′) ∧

thread (ℓ′′) = thread (ℓ))

⇒

ℓ′′ ≺ ℓ′ ∨ ℓ ⪯ ℓ′′

Each rule has the side condition π = (T ,D,P)

Figure 15. Synchronization Object Inference Rules.

8.2 Program Logic
Consider the two method calls labeled R1 and R2 in the speci-

fication (Figure 12). We will prove the following theorem that

states that if the version that R1 writes is less than the ver-

sion that R2 writes, then R1 is executed before R2. Although

the statement of the lemma is simple, similar to the TM cor-

rectness assertions, it involves execution order and its proof

involves linearization order of synchronization objects.

Lemma 8.1. π , · ⊢ (arд1(R1) < arд1(R2)) ⇒ (R1 ≺ R2).

Let us have an informal proof of the lemma first. We use

the following five rules. First, the program-order-preservation
property states that the program order is preserved in the

execution order. Second, the real-time-preservation property

states that the execution order is preserved in the lineariza-

tion order. Third, the execution-linearization-transitivity prop-
erty states that if l1 is executed before l2, l2 is linearized before
l3 and l3 is executed before l4, then l1 is executed before l4.

Forth, the lock-unlock-pair property states that if ownership

of a lock l is respected and a lock method call on l (by a

thread T1) is linearized before an unlock method call on l
(by a thread T2), then an unlock method call on l by T1 is
linearized before a lock method call on l by T2. Intuitively,
ownership for a lock l is respected, if and only if every thread
unlocks l only if it has already locked l and has not unlocked
l since it has locked l . This specification π trivially respects

ownership for its lock object. Fifth, the count-sequence prop-
erty states that for a strong counter o, if the return value

of an iaf method call on o is less than the return value of

another method call on o, then the former is linearized before

the latter.

We assume that (1) The argument of R1 is less than the

argument of R2 and show that R1 is executed before R2. From

the specification π , we have that (2) The argument of R1 is

the return value ofC1 and (3) the argument of R2 is the return

value of C2. Thus, from [1], [2] and [3], we have that (4) the

return value ofC1 is less than the return value ofC2. From π ,
we have that (5)C1 andC2 are iaf method calls on clock that

is a strong counter. Thus, by count-sequence property on [5]

and [4], we have that (6) C1 is linearized before C2. From π ,
we have (7) L1 is beforeC1 in the program and (8)C1 is before

U2 in the program. By program-order-preservation on [7]

and [8], we have that (9) L1 is executed beforeC1 and (10)C2

is executed beforeU2. By execution-linearization-transitivity

property on [9], [6] and [10], we can conclude that (11) L1
is executed before U2. From π , we have (12) L1 and U2 are

respectively lock and unlock method calls by threads T1 and
T2 on the object lock that is of the linearizable type Lock . By
the real-time-preservation property on [11], we have that (13)

L1 is linearized before U2. By the lock-unlock-pair property

on [12] and [13], we have that (14) an unlock method call by

T1 is linearized before a lock method call by T2. From π , we
have that (15) Theunlock method call byT1 isU1 and (16) The

lock method call by T2 is L2. Thus, from [14], [15] and [16],

we have that (17)U1 is linearized before L2. From π , we have
(18) R1 is beforeU1 in the program and (19) L1 is before R2 in

the program. From the program-order-preservation property

on [18] and [19], we have that (20) R1 is executed before U1

and (21) L2 is executed before R2. By the transitivity property

on [20], [17] and [21], we have that R1 is executed before R2.

Now, let us introduce our logic and formalize the proof.

The judgements of the logic are of the form π ,Γ ⊢ A, where

π is a specification, Γ is a list of assertions and A is an

assertion. We use · to denote the empty list of assertions.

Intuitively, a judgement π ,Γ ⊢ A states that in the context

of the assertions Γ, the specification π has the property A.

The assertions are first-order logic assertions that involve

the unary predicate exec , the binary predicates ≺ (execution
order) and ≺o (linearization order of linearizable object o)
and functions obj, name , thread , arд1 and retv . The asser-
tion exec (l ) states that the method call labeled l is executed.
The assertion l1 ≺ l2 states that l1 is executed before l2. Any
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concurrent execution on a linearizable object is equivalent

to a correct sequential execution. The total order of method

calls in the equivalent sequential execution is called the lin-

earization order. For every linearizable object o, the assertion
l1 ≺o l2 states that l1 is before l2 in the linearization order of

o. As π declares lock and clock as instances of linearizable

types, the linearization orders of lock and clock are denoted

by ≺lock and ≺clock . We also use the equivalence relation

on expressions and labels. The functions obj (l ), name (l ),
thread (l ), arд1(l ), and retv (l ) map a label l to the receiv-

ing object, method name, calling thread identifier, the first

argument and the return value of the method call labeled l .
Lemma 8.1 expresses a property of every execution of π ,

yet the soundness of the logic makes us able to prove it by

reasoning about π alone. We consider an arbitrary execution

of the specification. Given some facts about an execution, the

inference rules let us derive more facts about that execution.

The logic has four sets of inference rules: classical first-order

logic inference rules, structure inference rules that axioma-

tize the association of the specification and the assertions,

basic inference rules that axiomatize the properties of the

execution and linearization orders and their interdependence

and synchronization object inference rules that axiomatize

the properties of common synchronization object types. We

showcase a subset of structure inference rules in Figure 13,

a subset of basic inference rules in Figure 14, and a subset of

synchronization object inference rules in Figure 15.

The rule Control states that a method call is executed

if and only if its enclosing condition is satisfied. The intro-

duction rule Id states that the components (object, name,

etc.) of a method call in the execution originate from the

components of the method call in the program. The rule P2X

states the program-order-preservation property. If a method

call l1 is ordered before a method call l2 in the program, and

methods l1 and l2 are executed, then l1 is executed before l2.
The rule Src intuitively states that every executed method

originates from a call site in the specification. LetCallsπ (o,n)
denote the set of labels of call sites where method name n
is called on the object name o in the specification π . If the
object and the name of an executed method call labeled l
are o and n respectively, then l is equal to one of the labels

in Callsπ (o,n). For presentation purposes, this small exam-

ple does not involve procedure calls and hence the rules

Control, Id, and Src are simplified.

The rule X2L states the real-time-preservation property.

The execution order of two method calls on a linearizable

object is preserved in the linearization order. LT denotes the

set of linearizable object types. The rule XLTrans states the

execution-linearization-transitivity property defined above.

Similarly, the rule LockUnlockPair and the rule CountSeq

state the lock-unlock-pair and count-sequence properties

defined above. The rule LockUnlockPair is derived from

the fact that if the ownership of a lock is respected, its lin-

earization order is a sequence of pairs of lock and unlock

method calls by the same thread. The rule CountSeq is de-

rived from the fact that the return value of method calls in

the linearization order of a strong counter is non-decreasing.

8.3 Deduction
Now, let us see how the above informal reasoning can be

formalized using inference rules. Let

Γ = arд1(R1) < arд1(R2) (18)

Based on the classical condition introduction rule, to prove

Lemma 8.1, we need to show that

π ,Γ ⊢ R1 ≺ R2 (19)

From 18, we have

π ,Γ ⊢ arд1(R1) < arд1(R2) (20)

As mentioned before, there is no if-then-else in this speci-

fication; therefore, the enclosing condition of every label is

trivially true . Thus, by the rule Control, we have

π ,Γ ⊢ exec (L1) (21)

π ,Γ ⊢ exec (C1) (22)

π ,Γ ⊢ exec (R1) (23)

π ,Γ ⊢ exec (U1) (24)

π ,Γ ⊢ exec (L2) (25)

π ,Γ ⊢ exec (C2) (26)

π ,Γ ⊢ exec (R2) (27)

π ,Γ ⊢ exec (U2) (28)

From the rule Id on 23, 27, 22, 26, and the specification π , we
have

π ,Γ ⊢ arд1(R1) = v1 (29)

π ,Γ ⊢ arд1(R2) = v2 (30)

π ,Γ ⊢ retv (C1) = v1 (31)

π ,Γ ⊢ retv (C2) = v2 (32)

From the symmetry and transitivity of equivalence on [29],

[30], [31], [32], we have

π ,Γ ⊢ arд1(R1) = retv (C1) (33)

π ,Γ ⊢ arд1(R2) = retv (C2) (34)

By substitution of 33 and 34 on [20], we have

π ,Γ ⊢ retv (C1) < retv (C2) (35)

By the rule Id on 22, and the specification π , we have

π ,Γ ⊢ obj (C1) = clock (36)

π ,Γ ⊢ name (C1) = iaf (37)

By the rule Id on 26, and the specification π , we have

π ,Γ ⊢ obj (C2) = clock (38)

From rule CountSeq on 22, 36, 37, 26, 38, 35, we have

π ,Γ ⊢ C1 ≺clock C2 (39)
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that is C1 is linearized before C2. The next step is to use

rule P2X. From π , we have

L1 →π C1 (40)

C2 →π U2 (41)

By the rule P2X on 40, 21 and 22, we have

π ,Γ ⊢ L1 ≺ C1 (42)

Similarly, by the rule P2X on 41, 26 and 28, we have

π ,Γ ⊢ C2 ≺ U2 (43)

By the rule XLTrans on 42, 39 and 43, we have

π ,Γ ⊢ L1 ≺ U2 (44)

By the rule Id on 21, and the specification π , we have

π ,Γ ⊢ obj (L1) = lock (45)

π ,Γ ⊢ name (L1) = lock (46)

π ,Γ ⊢ thread (L1) = T1 (47)

Similarly, by the rule Id on 28, and the specification π , we
have

π ,Γ ⊢ obj (U2) = lock (48)

π ,Γ ⊢ name (U2) = unlock (49)

π ,Γ ⊢ thread (U2) = T2 (50)

From rule X2L on 44, 45 and 48, we have

π ,Γ ⊢ L1 ≺lock U2 (51)

Now, we use the rule LockUnlockPair. The proof of owner-

ship respect can be done using the presented rules. For the

sake of brevity, we skip the proof of ownership respect.

π ,Γ ⊢ isOwnerRespectinд(lock ) (52)

From the definition of isLock on 21, 45 and 46, we have

π ,Γ ⊢ isLocklock (L1) (53)

From the definition of isUnlock on 28, 48 and 49, we have

π ,Γ ⊢ isUnlocklock (U2) (54)

By the rule LockUnlockPair on 52, 53, 54, 51, and then

substitution with 47 and 50, we have

π ,Γ ⊢ ∃ℓu1 , ℓl2 : isUnlocklock (ℓu1 ) ∧ thread (ℓu1 ) = T1 ∧

isLocklock (ℓl2 ) ∧ thread (ℓl2 ) = T2 ∧

ℓu1 ≺lock ℓl2 (55)

After skolemization of ℓu1 and ℓl2 with lu1 and ll2 , we have

π ,Γ ⊢ isUnlocklock (lu1 ) (56)

π ,Γ ⊢ thread (lu1 ) = T1 (57)

π ,Γ ⊢ isLocklock (ll2 ) (58)

π ,Γ ⊢ thread (ll2 ) = T2 (59)

π ,Γ ⊢ lu1 ≺lock ll2 (60)

From the definition of isUnlock on 56, we have

π ,Γ ⊢ exec (lu1 ) (61)

π ,Γ ⊢ obj (lu1 ) = lock (62)

π ,Γ ⊢ name (lu1 ) = unlock (63)

From π , we have

Callsπ (lock,unlock ) = {U1,U2} (64)

By the rule Src on 61, 62, 63, and 64, we have

π ,Γ ⊢ lu1 = U1 ∨ lu1 = U2 (65)

Using negation introduction, from 50 and 57, we have

π ,Γ ⊢ ¬(lu1 = U2) (66)

By disjunction syllogism on 65 and 66, we have

π ,Γ ⊢ lu1 = U1 (67)

Similarly, using the rule Src, we can show that

π ,Γ ⊢ ll2 = L2 (68)

By substitution of 67 and 68 to 60, we have

π ,Γ ⊢ U1 ≺lock L2 (69)

From π , we have
R1 →π U1 (70)

L2 →π R2 (71)

By the rule P2X on 70, 23 and 24, we have

π ,Γ ⊢ R1 ≺ U1 (72)

By the rule P2X on 71, 25 and 27, we have

π ,Γ ⊢ L2 ≺ R2 (73)

By the rule XLTrans on 72, 69, and 73, we have

π ,Γ ⊢ R1 ≺ R2 (74)
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9 Algorithm Description
In this section, we extend the algorithm description syntax

presented in the main body of the paper.

Syntax Extension.We define foreach statement as a syn-

tactic sugar. The foreach statement iterates over sets and

maps.

Consider a bounded set of type Set . The following foreach
statement executes the statement s for each member i of set .

c ▷ foreach (i ∈ set ) (75)

s

Let b be a fresh variable name. We define sIter (s,i ), the ith
iteration, as follows:

sIter (s,i ) = ci ▷ bi = set .contains (i ), (76)

if (bi )
sIndexed (s,i )

where sIndexed (s,i ) denotes a transformation of s where
every label c is replaced by ci and every variable x that is

assigned in s is replaced by xi . The foreach statement is a

syntactic sugar for

sIter (s,0), (77)

sIter (s,1),

sIter (s,2),

...

sIter (s,max )

wheremax is the maximum value stored in the set.

Similarly, consider a boundedmap of typeMap. The fol-
lowing foreach statement executes the statement s for each
mapping i to v inmap.

c ▷ foreach ((i,v ) ∈map) (78)

s

We definemIter (s,i ), the ithe iteration, as follows:

mIter (s,i ) = ci ▷ vi =map.дet (i ), (79)

if (vi , ⊥)
mIndexed (s,i )

wheremIndexed (s,i ) denotes a transformation of s where
every label c is replaced by ci , v is replaced with vi , and
every variable x that is assigned in s is replaced by xi . The
foreach statement is a syntactic sugar for

mIter (s,0), (80)

mIter (s,1),

mIter (s,2),

...

mIter (s,max )

wheremax is the maximum key.

Transaction Syntax. A transactional memory description

πTM is a particular case of an algorithm description (T ,DTM ,PTM )
where

DTM = def initt () s0,r0,
def readt (i ) s1,r1,
def writet (i,v ) s2,r2,
def committ () s3,r3,
d∗

PTM = tran0, (tran1 ∥ tran2 ∥ ... ∥ trann )

Transactional memory encapsulates a set of locations. Each

location i stores a value v that can be read and written. A

TM algorithm description has four methods initt (), readt (i ),
writet (i,v ) and committ (). The three specific valuesC,A and

ok are returned in the description of TM algorithms to denote

commitment and abortion of a transaction and normal termi-

nation of a write operation respectively. The method initt ()
initializes the transaction t . The method readt (i ) returns the
value of location i or A (if the transaction is aborted). The

methodwritet (i,v ) writes v to location i and returns ok (if

the write is successful) or returns A (if the transaction is

aborted). The method committ () tries to commit transaction

t and returns C (if the transaction is successfully commit-

ted) or returns A (if it is aborted). PTM is an arbitrary client

transaction. The initializing transaction trans0 initializes ev-
ery location to zero. It is the sequence of init0 (),write0 (i,0)
method calls for every location i and then commit0 (). Each
transaction transj 1 ≤ j ≤ n starts with initj () and then

invokes a sequence of readj (i ) andwritej (i,v ) method calls

(for arbitrary location i and arbitrary valuev). It stops invok-
ing method calls if it receives abortion A from the previous

method call. It finally invokes commitj () if it is not already
aborted. Let ΠTM denote the set of transactional memory

descriptions. As an example, consider the TL2 algorithm de-

scription in Figure 10. TL2 uses the strong counter clock to

number snapshots. It reads the current snapshot number at

I01 when a transaction starts and creates a new snapshot

number at C07 when it wants to write back the cached val-

ues during the commit. It stores the values of locations in r
registers. The value of a location is read at R04 and written

at C16.
The initializing transaction trans0 that initializes every

location to zero is defined as follows:

trans0 := IL0 ▷ init0 (); (81)

c00 ▷ write0 (0,0);

c01 ▷ write0 (1,0);

...

c0m ▷ write0 (m,0);

CL0 ▷ commit0 ()
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Each transaction transj 1 ≤ j ≤ n is defined as follows:

transj := ILj ▷ initj (); (82)

opj

opj := c ▷ x = readj (v1,v2);

if (¬(x = A))
opj

| c ▷ x = writej (v );

if (¬(x = A))
opj

| CLj ▷ commitj ()

Well-formedness. The init method returns ok . The read
method does not return ok or C. Thewrite method does not

return C. The commit method either returns C or A.
∀c ∈ Returnsπ (init ) : arд1π (c ) = ok
∀c ∈ Returnsπ (read ) : arд1π (c ) , ok ∧ arд1π (c ) , C
∀c ∈ Returnsπ (write ) : arд1π (c ) , C
∀c ∈ Returnsπ (commit ) : arд1π (c ) = C ∨ arд1π (c ) = A
In addition, it is assumed that in every execution of the

transaction trans0, all thewrite method calls return ok .

Let ΠTM denote the set of transactional memory specifica-

tions.

We define two functions initOf and commitOf that map

a thread value to its initialization and commitment labels.

initOf (T ) = ILT (83)

commitOf (T ) = CLT (84)
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10 Semantics
In this section, we first present a few basic lemmas about execution histories. Then, we present synchronization object types

and finally we define transaction histories.
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10.1 Execution histories
Lemma10.1 (XASym). For every execution historyX andmethod calls l and l ′, if l ≺X l ′ then¬(l ′ ≺X l ) ∧ ¬(l ′ ∼X l ) ∧ ¬(l ′ = l )

Lemma 10.2 (XTrans). For every execution history X and method calls l , l . and l ′′, if l ≺X l ′ and l ′ ≺ l ′′ then l ≺X l ′′

Lemma 10.3 (XXTrans). For every execution history X and method calls l1, l2, l3, and l4, if l1 ≺X l2, l2 ≾X l3, and l3 ≺X l4 then
l1 ≺X l4

Lemma 10.4 (XTotal). For every execution history X and method calls l and l ′, if l ∈ X , and l ′ ∈ X , then (l ≺X l ′) ∨ (l ′ ≺X
l ) ∨ (l ∼X l ′) ∨ (l = l ′)

Lemma 10.5 (X2X). For every execution history X and method calls l and l ′, if l ≺X l ′ then l ∈ X , and l ′ ∈ X .

Lemma 10.6 (XI2X). For every execution history X and method calls l , l ′, and l ′′ if l ≺X l ′ and inv (l ′) �X inv (l ′′) then l ≺X l ′′.

Lemma 10.7 (RX2X). For every execution history X and method calls l , l ′, and l ′′ if ret (l ) �X ret (l ′) and l ′ ≺X l ′′ then l ≺X l ′′.
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10.2 Synchronization Object Types
In this subsection, we define the semantics of basic and linearizable objects. Then, we define the interface and the sequential

specifications of the following abstract object types: register, lock, try-lock, counter, set and map. For each abstract object type,

we define concrete synchronization object types. We define the following synchronization object types: basic register, atomic

register, atomic cas register, lock, try-lock, strong counter, basic set and basic map. For each synchronization object type, we

present lemmas that characterize the properties of its execution histories. Please see Section 15.1.2 for notes on the proof of

the lemmas that we present in this subsection.
1

Basic, Sequentially-consistent and Linearizable Object Types
The abstract type of each object o specifies the sequential specification of o, denoted by SeqSpec (o), that is the prefix-closed set
of correct sequential histories of o. In the following subsections, we will consider several synchronization object types and

define their sequential specifications.

We consider three concurrent types: basic, sequentially-consistent and linearizable. Sequentially-consistent and linearizable

objects comply with their sequential specification in every concurrent execution. Basic objects, on the other hand, comply

with their sequential specification if they are accessed sequentially.

Definition 10.8 (Basic Object Semantics). Every sequential execution on a basic object is an execution in its sequential

specification. The semantics of a basic object o, HB (o), is a set of histories that is constrained as follows:

HB (o) ∩ Sequential ⊆ SeqSpec (o) (85)

Definition 10.9 (Sequentially-consistent Object Semantics). An execution history X is sequentially-consistent for an object o
iff there is an indistinguishable sequential history L that is in the sequential specification of o. L is a sequentialization and ≺L
is a sequentialization order of X . The semantics of a sequentially-consistent object o, HL (o), is defined as the following set of

execution and sequentialization pairs.

HL (o) = {(X ,L) | X ≡ L ∧ L ∈ SeqSpec (o) ∧ ∀T ∈ X : ≺X |T ⊆ ≺L } (86)

Note that the notion of sequential consistency defined above is for operations on a single object in contrast to sequential

consistency for operations on multiple objects. The notion defined above is also called cache coherence.

Definition 10.10 (Linearizable Object Semantics). An execution history X is linearizable for an object o iff there is an

indistinguishable sequential history L that is in the sequential specification of o and is real-time-preserving. L is a linearization

and ≺L is a linearization order of X . The semantics of a linearizable object o, HL (o), is defined as the following set of execution

and linearization pairs.

HL (o) = {(X ,L) | X ≡ L ∧ L ∈ SeqSpec (o) ∧ ≺X ⊆ ≺L } (87)

Note that sequentially-consistent objects preserve execution order of method calls in the justifying sequential order only

within threads while linearizable objects preserve it even across threads.

We now present lemmas for serialization and linearization orders.

Lemma 10.11 (X2L). For every linearization L of an execution history X on object o and method calls l and l ′, if l ≺X l ′ then
l ≺L l

′.

Lemma 10.12 (X2L’). For every linearization L of an execution history X on object o and method calls l and l ′, if l ≺L l ′ then
l ≾X l ′.

Lemma 10.13 (LASym). For every sequentialization or linearization L of an execution history X on object o and method calls l
and l ′, if l ≺L l ′ then ¬(l ′ ≺L l ) ∧ ¬(l = l ′)

Lemma 10.14 (LTrans). For every sequentialization or linearization L of an execution history X on object o and method calls l ,
l ′, and l ′′, if l ≺L l ′ and l ′ ≺L l ′′ then l ≺L l ′′.

Lemma 10.15 (LTotal). For every sequentialization or linearization L of an execution history X on object o and method calls l
and l ′, if l ∈ X and l ′ ∈ X then (l ≺L l

′) ∨ (l ′ ≺L l ) ∨ (l = l ′)

Lemma 10.16 (L2X). For every sequentialization or linearization L of an execution history X on object o and method calls l and
l ′, if (l ≺L l ′) then l ∈ X , l ′ ∈ X , and l and l ′ are both on o.
1
In this subsection, we use ∀ and ∃ as a notational convenience. ∀l : p can be rewritten as

∧
(l∈Labels (X )) p (X ) and ∃l : p can be rewritten as∨

(l∈Labels (X )) p (X ).
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Lemma 10.17 (XLTrans). For every linearization L of an execution history X on object o and method calls l1, l2, l3, and l4, if
l1 ≺X l2, l2 ≺L l3, l3 ≺X l4, then l1 ≺X l4

See section 15.1.2 for proofs.

10.2.1 Register
Register. A register reд is an object that encapsulates a value and supports read andwrite methods. The method call reд.read ()
returns the current encapsulated value of reд. The method call reд.write (v ) overwrites the encapsulated value of reд with v .

Definition 10.18. The sequential specification of register reд is the set of sequential histories of read andwrite method calls

on reд where every read returns the argument of the latest preceding write (regardless of thread identifiers). (Note that it is

assumed that a write method call initializes the register before other methods are invoked.) The sequential specification of a

register r , SeqSpec (r ), is defined as follows:

isXReadX ,r (lR ) = lR ∈ X ∧ objX (lR ) = r ∧ nameX (lR ) = read (88)

isXWriteX ,r (lW ) = lW ∈ X ∧ objX (lW ) = r ∧ nameX (lW ) = write (89)

NoWriteBetweenX ,r (lW ,lR ) = ∀l ′W : isXWriteX ,r (l
′
W ) ⇒ (l ′W ⪯X lW ∨ lR ≺X l ′W ) (90)

isXWriterX ,r (lW ,lR ) = isXWriteX ,r (lW ) ∧ (91)

lW ≺X lR ∧

NoWriteBetweenX ,r (lW ,lR )

Leдal (r ) = {S | ∀lR : isXReadS,r (lR ) ⇒ (92)

∃lW : isXWriterS,r (lW ,lR ) ∧

retvS (lR ) = arд1S (lW )}

SeqSpec (r ) = {S | S |r = S ∧ S ∈ Sequential ∩ Leдal (r )} (93)

Basic Register. A basic register is a basic instance of the register type.

Let BasicReдister denote the type of basic registers.

Lemma 10.19. In every sequential execution on a basic register, every read reads the value that the latest preceding write writes.
Formally,

∀reд ∈ BasicReдister : ∀X ∈ HB (reд) : X ∈ Sequential ⇒ (94)

∀lR : isXReadX ,r eд (lR ) ⇒

∃lW : isXWriterX ,r eд (lW ,lR ) ∧

retvX (lR ) = arд1X (lW )

Two concurrent read method calls on a register do not conflict. Thus, basic registers can maintain consistency even when

the execution involves concurrent read method calls. Let us define

isXRaceFreeX ,r (l ) = ∀lw : isXWriteX ,r (lw ) ⇒ lw ⪯X l ∨ l ≺X lw (95)

isXSequentiallyWrittenr (X ) = ∀l ∈ X : isXWriteX ,r (l ) ⇒ isRaceFreeX ,r (l ) (96)

A method call is race-free if an only if there is no write method call that executes concurrent to it. An execution is

sequentially-written if and only if every pair of write method calls on it are ordered in the execution order or in other words,

every write method call on it is race-free.

Definition 10.20 (Basic Register Semantics). An execution history on a basic register is in the semantics of the basic register

if and only if it is not sequentially-written or it is sequentially-written and every race-free read reads the value that the latest

preceding write writes. The semantics of a basic register r , HB (r ), is defined as follows.

HB (r ) = {X | X |o = X ∧ (97)

isXSequentiallyWrittenr (X ) ⇒

∀lr : isXReadX ,r (lr ) ∧ isXRaceFreeX ,r (lr ) ⇒

∃lw : isXWriterX ,r (lw ,lr ) ∧

retvX (lr ) = arд1X (lw ) }
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Note that if an execution is not sequentially-written, reads may return arbitrary values. Similarly, racy reads may return

arbitrary values.

Note that this definition satisfies the constraint of Definition 10.8.

Note that basic register models Lamport’s notion of safe register [26].

Lemma 10.21 (BReg). In every sequentially-written execution on a basic register, every race-free read reads the value that the
latest preceding write writes. Formally,

∀reд ∈ BasicReдister : ∀X ∈ HB (reд) : isXSequentiallyWrittenr (X ) ⇒ (98)

∀lR : isXReadX ,r eд (lR ) ∧ isXRaceFreeX ,r (lR ) ⇒

∃lW : isXWriterX ,r eд (lW ,lR ) ∧

retvX (lR ) = arд1X (lW )

Atomic Register. An atomic register is a linearizable instance of the register type.

Let AtomicReдister denote the type of atomic registers.

Let us define

LNoWriteBetweenX ,L,r (lW ,lR ) = ∀l ′W : isXWriteX ,r (l
′
W ) ⇒ (l ′W ⪯L lW ∨ lR ≺L l

′
W ) (99)

isLWriterX ,L,r (lW ,lR ) = isXWriteX ,r (lW ) ∧ (100)

lW ≺L lR ∧

LNoWriteBetweenX ,L,r (lW ,lR )

Lemma 10.22 (AReg). In every execution on an atomic register, every read reads the value written by the last write linearized
before it. Formally,

∀r ∈ AtomicReдister : ∀(X ,L) ∈ HL (r ) : (101)

∀lR : isXReadX ,r (lR ) ⇒

∃lW : isLWriterX ,L,r (lW ,lR ) ∧

retvX (lR ) = arд1X (lW )

Sequentially-consistent Register. A sequentially-consistent register is a sequentially-consistent instance of the register type.

Let SCReдister denote the type of sequentially-consistent registers.

Consider the following four concurrent threads.

T1 T2 T3 T4
L11 ▷ r1.write (1) ∥ L21 ▷ r2.write (1) ∥ L31 ▷ x1 = r1.read () ∥ L41 ▷ y2 = r2.read ()

L32 ▷ y1 = r2.read () L42 ▷ x2 = r1.read ()
{L31 → L32} {L41 → L42}

If r1 and r2 are sequentially-consistent registers, there is an execution that results in the following values for the variables:

x1 = 1, y1 = 0, y2 = 1 and x2 = 0.

These values can be justified by the sequentialization order

(1) Lr1 = L42 ▷ x2 = r1.read () · L11 ▷ r1.write (1) · L31 ▷ x1 = r1.read ()
for r1 and the sequentialization order

(2) Lr2 = L32 ▷ y1 = r2.read () · L21 ▷ r2.write (1) · L41 ▷ y2 = r2.read ()
for r2.
If r1 and r2 are atomic registers, there is no execution that results in the values above for the variables. The real-time-preservation

property precludes these executions. We assume that there is such an execution and show a contradiction. To have the above

values for the variables, the linearization order of r1 and r2 should be as above in 1 and 2. By the program orders above, we

have (3) L31 ≺X L32 (4) L41 ≺X L42. By X2L’ on 2, we have (5) L32 ≾X L41. By XXTrans on 3, 5 and 4, we have (6) L31 ≺X L42.
By X2L on 6, we have L31 ≺r1 L42 that contradicts 1.

10.2.2 CAS (Compare-And-Swap) Register
A CAS register is an object that encapsulates a value and supports the cas method in addition to read andwrite methods. The

method call r .cas (v1,v2) updates the value of the register to v2 and returns true if the current value of the register is v1. It
returns f alse otherwise.
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A successful write is either awrite method call or a successful cas method call. The written value of a successful write is its
first argument, if it is awrite method call or is its second argument, if it is a cas method call.

Definition 10.23. The sequential specification of cas register reд is the set of sequential histories of read , write and cas
method calls on reд with the following two conditions. Every read returns the written value of the latest preceding successful

write (regardless of thread identifiers). (Note that it is assumed that a write method call initializes the register before other

methods are invoked.) Every cas with the first argument v1 returns true if the written value of the latest preceding successful

write is v1 and returns f alse otherwise.

Atomic CAS Register. An atomic CAS register is a linearizable instance of CAS register type.

Let AtomicCASReдister denote the type of Atomic CAS registers.

Let us define

isXCASX ,r (lW ) = lW ∈ X ∧ objX (lW ) = r ∧ nameX (lW ) = cas (102)

isXCWriteX ,r (lW ) = isXWrite (lW ) ∨ (isXCAS (lW ) ∧ retvX (lW ) = true ) (103)

writtenValueX (lW ) =

{
arд1X (lW ) if nameX (lW ) = write
arд2X (lW ) if nameX (lW ) = cas

(104)

LNoWriteBetweenX ,L,r (lW ,lR ) = ∀l ′W : isXCWriteX ,r (l
′
W ) ⇒ (l ′W ⪯L lW ∨ lR ≺L l

′
W ) (105)

isLCWriterX ,L,r (lW ,lR ) = isXCWriteX ,r (lW ) ∧ (106)

lW ≺L lR ∧

LNoWriteBetweenX ,L,r (lW ,lR )

Lemma 10.24 (CASRegRead). In every execution on an atomic cas register, every read returns the value the last successful write
linearized before it writes. Formally,

∀r ∈ AtomicCASReдister : ∀(X ,L) ∈ HL (r ) : (107)

∀lR : isXReadX ,r (lR ) ⇒

∃lW : isLCWriterX ,L,r (lW ,lR ) ∧

retvX (lR ) = arд1X (lW )

Lemma 10.25 (CASRegCAS). In every execution on an atomic cas register, every cas returns true if its first argument is equal to
the argument of the last successful write linearized before it and returns f alse otherwise. Formally,

∀reд ∈ AtomicCASReдister : ∀(X ,Reд) ∈ HL (reд) : (108)

∀lC ,lW :

isXCASX ,r eд (lC ) ∧

isLCWriterX ,Reд,r eд (lW ,lR )

⇒

(writtenValueX (lW ) = arд1X (lC ) ⇒ retvX (lC ) = true ) ∧

(¬(writtenValueX (lW ) = arд1X (lC )) ⇒ retvX (lC ) = f alse )

10.2.3 Lock
Abstract lock. An abstract lock l is an object that encapsulates a state, acquired A or released R, and supports the following

methods: lock : The method call l .lock () changes the state from R to A. unlock : The method call l .unlock () changes the state
from A to R. read : The method call l .read () returns true if the state of lock is A and f alse otherwise. The method calls lock
and unlock are mutating method calls. The method call read is an accessor method call.

Definition 10.26. The sequential specification of a lock l is the set of sequential histories L of lock , unlock , and read method

calls on l where the sub-history of L for mutating methods is an alternating sequence of lock and unlock methods and every

read method call in L returns true if the last mutating method call before it in L is a lock and returns f alse otherwise.

Lock. A lock is a linearizable instance of the abstract lock type.

Let Lock denote the type of locks.
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Now, we present some preliminary definitions and then lemmas about locks.

isXLockX ,lo (l ) = (109)

l ∈ X ∧ objX (l ) = lo ∧ nameX (l ) = lock

isXUnlockX ,lo (l ) = (110)

l ∈ X ∧ objX (l ) = lo ∧ nameX (l ) = unlock

isXReadX ,lo (l ) = (111)

l ∈ X ∧ objX (l ) = lo ∧ nameX (l ) = read

The common usage protocol for locks is that a thread unlocks a lock only if it has already acquired it. Many languages

including Java enforce this property of programs by runtime checks. We capture this property as follows.

Definition 10.27. A history is owner-respecting for a lock if every thread in the history releases the lock only after it has

already acquired it.

isXOwnerRespectinдlo (X ) = (112)

∀l : isXUnlockX ,lo (l ) ⇒

∃l ′ : isXLockX ,lo (l
′) ∧

threadX (l
′) = threadX (l ) ∧

l ′ ≺X l ∧

∀l ′′ : (isXUnLockX ,lo (l
′′) ∧ threadX (l

′′) = threadX (l )) ⇒ (l ′′ ≺X l ′ ∨ l ⪯X l ′′)

Lemma 10.28. If l is a lock, X is an owner-respecting history of l and L is the linearization of X , then the sub-history of L for
mutating method calls is a sequence of pairs of lock and unlock method calls by the same thread (possibly followed by a lock
method call).

Lemma 10.29 (Lock). In an owner-respecting execution for a lock l , if a lock method call by a thread T1 is linearized before an
unlock method call by a thread T2, then an unlock method call by T1 is linearized before a lock method call by T2. Formally,

∀o ∈ Lock : ∀(X ,L) ∈ HL (o) : ∀ll1,lu2 : (113)

(isXOwnerRespectinдo (X ) ∧

isXLockX ,o (ll1) ∧

isXUnlockX ,o (lu2) ∧

ll1 ≺L lu2) ⇒

∃lu1,ll2 :

isXUnlockX ,o (lu1) ∧ threadX (ll1) = threadX (lu1) ∧

isXLockX ,o (ll2) ∧ threadX (ll2) = threadX (lu2) ∧

lu1 ≺L ll2

Lemma 10.30 (LockReadL). In an owner-respecting execution for a lock l , if a read method call that returns f alse is linearized
before an unlock method call by a thread T , then the read method call is linearized before a lock method call by T . Formally,

∀o ∈ Lock : ∀(X ,L) ∈ HL (o) : ∀lu1,lr2 : (114)

(isXOwnerRespectinдo (X ) ∧

isXReadX ,o (lr2) ∧ retvX (lr2) = f alse

isXUnlockX ,o (lu1) ∧

lr2 ≺L lu1) ⇒

∃ll1 :

isXLockX ,o (ll1) ∧ threadX (ll1) = threadX (lu1) ∧

lr2 ≺L ll1
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Lemma 10.31 (LockReadR). In an owner-respecting execution for a lock l , if a lock method call by a threadT is linearized before
a read method call that returns f alse , then an unlock method call by T is linearized before the read method call. Formally,

∀o ∈ Lock : ∀(X ,L) ∈ HL (o) : ∀ll1,lr2 : (115)

(isXOwnerRespectinдo (X ) ∧

isXLockX ,o (ll1) ∧

isXReadX ,o (lr2) ∧ retvX (lr2) = f alse

ll1 ≺L lr2) ⇒

∃lu1 :

isXUnlockX ,o (lu1) ∧ threadX (ll1) = threadX (lu1) ∧

lu1 ≺L lr2

Lemma 10.32 (LockReadM). In an owner-respecting execution for a lock l , every read method call that is linearized between a
pair of matching lock and unlock method calls returns true . Formally,

∀o ∈ Lock : ∀(X ,L) ∈ HL (o) : ∀ll1,lu1,lr2 : (116)

(isXOwnerRespectinдo (X ) ∧

isXLockX ,o (ll1) ∧

isXUnlockX ,o (lu1) ∧

threadX (ll1) = threadX (lu1) ∧

∀l ′u1 : (isXUnlockX ,o (l
′
u1) ∧ threadX (ll1) = threadX (l

′
u1)) ⇒ (l ′u1 ≺X ll1 ∨ lu1 ⪯X l ′u1)

isXReadX ,o (lr2) ∧

ll1 ≺L lr2 ∧ lr2 ≺L lu1)

⇒

retvX (lr2) = true

10.2.4 Try-lock
Abstract Try-lock. A try-lock l is an object that encapsulates an abstract state, acquired A or released R, and in addition to

lock , unlock and read methods, it supports the trylock method. If the state of the lock is R, l .trylock () changes it to A and

returns true . Otherwise, it returns f alse .
We call a lock method call or a successful tryLock method call, a successful lock method call. We call a lock method call,

successful tryLock method call or unlock method call, a mutating method call.

Definition 10.33. The sequential specification of a try-lock l is the set of sequential histories L of lock , unlock , read and

tryLock method calls on l with the following conditions: The last mutating method call before a successful lock method call

is an unlock method call. Similarly, the last mutating method call before an unlock method call is a successful lock method

call. A tryLock method call returns true if the latest preceding mutating method call is an unlock and returns f alse otherwise.
Similarly, A read method call returns true if the latest preceding mutating method call is a successful lock and returns f alse
otherwise.

Try-Lock. A try-lock is a linearizable instance of the abstract try-lock type.

Let TryLock denote the type of try-locks.

Similar to the Lock type, after some preliminary definitions, we define the owner-respecting histories and state the TryLock
type lemmas.

isXTryLockX ,o (l ) = (117)

l ∈ X ∧ objX (l ) = o ∧ nameX (l ) = tryLock

isXTLockX ,o (l ) = (118)

isXLockX ,o (l ) ∨ (isXTryLockX ,o (l ) ∧ retvX (l ) = true )

The intuition for owner-respecting histories remains the same. A history is owner-respecting for a try-lock if every thread

in the history releases the lock only after it has already acquired it. The minor difference from the prior definition for locks is
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that the acquisition of a try-lock is either by a lock method call or a successful tryLock method call.

isXTOwnerRespectinдo (X ) = (119)

∀l : isXUnlockX ,o (l ) ⇒

∃l ′ : isXTLockX ,o (l
′) ∧

threadX (l
′) = threadX (l ) ∧

l ′ ≺X l ∧

∀l ′′ : (isXUnLockX ,o (l
′′) ∧ threadX (l

′′) = threadX (l )) ⇒ l ′′ ≺X l ′ ∨ l ⪯X l ′′

Lemma 10.34. If l is a try-lock, X is an owner-respecting history of l and L is the linearization of X , then the sub-history of L for
mutating method calls is a sequence of pairs of successful lock and unlock method calls by the same thread (possibly followed by a
successful lock method call).

Lemma 10.35 (TryLock). In an owner-respecting execution for a try-lock l , if a successful lock method call by a thread T1 is
linearized before an unlock method call by a thread T2, then an unlock method call by T1 is linearized before a successful lock
method call by T2. Formally,

∀o ∈ TryLock : ∀(X ,L) ∈ HL (o) : ∀ll1,lu2 : (120)

(isXTOwnerRespectinдo (X ) ∧

isXTLockX ,o (ll1) ∧

isXUnlockX ,o (lu2) ∧

ll1 ≺L lu2) ⇒

∃lu1,ll2 :

isXUnlockX ,o (lu1) ∧ threadX (ll1) = threadX (lu1) ∧

isXTLockX ,o (ll2) ∧ threadX (ll2) = threadX (lu2) ∧

lu1 ≺L ll2

Lemma 10.36 (TryLockReadL). In an owner-respecting execution for a try-lock l , a read method call that returns f alse is
linearized before if an unlock method call by a thread T then the read method call is linearized before a successful lock method
call by T . Formally,

∀o ∈ TryLock : ∀(X ,L) ∈ HL (o) : ∀lu1,lr2 : (121)

(isXTOwnerRespectinдo (X ) ∧

isXReadX ,o (lr2) ∧ retvX (lr2) = f alse

isXUnlockX ,o (lu1) ∧

lr2 ≺L lu1) ⇒

∃ll1 :

isXTLockX ,o (ll1) ∧ threadX (ll1) = threadX (lu1) ∧

lr2 ≺L ll1

Lemma 10.37 (TryLockReadR). In an owner-respecting execution for a try-lock l , if a successful lock method call by a thread T
is linearized before a read method call that returns f alse , then an unlock method call by T is linearized before the read method
call. Formally,

∀o ∈ TryLock : ∀(X ,L) ∈ HL (o) : ∀ll1,lr2 : (122)

(isXTOwnerRespectinдo (X ) ∧

isXTLockX ,o (ll1) ∧

isXReadX ,o (lr2) ∧ retvX (lr2) = f alse

ll1 ≺L lr2) ⇒

∃lu1 :

isXUnlockX ,o (lu1) ∧ threadX (ll1) = threadX (lu1) ∧

lu1 ≺L lr2
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Lemma 10.38 (TryLockReadM). In an owner-respecting execution for a try-lock l , every read method call that is linearized
between a pair of matching successful and unlock method calls returns true . Formally,

∀o ∈ TryLock : ∀(X ,L) ∈ HL (o) : ∀ll1,lu1,lr2 : (123)

(isXOwnerRespectinдo (X ) ∧

isXTLockX ,o (ll1) ∧

isXUnlockX ,o (lu1) ∧

threadX (ll1) = threadX (lu1) ∧

∀l ′u1 : (isXUnlockX ,o (l
′
u1) ∧ threadX (ll1) = threadX (l

′
u1)) ⇒ (l ′u1 ≺X ll1 ∨ lu1 ⪯X l ′u1)

isXReadX ,o (lr2) ∧

ll1 ≺L lr2 ∧ lr2 ≺L lu1)

⇒

retvX (lr2) = true

10.2.5 Sequence-lock
Abstract seq-lock. A seq-lock l is an object that encapsulates a number and an abstract state, acquired A or released R. It
supports the read , compareAndLock and incAndUnlock methods. The method call l .read () returns the pair of the encapsulated
number and true if the state of lock isA and f alse otherwise. The method call l .compareAndLock (n) compares the encapsulated

number with n and if they are equal, changes the state from R to A and returns true . Otherwise, it does not change the state of
the seq-lock and returns f alse . The method call l .incAndUnlock () increments the encapsulated number and changes the state

from A to R.
A successful compareAndLock and incAndUnlock are mutating method calls. The method call read is an accessor method

call.

Definition 10.39. The sequential specification of a seq-lock l is the set of sequential histories L of read ,
compareAndLock , and incAndUnlock method calls on l with the following conditions:

Every read method call returns the pair of the number of incAndUnlock method calls before it and true if the last mutating

method call before it is a successful compareAndLock and f alse otherwise.
A compareAndLock method call returns true if the last mutating method call before it is an incAndUnlock method call and

the number of incAndUnlock method calls before it is equal to its argument. It returns f alse otherwise.
The last mutating method call before an incAndUnlock method call is a successful compareAndLock method call.

Seq-Lock. A seq-lock is a linearizable instance of the abstract seq-lock type.

Let SeqLock denote the type of seq-locks.

10.2.6 Counter
Abstract Counter: A counter c is an object that encapsulates a number and supports the following two methods: The method

call c .read () returns the current value of c . The method call c .iaf () increments the value of c and returns the incremented

value.

Definition 10.40. The sequential specification of a counter c is the set of sequential histories of read and iaf method calls on

c where every method call returns the number of iaf method calls before it (including the method call itself). Note that it is

assumed that the initial value of the counter is zero.

Strong Counter. A strong counter is a linearizable instance of abstract counter type.

Let SCounter denote the type of strong counters.

31



NFM’19, May 2019, Mohsen Lesani

Lemma 10.41 (SCounter). The return value of every method call that is linearized before an iaf method call is smaller than the
return value of the iaf method call. Formally,

∀c ∈ SCounter : ∀(X ,C ) ∈ HL (c ) : ∀l ,l
′
: (124)

l ∈ X ∧ l ′ ∈ X ∧ nameX (l
′) = iaf ∧ l ≺C l ′

⇒

retvX (l ) < retvX (l
′)

10.2.7 Set
A set s is an object that represents a set of values and supports the following methods: add : The method call s .add (v ) adds
value v to set s . contains: The method call s .containts (v ) returns true if v is a member of s and f alse otherwise.

Definition 10.42. The sequential specification of a set s is the set of sequential histories of add and contains method calls on

s where every contains method call returns true if there is a preceding add method call with the same argument, and returns

f alse otherwise. Note that it is assumed that the set is initially empty.

Basic Set. A basic set is a basic instance of set type.

Let BasicSet denote the type of basic sets.
Let us define

isXContainsX ,s (l ) = (125)

l ∈ X ∧ objX (l ) = s ∧ nameX (l ) = contains

isXAddX ,s (l ) = (126)

l ∈ X ∧ objX (l ) = s ∧ nameX (l ) = add

Lemma 10.43 (BasicSetContains). In every sequential execution on a basic set, for every contains method call that returns
true , there is a preceding add method call with the same argument. Formally,

∀s ∈ BasicSet : ∀X ∈ HB (s ) : X ∈ Sequential ⇒ (127)

∀lc : isXContainsX ,s (lc ) ∧ retvX (lc ) = true ⇒

∃la : isXAddX ,s (la ) ∧

arд1(la ) = arд1(lc ) ∧ la ≺X lc

Lemma 10.44 (BasicSetAdd). In every sequential execution on a basic set, every contains method call that succeeds an add
method call with the same argument returns true . Formally,

∀s ∈ BasicSet : ∀X ∈ HB (s ) : X ∈ Sequential ⇒ (128)

∀lc ,la :

isXContainsX ,s (lc ) ∧

isXAddX ,s (la ) ∧

arд1(la ) = arд1(lc ) ∧ la ≺X lc

⇒

retvX (lc ) = true

10.2.8 Map
A mapm is an object that represents a mapping from a set of keys to a set of values and supports the following methods: put :
The method callm.put (k,v ) adds or updates the mapping of the key k to the value v (v , ⊥) in the mapm. дet : The method

callm.дet (k ) returns the value that the mapm associates with the key k . It returns ⊥ ifm does not map k .

Definition 10.45. The sequential specification of a mapm is the set of sequential histories of put and дet method calls onm
where every дet method call returns ⊥ if there is no preceding put method call with the same key argument; otherwise it

returns the second argument of the latest preceding put method call with the same key argument. Note that it is assumed that

the map is initially empty.
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Basic Map. A basic set is a basic instance of map type.

Let BasicMap denote the type of basic maps.

Let us define

isXGetX ,m (l ) = (129)

l ∈ X ∧ objX (l ) =m ∧ nameX (l ) = дet

isXPutX ,m (l ) = (130)

l ∈ X ∧ objX (l ) =m ∧ nameX (l ) = put

isXPutterX ,m (lp ,lд ) ⇔ (131)

isXPutX ,m (lp ) ∧ arд1X (lp ) = arд1X (lд ) ∧ lp ≺X lд ∧ (132)

∀l ′p : isXPutX ,m (l ′p ) ∧ arд1X (l
′
p ) = arд1X (lд ) ⇒ (l ′p ⪯X lp ∨ lд ≺X l ′p ) (133)

Lemma 10.46 (BasicMapGet). In every sequential execution on a basic map, the return value of every дet method call that does
not return ⊥ is equal to the value argument of the latest preceding put method call with the same key argument. Formally,

∀m ∈ BasicMap : ∀X ∈ HB (m) : X ∈ Sequential ⇒ (134)

∀lд : isXGetX ,m (lд ) ∧ ¬(retvX (lд ) = ⊥) ⇒

∃lp : isPutterX ,m (lp ,lд ) ∧

arд2X (lp ) = retvX (lд )

Lemma 10.47 (BasicMapPut). In every sequential execution on a basic map, for every дet method call д, if p is the latest
preceding put method call with the same key argument then the return value of д is equal to the value argument of p. Formally,

∀m ∈ BasicMap : ∀X ∈ HB (m) : X ∈ Sequential ⇒ (135)

∀lд ,lp :

isXGetX ,m (lд ) ∧

isPutterX ,m (lp ,lд ) ∧

⇒

retvX (lд ) = arд2X (lp )
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10.3 Transactional Histories
Transactional Memory. The transactional memory is a singleton objectmem that encapsulates a set of locations where each

location, i ∈ I , I = {1, . . . ,m} encapsulates a value v . The objectmem has five methods initt (), readt (i ),writet (i,v ), committ ()
and abortt (). The parameter t is the invoking transaction identifier. The method call initt () initializes t and returns ok . The
method call readt (i ) returns the value of location i or aborts t and returns A. The methodwritet (i,v ) writes v to location i
and returns ok or aborts t and returns A. The method committ () tries to commit transaction t . If t is successfully committed, it

returns C; otherwise, it returns A. The method abortt () aborts t and returns A. The objectmem can be implicit, that is readt (i )
abbreviatesmem.readT (i ). The reserved values ok , A, C denote successful completion of writes and, abortion and commitment

of transactions respectively.

Transaction History. A transaction history H is an execution history such that H |mem = HInit · H
′
with the following

conditions. HInit is the following history that initializes every location to v0. HInit = l0i ▷ initT0 () · l00 ▷writeT0 (1,v0):ok ·
. . . · l0m ▷writeT0 (m,v0):ok · l0c ▷ commitT0 :C. For every T ∈ H

′
, the history H ′ |T is a prefix of E.E ′. The event sequence E is

the initialization method call l ▷ initT () (for some l ), and then a sequence of reads l ▷ readT (i ):v and writes l ▷writeT (i,v ) (for
some l , i , and v). The event sequence E ′ is one of the following sequences (for some l , i , and v): (1) inv (l ▷ readT (i )), ret (l ▷A),
(2) inv (l ▷writeT (i,v )), ret (l ▷ A), (3) inv (l ▷ commitT ()), ret (l ▷ C), (4) inv (l ▷ commitT ()), ret (l ▷ A), or (5) inv (l ▷ abortT ()),
ret (l ▷A). Let THistory denote the set of transaction histories. LetTrans (H ) denote the set of transactions ofH . The projection

of H on i , written H |i , denotes the subsequence of history H that contains exactly the events on location i . For a TM algorithm

description π , let H(π ) denote the set of complete transaction histories that result from execution of transactions with π .
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11 Inference Rules
In this section, we now present the inference rules.

The judgements are of the form π ,Γ ⊢ A read assertion A is derived from the assumption assertions Γ for the specification

π . The context Γ is defined as follows:

Γ ::= · | Γ;A Context

We present the classical first-order logic rules, the structure inference rules, the basic inference rules, and the synchronization

object inference rules.

11.1 Classical First-order Logic Inference Rules
The classical inference rules are presented in Figure 16. The derived classical inference rules are presented in Figure 17.

The equivalence and arithmetic Rules are presented in Figure 18. The derived equivalence and arithmetic Rules are presented

in Figure 19.

Premise

π ,Γ;A; Γ′ ⊢ A

ConjIntro

π ,Γ ⊢ A π ,Γ ⊢ A ′

π ,Γ ⊢ A ∧ A ′

ConjElimL

π ,Γ ⊢ A ∧ A ′

π ,Γ ⊢ A

ConjElimR

π ,Γ ⊢ A ∧ A ′

π ,Γ ⊢ A ′

DisjIntroL

π ,Γ ⊢ A

π ,Γ ⊢ A ∨ A ′

DisjIntroR

π ,Γ ⊢ A ′

π ,Γ ⊢ A ∨ A ′

DisjElim

π ,Γ ⊢ A ∨ A ′

π ,Γ;A ⊢ A ′′

π ,Γ;A ′ ⊢ A ′′

π ,Γ ⊢ A ′′

CondIntro

π ,Γ;A ⊢ A ′

π ,Γ ⊢ A ⇒ A ′

CondElim

π ,Γ ⊢ A ⇒ A ′

π ,Γ ⊢ A

π ,Γ ⊢ A ′

NegIntro

π ,Γ;A ⊢ A ′

π ,Γ;A ⊢ ¬A ′

π ,Γ ⊢ ¬A

ExcMid

π ,Γ ⊢ A ∨ ¬A

NegElim

π ,Γ ⊢ A
π ,Γ ⊢ ¬A

π ,Γ ⊢ A ′

UnivIntro

π ,Γ ⊢ A[ℓ := l]
l < Γ

π ,Γ ⊢ ∀ℓ : A

UnivElim

π ,Γ ⊢ ∀ℓ : A

π ,Γ ⊢ A[ℓ := l]

ExistIntro

π ,Γ ⊢ A[ℓ := l]

π ,Γ ⊢ ∃ℓ : A

ExistElim

π ,Γ ⊢ ∃ℓ : A
l < Γ

π ,Γ;A[ℓ := l] ⊢ A ′

π ,Γ ⊢ A ′

Figure 16. Classical Inference Rules
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DisjSyllL

π ,Γ ⊢ A ∨ A ′

π ,Γ ⊢ ¬A

π ,Γ ⊢ A ′

DisjSyllR

π ,Γ ⊢ A ∨ A ′

π ,Γ ⊢ ¬A ′

π ,Γ ⊢ A

CondElim’

π ,Γ ⊢ A ⇒ A ′

π ,Γ ⊢ ¬A ′

π ,Γ ⊢ ¬A

Figure 17. Derived Classical Inference Rules

LRefl

π ,Γ ⊢ l = l

LSubs

π ,Γ ⊢ l = l ′

π ,Γ ⊢ A

π ,Γ ⊢ A[l := l ′]

ERefl

π ,Γ ⊢ e = e

LSubs

π ,Γ ⊢ e = e ′

π ,Γ ⊢ A

π ,Γ ⊢ A[e := e ′]

Zero

π ,Γ ⊢ ¬(1 = 0)

Figure 18. Equivalence and Arithmetic Rules

LSym

π ,Γ ⊢ l = l ′

π ,Γ ⊢ l ′ = l

LTrans

π ,Γ ⊢ l = l ′

π ,Γ ⊢ l ′ = l ′′

π ,Γ ⊢ l = l ′′

ESym

π ,Γ ⊢ e = e ′

π ,Γ ⊢ e ′ = e

ETrans

π ,Γ ⊢ e = e ′

π ,Γ ⊢ e ′ = e ′′

π ,Γ ⊢ e = e ′′

Figure 19. Derived Equivalence and Arithmetic Rules
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11.2 Structure Inference Rules
The structure inference rules that axiomatize the relation of the program structure and the execution. The structure inference

rules are presented in Figures 20 The derived structure inference rules are presented in Figure 21. The derived inference rules

can be derived from the basic rules. Please see Section 15.3 for notes on the derivation of the derived rules.

The rule Id states that components of method calls in the history originate from components of method calls in the program.

The object, arguments and other components of an executed method call labeled ς ’c can be derived from prefixing the object,

arguments and other components of the method call annotated with c in the program with the pre-label ς . Note that the
pre-label ς is a constant c ′ when the method call c is executed inside the body of a this method call annotated with c ′. The
pre-label ς is ϵ when c is the annotation of a this method call.

The rule Src states that every executed method originates from a call site in the program. If a method n on an object with

the base name ϕ is executed, it is from one of the call sites where n is called on ϕ in the program.

The rule OControl states when a this method call is executed. A this method call is executed if an only if its execution

condition is satisfied.

The rule IControl states when a method call in the body of a this method call is executed. A method call (annotated with)

c ′ in a this method call (annotated with) c is executed if and only if c is executed, the execution condition of c ′ is satisfied and

no return statement before c ′ is executed.
The rule P2X states that the program order is preserved in the execution order. If a method call annotated with c1 is ordered

before a method call annotated with c2 in the program, and methods labeled ς ’c1 and ς ’c2 are executed, then ς ’c1 is executed
before ς ’c2.

The rule OX2IX states that the execution order of two this method calls implies the execution order of method calls in their

bodies. If a this method call c1 is executed before another this method call c2, then every executed method call of the body of c1
is executed before every executed method call of the body of c2.
The rule TSeq states that every thread is sequential. Every two this method calls by the same thread are ordered in the

execution order. Similarly, every two method calls on base objects by the same thread are ordered in the execution order.

The rule Caller states that if a this method call is executed, its parameters and arguments are equal and that one of the

return statements in its body is executed and its return value is equal to the value that the executed return statement returns.

The rule Callee states that if a method call in the body of a this method call is executed, then the this method call is executed

and the parameters and the arguments of the this method call are equal.

The rule Ret states that if a return statement of the body of a this method call is executed, then the this method call is

executed and the parameters and the arguments of the this method call are equal and the return value of the this method call is

the value that the return statement returns.

The rule TLocal states that every two executed method calls on the same thread-local object are from the same thread.

The rule TReal states that if a thread is ordered before another thread, then every method call from the former is executed

before every method call from the latter.

The rule IX2OX states that if two method calls in the body of two this method calls execute in order by the same thread,

then the two this method calls execute in the same order.
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Id

objπ (c ) = θ nameπ (c ) = n
threadπ (c ) = τ arдπ (c ) = u retvπ (c ) = x

π ,Γ ⊢ exec (ς ’c )

π ,Γ ⊢ obj (ς ’c ) = ς ’θ ∧
name (ς ’c ) = n ∧ thread (ς ’c ) = ς ’τ ∧

arд(ς ’c ) = ς ’u ∧ retv (ς ’c ) = ς ’x

Src

π ,Γ ⊢ exec (ς ’c )
π ,Γ ⊢ obj (ς ’c ) = θ π ,Γ ⊢ name (ς ’c ) = n

Callsπ (basename (θ ),n) = {ci }

π ,Γ ⊢
∨

i=1..n

c = ci

OControl

c ∈ Labels (P)

π ,Γ ⊢ exec (c ) ⇔ condπ (c )

IControl

Labels (nameπ (c )) = {ci }
PreReturnsπ (c

′) = {cr }

π ,Γ ⊢ exec (c’c ′) ⇔ (exec (c ) ∧∨
ci

c ′ = ci ∧ c’condπ (c
′) ∧

∧
cr

¬exec (c’cr ))

P2X

c1 →π c2
π ,Γ ⊢ exec (ς ’c1) π ,Γ ⊢ exec (ς ’c2)

π ,Γ ⊢ ς ’c1 ≺ ς ’c2

OX2IX

π ,Γ ⊢ c1 ≺ c2
π ,Γ ⊢ exec (c1’c3) π ,Γ ⊢ exec (c2’c4)

π ,Γ ⊢ c1’c3 ≺ c2’c4

TSeq

π ,Γ ⊢ exec (l1) π ,Γ ⊢ exec (l2)
π ,Γ ⊢ thread (l1) = thread (l2)

π ,Γ ⊢ obj (l1) = obj (l2) = this ∨
(¬obj (l1) = this ∧ ¬obj (l2) = this)

π ,Γ ⊢ l1 ≺ l2 ∨ l2 ≺ l1 ∨ l1 = l2

Caller

tparπ (n) = t par1π (n) = x
Returnsπ (n) = {ci }

π ,Γ ⊢ exec (c )
π ,Γ ⊢ obj (c ) = this ∧ name (c ) = n

π ,Γ ⊢ c’t = thread (c ) ∧ c’x = arд(c ) ∧∨
i=1..n

exec (c’ci ) ∧ arд1(c’ci ) = retv (c )

Callee

tparπ (n) = t par1π (n) = x
c ′ ∈ Labelsπ (n)
π ,Γ ⊢ exec (ς ’c ′)

π ,Γ ⊢ ¬(ς = ϵ ) ∧ exec (ς ) ∧
obj (ς ) = this ∧ name (ς ) = n
thread (ς ) = ς ’t ∧ arд(ς ) = ς ’x

Ret

tparπ (n) = t par1π (n) = x
c ′ ∈ Returnsπ (n)
π ,Γ ⊢ exec (c’c ′)

π ,Γ ⊢ exec (c ) ∧
obj (c ) = this ∧ name (c ) = n ∧
thread (c ) = c’t ∧ arд(c ) = c’x ∧

retv (c ) = arд1(c’c ′)

TLocal

T (basename (o)) = ThreadLocal st
π ,Γ ⊢ exec (l1) ∧ exec (l2)
π ,Γ ⊢ obj (l1) = obj (l2) = o

π ,Γ ⊢ thread (l1) = thread (l2)

TReal

π ,Γ ⊢ τ ≺≺ τ ′

π ,Γ ⊢ exec (l ) ∧ thread (l ) = τ
π ,Γ ⊢ exec (l ′) ∧ thread (l ′) = τ ′

π ,Γ ⊢ l ≺ l ′

Figure 20. Structure Inference Rules. All of the rules have the side condition π = (T ,D,P)

IX2OX

π ,Γ ⊢ c1’c3 ≺ c2’c4
π ,Γ ⊢ thread (c1’c3) = thread (c2’c4)

π ,Γ ⊢ c1 ≺ c2 ∨ c1 = c2

Figure 21. Derived Structure Inference Rules

38



Transaction Protocol Verification with Labeled Synchronization Logic NFM’19, May 2019,

XASym

π ,Γ ⊢ l ≺ l ′

π ,Γ ⊢ ¬(l ′ ≺ l ) ∧ ¬(l ′ ∼ l ) ∧ ¬(l ′ = l )

XTrans

π ,Γ ⊢ l ≺ l ′ π ,Γ ⊢ l ′ ≺ l ′′

π ,Γ ⊢ l ≺ l ′′

XXTrans

π ,Γ ⊢ l1 ≺ l2 π ,Γ ⊢ l3 ≺ l4
π ,Γ ⊢ l2 ∼ l3

π ,Γ ⊢ l1 ≺ l4

XTotal

π ,Γ ⊢ exec (l ) ∧ exec (l ′)

π ,Γ ⊢ (l ≺ l ′) ∨ (l ′ ≺ l ) ∨ (l ∼ l ′) ∨ (l = l ′)

X2L

Tbase (o) ∈ LT
π ,Γ ⊢ obj (l ) = obj (l ′) = o π ,Γ ⊢ l ≺ l ′

π ,Γ ⊢ l ≺o l
′

LASym

π ,Γ ⊢ l ≺o l
′

π ,Γ ⊢ ¬(l ′ ≺o l ) ∧ ¬(l = l
′)

LTrans

π ,Γ ⊢ l ≺o l
′ π ,Γ ⊢ l ′ ≺o l

′′

π ,Γ ⊢ l ≺o l
′′

LTotal

Tbase (o) ∈ LT ∪ SCT
π ,Γ ⊢ exec (l ) ∧ exec (l ′)
π ,Γ ⊢ obj (l ) = obj (l ′) = o

π ,Γ ⊢ (l ≺o l
′) ∨ (l ′ ≺o l ) ∨ (l = l ′)

All of the rules have the side condition π = (T ,D,P)

Figure 22. Basic Inference Rules

P2L

c1 →π c2
π ,Γ ⊢ exec (ς ’c1) π ,Γ ⊢ exec (ς ’c2)

Tbase (o) ∈ LT π ,Γ ⊢ obj (ς ’c1) = obj (ς ’c2) = o

π ,Γ ⊢ ς ’c1 ≺o ς ’c2

X2X

π ,Γ ⊢ l ≺ l ′

π ,Γ ⊢ exec (l ) ∧ exec (l ′)

L2X

Tbase (o) ∈ LT ∪ SCT
π ,Γ ⊢ l ≺o l

′

π ,Γ ⊢ exec (l ) ∧ exec (l ′) ∧
obj (l ) = obj (l ′) = o

XLTrans

Tbase (o) ∈ LT
π ,Γ ⊢ l1 ≺ l2 π ,Γ ⊢ l3 ≺ l4

π ,Γ ⊢ l2 ≺o l3

π ,Γ ⊢ l1 ≺ l4

X2L’

Tbase (o) ∈ LT
π ,Γ ⊢ l ≺o l

′

π ,Γ ⊢ l ≾ l ′

Figure 23. Derived Basic Inference Rules

11.3 Basic Inference Rules
The basic inference rules axiomatize the properties of the execution and linearization orders and their interdependence. The

basic inference rules state are presented in 22. The derived basic inference rules are presented in Figure 23. We explain each

rule in turn.

The rule XASym states the asymmetry property of the execution order. If a method call is executed before another method

call, then the latter is not executed before the former and they are not executed concurrently.

The rule XTrans states the transitivity property of the precedence execution order. The rule XXTrans states the transitivity

of the sequence of precedence, concurrency and precedence execution relations. If l1 is executed before l2, l2 is executed (before
or) concurrent to l3 and l3 is executed before l4, then l1 is executed before l4.
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The rule XTotal states the totality property of the precedence and concurrency execution relations. Every two method calls

either execute in order or concurrently.

The rule X2X states that if a method call is executed before another one, then obviously both are executed.

The rule X2L states the real-time-preservation property of linearization orders. The execution order of two method calls on

a linearizable object is preserved in the linearization order.

The rule LASym states the asymmetry property of linearization orders. If a method call is linearized before another one,

then the latter is not linearized before the former.

The rule LTrans states the transitivity property of linearization orders.

The rule LTotal states the totality property of linearization orders.

The rule L2X states that if a method call is linearized before another one, then obviously both are executed.

The rule P2L states that the program order of two method calls on a linearizable object is preserved in the linearization

order.

The rule XLTrans is a form of “transitivity” rule for judgements about the execution order ≺ and the linearization order ≺o
for a linearizable object o. If l1 is executed before l2, l2 is linearized before l3 and l3 is executed before l4, then l1 is executed
before l4.

The rule X2L’ states the contra-positive of the rule X2L.
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11.4 Synchronization Object Inference Rules
The synchronization object inference rules axiomatize the properties of common synchronization object types. We consider

each type in turn.

Basic and Atomic Register. The basic and atomic register inference rules are presented in Figure 24.

The rule AReg states that for every read method call lR on an atomic register, there is a write method call ℓW on it that

writes the same value that lR returns and ℓW is the last write method call that is linearized before lR .
A method call ℓ is race-free isRaceFreer (ℓ) if an only if there is no write method call that executes concurrent to it. A

register reд is sequentially-written isSequentiallyWritten(reд) if and only if every pair of write method calls on it are ordered

in the execution order or in other words, every write method call on it is race-free.

AReg

Tbase (reд) = AtomicReдister
π ,Γ ⊢ isReadr eд (lR )

π ,Γ ⊢ ∃ℓW : isWriterr eд (ℓW ,lR ) ∧
retv (lR ) = arд1(ℓW )

BReg

Tbase (reд) = BasicReдister
π ,Γ ⊢ isSequentiallyWritten(reд)

π ,Γ ⊢ isReadr eд (lR )
π ,Γ ⊢ isRaceFreer eд (lR )

π ,Γ ⊢ ∃ℓW : isEWriterr eд (ℓW ,lR ) ∧
retv (lR ) = arд1(ℓW )

isReadr (ℓR ) ⇔
exec (ℓR ) ∧ obj (ℓR ) = r ∧ name (ℓR ) = read

isWriter (ℓW ) ⇔
exec (ℓW ) ∧ obj (ℓW ) = r ∧ name (ℓW ) = write

isWriterr (ℓW , ℓR ) ⇔
isWriter (ℓW ) ∧ ℓW ≺r ℓR ∧
∀ℓ′W : isWriter (ℓ

′
W ) ⇒ (ℓ′W ⪯r ℓW ∨ ℓR ≺r ℓ

′
W )

isEWriterr (ℓW , ℓR ) ⇔
isWriter (ℓW ) ∧ ℓW ≺ ℓR ∧
∀ℓ′W : isWriter (ℓ

′
W ) ⇒ (ℓ′W ⪯ ℓW ∨ ℓR ≺ ℓ

′
W )

isSequential (o) ⇔
∀ℓ,ℓ′ : (exec (ℓ) ∧ exec (ℓ′) ∧ obj (ℓ) = o ∧ obj (ℓ′) = o) ⇒

(ℓ ⪯ ℓ′ ∨ ℓ′ ≺ ℓ)
isRaceFreer (ℓ) ⇔
∀ℓW : isWriter (ℓW ) ⇒ (ℓW ≺ ℓ ∨ ℓ ≺ ℓW )

isSequentiallyWritten(r ) ⇔
∀ℓw : isWriter (ℓw ) ⇒ isRaceFreer (ℓw )

Figure 24. Register Inference Rules.

AReg’

Tbase (reд) = AtomicReдister
π ,Γ ⊢ isReadr eд (lR )

π ,Γ ⊢ isWriterr eд (lW ,lR )

π ,Γ ⊢ arд1(lW ) = retv (lR )

BReg’

Tbase (reд) = BasicReдister
π ,Γ ⊢ isReadr eд (lR )

π ,Γ ⊢ isSequential (reд)

π ,Γ ⊢ ∃ℓW : isEWriterr eд (ℓW ,lR ) ∧
retv (lR ) = arд1(ℓW )

TReg

T (reд) = ThreadLocal BasicReдister
π ,Γ ⊢ isReadr eд[τ ] (lR )

π ,Γ ⊢ ∃ℓW : isEWriterr eд[τ ] (ℓW ,lR ) ∧
retv (lR ) = arд1(ℓW ) ∧

thread (ℓW ) = τ

Figure 25. Derived Register Inference Rules
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The rule BReg states that if a basic register reд is sequentially-written, for every race-free read method call lR on reд, there
is a write method call ℓW on reд that writes the same value that lR returns and ℓW is the last write method call that is executed

before lR . Note that this models Lamport’s notion of safe registers [26].

The derived register inference rules are presented in Figure 25.

The rule AReg’ states that for every read method call lR on an atomic register, if lW is the last write method call that is

linearized before lR , then lW writes the same value that lR returns.

An object o is accessed sequentially isSequential (o) if and only if every pair of method calls on it are ordered in the execution

order.

The rule BReg’ states that if a basic register reд is accessed sequentially, for every read method call lR on reд, there is a write
method call ℓW on reд that writes the same value that lR returns and ℓW is the last write method call that is executed before lR .

The rule TReg states that for every read method call lR on a thread-local register reд, there is a write method call ℓW on reд
that writes the same value that lR returns and ℓW is the last write method call that is executed before lR .

42



Transaction Protocol Verification with Labeled Synchronization Logic NFM’19, May 2019,

CASRegRead

Tbase (reд) = AtomicCASReдister
π ,Γ ⊢ isReadr eд (lR )

π ,Γ ⊢ ∃ℓW : isCWriterr eд (ℓW ,lR ) ∧
retv (lR ) = writtenValue (ℓW )

CASRegCAST

Tbase (reд) = AtomicCASReдister
π ,Γ ⊢ isCASr eд (lC )

π ,Γ ⊢ isCWriterr eд (lW ,lR )
π ,Γ ⊢ arд1(lC ) = writtenValue (lW )

π ,Γ ⊢ retv (lC ) = true

CASRegCASF

Tbase (reд) = AtomicCASReдister
π ,Γ ⊢ isCASr eд (lC )

π ,Γ ⊢ isCWriterr eд (lW ,lR )
π ,Γ ⊢ ¬(arд1(lC ) = writtenValue (lW ))

π ,Γ ⊢ retv (lC ) = f alse

isReadr (ℓR ) ⇔
exec (ℓR ) ∧ obj (ℓR ) = r ∧ name (ℓR ) = read

isWriter (ℓR ) ⇔
exec (ℓR ) ∧ obj (ℓR ) = r ∧ name (ℓR ) = write

isCASr (ℓR ) ⇔
exec (ℓR ) ∧ obj (ℓR ) = r ∧ name (ℓR ) = cas

isCWriter (ℓW ) ⇔
isWriter (ℓW ) ∨ (isCASr (ℓW ) ∧ retv (ℓW ) = true )

isCWriterr (ℓW , ℓR ) ⇔
isCWriter (ℓW ) ∧ ℓW ≺r ℓR ∧
∀ℓ′W : isCWriter (ℓ

′
W ) ⇒ (ℓ′W ⪯r ℓW ∨ ℓR ≺r ℓ

′
W )

writtenValue (ℓ) ={
arд1(ℓ) if obj (ℓ) = write
arд2(ℓ) if obj (ℓ) = cas

Figure 26. CAS Register Inference Rules.

CASRegRead’

Tbase (reд) = CASAtomicReдister
π ,Γ ⊢ isReadr eд (lR )

π ,Γ ⊢ isCWriterr eд (lW ,lR )

π ,Γ ⊢ retv (lR ) = writtenValue (lW )

Figure 27. Derived CAS Register Inference Rules

CAS Atomic Register. The cas register inference rules are presented in Figure 26.

A method call ℓW on an atomic cas register r is a successful write isCWriter (ℓW ), if and only if it is a write method call or a

successful cas method call. The written valuewrittenValue (ℓ) of a successful write method call ℓ is its first argument if it is a

write method call and its second argument if it a successful cas method call.

The rule CASRegRead states that for every read method call lR on an atomic cas register, there is a successful write ℓW that

writes the same value that lR has returned and ℓW is the last successful write that is linearized before lR .
The rule CASRegCAST and the rule CASRegCASF state that a cas method call lC on an atomic cas register returns true if the

written value of the last successful write linearized before lC is equal to the first argument of lC , and returns f alse otherwise.
The derived cas register inference rules are presented in Figure 27.

The rule CASRegRead’ states that for every read method call lR on an atomic cas register, the last successful write that is

linearized before lR writes the same value that lR returns.
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Lock and Try-Lock. The preliminary definitions are presented in Figure 28 and the lock and try-lock inference rules are

presented in Figure 29.

Ownership for a lock l is respected, isOwnerRespectinд(l ) if and only if every thread unlocks l only if it has already locked

l and has not unlocked it since then.

The rule Lock states that if ownership is respected for a lock l and a lock method call on l (by a thread t1) is linearized
before an unlock method call on l (by a thread t2), then an unlock method call on l by t1 is linearized before a lock method call

on l by t2.
The rule LockReadL states that if ownership is respected for a lock l and an unlock method call on l (by a thread t ) is

linearized after a read method call on l that returns f alse , then a lock method call on l by t is linearized after the read method

call.

The rule LockReadR states that if ownership is respected for a lock l and a lock method call on l (by a thread t ) is linearized
before a read method call on l that returns f alse , then an unlock method call on l by t is linearized before the read method call.

The rule LockReadM states that if ownership is respected for a lock l and a read method call on l (by a thread t ) is linearized
between a pair of matching lock and unlock method call on l , then the read method call returns true .

There are four similar rules for try-locks. Instead of lock method calls, these rules concern successful lock method calls that

are lock and successful tryLock method calls.

isLocko (ℓ) ⇔
exec (ℓ) ∧ obj (ℓ) = o ∧ name (ℓ) = lock

isUnlocko (ℓ) ⇔
exec (ℓ) ∧ obj (ℓ) = o ∧ name (ℓ) = unlock

isReado (ℓ) ⇔
exec (ℓ) ∧ obj (ℓ) = o ∧ name (ℓ) = read

isTryLocko (ℓ) ⇔
exec (ℓ) ∧ obj (ℓ) = o ∧ name (ℓ) = tryLock

isTLocko (ℓ) ⇔
isLocko (ℓ) ∨ (isTryLocko (ℓ) ∧ retv (ℓ) = true )

noUnlockBetweeno (ℓl , ℓu ) ⇔
∀ℓ′u :

(isXUnlockX ,o (ℓ
′
u ) ∧

threadX (ℓl ) = threadX (ℓ
′
u )) ⇒

(ℓ′u ≺ ℓl ∨ ℓu ⪯ ℓ
′
u )

isOwnerRespectinд(o) ⇔
∀ℓ : isUnlocko (ℓ) ⇒
∃ℓ′ : isTLocko (ℓ

′) ∧
thread (ℓ′) = thread (ℓ) ∧
ℓ′ ≺ ℓ ∧
∀ℓ′′ :

(isUnLocko (ℓ
′′) ∧

thread (ℓ′′) = thread (ℓ))
⇒

ℓ′′ ≺ ℓ′ ∨ ℓ ⪯ ℓ′′

Figure 28. Preliminary definitions for Lock and TryLock Inference Rules.
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Lock

Tbase (o) = Lock
π ,Γ ⊢ isOwnerRespectinд(o)

π ,Γ ⊢ isLocko (ll1 ) π ,Γ ⊢ isUnlocko (lu2 )
π ,Γ ⊢ ll1 ≺o lu2

π ,Γ ⊢ ∃ℓu1 , ℓl2 :
isUnlocko (ℓu1 ) ∧ thread (ℓu1 ) = thread (ll1 ) ∧
isLocko (ℓl2 ) ∧ thread (ℓl2 ) = thread (lu2 ) ∧

ℓu1 ≺o ℓl2

LockReadL

Tbase (o) = Lock
π ,Γ ⊢ isOwnerRespectinд(o)

π ,Γ ⊢ isUnlocko (lu1 )
π ,Γ ⊢ isRead (lr2 ) ∧ retv (lr2 ) = f alse

π ,Γ ⊢ lr2 ≺o lu1

π ,Γ ⊢ ∃ℓl1 :
isLocko (ℓl1 ) ∧ thread (ℓl1 ) = thread (lu1 ) ∧

lr2 ≺o ℓl1

LockReadR

Tbase (o) = Lock
π ,Γ ⊢ isOwnerRespectinд(o)

π ,Γ ⊢ isLocko (ll1 )
π ,Γ ⊢ isRead (lr2 ) ∧ retv (lr2 ) = f alse

π ,Γ ⊢ ll1 ≺o lr2

π ,Γ ⊢ ∃ℓu1 :
isUnlocko (ℓu1 ) ∧ thread (ℓu1 ) = thread (ll1 ) ∧

ℓu1 ≺o lr2

LockReadM

Tbase (o) = Lock
π ,Γ ⊢ isOwnerRespectinд(o)

π ,Γ ⊢ isLocko (ll1 ) π ,Γ ⊢ isUnlocko (lu1 )
π ,Γ ⊢ thread (lu1 ) = thread (ll1 )
π ,Γ ⊢ noUnlockBetweeno (ll1 ,lu1 )

π ,Γ ⊢ isRead (lr2 )
π ,Γ ⊢ ll1 ≺o lr2 π ,Γ ⊢ lr2 ≺o lu1

π ,Γ ⊢ retv (lr2 ) = true

TryLock

Tbase (o) = TryLock
π ,Γ ⊢ isOwnerRespectinд(o)

π ,Γ ⊢ isTLocko (ll1 ) π ,Γ ⊢ isUnlocko (lu2 )
π ,Γ ⊢ ll1 ≺o lu2

π ,Γ ⊢ ∃ℓu1 , ℓl2 :
isUnlocko (ℓu1 ) ∧ thread (ℓu1 ) = thread (ll1 ) ∧
isTLocko (ℓl2 ) ∧ thread (ℓl2 ) = thread (lu2 ) ∧

ℓu1 ≺o ℓl2

TryLockReadL

Tbase (o) = TryLock
π ,Γ ⊢ isOwnerRespectinд(o)

π ,Γ ⊢ isUnlocko (lu1 )
π ,Γ ⊢ isRead (lr2 ) ∧ retv (lr2 ) = f alse

π ,Γ ⊢ lr2 ≺o lu1

π ,Γ ⊢ ∃ℓl1 :
isTLocko (ℓl1 ) ∧ thread (ℓl1 ) = thread (lu1 ) ∧

lr2 ≺o ℓl1

TryLockReadR

Tbase (o) = TryLock
π ,Γ ⊢ isOwnerRespectinд(o)

π ,Γ ⊢ isTLocko (ll1 )
π ,Γ ⊢ isRead (lr2 ) ∧ retv (lr2 ) = f alse

π ,Γ ⊢ ll1 ≺o lr2

π ,Γ ⊢ ∃ℓu1 :
isUnlocko (ℓu1 ) ∧ thread (ℓu1 ) = thread (ll1 ) ∧

ℓu1 ≺o lr2

TryLockReadM

Tbase (o) = TryLock
π ,Γ ⊢ isOwnerRespectinд(o)

π ,Γ ⊢ isTLocko (ll1 ) π ,Γ ⊢ isUnlocko (lu1 )
π ,Γ ⊢ thread (lu1 ) = thread (ll1 )
π ,Γ ⊢ noUnlockBetweeno (ll1 ,lu1 )

π ,Γ ⊢ isRead (lr2 )
π ,Γ ⊢ ll1 ≺o lr2 π ,Γ ⊢ lr2 ≺o lu1

π ,Γ ⊢ retv (lr2 ) = true

Figure 29. Lock and TryLock Inference Rules.
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Strong Counter. The strong counter inference rules are presented in Figures 30 and 31.

The rule SCounter states that the return value of every method call that is linearized before an iaf method call is smaller

than the return value of the iaf method call.

The rule SCounter’ states that if the return value of a method call is greater than the return value of an iaf method call,

then it is linearized after the iaf method call.

SCounter

Tbase (o) = SCounter
π ,Γ ⊢ obj (l1) = o

π ,Γ ⊢ obj (l2) = o ∧ name (l2) = iaf
π ,Γ ⊢ l1 ≺o l2

π ,Γ ⊢ retv (l1) < retv (l2)

Figure 30. SCounter Rules

SCounter’

Tbase (o) = SCounter
π ,Γ ⊢ exec (l1) ∧ obj (l1) = o

π ,Γ ⊢ exec (l2) ∧ obj (l2) = o ∧ name (l2) = iaf
π ,Γ ⊢ retv (l1) > retv (l2)

π ,Γ ⊢ l2 ≺o l1

Figure 31. Derived SCounter Rules
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Basic Set and Basic Map. The Set and Map inference rules are presented in Figure 32.

An object o is accessed sequentially isSequential (o) if and only if every pair of method calls on it are ordered in the execution

order.

The rule BasicSetContains states that if a basic set s is accessed sequentially, for every contains method call on s that
returns true , there is a preceding add method call on s with the same argument.

The rule BasicSetAdd states that if a basic set s is accessed sequentially, every contains method call on s that succeeds an
add method call on s with the same argument returns true .

The rule BasicMapGet states that if a basic mapm is accessed sequentially, for every дet method call lд onm that does not

return ⊥, there exists a put method call ℓp onm with the same key argument such that the value argument of p is equal to the

return value of lд and ℓp is the latest preceding put method call onm with the same key argument.

BasicSetContains

Tbase (s ) = BasicSet
π ,Γ ⊢ isSequential (s )

π ,Γ ⊢ isContainss (lc ) ∧ retv (lc ) = true

π ,Γ ⊢ ∃ℓa : isAdds (ℓa ) ∧
arд1(ℓa ) = arд1(lc ) ∧ ℓa ≺ lc

BasicSetAdd

Tbase (s ) = BasicSet
π ,Γ ⊢ isSequential (s )
π ,Γ ⊢ isAdds (la )

π ,Γ ⊢ isContainss (lc )
π ,Γ ⊢ la ≺ lc ∧ arд1(la ) = arд1(lc )

π ,Γ ⊢ retv (lc ) = true

BasicMapGet

Tbase (m) = BasicMap
π ,Γ ⊢ isSequential (m)

π ,Γ ⊢ isGetm (lд ) ∧ retv (lд ) , ⊥

π ,Γ ⊢ ∃ℓp : isPutterm (ℓp ,lд ) ∧
arд2(ℓp ) = retv (lд )

BasicMapPut

Tbase (m) = BasicMap
π ,Γ ⊢ isSequential (m)

π ,Γ ⊢ isGetm (lд )
π ,Γ ⊢ isPutterm (lp ,lд )

π ,Γ ⊢ arд2(lp ) = retv (lд )

isContainso (ℓ) ⇔
exec (ℓ) ∧ obj (ℓ) = o ∧ name (ℓ) = contains

isAddo (ℓ) ⇔
exec (ℓ) ∧ obj (ℓ) = o ∧ name (ℓ) = add

isPuto (ℓ) ⇔
exec (ℓ) ∧ obj (ℓ) = o ∧ name (ℓ) = put

isGeto (ℓ) ⇔
exec (ℓ) ∧ obj (ℓ) = o ∧ name (ℓ) = дet

isPutterm (ℓp , ℓд ) ⇔
isPutm (ℓp ) ∧ arд1(ℓp ) = arд1(ℓд ) ∧ ℓp ≺ ℓд ∧
∀ℓ′p : isPutm (ℓ′p ) ∧ arд1(ℓ′p ) = arд1(ℓд ) ⇒ (ℓ′p ⪯ ℓp ∨ ℓд ≺ ℓ

′
p )

isSequential (o) ⇔
∀ℓ,ℓ′ : (exec (ℓ) ∧ exec (ℓ′) ∧ obj (ℓ) = o ∧ obj (ℓ′) = o) ⇒

(ℓ ⪯ ℓ′ ∨ ℓ′ ≺ ℓ)

Figure 32. Set and Map Inference Rules

BasicMapGet’

Tbase (m) = BasicMap
π ,Γ ⊢ isSequential (m)

π ,Γ ⊢ isGetm (lд )
π ,Γ ⊢ ¬∃ℓp : isPutm (ℓp ) ∧

arд1(ℓp ) = arд1(lд ) ∧ ℓp ≺ lд

π ,Γ ⊢ retv (lд ) = ⊥

BasicMapPut’

Tbase (m) = BasicMap
π ,Γ ⊢ isSequential (m)

π ,Γ ⊢ isGetm (lд )
π ,Γ ⊢ isPutm (lp )

π ,Γ ⊢ arд1(lp ) = arд1(lд ) ∧ lp ≺ lд
π ,Γ ⊢ ∀ℓp : isPutm (ℓp ) ⇒ arд2(ℓp ) , ⊥

π ,Γ ⊢ retv (lд ) , ⊥

Figure 33. Derived Set and Map Inference Rules
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The rule BasicMapPut states that if a basic mapm is accessed sequentially, for every дet method call lд onm, if lp is the

latest preceding put method call onm with the same key argument then the value argument of lp is equal to the return value

of lд .
The derived Set and Map inference rules are presented in Figure 33.

The rule BasicMapGet’ states that if a basic mapm is accessed sequentially, for every дet method call lд onm, if no put
method call with the same key argument as lд precedes lд , then lд returns ⊥.

The rule BasicMapPut’ states that if a basic mapm is accessed sequentially and no put method call puts ⊥ inm, every дet
method call that succeeds a put method call with the same key argument does not return ⊥.
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12 Dekker Algorithm
In this section, we prove the mutual exclusion guarantee

of the Dekker algorithm using the logic. We presented the

Dekker algorithm, πDekker , in Figure 1.

Theorem 12.1 (Mutual Exclusion).
In every execution of the Dekker specification, at most one
thread acquires the lock.
∀X ∈ H(πDekker ) : (retvX (L2) = true ) ⇒ (retvX (L1) =
f alse ).

Proof.

We show that

(1) X ′ ∈ H(πDekker )
We show that

(2) (retvX ′ (L2) = true ) ⇒
(retvX ′ (L1) = f alse )

By Definition 17 on [1], we have that there exists X,X ,σ ,L
such that

(3) X = (X ,σ ,L) ∈ [[π ]]

(4) X ′ = σ (X )
By Lemma 12.2, we have

(5) πDekker , · ⊢ (retv (L2) = true ) ⇒
(retv (L1) = f alse ).

By the soundness theorem, Theorem 13.4, andDefinition [13.3]

on [5] and [3], we have

(6) X |= (retv (L2) = true ) ⇒
(retv (L1) = f alse )

By the definition of |= (Figure 8) on [6], [3] and [4], we have

(7) (retvX ′ (L2) = true ) ⇒
(retvX ′ (L1) = f alse ). 2

Lemma 12.2.
πDekker , · ⊢ (retv (L2) = true ) ⇒ (retv (L1) = f alse ).

Proof.

Let

π = πDekker
We show that

π , · ⊢ (retv (L2) = true ) ⇒
(retv (L1) = f alse )

Let

(8) Γ = (retv (L2) = true )
By rule CondIntro, we have to show that

π ,Γ ⊢ retv (L1) = f alse
By rule Premise on [8], we have

(9) π ,Γ ⊢ retv (L2) = true
From π , we have

condπ (L2) = true
Thus,

(10) π ,Γ ⊢ condπ (L2) = true
By rule OControl on [10], we have

(11) π ,Γ ⊢ exec (L2)
From π , we have

(12) nameπ (L2) = tryLock2

(13) R1 ∈ Labels (tryLock2)
From π , we have

condπ (R1) = true
Thus,

(14) π ,Γ ⊢ L2’condπ (R1) = true
From π , we have

(15) PreReturnsπ (R1) = ∅
By rule IControl on [11]-[15], we have

(16) π ,Γ ⊢ exec (L2’R1)
By rule Id on [16], we have

(17) π ,Γ ⊢ obj (L2’R1) = f1
(18) π ,Γ ⊢ name (L2’R1) = read

(19) π ,Γ ⊢ retv (L2’R1) = L2’x1
Similarly, we have

(20) π ,Γ ⊢ exec (L2’W2)

(21) π ,Γ ⊢ obj (L2’W2) = f2
(22) π ,Γ ⊢ name (L2’W2) = write

(23) π ,Γ ⊢ arд1(L2’W2) = 1

From the definition of isRead on [16], [17] and [18] and

rule ConjIntro, we have

(24) π ,Γ ⊢ isReadf1 (L2’R1)
From rule AReg on [24], we have

(25) π ,Γ ⊢ ∃ℓW :

isWriterf1 (ℓW ,L2’R1) ∧
retv (L2’R1) = arд1(ℓW )

Let

(26) Γ′ = Γ;
isWriterf1 (lW ,L2’R1) ∧
arд1(lW ) = retv (L2’R1)
where lW is fresh.

By rule Premise on [26], we have

(27) π ,Γ′ ⊢ isWriterf1 (lW ,L2’R1)

(28) π ,Γ′ ⊢ arд1(lW ) = retv (L2’R1)
By rule Id on [11], we have

(29) π ,Γ ⊢ obj (L2) = this

(30) π ,Γ ⊢ name (L2) = tryLock2
From π , we have

(31) Returnsπ (tryLock2) = {C2t ,C2f }

By rule Caller on [31], [11], [30], [31], we have

(32) π ,Γ ⊢
(exec (L2’C2t ) ∧ arд1(L2’C2t ) = retv (L2)) ∨
(exec (L2’C2f ) ∧ arд1(L2’C2f ) = retv (L2))

We apply rule DisjElim to [32]:

Right:

Let

(33) Γ′ = Γ;
(exec (L2’C2f ) ∧ arд1(L2’C2f ) = retv (L2))

By rule Premise on [33], we have

(34) π ,Γ′ ⊢ exec (L2’C2f )
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(35) π ,Γ′ ⊢ arд1(L2’C2f ) = retv (L2)
From π , we have

(36) arд1(C2f ) = f alse
By rule Id on [34], [36], we have

(37) π ,Γ′ ⊢ arд1(L2’C2f ) = f alse
From rule ETrans and rule ESym on [35], and [37], we have

(38) π ,Γ′ ⊢ retv (L2) = f alse
By weakening (Lemma 13.2) on [33] [9], we have

(39) π ,Γ′ ⊢ retv (L2) = true
By rule NegElim on [38] and [39], we have

(40) π ,Γ′ ⊢ retv (L1) = f alse

Left:

Let

(41) Γ′ = Γ;
(exec (L2’C2t ) ∧ arд1(L2’C2t ) = retv (L2))

By rule Premise on [41], we have

(42) π ,Γ′ ⊢ exec (L2’C2t )

(43) π ,Γ′ ⊢ arд1(L2’C2t ) = retv (L2)
From π , we have

(44) condπ (C2t ) = (x1 = 0)
By rule IControl on [42] and [44] we have

(45) π ,Γ′ ⊢ (L2’x1 = 0)
From [28], [19], [45], weakening (Lemma 13.2) and rule ETrans,

we have

(46) π ,Γ′ ⊢ arд1(lW ) = 0

From the definition of isWriter on [27] and rule ConjElimL

and rule ConjElimR, we have

(47) π ,Γ′ ⊢ obj (lW ) = f1
(48) π ,Γ′ ⊢ name (lW ) = write

(49) π ,Γ′ ⊢ exec (lW )

(50) π ,Γ′ ⊢ lW ≺f1 L2’R1

(51) π ,Γ′ ⊢ ∀ℓW ′ : isWritef1 (ℓW ′ ) ⇒
ℓW ′ ⪯f1 lW ∨ L2’R1 ≺f1 ℓW ′

From the definition of π , we have
(52) callsπ ( f1,write ) = {W1,W01}

From rule Src on [47], [48], [49] and [52], we have that for

some fresh ς
(53) π ,Γ′ ⊢ lW = ς ’W1 ∨ lW = ς ’W01

We apply rule DisjElim to [53]:

Left:

(54) Γ′′ = Γ′;
lW = ς ’W1

From [49], [54], weakening (Lemma 13.2), we have

(55) π ,Γ′′ ⊢ exec (ς ’W1)
From π , we have

(56) arд1π (W1) = 1

By rule Id on [54], [56], we have

(57) π ,Γ′′ ⊢ arд1(ς ’W1) = 1

From [54], [57], we have

(58) π ,Γ′′ ⊢ arд1(lW ) = 1

By weakening (Lemma 13.2) on [46], we have

(59) π ,Γ′′ ⊢ arд1(lW ) = 0

By rule ETrans and rule ESym on [58], [59], we have

(60) π ,Γ′′ ⊢ 0 = 1

By rule NegElim on rule Zero and [60], we have

(61) π ,Γ′′ ⊢ retv (L1) = f alse

Right:

(62) Γ′′ = Γ′;
lW = ς ’W01

By rule Premise on [62], we have

(63) π ,Γ′′ ⊢ lW = ς ’W01

From π , we have
(64) W01 ∈ Labelsπ (init )

By rule Callee on [63] and [64] we have

(65) π ,Γ′′ ⊢ ¬(ς = ϵ )

(66) π ,Γ′′ ⊢ exec (ς )

(67) π ,Γ′′ ⊢ obj (ς ) = this

(68) π ,Γ′′ ⊢ name (ς ) = init
From π , we have

(69) Callsπ (this,init ) = {L0}
By rule Src on [65]-[69] we have

(70) π ,Γ′′ ⊢ ς = L0
From [63] and [70], we have

(71) π ,Γ′′ ⊢ lW = L0’W01

From π , we have
condπ (L1) = true

Thus,

(72) π ,Γ′′ ⊢ condπ (L1) = true
By rule OControl on [72], we have

(73) π ,Γ′′ ⊢ exec (L1)
From π , we have

(74) nameπ (L1) = tryLock1

(75) R2 ∈ Labels (tryLock1)
From π , we have

condπ (R2) = true
Thus,

(76) π ,Γ′′ ⊢ L1’condπ (R2) = true
From π , we have

(77) PreReturnsπ (R2) = ∅
By rule IControl on [73]-[77], we have

(78) π ,Γ′′ ⊢ exec (L1’R2)
From π we have

(79) objπ (R2) = f2
(80) nameπ (R2) = read

(81) retvπ (R2) = x2
By rule Id on [78] and [79]-[81], and then rule ConjElimL

and rule ConjElimR, we have

(82) π ,Γ′′ ⊢ obj (L1’R2) = f2
(83) π ,Γ′′ ⊢ name (L1’R2) = read

(84) π ,Γ′′ ⊢ retv (L1’R2) = L1’x2
From the definition of isRead on [78], [82], [83] and rule Con-

jIntro, we have

(85) π ,Γ′′ ⊢ isReadf2 (L1’R2)
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Similarly, we have that

(86) π ,Γ′′ ⊢ exec (L1’W1)

(87) π ,Γ′′ ⊢ obj (L1’W1) = f1
(88) π ,Γ′′ ⊢ name (L1’W1) = write

(89) π ,Γ′′ ⊢ arд1(L1’W1) = 1

(90) π ,Γ′′ ⊢ isWritef1 (L1’W1)
By rule UnivElim on [51], and [90], we have

(91) π ,Γ′′ ⊢ L1’W1 ⪯f1 lW ∨ L2’R1 ≺f1 L1’W1

By rule LSubs on [91] and [71], we have

(92) π ,Γ′′ ⊢
L1’W1 ⪯f1 L0’W01 ∨

L2’R1 ≺f1 L1’W1

From π , we have
(93) L0 →π L1

By rule LSubs on [66] and [70], we have

(94) π ,Γ′′ ⊢ exec (L0)
By rule P2X on [93], [94] and [73], we have

(95) π ,Γ′′ ⊢ L0 ≺ L1
By rule LSubs on [49] and [71], we have

(96) π ,Γ′′exec (L0’W01)
By rule OX2IX on [95], and [96], and [86], we have

(97) π ,Γ′′ ⊢ L0’W01 ≺ L1’W1

By rule Id on [96], we have

(98) π ,Γ′′ ⊢ obj (L0’W01) = f1
By rule X2L on [97], [98] and [87], we have

(99) π ,Γ′′ ⊢ L0’W01 ≺f1 L1’W1

By rule LASym on [99], and rule ConjElimL, we have

(100) π ,Γ′′ ⊢ ¬(L1’W1 ≺f1 L0’W01)
By rule DisjSyllL on [92], [100], we have

(101) π ,Γ′′ ⊢ L2’R1 ≺f1 L1’W1

From π , we have
(102) W2 →π R1

From rule P2X on [102], [20], [16], andweakening (Lemma 13.2),

we have

(103) π ,Γ′′ ⊢ L2’W2 ≺ L2’R1

From π , we have
(104) W1 →π R2

From rule P2X on [104], [86] and [78], we have

(105) π ,Γ′′ ⊢ L1’W1 ≺ L1’R2

From rule XLTrans on [103], [101] and [105], we have

(106) π ,Γ′′ ⊢ L2’W2 ≺ L1’R2

From rule X2L on [106], [21] and [82], we have

(107) π ,Γ′′ ⊢ L2’W2 ≺f2 L1’R2

We show that

(108) π ,Γ′′ ⊢ ∀ℓW :

isWritef2 (ℓW ) ⇒
ℓW ⪯f2 L2’W2 ∨ L1’R2 ≺f2 ℓW

Let

(109) Γ′′′ = Γ′′; isWritef2 (l
′
W )

By rule UnivIntro and rule CondIntro,

we have to show that

π ,Γ′′′ ⊢ l ′W ⪯f2 L2’W2 ∨ L1’R2 ≺f2 l
′
W

By rule Premise on [109], we have

(110) π ,Γ′′′ ⊢ isWritef2 (l
′
W )

From definition of isWrite on [110],

we have

(111) π ,Γ′′′ ⊢
obj (l ′W ) = f2 ∧
name (l ′W ) = write ∧
exec (l ′W )

From the definition of π , we have
(112) callsπ ( f2,write ) = {W02,W2}

By rule Src on [111] and [112], we have that

for some fresh ς ,
(113) π ,Γ′′′ ⊢ l ′W = ς ’W02 ∨ l ′W = ς ’W2

We apply rule DisjElim on [113]:

Left:

(114) Γ′′′′ = Γ′′′; (l ′W = ς ’W02)
By rule Premise on [114], we have

(115) π ,Γ′′′′ ⊢ l ′W = ς ’W02

By rule LSubs on [111], [115] and

weakening (Lemma 13.2), we have

(116) π ,Γ′′′′ ⊢ exec (ς ’W02)
From π , we have

(117) W02 ∈ Labelsπ (init )
By rule Callee on [116] and [117], we have

(118) π ,Γ′′′′ ⊢ ¬(ς = ϵ )

(119) π ,Γ′′′′ ⊢ exec (ς )

(120) π ,Γ′′′′ ⊢ obj (ς ) = this

(121) π ,Γ′′′′ ⊢ name (ς ) = init
From π , we have

(122) callsπ (this,init ) = {L0}
By rule Src on [118]-[122], we have

(123) π ,Γ′′′′ ⊢ ς = L0
By rule LSubs on [115], [123], we have

(124) π ,Γ′′′′ ⊢ l ′W = L0’W02

By rule LSubs on [111], [124], we have

(125) π ,Γ′′′ ⊢ obj (L0’W02) = f2
(126) π ,Γ′′′ ⊢ exec (L0’W02)

From π , we have
(127) L0 →π L2

By rule P2X on [127], [94] and [11],

weakening (Lemma 13.2), we have

(128) π ,Γ′′′′ ⊢ L0 ≺ L2
By rule OX2IX on [128], and [126], and [20],

we have

(129) π ,Γ′′′′ ⊢ L0’W02 ≺ L2’W2

By rule X2L on [129], and [125], and [21],

we have

(130) π ,Γ′′′′ ⊢ L0’W02 ≺f2 L2’W2

By rule DisjIntroL on [130], we have

(131) π ,Γ′′′ ⊢
L0’W02 ⪯f2 L2’W2 ∨

L1’R2 ≺f2 L0’W02

By rule LSubs on [131] and [124], we have

(132) π ,Γ′′′ ⊢
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l ′W ⪯f2 L2’W2 ∨

L1’R2 ≺f2 l
′
W

Right:

(133) Γ′′′′ = Γ′′′; (l ′W = ς ’W2)
By rule Premise on [133], we have

(134) π ,Γ′′′′ ⊢ l ′W = ς ’W2

Similar to the previous part, we can show

that

(135) π ,Γ′′′′ ⊢ ς = L2
By rule LSubs on [134] and [135], we have

(136) π ,Γ′′′′ ⊢ l ′W = L2’W2

By rule DisjIntroR on [136], we have

(137) π ,Γ′′′ ⊢ l ′W ⪯f2 L2’W2

Thus, by rule DisjIntroL on [137], we

have

π ,Γ′′′ ⊢
l ′W ⪯f2 L2’W2 ∨

L1’R2 ≺f2 l
′
W

By rule ConjIntro and the definition of isWrite on [20]-[22]
and weakening (Lemma 13.2), we have

(138) π ,Γ′′ ⊢ isWritef2 (L2’W2)
By rule ConjIntro and the definition of isWriter on [138],

[107], and [108], we have

(139) π ,Γ′′ ⊢ isWriterf2 (L2’W2,L1’R2)
By rule ConjIntro and the definition of isRead on [78], [82]

and [83], we have

(140) π ,Γ′′ ⊢ isReadf2 (L1’R2)

From rule AReg’ on [140] and [139], we have

(141) π ,Γ′′ ⊢ retv (L1’R2) = arд1(L2’W2)
By rule ETrans and rule ESym on [141], [84] and [23], we

have

(142) π ,Γ′′ ⊢ L1’x2 = 1

By rule Zero and rule ESubs on [142], we have

(143) π ,Γ′′ ⊢ ¬(L1’x2 = 0)
From π , we have that

(144) condπ (C1f ) = ¬(x2 = 0)

(145) nameπ (L1) = tryLock1

(146) C1f ∈ Labelsπ (tryLock1)

(147) PreReturnsπ (C1f ) = ∅
From [144], we have

(148) L1’condπ (C1f ) = ¬(L1’x2 = 0)
From [143] and [148], we have

(149) π ,Γ′′ ⊢ L1’condπ (C1f )
By rule IControl on [73], [146], [145], [149], [147] we have

(150) π ,Γ′′ ⊢ exec (L1’C1f )
From π , we have that

(151) C1f ∈ Returnsπ (tryLock1)

(152) arд1π (C1f ) = f alse
By rule Id on [150] and [152], we have

(153) π ,Γ′′ ⊢ arд1(L1’C1f ) = f alse
By rule Ret on [150], [151], we have

(154) π ,Γ′′ ⊢ retv (L1) = arд1(L1’C1f )
By rule ETrans and rule ESym on [153], [154], we have

π ,Γ′′ ⊢ retv (L1) = f alse
2
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13 Soundness
In this section, we present the soundness, exchange, and

weakening lemmas for the logic.

The semantics satisfies the classical exchange and weak-

ening lemmas.

Lemma 13.1 (Exchange).
∀π ,Γ,Γ′,A,A ′,A ′′ :
(π ,Γ;A;A ′; Γ′ ⊢ A ′′) ⇒ (π ,Γ;A ′;A; Γ′ ⊢ A ′′)

Lemma 13.2 (Weakening).
∀π ,Γ,A,A ′ :
(π ,Γ ⊢ A) ⇒ (π ,Γ;A ′ ⊢ A)

To define the soundness, we first define themodels relation

between specifications and assertions.

Definition 13.3. A specification π models an assertion A

if and only if every execution of π models A.

π |= A iff ∀X ∈ [[π ]] : X |= A

The logic is sound. The following theorem states that the

logic derives valid conclusions from valid premises.

Theorem 13.4 (Soundness).
∀π ,A : ((π ,Γ ⊢ A) ∧ (π |= Γ)) ⇒ (π |= A).

See Section 15.2 for the proof.
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14 Client Assertions

Γ0 = Γ1 ∧ Γ2 ∧ Γ3 ∧ Γ4 ∧ Γ5 ∧ Γ6 ∧ Γ7 (136)

Γ1 = ∀t : Let l = initOf (t ) : isInit (l ) ∧ thread (l ) = t (137)

Γ2 = ∀ℓ,ℓ
′
: (isInit (ℓ) ∧ isInit (ℓ′) ∧ thread (ℓ) = thread (ℓ′)) ⇒ ℓ = ℓ′ (138)

Γ3 = ∀ℓ,ℓ
′
: (isInit (ℓ) ∧ exec (ℓ′) ∧ obj (ℓ′) = this ∧ thread (ℓ) = thread (ℓ′)) ⇒ ℓ ⪯ ℓ′ (139)

Γ4 = ∀t : Let l = commitOf (t ) : isCommitted (t ) ⇒ (isCommit (l ) ∧ thread (l ) = t ) (140)

Γ5 = ∀ℓ,ℓ
′
: (isCommit (ℓ) ∧ isCommit (ℓ′) ∧ thread (ℓ) = thread (ℓ′)) ⇒ ℓ = ℓ′ (141)

Γ6 = ∀ℓ,ℓ
′
: (exec (ℓ) ∧ obj (ℓ) = this ∧ isCommit (ℓ′) ∧ thread (ℓ) = thread (ℓ′)) ⇒ ℓ ⪯ ℓ′ (142)

Γ7 = ∀t : isCommitted (t ) ∨ isAborted (t ) (143)

Figure 34. Properties of Well-formed Client Transactions

Any client program must satisfy seven conditions that we will specify with the help of the definitions in Figure 9.(a).

Figure 34 shows the seven conditions. Γ1: Every transaction is initialized. Γ2: Every transaction is initialized only once. Γ3: The
initialization operation of each transaction is executed before its other operations. Γ4: If a transaction is committed, it executed

the commit operation. Γ5: Every transaction executes the commit operation at most once. Γ6: The commit operation of each

transaction is executed after its other operations. Γ7: Each transaction is either aborted or committed.

The following lemma states that these properties of client transactions are valid for every TM algorithm specification.

Lemma 14.1. ∀π ∈ ΠTM : π |= Γ0.

See section 15.4 for the proof.
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15 Proofs
15.1 Semantics

15.1.1 Execution History
Lemma 10.1:

We Assume

(1) l ≺X l ′

From [1] and definition of ∼X , we have

(2) ¬(l ′ ∼X l )
From [1], we have

(3) rEv (l ) �X iEv (l ′)
As X is a valid history, we have

(4) iEv (l ) �X rEv (l )

(5) iEv (l ′) �X rEv (l ′)
From [4], [3], and [5], we have

(6) iEv (l ) �X rEv (l ′)
From [6], we have

(7) ¬(rEv (l ′) �X iEv (l ))
From [7], and definition of ≺X , we have

(8) ¬(l ′ ≺X l )
From [3] and [7], we have

(9) ¬(l ′ = l )

Lemma 10.2:

Straightforward from the definition of ≺X .

Lemma 10.3:

We have

(1) l1 ≺X l2
(2) l3 ≺X l4
(3) l2 ∼X l3

From [1], we have

(4) rEv (l1) �X iEv (l2)
From [2], we have

(5) rEv (l3) �X iEv (l4)
From [3], we have

(6) ¬(l3 ≺X l2)
From [6], we have

(7) ¬(rEv (l3) �X iEv (l2))
From [7], we have

(8) iEv (l2) �X rEv (l3)
From [4], [8], and [5], we have

(9) rEv (l1) �X iEv (l4)
From [9], we have

l1 ≺X l4

Lemma 10.4:

Straightforward from the definition of ≺X and ∼X .

Lemma 10.5:

Straightforward from the definition of ≺X .

Lemma 10.6:
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Straightforward from the definition of ≺X and �X .

Lemma 10.7:

Straightforward from the definition of ≺X and �X .

15.1.2 Synchronization Object Types
Lemma 10.11:

Straightforward from ≺X⊆≺L .

Lemma 10.12:

Straightforward from Lemmas 10.16, [10.4], 10.11, and 10.13.

Lemma 10.13:

We have

(1) l ≺L l
′

From [1], we have

(2) rEv (l ) �L iEv (l
′)

From the well-formedness of the history O ,
we have

(3) iEv (l ) �L rEv (l )

(4) iEv (l ′) �L rEv (l
′)

From [3], [2] and [4], we have

(5) iEv (l ) �L rEv (l
′)

From [5], we have

(6) ¬(rEv (l ′) �L iEv (l ))
From [2] and [6], we have

(7) ¬(l ′ = l )
From the definition of ≺X on [6], we have

(8) ¬(l ′ ≺L l )
The conclusion is

[8] and [7]

Lemma 10.14:

Straightforward from the fact that L is a member of sequential specification and

a sequential specification is a set of sequential histories and

the execution order is total in sequential histories.

Lemma 10.15:

Straightforward from the fact that L is a member of sequential specification and

a sequential specification is a set of sequential histories and

the execution order is total in sequential histories.

We have

(1) l ∈ X

(2) l ′ ∈ X

(3) X ≡ L

(4) L ∈ SeqSpec (o)
From [4], we have

(5) L ∈ Sequential
From [3], [1] and [2], we have

(6) l ∈ L

(7) l ′ ∈ L
From [4], [6] and [7], we have

l ≺L l
′ ∨ l ′ ≺L l ∨ l = l ′
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Lemma 10.16:

Straightforward from the fact that L is equivalent to X .

We have

(1) X ≡ L

(2) L ∈ SeqSpec (o)

(3) l ≺L l
′

From [3], we have

(4) l ∈ L

(5) l ′ ∈ L
From [2] on [4] and [5], we have

(6) objL (l ) = o

(7) objL (l
′) = o

From [1] on [4] and [5], we have

l ∈ X
l ′ ∈ X

From [1] on [6] and [7], we have

objX (l ) = o
objX (l

′) = o

Lemma 10.17:

Using L2X and XTotal, we have four cases:

Case: l ≺ l ′

Straightforward from XTrans.

Case: l ∼ l ′

Straightforward from XXTrans.

Case: l ′ ≺ l
Straightforward from X2L and LASym.

Case: l ′ = l
Straightforward from LASym.

Lemma 10.19:

Derived from the semantics of basic objects (Definition 10.8) and the sequential specification of register (Definition 10.18).

Lemma 10.21:

Derived from the semantics of basic register (Definition 10.20).

Lemma 10.22:

This is a restatement of Theorem 3 from the original definition of linearizability [19]. Derivable from the semantics of

linearizable objects (Definition 10.10) and the sequential specification of register (Definition 10.18).

Lemma 10.24:

Derivable from the semantics of linearizable objects (Definition 10.10) and the sequential specification of cas register (Defini-

tion 10.23).

Lemma 10.25:

Derivable from the semantics of linearizable objects (Definition 10.10) and the sequential specification of cas register (Defini-

tion 10.23).

Lemma 10.28:

Derivable from the semantics of linearizable objects (Definition 10.10), the sequential specification of the lock (Definition 10.26),

the owner-respecting property (Definition 10.27), and that the sub-history for each thread is sequential (from the definition of

execution histories).
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Lemma 10.29:

Derived from Lemma 10.28.

Lemma 10.30:

Derived from Lemma 10.28 and the sequential specification of lock (Definition 10.26).

Lemma 10.31:

Derived from Lemma 10.28 and the sequential specification of lock (Definition 10.26).

Lemma 10.32:

Derived from Lemma 10.28 and the sequential specification of lock (Definition 10.26).

Lemma 10.34:

Derivable from the semantics of linearizable objects (Definition 10.10), the sequential specification of the lock (Definition 10.33),

the owner-respecting property (Definition 10.34), and that the sub-history for each thread is sequential (from the definition of

execution histories).

Lemma 10.35:

Derived from Lemma 10.34.

Lemma 10.36:

Derived from Lemma 10.34 and the sequential specification of try-lock (Definition 10.33).

Lemma 10.37:

Derived from Lemma 10.34 and the sequential specification of try-lock (Definition 10.33).

Lemma 10.38:

Derived from Lemma 10.34 and the sequential specification of try-lock (Definition 10.33).

Lemma 10.41:

Derivable from the semantics of linearizable objects (Definition 10.10), the sequential specification of counter (Definition 10.40).

Lemma 10.43:

Derivable from the semantics of basic objects (Definition 10.8), the sequential specification of set (Definition 10.42).

Lemma 10.44:

Derivable from the semantics of basic objects (Definition 10.8), the sequential specification of set (Definition 10.42).

Lemma 10.46:

Derivable from the semantics of basic objects (Definition 10.8), the sequential specification of set (Definition 10.45).

Lemma 10.47:

Derivable from the semantics of basic objects (Definition 10.8), the sequential specification of set (Definition 10.45).
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15.2 Soundness
Theorem 13.4 (Soundness).
∀π ,A : ((π ,Γ ⊢ A) ∧ (π |= Γ)) ⇒ (π |= A).

Proof.

Hypothesis

(1) π ,Γ ⊢ A

(2) X |= Γ
Desired Conclusion

π |= A

Let

(3) π = (T ,D,P)

(4) D = d∗

(5) P = p0, (p1 | |p2 | |...| |pn )

(6) X = (X ,σ ,L) ∈ [[π ]]
By Definitions 13.3, we need to show that

X |= A

Let

(7) X ′ = σ (X )
By definition [17] on [6] and [7], we have

(8) X ′ ∈ H(π )
By definition [13] on [6], we have

(9) ∀o : Tbase (o) ∈ BT ⇒
X ′ |o ∈ HB (o)

(10) ∀o : Tbase (o) ∈ LT ⇒
(X ′ |o,L (o)) ∈ HL (o)

∃X1, ...,Xn :

(11) ∀i ∈ {0..n} : (Xi ,σ ) ∈ [[pi ]] ∧

(12) X ′′ ∈ Interleave (X1, . . . ,Xn ) ∧
X = X0 · X

′′

By definition [85] on [9], we have

(13) ∀o : o ∈ Tbase (o) ∈ BT ⇒
(X ′ |o ∈ Sequential ) ⇒
(X ′ |o ∈ SeqSpec (o))

By definition [87] on [10], we have

(14) ∀o : o ∈ Tbase (o) ∈ LT ⇒
X ′ |o ≡ L (o) ∧
L (o) ∈ SeqSpec (o) ∧
≺X ′ |o⊆≺L (o)

Induction on the derivation of [1]:

Case rule X2L:

By rule X2L on [1], we have that

(15) Tbase (o) ∈ LT

(16) π ,Γ ⊢ l ≺ l ′

(17) π ,Γ ⊢ obj (l ) = obj (l ′) = o

(18) A = l ≺o l
′

We show that

X |= A

That is

l ≺L (σ (o)) l
′

By the induction hypothesis on [16] and [17],

and then [2], [6] and [7], we have

(19) l ≺X ′ l
′

(20) objX ′ (l ) = objX ′ (l
′) = σ (o)

From [19] and [20], we have

(21) l ≺X ′ |σ (o) l
′

By [15], we have

(22) Tbase (σ (o)) ∈ LT
By [10] and [22], we have

(23) (X ′ |σ (o),L (σ (o))) ∈ HL (o)
By Lemma 10.11 on [23] and [21], we have

l ≺L (σ (o)) l
′

Case rule Src:

We have that

(24) A =
∨

i=1..n c = ci
(25) π ,Γ ⊢ exec (ς ’c )

(26) π ,Γ ⊢ obj (ς ’c ) = θ

(27) π ,Γ ⊢ name (ς ’c ) = n

(28) Callsπ (basename (θ ),n) = {ci }
We show that

A |=
∨

i=1..n c = ci
that is∨

i=1..n c = ci

By the induction hypothesis on [25], [26],

[27], and then [2], [6] and [7], we have

(29) ς ’c ∈ X ′

(30) objX ′ (ς ’c ) = ς ’θ

(31) nameX ′ (ς ’c ) = n
From [7] and [12] on [29], [30], [31], we have

∃i ∈ 0..n :
(32) ς ’c ∈ Xi

(33) objXi (ς ’c ) = ς ’θ

(34) nameXi (ς ’c ) = n
By Lemma 15.2 on [11] and [32], we have

(35) basename (objXi (ς ’c )) = objπ (c )

(36) nameXi (ς ’c ) = nameπ (c )
By the definition of basename and ’, we have

(37) basename (ς ’θ ) = basename (θ )
From [35], [30] and [37], we have

(38) basename (objπ (c )) = basename (θ )
From [36] and [34], we have

(39) nameπ (c ) = n
From the definition of callsπ (basename (θ ),n)
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on [38] and [39], we have

(40) c ∈ callsπ (basename (θ ),n)
From [28] and [36], we have∨

i=1..n c = ci

Case rule P2X:

We have that

(41) A = ς ’c1 ⪯ ς ’c2
(42) c1 →π c2
(43) π ,Γ ⊢ exec (ς ’c1)

(44) π ,Γ ⊢ exec (ς ’c2)
We show that

X |= ς ’c1 ≺ ς ’c2
that is

ς ’c1 ≺X ′ ς ’c2

By the induction hypothesis on [43], [44],

and then [2], we have

(45) X |= exec (ς ’c1)

(46) X |= exec (ς ’c2)
that is

(47) ς ’c1 ∈ X
′

(48) ς ’c2 ∈ X
′

From Lemma 15.6 on [8], [47] and [48]

[42], we have

ς ’c1 ≺X ′ ς ’c2

Case rule OX2IX:

We have that

(49) A = c1’c3 ≺ c2’c4
(50) π ,Γ ⊢ c1 ≺ c2
(51) π ,Γ ⊢ exec (c1’c3)

(52) π ,Γ ⊢ exec (c2’c4)
We show that

X |= c1’c3 ≺ c2’c4
that is

c1’c3 ≺X ′ c2’c4

By the induction hypothesis on [50], [51],

[52], and then [2], we have

(53) X |= c1 ≺ c2
(54) X |= exec (c1’c3)

(55) X |= exec (c2’c4)
that is

(56) c1 ≺X ′ c2
(57) c1’c3 ∈ X

′

(58) c2’c4 ∈ X
′

From [56], we have

(59) rEv (c1) �X ′ iEv (c2)
From Lemma 15.7 on [8] and [57], we have

(60) rEv (c1’c3) �X ′ rEv (c1))
From Lemma 15.7 on [8], and [58], we have

(61) (iEv (c2) �X ′ iEv (c2’c4)

From [60], [59] and [61], we have

(62) rEv (c1’c3) �X ′ iEv (c2’c4)
From [62], we have

(63) c1’c3 ≺X ′ c2’c4

Case rule IControl:

We have that

(64) A =

exec (c’c ′) ⇔
exec (c ) ∧∨

ci c
′ = ci ∧

c’condπ (c
′) ∧∧

i=1..n ¬exec (c’ci )
(65) Labels (nameπ (c )) = {ci }

(66) PreReturnsπ (c
′) = {cr }

We show that

X |= A

That is

c’c ′ ∈ X ′ ⇔
c ∈ X ′ ∧∨

ci c
′ = ci ∧

σ (c’condπ (c
′)) ∧∧

cr ¬(c’cr ∈ X
′)

We first show that

c’c ′ ∈ X ′ ⇒
c ∈ X ′ ∧∨

ci c
′ = ci ∧

σ (c’condπ (c
′)) ∧∧

i=1..n ¬(c’ci ∈ X
′)

We assume that

(67) c’c ′ ∈ X ′

We show that

c ∈ X ′ ∧∨
ci c
′ = ci ∧

σ (c’condπ (c
′)) ∧∧

i=1..n ¬(c’ci ∈ X
′)

From [7] and [12] on [67], we have

∃i ∈ {0..n} :
(68) c’c ′ ∈ Xi

By Lemma 15.3 on [65], [66], [11] and [68],

we have

(69) c ∈ Xi ∧∨
ci c
′ = ci ∧

σ (c’condπ (c
′)) ∧∧

i=1..n ¬(c’ci ∈ Xi )
From [7] and [12] and uniqueness of label c
on [69], we have

(70) c ∈ X ′ ∧∨
ci c
′ = ci ∧

σ (c’condπ (c
′)) ∧∧

i=1..n ¬(c’ci ∈ X
′)
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Now, we show that

c ∈ X ′ ∧∨
ci c
′ = ci ∧

σ (c’condπ (c
′)) ∧∧

i=1..n ¬(c’ci ∈ X
′)

⇒

c’c ′ ∈ X ′

We assume that

(71) c ∈ X ′ ∧

(72)

∨
ci c
′ = ci ∧

(73) σ (c’condπ (c
′)) ∧

(74)

∧
i=1..n ¬(c’ci ∈ X

′)
We show that

c’c ′ ∈ X ′

From [7] and [12] on [71], we have

∃i ∈ {0..n} :
(75) c ∈ Xi

From [7] and [12] on [74], we have

∀i ∈ {0..n} :
(76)

∧
i=1..n ¬(c’ci ∈ Xi )

By Lemma 15.4 on [65], [66], [11], [75],

[72], [73] and [76], we have

(77) c’c ′ ∈ Xi
From [7] and [12] on [77], we have

c’c ′ ∈ X ′

Case rule OControl:

Similar to rule IControl using Lemma 15.5.

Case rule TSeq:

We have that

(78) A = l1 ≺ l2 ∨ l2 ≺ l1 ∨ l1 = l2
(79) π ,Γ ⊢ exec (l1)

(80) π ,Γ ⊢ exec (l2)

(81) π ,Γ ⊢ thread (l1) = thread (l2)

(82) π ,Γ ⊢ obj (l1) = obj (l2) = this ∨
(¬obj (l1) = this ∧ ¬obj (l2) = this)

We show that

X |= l1 ≺ l2 ∨ l2 ≺ l1 ∨ l1 = l2
that is

l1 ≺X ′ l2 ∨ l2 ≺X ′ l1 ∨ l1 = l2

By the induction hypothesis on [79], [80],

[81], [82], and then [2], we have

(83) X |= exec (l1)

(84) X |= exec (l2)

(85) X |= thread (l1) = thread (l2)

(86) X |= obj (l1) = obj (l2) = this ∨
(¬obj (l1) = this ∧ ¬obj (l2) = this)

that is

(87) l1 ∈ X
′

(88) l2 ∈ X
′

(89) threadX ′ (l1) = threadX ′ (l2)

(90) objX ′ (l1) = objX ′ (l2) = this ∨
(¬objX ′ (l1) = this ∧ ¬objX ′ (l2) = this)

By [11] and [12] on [87] and [88], we have

∃i, j ∈ 0..n :
(91) l1 ∈ Xi ∧ (Xi ,σ ) ∈ [[pi ]]

(92) l2 ∈ X j ∧ (X j ,σ ) ∈ [[pj ]]
Case analysis on [90]:

Case

(93) objX ′ (l1) = objX ′ (l2) = this
By Lemma 15.8 on [8], [87], [88], [93],

we have

∃c1,c2 :
(94) l1 = c1
(95) l2 = c2

By Lemma 15.10 on [91], [92], [94], [95],

we have

(96) threadX (l1) = Ti
(97) threadX (l2) = Tj

From [96], [97] and [89], we have

(98) i = j
By Lemma 15.12 on [91], [92], and [94], [95],

and [98], we have

(99) l1 ≺X l2 ∨ l2 ≺X l1 ∨ l1 = l2
Case

(100) ¬objX ′ (l1) = this∧
¬objX ′ (l2) = this

Similar to the previous case where

lemmas 15.9, 15.11 and 15.13 are used.

Case rule TLocal:

We have that

(101) A = thread (l1) = thread (l2)

(102) T (basename (ϕ)) = ThreadLocal st

(103) π ,Γ ⊢ exec (l1) ∧ exec (l2)

(104) π ,Γ ⊢ obj (l1) = obj (l2) = ϕ[u]
We show that

X |= thread (l1) = thread (l2)
that is

threadX ′ (l1) = threadX ′ (l2)
By the induction hypothesis on [104],

and then [2], we have

(105) X |= exec (l1) ∧ exec (l2)

(106) X |= obj (l1) = obj (l2) = ϕ[u]
that is

(107) objX ′ (l1) = objX ′ (l2) = ϕ[σ (u)]

(108) l1 ∈ X
′

(109) l2 ∈ X
′

From [107] , we have

(110) basename (objX ′ (l1)) = ϕ

(111) index (objX ′ (l1)) = σ (u)

(112) basename (objX ′ (l2)) = ϕ

(113) index (objX (l2)) = σ (u)
From Lemma 15.14 on [3], [102], [8], [108] and
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[110] we have

(114) threadX ′ (l1) = index (objX ′ (l1))
From Lemma 15.14 on [3], [102], [8], [109] and

[112] we have

(115) threadX ′ (l2) = index (objX ′ (l2))
From [114] and [111] we have

(116) threadX ′ (l1) = σ (u)
From [115] and [113] we have

(117) threadX ′ (l2) = σ (u)
From [116] and [117] we have

(118) threadX ′ (l1) = threadX ′ (l2)

Case rule Id:

We have that

(119) A = obj (ς ’c ) = ς ’θ ∧
name (ς ’c ) = n ∧
thread (ς ’c ) = ς ’τ ∧
arд∗ (ς ’c ) = ς ’u∗ ∧
retv (ς ’c ) = ς ’x

(120) objπ (c ) = θ

(121) nameπ (c ) = n

(122) threadπ (c ) = τ

(123) arдπ (c ) = u

(124) retvπ (c ) = x

(125) π ,Γ ⊢ exec (ς ’c )
We show that

(126) X |= A

that is

objX ′ (ς ’c ) = σ (ς ’θ ) ∧
nameX ′ (ς ’c ) = n ∧
threadX ′ (ς ’c ) = σ (ς ’τ ) ∧
arд∗X ′ (ς ’c ) = σ (ς ’u∗) ∧
retvX ′ (ς ’c ) = σ (ς ’x )

By the induction hypothesis on [125],

and then [2], we have

(127) X |= exec (ς ’c )
that is

(128) ς ’c ∈ X ′

From [7] and [128], we have

(129) ς ’c ∈ X
From [12] and [129], we have

∃i ∈ {0..n} :
(130) ς ’c ∈ Xi

From Lemma 15.1 on [11] and [130], we have

(131) objXi (ς ’c ) = ς ’θ ∧
nameXi (ς ’c ) = n ∧
threadXi (ς ’c ) = ς ’τ ∧
arд∗Xi

(ς ’c ) = ς ’u∗ ∧
retvXi (ς ’c ) = ς ’x

From [131], [12], we have

(132) objX (ς ’c ) = ς ’θ ∧
nameX (ς ’c ) = n ∧
threadX (ς ’c ) = ς ’τ ∧

arд∗X (ς ’c ) = ς ’u∗ ∧
retvX (ς ’c ) = ς ’x

From [132], [7], we have

(133) objX ′ (ς ’c ) = σ (ς ’θ ) ∧
nameX ′ (ς ’c ) = n ∧
threadX ′ (ς ’c ) = σ (ς ’τ ) ∧
arд∗X ′ (ς ’c ) = σ (ς ’u∗) ∧
retvX ′ (ς ’c ) = σ (ς ’x )

Case rule Caller:

We have that

(134) A =

c’t = thread (c ) ∧
c’x∗ = arд∗ (c ) ∧∨

i=1..n (exec (c’ci ) ∧ arд1(c’ci ) = retv (c ))
(135) π ,Γ ⊢ exec (c )

(136) π ,Γ ⊢ obj (c ) = this
(137) π ,Γ ⊢ name (c ) = n

(138) tparπ (n) = t ∧ par1π (n) = x

(139) Returnsπ (n) = {ci }
We show that

X |= A

that is

σ (c’t ) = threadX ′ (c ) ∧
σ (c’x∗) = arд∗X ′ (c ) ∧∨

i=1..n
(c’ci ∈ X

′ ∧

arд1X ′ (c’ci ) = retvX ′ (c ))

By induction hypothesis on [135], [136] and

[137], and then [2], [6] and [7], we have

(140) c ∈ X ′

(141) objX ′ (c ) = this
(142) nameX ′ (c ) = n

From [7] on [140], [141] and [142], we have

(143) c ∈ X

(144) objX (c ) = this
(145) nameX (c ) = n

By Lemma 15.15 on [6], [138], [139], [143],

[144], and [145], we have

(146) σ (c’t ) = σ (threadX (c )) ∧

(147) σ (c’x∗) = σ (arд∗X (c )) ∧

(148)

∨
i=1..n

(c’ci ∈ X ∧
σ (arд1X (c’ci )) = σ (retvX (c )))

From [7] on [146], [147], and [148], we have

σ (c’t ) = threadX ′ (c ) ∧
σ (c’x∗) = arд∗X ′ (c ) ∧∨

i=1..n
(c’ci ∈ X

′ ∧

arд1X ′ (c’ci ) = retvX ′ (c ))

Case rule Ret:
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We have that

(149) tparπ (n) = t ∧ par1π (n) = x

(150) c ′ ∈ Returnsπ (n)

(151) π ,Γ ⊢ exec (c’c ′)

(152) A =

exec (c ) ∧
obj (c ) = this ∧ name (c ) = n ∧
thread (c ) = c’t ∧ arд∗ (c ) = c’x∗ ∧
retv (c ) = arд1(c’c ′)

We show that

X |= A

that is

c ∈ X ′ ∧
objX ′ (c ) = this ∧ nameX ′ (c ) = n ∧
threadX ′ (c ) = σ (c’t ) ∧
arд∗X ′ (c ) = σ (c’x∗) ∧
retvX ′ (c ) = arд1X ′ (c’c

′)

By induction hypothesis on [151],

and then [2], [6] and [7], we have

(153) c’c ′ ∈ X ′

From [7] and [153], we have

(154) c’c ′ ∈ X
From Lemma 15.17 on [6], [149], [150], and

[154], we have

(155) c ∈ X ∧

(156) objX (c ) = this ∧ nameX (c ) = n ∧

(157) σ (threadX (c )) = σ (c’t ) ∧

(158) σ (arд∗X (c )) = σ (c’x∗) ∧

(159) σ (retvX (c )) = σ (arд1X (c’c
′))

From [7] on [155]-[159], we have

c ∈ X ′ ∧
objX ′ (c ) = this ∧ nameX ′ (c ) = n ∧
threadX ′ (c ) = σ (c’t ) ∧
arд∗X ′ (c ) = σ (c’x∗) ∧
retvX ′ (c ) = arд1X ′ (c’c

′)

Case rule Callee:

Similar to rule Ret

Case rule XASym:

We have that

(160) π ,Γ ⊢ l ≺ l ′

(161) A =

¬(l ′ ≺ l ) ∧ ¬(l ′ ∼ l ) ∧ ¬(l ′ = l )
We show that

X |= A

that is

¬(l ′ ≺X ′ l ) ∧ ¬(l
′ ∼X ′ l ) ∧ ¬(l

′ = l )

Straightforward from Lemma 10.1.

Case rule XTotal:

Straightforward from Lemma 10.4.

Case rule X2X:

Straightforward from Lemma 10.5.

Case rule LASym:

We have that

(162) π ,Γ ⊢ l ≺o l
′

(163) A =

¬(l ′ ≺o l ) ∧
¬(l ′ = l )

We show that

X |= A

Let

(164) O = L (σ (o))
We need to show that

¬(l ′ ≺O l ) ∧
¬(l ′ = l )

Straightforward from Lemma 10.13.

Case rule LTotal:

We have that

(165) Tbase (o) ∈ LT

(166) π ,Γ ⊢ exec (l ) ∧ exec (l ′)

(167) π ,Γ ⊢ obj (l ) = obj (l ′) = o

(168) A = (l ≺o l
′) ∨ (l ′ ≺o l ) ∨ (l ′ = l )

We show that

X |= A

From [165], let

(169) O = L (σ (o))
We need to show that

(l ≺O l ′) ∨ (l ′ ≺O l ) ∨ (l ′ = l )

By induction hypothesis on [166] and [167],

and then [2], [6] and [7], we have

(170) l ∈ X ′

(171) l ′ ∈ X ′

(172) objX ′ (l ) = σ (o)

(173) objX ′ (l
′) = σ (o)

From [172] and [173], we have

(174) l ∈ X ′ |σ (o)

(175) l ′ ∈ X ′ |σ (o)
From [165], we have

(176) Tbase (σ (o)) ∈ LT
From [10], and [176], we have

(177) (X ′ |σ (o),L (σ (o))) ∈ HL (o)
By Lemma 10.15 on [177], [174], [175], we have

l ≺O l ′ ∨ l ′ ≺O l ∨ l ′ = l

Case rule L2X:

We have that

(178) π ,Γ ⊢ l ≺o l
′
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(179) A = exec (l ) ∧ exec (l ′) ∧
obj (l ) = obj (l ′) = o

We show that

X |= A

that is

l ∈ X ′ ∧ l ′ ∈ X ′ ∧
objX ′ (l ) = objX ′ (l

′) = σ (o)

Let

(180) O = L (σ (o))
By induction hypothesis on [178], and then [2],

and [6], we have

(181) l ≺O l ′

From [10] on [180], we have

(182) (X ′ |σ (o),L (σ (o))) ∈ HL (σ (o))
By Lemma 10.16 on [182] and [181], we have

l ∈ X ′ ∧ l ′ ∈ X ′

objX ′ (l ) = objX ′ (l
′) = σ (o)

Case rule XTrans:

Straightforward from Lemma 10.2.

Case rule XXTrans:

Straightforward from Lemma 10.3.

Case rule LTrans:

Straightforward from Lemma 10.14.

Case rule TReal:

We have that

(183) π ,Γ ⊢ T ≺≺ T ′

(184) π ,Γ ⊢ exec (l ) ∧ thread (l ) = T

(185) π ,Γ ⊢ exec (l ′) ∧ thread (l ′) = T ′

(186) A = l ≺ l ′ ∨ l = l ′

We show that

X |= A

that is

l ≺X ′ l
′

By induction hypothesis on [183], [184], and

[185], and then [2], [6] and [7],

we have

(187) T ≺≺X ′ T
′

(188) l ∈ X ′

(189) threadX ′ (l ) = T

(190) l ′ ∈ X ′

(191) threadX ′ (l
′) = T ′

From [189], we have

(192) l ∈ X ′ |T
From [189], we have

(193) l ′ ∈ X ′ |T ′

From [187], we have

(194) ∀T ,T ′ : X ′ |T �H X ′ |T ′

From [194], [192] and [193], we have

l ≺X ′ l
′

Case rule AReg:

We have that

(195) Tbase (reд) = AtomicReдister

(196) π ,Γ ⊢ isReadr eд (lR )

(197) A = ∃ℓW :

isWriterr eд (ℓW ,lR ) ∧
retv (lR ) = arд1(ℓW )

Let

(198) reд′ = σ (reд)

(199) Reд = L (reд′)
From [195] and [198], we have

(200) reд′ ∈ AtomicReдister
From [10] and [200], [199], we have

(201) (X ′ |reд′,Reд) ∈ HL (reд
′)

By the definition of isWriter on [197], we have

(202) A = ∃ℓW :

isWriter eд (ℓW ) ∧
ℓW ≺r eд lR ∧
∀ℓ′W : isWriter eд (ℓ

′
W ) ⇒

(ℓ′W ⪯r eд ℓW ∨ lR ≺r eд ℓ
′
W ) ∧

retv (lR ) = arд1(ℓW )
We show that

X |= A

that is

∃lW :

isXWriteX ′,r eд′ (lW ) ∧
lW ≺Reд lR ∧
∀l ′W : isXWriteX ′,r eд′ (l

′
W ) ⇒

(l ′W ⪯Reд lW ∨ lR ⪯Reд l
′
W ) ∧

retvX ′ (lR ) = arд1X ′ (lW )

From [196], we have

(203) π ,Γ ⊢
exec (lR ) ∧
obj (lR ) = reд ∧
name (lR ) = read

By induction hypothesis on [203],

and then [2], [6] and [7], we have

(204) lR ∈ X
′ ∧

objX ′ (lR ) = reд
′ ∧

nameX ′ (lR ) = read
From the definition of isXRead on [204],

we have

(205) isXReadX ′,r eд′ (lR )
By Lemma 10.22 on [200], [201] and [205],

we have

(206) ∃lw :

isLWriterX ′ |r eд′,Reд,r eд′ (lW ,lR ) ∧
retvX ′ |r eд′ (lR ) = arд1X ′ (lW )

From the definition of isLWriter on [206],
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we have

∃lW :

isXWriteX ′ |r eд′,r eд′ (lW ) ∧
lW ≺Reд lR ∧
∀l ′W : isXWriteX ′ |r eд′,r eд′ (l

′
W ) ⇒

(l ′W ⪯Reд lW ∨ lR ⪯Reд l
′
W ) ∧

retvX ′ |r eд′ (lR ) = arд1X ′ |r eд′ (lW )
After simplification, we have

∃lW :

isXWriteX ′,r eд′ (lW ) ∧
lW ≺Reд lR ∧
∀l ′W : isXWriteX ′,r eд′ (l

′
W ) ⇒

(l ′W ⪯Reд lW ∨ lR ⪯Reд l
′
W ) ∧

retvX ′ (lR ) = arд1X ′ (lW )

Case rule BReg:

Similar to rule AReg by Lemma 10.21.

Case rule CASRegRead:

By Lemma 10.24.

Case rule CASRegCAST:

By Lemma 10.25.

Case rule CASRegCASF:

By Lemma 10.25.

Case rule Lock:

We have that

(207) Tbase (lo) = Lock

(208) π ,Γ ⊢ isOwnerRespectinд(lo)

(209) π ,Γ ⊢ isLocklo (ll1 )

(210) π ,Γ ⊢ isUnlocklo (lu2 )

(211) π ,Γ ⊢ ll1 ≺lo lu2
(212) A = ∃ℓu1 , ℓl2 :

isUnlocklo (ℓu1 ) ∧
thread (ℓu1 ) = thread (ll1 ) ∧
isLocklo (ℓl2 ) ∧
thread (lu2 ) = thread (ℓl2 ) ∧
ℓu1 ≺lo ℓl2

Let

(213) lo′ = σ (lo)

(214) L = L (lo′)
We show that

X |= A

that is

(215) ∃lu1 ,ll2 :
isXUnlockX ′,lo′ (lu1 ) ∧
threadX ′ (ll1 ) = threadX ′ (lu1 ) ∧
isXLockX ′,lo′ (ll2 ) ∧
threadX ′ (ll2 ) = threadX ′ (lu2 ) ∧
lu1 ≺L ll2

By induction hypothesis on [208]-[211],

and then [2], [6] and [7], we have

(216) isXOwnerRespectinдlo′ (X
′) ∧

(217) isXLockX ′,lo′ (ll1 ) ∧

(218) isXUnlockX ′,lo′ (lu2 ) ∧

(219) ll1 ≺L lu2 )
From [216]-[219], we have

(220) isXOwnerRespectinдlo′ (X
′ |lo′) ∧

(221) isXLockX ′ |lo′,lo′ (ll1 ) ∧

(222) isXUnlockX ′ |lo′,lo′ (lu2 ) ∧

(223) ll1 ≺L lu2 )
From [207] and [213], we have

(224) lo′ ∈ Lock
From Lemma 10.29 on [224], and [220]-[223],

we have

∃lu1 ,ll2 :
(225) isXUnlockX ′ |lo′,lo′ (lu1 ) ∧

(226) threadX ′ |lo′ (ll1 ) = threadX ′ |lo′ (lu1 ) ∧

(227) isXLockX ′ |lo′,lo′ (ll2 ) ∧

(228) threadX ′ |lo′ (ll2 ) = threadX ′ |lo′ (lu2 ) ∧

(229) lu1 ≺L ll2
From [225]-[229], we have

∃lu1 ,ll2 :
(230) isXUnlockX ′,lo′ (lu1 ) ∧

(231) threadX ′ (ll1 ) = threadX ′ (lu1 ) ∧

(232) isXLockX ′,lo′ (ll2 ) ∧

(233) threadX ′ (ll2 ) = threadX ′ (lu2 ) ∧

(234) lu1 ≺L ll2

Case rule LockReadL:

Similar to the proof of rule Lock

using Lemma 10.30.

Case rule LockReadR:

Similar to the proof of rule Lock

using Lemma 10.31.

Case rule TryLock:

Similar to the proof of rule Lock

using Lemma 10.35.

Case rule TryLockReadL:

Similar to the proof of rule Lock

using Lemma 10.36.

Case rule TryLockReadR:

Similar to the proof of rule Lock

using Lemma 10.37.

Case rule SCounter:

By Lemma 10.41.
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Case rule BasicSetContains:

By Lemma 10.43.

Case rule BasicSetAdd:

By Lemma 10.44.

Case rule BasicMapGet:

By Lemma 10.46.

Case rule BasicMapPut:

By Lemma 10.47.

The basic inference rules and the equivalence and arithmetic

rules are standard. 2

Lemma 15.1.
∀p,X ,σ ,ς ,c ′ :

((X ,σ ) ∈ [[p]] ∧ ς ’c ′ ∈ X )
⇒

(objX (ς ’c
′) = ς ’objπ (c

′) ∧ threadX (ς ’c
′) = ς ’threadπ (c

′) ∧
nameX (ς ’c

′) = nameπ (ci ) ∧ arд1X (ς ’c
′) = ς ’arд1π (c

′) ∧
retvX (ς ’c

′) = ς ’retvπ (c
′)).

Proof.

Structural induction on p:
(1) Case p = c ▷ nτ (u

∗):x
Straightforward form definition [1].

(2) Case p = p1; p2

Straightforward form definition [11] and

the induction hypothesis.

(3) Case p = if b p1 else p2
Straightforward form definition [12] and

the induction hypothesis.

2

Lemma 15.2.
∀p,X ,σ ,ς ,c ′ :

((X ,σ ) ∈ [[p]] ∧ ς ’c ′ ∈ X )
⇒

basename (objX (ς ’c
′)) = objπ (c

′) ∧ nameX (ς ’c
′) = nameπ (c

′).

Proof.

Structural induction on p:
(1) Case p = c ▷ nτ (u

∗):x
Straightforward form definition [1] and

basename (c’objπ (c
′)) = basename (objπ (c

′)).

(2) Case p = p1; p2
Straightforward form definition [11] and

the induction hypothesis.

(3) Case p = if b p1 else p2
Straightforward form definition [12] and

the induction hypothesis. 2

Lemma 15.3.
Let

Labels (nameπ (c )) = {ci }
PreReturnsπ (c

′) = {cr }
∀p,X ,σ ,c,c ′ :

((X ,σ ) ∈ [[p]] ∧ c’c ′ ∈ X )
⇒

c ∈ X ∧
∨

ci c
′ = ciσ (c’condπ (c

′)) ∧
∧

cr ¬(c’cr ∈ X ).

Proof.

Structural induction on p:
(1) Case p = c ▷ nτ (u

∗):x
Straightforward form definition [1]

(2) Case p = p1; p2

Straightforward form definition [11],

the induction hypothesis and

the uniqueness of label c .
(3) Case p = if b p1 else p2

Straightforward form definition [12] and

the induction hypothesis. 2

Lemma 15.4.
Let

66



Transaction Protocol Verification with Labeled Synchronization Logic NFM’19, May 2019,

Labels (nameπ (c )) = {ci }
PreReturnsπ (c

′) = {cr }
∀p,X ,σ ,c,c ′ :

((X ,σ ) ∈ [[p]] ∧
c ∈ X ∧∨

ci c
′ = ci ∧

σ (c’condπ (c
′)) ∧∧

cr ¬(c’cr ∈ X ))
⇒

c’c ′ ∈ X .

Proof.

Structural induction on p:
(1) Case p = c ▷ nτ (u

∗):x
Straightforward form definition [1]

(2) Case p = p1; p2

Straightforward form definition [11], and

the induction hypothesis.

(3) Case p = if b p1 else p2
Straightforward form definition [12] and

the induction hypothesis. 2

Lemma 15.5.
Let
∀p,X ,σ ,c :

(X ,σ ) ∈ [[p]]
⇒

σ (condπ (c ))
⇔

c ∈ X .

Proof.

Structural induction on p:
(1) Case p = c ▷ nτ (u

∗):x
Straightforward form definition [1]

condπ (c ) = true
(2) Case p = p1; p2

Straightforward form definition [11], and

the induction hypothesis.

(3) Case p = if b p1 else p2
Straightforward form definition [12] and

the induction hypothesis.

σ (b) for the then part and

¬σ (b) for the else part. 2

Lemma 15.6.
∀π ,X ,ς ,c1,c2 :

X ∈ H(π ) ∧
ς ’c1 ∈ X ∧
ς ’c2 ∈ X ∧
c1 →π c2

⇒

ς ’c1 ≺X ς ’c2.

Proof.

Case analysis on c1 →π c2
(1) Case: the initialization order

Straightforward form definition [17] and

[13].

X = X0 · X
′

(2) Case: the sequential order of the sequential programs

pi

Straightforward form structural induction on pi
and definition [1], [11], and [12].

X = X1 · X2

(3) Case:→n of a method n.
Straightforward form definition [1]

∀ci ,c j ∈ {ci } :(
(ci →n c j ) ∧ c’ci ∈ X

′ ∧ c’c j ∈ X
′
)
⇒

c’ci ≺X ′ c’c j 2
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Lemma 15.7.
∀π ,Xc,c ′ :

X ∈ H(π ) ∧ c’c ′ ∈ X ) ⇒
(iEv (c ) �X iEv (c’c ′) ∧ rEv (c’c ′) �X rEv (c )).

Proof.

We have that

(1) X ∈ H(π )

(2) c’c ′ ∈ X
We show that

iEv (c ) �X iEv (c’c ′)
rEv (c’c ′) �X rEv (c )

From definition 17 and [13]on [1] and [2], we have

∃Xi :

(3) (Xi ,σ ) ∈ [[pi ]]

(4) c’c ′ ∈ Xi

(5) Xi ⋐ X
We show that

(6) iEv (c ) �Xi iEv (c’c
′)

(7) rEv (c’c ′) �Xi rEv (c )
Structural induction on p:
(8) Case p = c ▷ nτ (u

∗):x
Straightforward form definition [1]

X = inv (c ▷ nτ (u)) · X
′ · ret (c ▷ x ′)

(9) Case p = p1; p2
Straightforward form definition [11],

the induction hypothesis and

the uniqueness of label c .
(10) Case p = if b p1 else p2

Straightforward form definition [12] and

the induction hypothesis.

From [5] on [6] and [7], we have

iEv (c ) �X iEv (c’c ′)
rEv (c’c ′) �X rEv (c )
2

Lemma 15.8.
∀π ,X ,σ ,c :

X ∈ H(π ) ∧
l ∈ X ∧
objX (l ) = this ∧

⇒

∃c : l = c .

Proof.

From definition 17 and [13], we have

∃Xi :

(1) (Xi ,σ ) ∈ [[pi ]]

(2) l ∈ Xi

(3) Xi ⋐ X
Straightforward form structural induction on pi 2

Lemma 15.9.
∀π ,X ,σ ,c :

X ∈ H(π ) ∧
l ∈ X ∧
¬objX (l ) = this ∧

⇒

∃c,c ′ : l = c’c ′.

Proof. Similar to Lemma 15.8. 2

Lemma 15.10.
∀π ,T ,D,P,p0, ...,pn ,X ,σ ,c :

(π = (T ,D,P) ∧
P = p0, (p1 | |p2 | |...| |pn ) ∧
(X ,σ ) ∈ [[pi ]] ∧
c ∈ X ∧

⇒

threadX (c ) = i .
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Proof.

By structural induction on pi , we have
(1) c ∈ Labels (pi )

(2) threadX (c ) = threadπ (c )

From the well-formedness conditions, we have

The thread argument of each method call is the

identifier of the thread in which it is called.

(3) ∀c ∈ Labels (pi ) : threadπ (c ) = i
From [1], [2] and [3], we have

(4) threadX (c ) = Ti 2

Lemma 15.11.
∀π ,T ,D,P,p0, ...,pn ,X ,σ ,c :

(π = (T ,D,P) ∧
P = p0, (p1 | |p2 | |...| |pn ) ∧
(X ,σ ) ∈ [[pi ]] ∧
c’c ′ ∈ X ∧

⇒

σ (threadX (c’c
′)) = i .

Proof.

By structural induction on pi , we have
∃n,τ :
(1) c ′ ∈ Labels (n)

(2) threadX (c’c
′) = c’threadπ (c

′)

(3) σ (c’tparπ (n)) = σ (τ )

(4) c ∈ X

(5) threadX (c ) = τ
By Lemma 15.10 on [4], we have

(6) threadX (c ) = i
From the well-formedness conditions, we have

The thread argument of each method call is the

identifier of the thread in which it is called.

(7) ∀c ′ ∈ Labels (n) : threadπ (c
′) = tparπ (n)

From [2], [7], [3], [5], and [6], we have

(8) σ (threadX (c
′c ′)) = i 2

Lemma 15.12.
∀p,X ,σ ,c1,c2 :

(X ,σ ) ∈ [[p]] ∧
c1 ∈ X ∧
c2 ∈ X ∧

⇒

c1 ≺X c2 ∨ c2 ≺X c1 ∨ c1 = c2.

Proof. Straightforward structural induction on p. 2

Lemma 15.13.
∀p,X ,σ ,c1,c2,c3,c4 :

(X ,σ ) ∈ [[p]] ∧
c1’c2 ∈ X ∧
c3’c4 ∈ X ∧

⇒

c1’c2 ≺X c3’c4 ∨ c3’c4 ≺X c1’c2 ∨ c1’c2 = c3’c4.

Proof. Straightforward structural induction on p. 2

Lemma 15.14.
∀π ,X ,ϕ,st :

π = (T ,D,P) ∧
T (ϕ) = Threadlocal st ∧
X ∈ H(π ) ∧
l ∈ X ∧
basename (objX (l )) = ϕ

⇒

threadX (l )) = index (objX (l )).

69



NFM’19, May 2019, Mohsen Lesani

Proof.

We have

(1) π = (T ,D,P)

(2) T (ϕ) = Threadlocal st

(3) X ∈ H(π )

(4) l ∈ X

(5) basename (objX (l )) = ϕ
From definition 17 and 13 on [3] and [5], we have

∃Xi :

(6) l ∈ Xi

(7) (Xi ,σ ) ∈ [[pi ]]

(8) basename (objXi (l )) = ϕ

(9) Xi ⋐ X
We show that

(10) threadXi (l ) = index (objXi (l ))
Structural induction on pi :
(11) Case pi = c ▷ nτ (u

∗):x
Form definition [1], we have

(12) l = c’c ′

(13) index (objectXi (c’c
′)) = c’indexπ (c

′)

(14) threadXi (c’c
′) = c’threadπ (c

′)

From the well-formedness conditions, we have

The thread argument of each method call is the

identifier of the thread in which it is called.

(15) ∀c ′ ∈ Labels (n) : threadπ (c
′) = tparπ (n)

From the well-formedness conditions, we have

The array access index to every thread-local

object is the current thread identifier.

(16) ∀ϕ,st ,c ′ :
T (ϕ) = Threadlocal st ∧
c ′ ∈ Labels (n) ⇒
indexπ (c

′) = tparπ (n)
From [13], [14], [15], [16], we have

(17) threadXi (l ) = index (objXi (l ))

(18) Case pi = p
′ p ′′

Straightforward form definition [11],

the induction hypothesis and

the uniqueness of label l .
(19) Case p = if b p1 else p2

Straightforward form definition [12] and

the induction hypothesis.

From [10] and [9], we have

threadX (l ) = index (objX (l ))
2

Lemma 15.15.
∀π ,X ,σ ,L,c,n,t ,x :

(X ,σ ,L) ∈ [[π ]]
tparπ (n) = t ∧ par1π (n) = x
Returnsπ (n) = {ci }
c ∈ X
objX (c ) = this
nameX (c ) = n

⇒

σ (c’t ) = threadX (c ) ∧
σ (c’x∗) = arд∗X (c ) ∧∨

i=1..n
(c’ci ∈ X ∧
arд1X (c’ci ) = retvX (c )).

Proof.

We have that

(1) (X ,σ ,L) ∈ [[π ]]

(2) tparπ (n) = t ∧ par1π (n) = x

(3) Returnsπ (n) = {ci }

(4) c ∈ X

(5) objX (c ) = this
(6) nameX (c ) = n

We show that

σ (c’t ) = σ (threadX (c )) ∧
σ (c’x∗) = σ (arд∗X (c )) ∧∨

i=1..n
(c’ci ∈ X ∧

σ (arд1X (c’ci )) = σ (retvX (c )))

From definition 13 on [1], [4], [5], and [6], we have

∃Xi :

(7) (Xi ,σ ) ∈ [[pi ]]

(8) c ∈ Xi

(9) objXi (c ) = this
(10) nameXi (c ) = n

(11) Xi ⋐ X
We show that

(12) σ (c’t ) = σ (threadXi (c )) ∧

(13) σ (c’x∗) = σ (arд∗Xi
(c )) ∧

(14)

∨
i=1..n
(c’ci ∈ Xi ∧
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σ (arд1Xi (c’ci )) = σ (retvXi (c )))
Structural induction on pi :
(15) Case pi = c ▷ nτ (u

∗):x
From the Well-formedness

condition of specifications that

Every branch of every method definition ends

in a return statement.

we have

∃cr ∈ {cr } : σ (c’condπ (ci ))
The rest is straightforward form the following

conditions of definition [1]

∀ci ∈ {ci } :
c’ci ∈ X

′ ⇔

(σ (c’condπ (ci )) ∧
∀c j ∈ PreReturnsπ (ci ) ⇒ ¬c’c j ∈ X

′)
and

∀cr ∈ {cr } :
c’cr ∈ X

′ ⇒ σ (x ′) = σ (c’arд1π (cr ))
(16) Case pi = p

′ p ′′

Straightforward form definition [11],

the induction hypothesis and

the uniqueness of label c .
(17) Case p = if b p1 else p2

Straightforward form definition [12] and

the induction hypothesis.

From [11] on [12], [13] and [14], we have

σ (c’t ) = σ (threadX (c )) ∧
σ (c’x∗) = σ (arд∗X (c )) ∧∨

i=1..n
(c’ci ∈ X ∧
σ (arд1X (c’ci )) = σ (retvX (c ))) 2

Lemma 15.16.
∀X ,σ ,c,n,τ ,u,x ′ :

(X ,σ ) ∈ [[c ▷ nτ (u):x]]
c ′,c ′′ ∈ Returnsπ (n)
c’c ′ ∈ X ∧ c’c ′′ ∈ X

⇒

c ′ = c ′′.

Proof.

We have that

(1) (X ,σ ) ∈ [[c ▷ nτ (u):x]]

(2) c ′ ∈ Returnsπ (n)

(3) c ′′ ∈ Returnsπ (n)

(4) c’c ′ ∈ X

(5) c’c ′′ ∈ X
We show that

c ′ = c ′′

We consider three cases

Case

c ′ = c ′′

Obvious

Case

c ′ ∈ PreReturnsπ (c
′′)

By definition [1] on [5], we have

¬c’c ′ ∈ X
which is contradiction to [4].

Case

c ′′ ∈ PreReturnsπ (c
′)

By definition [1] on [4], we have

¬c’c ′′ ∈ X
which is contradiction to [5]. 2

Lemma 15.17.
∀π ,X ,σ ,L,c,c ′,n,t ,x :

(X ,σ ,L) ∈ [[π ]]
tparπ (n) = t ∧ par1π (n) = x
c ′ ∈ Returnsπ (n)
c’c ′ ∈ X

⇒

c ∈ X ∧
objX (c ) = this ∧ nameX (c ) = n ∧
σ (threadX (c )) = σ (c’t ) ∧
σ (arд∗X (c )) = σ (c’x∗) ∧
σ (retvX (c )) = σ (arд1X (c’c

′)).
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Proof.

We have that

(1) (X ,σ ,L) ∈ [[π ]]

(2) tparπ (n) = t ∧ par1π (n) = x

(3) c ′ ∈ Returnsπ (n)

(4) c’c ′ ∈ X
We show that

c ∈ X ∧
objX (c ) = this ∧ nameX (c ) = n ∧
σ (threadX (c )) = σ (c’t ) ∧
σ (arд∗X (c )) = σ (c’x∗) ∧
σ (retvX (c )) = σ (arд1X (c’c

′))

From definition 13 on [1] and [4], we have

∃Xi :

(5) (Xi ,σ ) ∈ [[pi ]]

(6) c’c ′ ∈ Xi

(7) Xi ⋐ X
We show that

(8) c ∈ Xi ∧

(9) objXi (c ) = this ∧ nameXi (c ) = n ∧

(10) σ (threadXi (c )) = σ (c’t ) ∧

(11) σ (arд∗Xi
(c )) = σ (c’x∗) ∧

(12) σ (retvXi (c )) = σ (arд1Xi (c’c
′))

Structural induction on pi :
(13) Case pi = c ▷ nτ (u

∗):x
Straightforward form definition [1] and

Lemma 15.16.

(14) Case pi = p
′ p ′′

Straightforward form definition [11],

the induction hypothesis and

the uniqueness of label c .
(15) Case p = if b p1 else p2

Straightforward form definition [12] and

the induction hypothesis.

From [11] on [8]-[12], we have

c ∈ X ∧
objX (c ) = this ∧ nameX (c ) = n ∧
σ (threadX (c )) = σ (c’t ) ∧
σ (arд∗X (c )) = σ (c’x∗) ∧
σ (retvX (c )) = σ (arд1X (c’c

′))
2

72



Transaction Protocol Verification with Labeled Synchronization Logic NFM’19, May 2019,

15.3 Derived Rules
P2L:

Derived from rule P2X and rule X2L.

IX2OX:

Derived from rule X2X, rule Callee, rule TSeq, rule OX2IX, and rule XASym.

XLTrans:

Derived from rule L2X, rule XTotal, rule XTrans, rule XXTrans, rule X2L, and rule LASym.

X2L’:

Derived from rule L2X, rule XTotal, rule X2L, and rule LASym.

AReg’:

Derived from rule AReg and the following

(π ,Γ ⊢ isWriterr eд (lW ,lR ) ∧ isWriterr eд (lW ′ ,lR )) ⇒ (π ,Γ ⊢ lW = lW ′ )

BReg’:

Derived from rule BReg and the following

π ,Γ ⊢ isSequential (reд) ⇒ π ,Γ ⊢ ∀ℓ : (isReadr eд (ℓ) ∨ isWriter eд (ℓ)) ⇒ isRaceFreer eд (ℓ)

TReg:

Derived from rule TLocal, rule TSeq and rule BReg’.

CASRegRead’:

Derived from rule CASRegRead and the following

(π ,Γ ⊢ isCWriterr eд (lW ,lR ) ∧ isCWriterr eд (lW ′ ,lR )) ⇒ (π ,Γ ⊢ lW = lW ′ )

SCounter’:

Derived from rule LTotal and rule SCounter.

BasicMapGet’:

Derived from rule BasicMapGet.

BasicMapPut’:

Derived from rule BasicMapPut.

DisjSyllL:

Derived form rule DisjElim and rule NegElim.

DisjSyllR:

Derived form rule DisjElim and rule NegElim.

CondElim’:

Derived form rule Premise, rule CondElim, and rule NegIntro.

Other Lemmas:
Lemma 13.1:

Derived from rule Premise.
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Lemma 13.2:

Derived from rule Premise.
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15.4 Client Assertions
Let us define

Inits (X ) = {l | l ∈ X ∧ objX (l ) = this ∧ nameX (l ) = init } (144)

Reads (X ) = {l | l ∈ X ∧ objX (l ) = this ∧ nameX (l ) = read } (145)

Writes (X ) = {l | l ∈ X ∧ objX (l ) = this ∧ nameX (l ) = write} (146)

Commits (X ) = {l | l ∈ X ∧ objX (l ) = this ∧ nameX (l ) = commit } (147)

Committed (X ) = {T | ∃l : l ∈ Commits (X ) ∧ threadX (l ) = T ∧ retvX (l ) = C} (148)

Aborted (X ) = {T | ∃l : l ∈ X ∧ objX (l ) = this ∧ threadX (l ) = T ∧ retvX (l ) = A} (149)

Lemma 15.18.
∀X ,σ ,c :

(X ,σ ) ∈ [[transj ]] ∧
c ∈ X

⇒

(c ∈ Inits (X ) ∧ c = ILj ∨
c ∈ Reads (X ) ∨
c ∈ Writes (X ) ∨
c ∈ Commits (X ) ∧ c = CLj ) ∧
(ILj ⪯ c ) ∧
(CLj ∈ X ⇒ c ⪯ CLj )

Proof.
Case j = 0:

Case 0 < j ≤ n:
Derived from Equation 82, induction on the structure of op and Equation 12. 2

Lemma 15.19.
∀X ,σ :

(X ,σ ) ∈ [[transj ]]
⇒

∃c :
c ∈ X ∧ objX (c ) = this ∧ threadX (c ) = j ∧
(retvX (c ) = C ∨ retvX (c ) = A)

Proof.
Case j = 0:

Derived from Equation 81, Equation 11, Equation 1 and the well-formedness condition

∀c ′ ∈ Returnsπ (commit ) : retvπ (c
′) = C ∨ retvπ (c

′) = A.
Case 0 < j ≤ n:

Derived from Equation 82, induction on the structure of op and Equation 12, Equation 1 and the well-formedness condition

∀c ′ ∈ Returnsπ (commit ) : retvπ (c
′) = C ∨ retvπ (c

′) = A. 2

Lemma 15.20.
∀X ,σ ,c,c ′ :

(X ,σ ) ∈ [[transj ]]
c ∈ X ∧ objX (c ) = this ∧ threadX (c ) = j ∧
c ′ ∈ X ∧ objX (c

′) = this ∧ threadX (c
′) = j ∧

(retvX (c ) = C ∨ retvX (c ) = C) ∨ (retvX (c
′) = A ∨ retvX (c

′) = A) ⇒
c = c ′

Proof.
Case j = 0:

Derived from Equation 81, Equation 11, Equation 1 and the well-formedness conditions

∀c ∈ Returnsπ (init ) : arд1π (c ) = ok
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∀c ∈ Returnsπ (write ) : arд1π (c ) , C
and that in every execution of the transaction trans0, all thewrite method calls return ok .

Case 0 < j ≤ n:
Derived from Equation 82, induction on the structure of op and Equation 12, Equation 1 and

the following well-formedness conditions

∀c ∈ Returnsπ (init ) : arд1π (c ) = ok
∀c ∈ Returnsπ (read ) : arд1π (c ) , C
∀c ∈ Returnsπ (write ) : arд1π (c ) , C
∀c ∈ Returnsπ (commit ) : arд1π (c ) = C ∨ arд1π (c ) = A 2

Lemma 15.21.
∀π ∈ ΠTM : ∀X ∈ H(π ) : ∀T ∈ Trans (X ) : Let l = commitOf (T ) : l ∈ Inits (X ) ∧ threadX (l ) = T

Proof. Derived from Equation 81, Equation 82, Equation 83, Equation 17, Equation 13, and Equation 11. 2

Lemma 15.22.
∀π ∈ ΠTM : ∀X ∈ H(π ) : ∀l ,l ′ :

(l ∈ Inits (X ) ∧ l ′ ∈ Inits (X ) ∧ threadX (l ) = threadX (l
′)) ⇒

l = l ′

Proof. Derived from Equation 17, Equation 13, Lemma 15.8, Lemma 15.10, and Lemma 15.18. 2

Lemma 15.23.
∀π ∈ ΠTM : ∀X ∈ H(π ) : ∀l ,l ′ :

(l ∈ Inits (X ) ∧ l ′ ∈ X ∧ objX (l
′) = this ∧ threadX (l ) = threadX (l

′)) ⇒
l ⪯X l ′

Proof. Derived from Equation 17, Equation 13, Lemma 15.8, Lemma 15.10, and Lemma 15.18. 2

Lemma 15.24.
∀π ∈ ΠTM : ∀X ∈ H(π ) : ∀T ∈ Trans (X )
Let l = commitOf (T ) :

T ∈ Committed (X ) ⇒
(l ∈ Commits (X ) ∧ threadX (l ) = T )

Proof. Derived from Equation 84, Equation 17, Equation 13, Lemma 15.8, Lemma 15.18 and Lemma 15.10. 2

Lemma 15.25.
∀π ∈ ΠTM : ∀X ∈ H(π ) : ∀l ,l ′ :

(l ∈ Commits (X ) ∧ l ′ ∈ Commits (X ) ∧ threadX (l ) = threadX (l
′)) ⇒

l = l ′

Proof. Derived from Equation 17, Equation 13, Lemma 15.8, Lemma 15.10 and Lemma 15.18. 2

Lemma 15.26.
∀π ∈ ΠTM : ∀X ∈ H(π ) : ∀l ,l ′ :

(l ∈ X ∧ objX (l ) = this ∧ l ′ ∈ Commits (X ) ∧ threadX (l ) = threadX (l
′)) ⇒

l ⪯X l ′

Proof. Derived from Equation 17, Equation 13, Lemma 15.8, Lemma 15.10 and Lemma 15.18. 2

Lemma 15.27.
∀π ∈ ΠTM : ∀X ∈ H(π ) : ∀t : 0 ≤ t ≤ n

(t ∈ Committed (X ) ∧ t ∈ ¬Aborted (X )) ∨ (t ∈ Aborted (X ) ∧ t ∈ ¬Committed (X ))

Proof. Derived from Equation 17, Equation 13, Lemma 15.19, and Lemma 15.20. 2

Lemma 14.1

∀π ∈ ΠTM : π |= Γ0.

Proof. Derived from Equations 144-149, Equations 136-142, the definition of |= (Figure 8), Definition 13.3 and Lemmas 15.21-15.27.

2
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