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Abstract

Software systems often use specialized combinations of data
structures to store and retrieve data. Designing and maintain-
ing custom data structures particularly concurrent ones is
time-consuming and error-prone. We let the user declare the
required data as a high-level specification of a relation and
method interface, and automatically synthesize correct and
efficient concurrent data representations. We present prov-
ably sound syntactic derivations to synthesize structures that
efficiently support the interface. We then synthesize synchro-
nization to support concurrent execution on the structures.
Multiple candidate representations may satisfy the same
specification and we aim at quantitative selection of the most
efficient candidate. Previous works have either used dynamic
auto-tuners to execute and measure the performance of the
candidates or used static cost functions to estimate their per-
formance. However, repeating the execution for many can-
didates is time-consuming and a single performance model
cannot be an effective predictor of all workloads across all
platforms. We present a novel approach to quantitative syn-
thesis that learns the performance model. We developed a
synthesis tool called LEQsy that trains an artificial neural
network to statically predict the performance of candidate
representations. Experimental evaluations demonstrate that
LEQsY can synthesize near-optimum representations.
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1 Introduction

From the outset, system development involves the choice
and aggregation of the data structures that store and retrieve
data. Designing and tuning data structures particularly those
that are safe and efficient on multi-core processors is diffi-
cult and error-prone. Mainstream programming languages
offer libraries of concurrent data structures that are atomic
(linearizable) [25], deadlock-free and efficient. However, ap-
plications often require specialized data structures that are
not immediately provided by standard libraries.

Programmers usually commit to a particular assembly
of data structures to represent the application data. Man-
ually implementing elaborate data structures can be time-
consuming. Enforcing invariants on multiple overlapping
structures is error-prone. Further, composing multiple opera-
tions on concurrent data structures is not necessarily atomic
and has led to numerous errors [29, 42]. More importantly,
system requirements evolve. Modifying the assembly and
synchronization can introduce inadvertent bugs.

We let the user declare her required data as a short high-
level relational specification. She specifies a relation and the
required interface. We automatically synthesize a concrete
representation for the specification. This approach offers
advantages in programmer productivity, correctness and
performance. Although representations may be complicated,
they usually have simple specifications. As the low-level
implementation details are abstracted, programmer’s time
and effort is saved for both creation and maintenance of the
structure. Changes in the requirements lead to only small
changes in the specification. Synthesis produces correct-by-
construction representations that faithfully implement the
specification. Thus, the risk of introducing defects during
maintenance is reduced as well.

High-level specifications give the synthesizer the freedom
to choose from a space of solutions. Multiple representations
may exist for the same specification. Different representa-
tions exhibit different performance characteristics and the
most efficient representation varies with the workload [22].
This variance highlights the importance of the flexibility that
synthesis offers to easily switch between representations.
Previous works [21, 22, 31] have used auto-tuners that given
a sample workload, execute and measure the performance of
the synthesized candidates to choose one. However, repeat-
ing the execution for many candidates is time-consuming.

Quantitative synthesis [4, 7, 10, 11] aims to synthesize
programs that are not only correct but optimum in terms
of a quantitative metric. Previous works used static cost
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Figure 1. Overview of LEQsY

functions to estimate the cost of context switching [7] and
the performance of representations [30]. However, a perfor-
mance model depends on the usage patterns and the tar-
get platform. Therefore, a single performance model may
not be a good predictor of all use-cases across all platforms.
Further, due to complicated architectural behaviors, a real-
istic performance model may not match the intuition. For
instance, previous work [7] reported that coarse-grained out-
performed fine-grained locking for certain workloads. We
observe that performance models are insights that can be
only learned from experimental data. We present a novel
platform-independent approach to quantitative synthesis
that learns the performance model from training workloads.

Given high-level relational specifications, we benefit from
the trained model to synthesize efficient concurrent repre-
sentations. A specification declares the relation and its func-
tional dependencies. In addition, it captures the method in-
terface on the relation together with method call frequencies.
We check that the interface is well-formed i.e. it complies
with the functional dependencies. We then use the inter-
face to construct map structures called decompositions that
support the interface efficiently. We present novel syntactic
derivations that given an interface, synthesize decomposi-
tions that support the interface. We formalize the decompo-
sition language, present a type system that associates union
types with decompositions, and then define entailment of
an interface by a decomposition and its type. We prove that
the synthesis derivations are sound i.e. every derived decom-
position entails the given interface. We use the derivation
rules to enumerate [49] candidate decompositions.

The synthesized data representations may be accessed
from multiple threads concurrently. Synchronization synthe-
sis involves non-trivial choices for the number and place-
ment of locks, and the order and level of their acquisition
and release with implications for correctness and efficiency.
We couple each map of a decomposition with a read-write
lock array and synthesize candidates with different array
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sizes per map. We present locking protocols that provide
linearizability and deadlock-freedom.

To choose the most efficient candidate representation, we
need a model that can estimate the performance of candi-
dates. We train a multi-layer perceptron [40, 54] artificial
neural network to represent the performance model. We
generate ample training datapoints by enumerating different
representation structures and call frequencies. We execute
each generated representation by a workload with the cor-
responding call frequencies and measure its performance.
Datapoints are identified by a set of features including the
number of branches and maps, the number of locks at each
map and the frequency of lookup and iteration on each map.
For each datapoint, the value of features are inputs and per-
formance is the output to train the neural network. Training
is a preprocess that is done only once for a platform.

We have implemented this approach in a tool called LEQsy
(for Learning Quantitative Synthesis). An overview of LEQSY’s
structure is presented in Figure 1. Given a relational spec-
ification, it outputs a concurrent data representation as a
Java source code class that developers can integrate to their
codebase. The synthesized data structures can also replace
existing data structures in legacy codebases. We empirically
evaluated LEQsY on benchmarks that we adopted from previ-
ous work: Graph, Process scheduler and File System [21, 22]
use-cases. The results show that LEQsY can successfully
synthesize a concurrent representation whose performance
matches or is close to the performance of the optimal repre-
sentation. In summary, the contributions are the following:

o A high-level specification language that captures the
method interface and the call frequencies in addition
to the relation and its functional dependencies. (§ 2)

e A formal model of decompositions, and their type sys-
tem. A formalization of entailment of an interface by
a decomposition and its type. Syntactic derivations to
synthesize decompositions for a given interface and
the proof of soundness of synthesis. Further, synchro-
nization synthesis for decompositions. (§ 3 and § 4)

e A novel approach to quantitative synthesis that learns
the performance model. Feature engineering and train-
ing a multi-layer perceptron that can predict the perfor-
mance of candidate concurrent representations. (§ 5)

e A synthesis tool called LEQsy that given user spec-
ifications generates Java source code of concurrent
representations and its experimental evaluation. § 6.

2 Specification

We now present the high-level specifications. The user sim-
ply specifies her desired data structure as a relation with a set
of attributes, their functional dependencies and an access in-
terface. Specifying relations is more high-level that defining
decompositions that previous works [21, 22] require.
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A user specification is a record (A, ¥, I ,P). For instance,
Figure 2.(a) shows the user specification of the directed graph
use-case (adopted from [21]). The set A specifies the at-
tributes A of the relation. In the example, the set of attributes
A are {s,d, w} for the source, destination and weight of edges
between them. The set # specifies the functional dependen-
cies between the attributes in A. A functional dependency
A — A’ (where the overline notation denotes multiple at-
tributes) states that every record of values for the attributes
A in the relation is associated with a unique record of values
for the attributes A’. In the example, the set of functional
dependency ¥ is the single dependency s,d — w that states
that given a source s and a destination d in the relation, there
is a unique weight w associated with them.

The interface I represents the set of pairs of the type and
the call ratio of the methods that access the relation. In the ex-
ample, the interface 7 is the set of four access methods. The
tuple of attributes A; to A, is denoted by (A, ..,A,). We also
use the notation [A] to represent sets of values in contrast to
a single value for the attribute A. The type s — [d] describes
a method that given a source s returns a set of destinations
d. In a map, this query returns all the cities that are directly
reachable from the given city. The calls on this method is
specified to be 40% of all calls on the relation. Call ratios
can be obtained from legacy workloads or simple counting
of calls in a typical run. The synthesizer accelerates exper-
imenting with different ratios. The call ratios will help us
quantify the performance of synthesis candidates. Similarly,
the type (s,d) — w describes a method that given a pair of
source s and destination d, returns the weight w between
them. The user may want to get all the routes from a city
which is the list of all the destinations and the associated
distances. This query is represented as s — [(d,w)]. The
number P represents the call ratio of put operations. In the
example, it is 5%. Given a tuple of values for the attributes A,
a put operation adds or updates the tuple in the relation. As

MAPL ’20, June 15, 2020, London, UK

: (1) s—>[du
DIONOO (2) (s, dy > wU
(D6 @()E) () s—[dw]u

(4) w—[(s.d)]

1 (Z) | x | (Z) — d Decomposition
| letx:=dind | dy »=d,
)

Figure 4. (a) Two decompositions for the graph use-case. (b)
The supported interface. (c) A graph example. (d) A decom-
position instance that represents the graph. (e) A sharing
decomposition. (f) The decomposition grammar.

another example, Figure 2.(b) shows the specification for the
data structure of a process scheduler (adopted from [21]).

Not all the user-specified interfaces are well-formed. In
particular, a method type A — A’ is well-formed only if
A’ is functionally dependent on A. Otherwise, multiple val-
ues of A’ might be associated with a value of A. Then, the
appropriate method type is A — [A’]. We check that the
user-specified interface complies with the functional depen-
dencies. Figure 3 presents the checking rules. For brevity,
we present the rules for a core interface language I with sin-
gle attributes as the input and output. An interface is either
(1) [A] which returns a set of values of the attribute A, (2)
A — A’ which given a value of A returns a value of A’, (3)
A — [A’] which given a value of A returns a set of values of
A’ or (4) IUI’ the union of a pair of interfaces. The inference
rules derive judgments of the form # r I which states that
the interface I complies with the functional dependencies 7 .
Importantly, the rule F-Map checks that for every interface
A — A’, there is a functional dependency from A’ to A in
the closure of the given set of functional dependencies.

3 Decompositions

In this section, we show how relational specifications can be
represented as map structures.

To process user method calls efficiently, we represent re-
lations as map structures called decompositions. Given a
relation and an interface on it, multiple decompositions can
serve the interface. For instance, Figure 4.(a) shows two de-
compositions for the graph use-case specified in Figure 2.(a).
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The left decomposition consists of two branches. The left
branch is a map from sources to a map from destinations to
weights. The right branch is a map from weights to sets of
pairs of source and destination. Figure 4.(c) shows a graph
and Figure 4.(d) shows the representation of the graph as an
instance of the decomposition on the left of Figure 4.(a).

Both of the decompositions shown in Figure 4.(a) can serve
the user-specified interface I that we restate in Figure 4.(b) as
a union type. The left decomposition can serve the method
(1) s = [d] in the left branch by a lookup in the first map
and iterating the key set of the second map. It can similarly
serve the method (2) (s,d) — w by lookups in the two maps
of the left branch. The methods (1) and (2) share the same
branch. The method (3) s — [(d,w)] is also served in the left
branch by a lookup in the first map and then an iteration of
the keys and the values of the second. Finally, the method (4)
w — [(s,d)] is simply served by the right branch. In contrast,
in the right decomposition, the two methods (1) and (2) do
not share the same branch and are served in the left and
middle branches respectively.

A branch that serves multiple methods bears more con-
tention. On the other hand, adding a tuple to a decomposition
with more branches involves more updates. Given the call
frequencies of the methods, which one of these two decom-
positions is more efficient? The answers to such questions
are moot, platform-dependent and can be confirmed only by
experiments. Is it possible to statically determine and synthe-
size the most efficient decomposition? In the following, we
answer this question by decomposition and synchronization
synthesis and training a performance model.

We presented decompositions graphically in Figure 4.(a).
They can be equivalently captured as programs of the gram-
mar d in Figure 4.(d). A decomposition d is either empty
1, a tuple of attributes (A), a variable x, a mapping from
a tuple of attributes (A) to a decomposition d, a let state-
ment that binds the variable x to a decomposition in the
definition of another decomposition, or the join » of two
decompositions. We note that a single attribute A is the
special case of a unary tuple of attributes (A). As an ex-
ample, the left decomposition in Figure 4.(a) can be repre-
sented as the program [s = (d —» w)] x [w — (s,d)].
The let statement is particularly used to represent shar-
ing of leaf attributes. For example, Figure 4.(e) shows a de-
composition where the two branches share the weight val-
ues. This decomposition can be represented as the program
letx:=win[st (d— x)] = [d— (s > x)].

4 Representation Synthesis

In this section, we present how decomposition candidates are
synthesized for a given specification and show the soundness
of the synthesis. Then, we present synchronization synthesis
for decompositions. We start with an example.
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Figure 5. (a) Syntax. (b) Type System. T + d: T.

Consider the interface presented in Figure 4.(b). We in-
crementally build the left decomposition of Figure 4.(a) that
supports the interface. In the beginning, the decomposition is
empty. To serve the method s — [d], a map from s to (set of)
d is added. The second method is (s,d) — w. A new branch
can be added; however, the existing branch can be extended
as well. Thus, a nested map from d to w is installed as the
new value of the first map. We note that the support for the
first method is preserved. It can be served by a lookup with
s and an iteration on the key set d of the obtained map. The
next method is s — [(d,w)]. It can be served by the existing
map structure by a lookup followed by an iteration on the
key and value. Thus, the decomposition stays unchanged
with no branch. The final method is w — [(s,d)]. It is not
supported by the current decomposition as there is no map
with the key w. Thus, a new branch is added.

We first present a core language for decompositions, and
a type system that assigns a union type to a decomposition.
We then define entailment of an interface by a decomposi-
tions and its type. We finally define syntactic derivations to
synthesize decompositions that entail an interface.

Type System. The core language of decompositions d is
shown in Figure 5.(a). For brevity, this core language models
the keys as single attributes. We saw decompositions d in
§ 3. A decomposition can be represented as a directed acyclic
graph. The types T are defined in Figure 5.(a). A type is
either the Unit type, an attribute A, a function type from an
attribute A to another type T, or the union of two types. In
contrast to decompositions, types are always trees.

Figure 5.(b) shows the type system with the judgement
I' + d: T which states that under the typing context T', the
decomposition d has type T. The rules T-Un1T and T-ID type
the basic decompositions, empty and attribute respectively.
The rule T-MAP types a map decomposition as a map type.
The rule T-VAR types variables using the context. The rule
T-LET types a let statement by first typing the bound variable
and extending the typing context with the found typing to
type the following decomposition. The rule T-JoIN types the
join of two decompositions as a union type.
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Interface Entailment. We now define whether a decom-
position type T entails an interface I. The interface language
I is presented in Figure 5.(a). We saw [ in § 2.

Figure 6 presents the entailment inference rules. The judg-
ment T k I states that the type T entails the interface I. The
rule I-MaP-KEy states that the map type A — T entails the
interface [A] that returns a set of values of the attribute A.
Intuitively, the interface is served by the key set of the map.
The rule I-MAP-VAL states that the map type A — A’ entails
the interface [A’]. Intuitively, the interface is served by the
value set of the map. The rule I-Mapr-VAL’ states that if the
range type T of a map type A — T can serve the interface
[A’], then the map type itself can serve the interface as well.
The interface can be served by iterating the value set of the
map and recursively calling the interface [A’] on the iterated
values. The rule I-Mar-MAarp states that the map type A — A’
entails the interface A — A’. Intuitively, the interface can be
simply served by lookup in the map. The rule I-Map-Map’
states that assuming that the range type T of a map type
A — T can serve the interface [A’], then the map type itself
can serve the interface A — [A’] that given a value of A,
returns a set of values of A’. The interface can be served by
a lookup with A in the map and then recursively calling the
interface [A’] on the value. The rule I-Un1 states that a type
entails the union of two interfaces if it entails each. The rules
[-UN1IL and I-Un1R state that the union of two types entails
an interface if either of the two entails the interface. The
rules I-D states that a decomposition d entails an interface I,
written as d k I, if d is of type T and T entails I.

Decomposition Synthesis. Given an interface I, what
are the decompositions d that entail I? Figure 7 presents
derivation rules for the judgement d,I > d’ that states that
given a decomposition d and interface I, the decomposition
d can be transformed to d’ which entails I. The rule S-ID
states that if d already entails I, the transformation leaves
d unchanged. The rule S-Uni states that the support for the
union of two interfaces can be added for the two interfaces
in sequence. The rules S-JoIiNL and S-JoInR state that either
of the two sides of a join can be extended to support the
interface. The rules S-ApD-1, S-ADD-2 and S-ADD-3 state
that if the given interface type is not supported, the output
decomposition is the input decomposition joined with a map
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locking direction across branches
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lock array

lock array

Figure 8. For put operations, locks are acquired in shared
mode (grey) until a missing key is reached and it is locked
in exclusive mode (black).

structure that corresponds to the interface. For example, the
rule S-ApD-3, supports the interface A — [A’] by joining
the map structure (A — (A’ — 1)). However, the existing
map structures can sometimes be extended to support the
interface. The rules S-ExT1-2 and S-ExT-3 state that if part
of the needed map structure is already in the input decom-
position, the map structure is extended without affecting
the already supported interfaces. The rule S-ExT-2 extends
A 1to A A’ and the rule S-EXT-3 extends A — L to
A (A 1),

The following theorem states the soundness of synthe-
sis. Every decomposition synthesized for an interface pro-
vides that interface. More precisely, given an interface I, if
a derivation transforms the empty decomposition L to a
decomposition d, then d entails I.

Theorem 4.1 (Soundness). YI,d. (L,I>d) — (d 1)

The proof of the theorem is available in the appendix.

As we saw in Figure 4.(a), an interface can be supported by
multiple decompositions. The non-determinism of the infer-
ence rules can derive different decompositions. In particular,
the methods in the interface can be reordered before being
passed to the rule S-UN1 and the App and EXT rules can
either add or extend map structures. We use the enumerative
synthesis technique [49] to generate the decompositions. In
addition, if two branches of a decomposition have the same
tuple of attributes as the leaf node, the two branches can
share the leaf. Figure 4.(e) shows an example where the two
branches share the weight attribute w.
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Figure 9. (a) Multi-Layer Perceptron as the Performance
Model. (b) Get and GetAll features for Figure 2.(a) and 4.(a)

Synchronization Synthesis. Multiple threads can con-
currently access the synthesized data structures. To maintain
the consistency and availability of the structures, we synthe-
size adequate synchronization to ensure the linearizability
and deadlock-freedom of the calls. We briefly present the syn-
thesized synchronization. As Figure 8 shows, we associate
an array of read-write locks with each hash-map. Hashing
associates each lock to a separate set of buckets. The protocol
follows two-phase locking; thus, it maintains linearizability.
To prevent deadlocks, locks are acquired in a total order from
top to bottom in the tree and from left to right in the arrays.

Get operations. In the traversal down the tree, before each
lookup, we access the the lock array of the map and lock
(in shared mode) the lock at the index corresponding to the
hash of the key. Before iterating a key set, we acquire all the
locks of the corresponding lock array in shared mode.

Put operations. To maintain the consistency of the repli-
cated data across the branches of a decomposition, we do
not release the acquired locks of a branch until the inser-
tion is completed on all branches. We traverse branches in
sequence from left to right. We acquire all the locks in the
shared mode during the traversal until we reach a missing
key. Then the lock for that key is reacquired in the exclusive
mode. Then, no other lock is needed to be acquired in the
current branch. Doing so prevents other readers as well as
writers from accessing buckets that are being updated.

5 Learning

This section presents the training of a performance model
that predicts the throughput of candidate representations.
Multi-Layer Perceptron. We build a multi-layer percep-
tron [40, 54] as shown in Figure 9.(a) which is an artificial
neural network with multiple layers of neurons. The first
and last layers are the input and output neurons respectively
and the hidden layers come in between. The input layer has
aneuron per input feature and the output layer has a neuron
per output. The output of each input and hidden neuron is
an input to every neuron of the next layer. A weight wj; is
associated with the input from a neuron j to another neuron
i. Given values for the input features, the network calculates
output values of neurons layer by layer from the input layer
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forward to the output layer. Input neurons simply output
their input features. The output o; of each hidden and output
neuron i is calculated as the weighted sum of the previous
layer outputs o; and then applying a sigmoid function ¢
(Oi = (Z;lzle'i X Oj))

A datapoint is a pair of feature values and the desired
output values. A training set is a set of datapoints. Given a
datapoint, the difference between the output that the net-
work calculates and the desired output is the error. Given
a training set, the goal is to learn the weights of the net-
work that minimize the error E across the training set. Multi-
layer perceptron is trained by a supervised learning tech-
nique called back-propagation that uses the gradient de-
scent optimization algorithm. Gradient descent moves to-
wards the minimum of a function by iteratively shifting
the input point in the opposite direction of the derivative.
Back-propagation calculates the derivative of the error over
the neuron outputs and connection weights layer by layer
from the output layer backwards to the input layer. Given
the derivative of the error, % for a weight wj;, the term
A(wji) = —a X % +px A’(wji) is the update applied to wj;
where A’(wji) is the update to wj; in the previous iteration,
«a is the learning rate and p is the momentum.

We repeat the training over the training set by the k-fold
cross-validation technique to get an out-of-sample estimate
of the model. We do 10-fold cross validation. This allows us to
avoid overfitting. Using this technique, we split the test data
set into 10 equal subsets. In each iteration of the learning,
we train on one subset and use the other 9 subsets to test
the model. In the end, we get the average of the 10 trained
models to compute the final model. We started with small
instances of networks and increased the complexity when
needed. Our network has 53 input neurons, one hidden layer
with 6 neurons and an output neuron for the throughput.

Feature Selection. Selection of features that can predict
the value of the output is crucial to the success of learning.
For a pair of a decomposition and an interface (including the
call frequencies), we choose features that are correlated to
the throughput of a workload with those call frequencies on
the decomposition. The features capture the decomposition
structure including the number of its branches, the number
of locks on a node, the cumulative ratio of operations (lookup
on the map of a node, iteration of the map of a node), the
put ratio, and whether the branches share leaves. We use
a bounded number of nodes and uniquely number them
according to their position in branches. If a decomposition
does not have a node at a position, the values of features for
that node are simply set to zero.

We have separate features for lookup and iteration as
they exhibit different performance characteristics because
the former acquires a single lock and the latter acquires
all the locks in the array. As Figure 9.(b) shows, we have
two features Get and GetAll for each node that represent
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B* S |A|MT|ST|SP | AT AP | SU | AC
Graph 7 13 |4 14 | 5 14323| 5 1023| 100%
PS 6 |4 |3 11 | 52| 9621 | 5.7 | 874 | 91%
FS 6 |4 | 4 13 | 55| 12975] 5.5 | 998 | 100%

" B: Benchmark name; (PS: Process Scheduler, FS: File System)
S: Specification lines of code; A: Number of attributes; MT:
Number of methods; ST: Synthesis time (second); SP: Synthesized
representation throughput (million ops / sec); AT: Auto-tuner time
(second); AP: Auto-tuned representation throughput (million ops /
sec); SU: Speed-up = AT / ST; AC: Accuracy = SP / AP. Workload:
99% Query, 1% Update. Platform: P;.

Table 1. Quantitative Synthesis vs. Auto-tuning,.

the cumulative ratio of lookup and iteration. Figure 9.(b)
shows the values of these features for the specification of
Figure 2.(a). For example, the method call (s — [d], 40%)
executes a lookup on the node s and an iteration on the node
d. Therefore, it adds 40% to the Get feature of node s and
40% to the GetAll feature of node d. We sum the lookup and
iteration ratios by all methods at each node to calculate the
Get and GetAll features of that node.

We tried decision trees as well with no better results. It
remains open to study the effectiveness of random forests
and graph convolutional neural networks on this domain.

6 Experimental Results

Implementation. We developed a tool called LEQsY that
synthesizes concurrent data representations. LEQSY is imple-
mented in Scala [35] and Java. Its input specification lan-
guage was described in § 2. It synthesizes decompositions
by enumerating over the derivation choices of the synthesis
rules presented in § 4. It includes synchronization templates
for decomposition structures that implement the protocols
presented in § 4 and synthesizes synchronization by instan-
tiating the templates. It uses Weka libraries [53] to train the
performance model and generates Java source code classes.

Platform Setup. We performed our experiments on two
platforms P, and P,. The platform P, is a quad core 3.60GHz
Intel® Core™ i7-7700 CPUs(8) and 16Gb memory with ubuntu
16.04 LTS. The platform P, has 2 AMD Opteron 6272 CPUs
with a total of 8 cores with 64GB ECC protected memory of
RAM with CentOS 7.4 Linux x86_64 V 3.10.0.

Learning. To prepare the training dataset, we generated
decompositions up to width and depth of 4. We generated
synchronization with permutations of 16, 32, 64, 128, 256 and
512 for lock array sizes. We generated different interfaces
with different call ratios. These representations and inter-
faces are independent of any concrete benchmark. For each
decomposition and interface, we executed a workload that
corresponds to the call ratios on the decomposition 5 times
and captured the throughput (that is the number of processed
operations per second). We used the gathered datapoints to

MAPL ’20, June 15, 2020, London, UK

(a) Decomposition candidates for the interface of Figure 4.(b)
-106
4

—T T
—— 1(P,) ——1(Py)

35| e 11 () —e— 1 (P2) 1

. —w— 11 (P,) —e—1I1 P2)
31 == 1v (P) —e—1V(P2) |

25| best (Py) |

synthesized (P;)
e ®\\/\ §

bpst (P
( I>s_vnthesize1 (P)

N

I II IIx

0 I L L L
24 2'3 2(} 27 28 24 25 2ﬁ 27 2{1 24 25 26 27 28 24 2'5 2(} 27 2?(
Number of locks in the shaded node

(b) Benchmark: Graph. Workload: 90% Query, 10% Update.
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Figure 10. Actual throughput for candidate representations
and the synthesized representation. The optimum represen-
tation for platform P; is Il with 16 locks. The trained model
picks I with 16 locks whose throughput is 83% of the opti-
mum. For the platform P,, the two are the same.

train a multi-layer perceptron by 10-fold cross-validation
with 500 epochs, the learning rate of 0.3, and the momentum
of 0.2. The training for P; with 30000 data-points took 240
minutes and for P, with 2000 data-points took 28 minutes.
Benchmarks. We run our experiments on three bench-
marks: graph (Figure 2.(a)), process scheduler (Figure 2.(b))
and file system that we have adopted from previous work
[21, 22]. We present detailed results for the Graph bench-
mark in the main body. In the interest of space, the results
for the other benchmarks are available in the appendix.
Measurements. We adopted the road network of the
Northwestern USA graph from RelC [21]. We initialized each
file system and process scheduler with 10000 and 15000 ran-
dom tuples respectively. For each specification, we generated
a random workload of 10° operations per thread that match
the call frequencies of the specification and execute candi-
date representations with that workload. We measured the
throughput that is the number of processed operations per
second. We repeated each experiment 8 times within the
same process with 8 threads, with a garbage collection in
between. We discarded the results of the first 3 runs to warm
up the JIT compiler. Each reported value is the average of
the last 5 runs. The auto-tuner executes all candidates with
the same sample workload, measures their throughputs and
picks the candidate with the highest throughput.
Assessment. We first measure the speed-up and the ac-
curacy of synthesis compared to the auto-tuning baseline.
We then consider the accuracy of the predicted throughput



MAPL ’20, June 15, 2020, London, UK

versus the actual throughput for the synthesis candidates.
Finally, we analyze the actual throughput for various candi-
dates and the synthesized representation.

Table 1 shows the speed-up and accuracy of static quanti-
tative synthesis versus dynamic auto-tuning. For each bench-
mark, in addition to information about the specification, it
presents the time to produce the output representation and
its throughput for both techniques. It reports the speed-up
(SU) gained by the quantitative synthesis that is the pro-
cessing time of auto-tuning (AT) divided by the processing
time of quantitative synthesis (ST), and the accuracy (AC)
of quantitative synthesis that is the throughput of its out-
put (SP) divided by the throughput of auto-tuning output
(AT). Quantitative synthesis uses the trained model to pre-
dict throughput and avoids execution of the candidates. It
achieves more than two orders of magnitude speed-up and
more than 90% accuracy across the benchmarks. For two
of the benchmarks, the synthesized representation is the
most efficient candidate. With larger benchmarks, the run-
time increases but the static prediction time stays the same.
Therefore, for larger benchmarks, the speed-up is expected to
be even higher. The synthesizer supports quick reconfigura-
tion from a representation to another for varying workloads
or new user interfaces during system maintenance.

Let us consider the average error of the predicted through-
put for all the representations that were considered in Table 1
with respect to their actual throughput. The average error is
17%, 14%, and 21%, for the Graph, File System, and Process
scheduler benchmarks respectively. A near-optimum repre-
sentation can be synthesized even if the network predicts
throughput with an error but keeps the relative order of
representations. The relatively low prediction error suggests
that the selected features are correlated with the throughput
and the training has been able to learn the correlation.

Now, we closely look at the throughput of candidate rep-
resentations for the Graph benchmark and compare the
throughputs of the synthesized representation and the most
efficient candidate. We have already reported the overall
results for this use-case in Table 1. The purpose of this exper-
iment is illustration and comparison of different decompo-
sition and synchronization choices. Given the specification,
the synthesis process results in the four decompositions I, II,
III, and IV presented in Figure 10.(a). We increase the size of
the lock array for the nodes that are shaded in Figure 10.(a)
from 16 to 256. The size of the lock array for the other nodes
is constant, 256 in Figure 10.(b).

For the decomposition I, we increase the number of locks
at the shaded map d. The two methods s — [d] and s —
[(d,w)] iterate the map d. An iteration acquires all the locks
of the array. As the left-most part in Figure 10.(b) shows,
increasing the number of locks aggravates the throughput.
The decomposition I reduces iterations. It serves the method
s — [(d,w)] by a lookup on the second branch; thus, in
contrast to the decomposition I, only the method s — [d]
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performs an iteration in the first branch. The decomposition
III reduces iteration further. It serves the above methods by
lookups on the first branch. Yet, the two methods s — [(d, w)]
and s — [d] share a branch. The decomposition IV introduces
a separate branch for the latter to reduce contention.

Therefore, on an experiment with a query-dominated
workload (with 1% updates presented in the appendix), we
see a trend of throughput increase for the decompositions
from I to IV. In contrast, in Figure 10.(b) (the workload with
more update operations), we see a trend of throughput de-
crease from the decomposition I to IV. In decompositions
with more branches, put operations have to acquire more
locks in exclusive mode and perform more mutations. Thus,
the decomposition I with two branches outperforms the oth-
ers. These observations suggest that wider decompositions
deliver higher performance for query-dominated workloads
and narrower decompositions deliver higher performance
for update-dominated workloads. In general, increasing the
number of locks is believed to increase the throughput; how-
ever, there are exceptions that do not match the intuition.
These observations further highlight the unpredictable na-
ture of performance and the importance of learning.

7 Related Work

Synthesizing data structures. The importance of data
structure synthesis has been recognized since 70s [13, 15, 41,
44]. RelC [21, 22] synthesizes data representations for given
decompositions based on auto-tuning. Cozy and its follow-up
work [30, 31] synthesizes efficient sequential data structures
using a static cost model. Sketching [45, 46], Boosting [23],
Semantic Locking [19], Predication [6], and Transactional
Libraries [47] synthesize and compose concurrent data struc-
tures. Users can use these techniques to compose atomic
structures manually. In contrast to these works, LEQsY sup-
ports more general relational specifications, learns the per-
formance model and synthesizes concurrent data structures.

Learning and concurrent data structures. Machine
learning has been used to predict the number of concur-
rent threads for optimum performance [38, 39, 48]. Smart-
locks [17] use learned models to adapt spin-locks and Smart
Data Structures [16] use online learning to adapt data struc-
tures to varying workloads. Data Calculator [27] synthesizes
read-only data structures and predicts performance based on
user-defined layout specifications and target architectures. In
contrast to the above, LEQsy does not require layouts, learns
the performance model, and synthesizes the most efficient
data structure for a target workload.

8 Conclusion

We presented a new approach to quantitative synthesis that
trains a performance model to predict the efficiency of con-
current representations for relational specifications. The
adaptability and platform-independence of learning the per-
formance model can carry over to other synthesis domains.
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