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A Proofs

Theorem 4.1 (Synthesis Soundness).
VI,d. (L,I>d) > (dEI)

Proof.
Immediate from Theorem A.1.

Theorem A.1.
vI1,d,d’,T. AT’.
d,I>d A
Trd: T
N
d el A
Trd: T
AV,

del’

-

d el

Proof.
We assume
(1) d,I>d’
2) Trd:T
We prove
d el
Frd:T
Also, assuming
(3) del’
We prove
del

Induction on the derivation of [1]:
Case rule S-ID:
We have
4) d=d
(5) d eI
From [2] and [4]
6) T+d:T
From [3] and [4]
(7) d el
The conclusion is [5], [6] and [7].

Case rule S-JoINL:

We have
8) d=d; = d,
(9) d"=d]>ady
(10) dy,Ivd]

By inversion on [2], [8], we have
(1) T+di: T
(12) T+dy: Ty

By induction hypothesis on [10], [11]

(13) d| £ 1
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(14) Trd]: T]

By Lemma A.2 on [13], [12], we have
(15) dimdy ET

By rule T-Join on [14], and [12], we have
(16) Ik d{ X dy: TIIUTZ

We show that
(17) dimdy T

By Lemma A.8 on [3] and [8], we have two cases

Case
(18) di T’

By the induction hypothesis on [18], we have

(19) dj eI’

By Lemma A.2 on [19], [12], we have
(20) di > dy T

Case
(21) dy el

By Lemma A.3 on [21], [14], we have
(22) di>dy T

The conclusion is [15], [16] and [17].

Case rule S-JoinR:

Similar to rule S-JoiNL

Case rule S-ApD-1:

We have
(23) I=[A]
(24) d’=d> (A 1)
By rule T-Unit, we have
(25) T+ L: Unit
By rule T-MAP on [25], we have
(260) TFA— L: A— Unit
By rule T-JoiN on [2] and [26], we have
@) Trd= (A L1): TU (A - Unit)
By rule I-Map-KEY, we have
(28) A — Unit k [A]
By rule I-UN1IR on [28], we have
(29) TU (A — Unit) E [A]
By rule I-D on [27] and [29], we have
(30) d = (A 1) E[A]
From [30], [24] and [23], we have
(31) d eI
From [27] and [24], we have
(32) Trd': TU (A — Unit)
By Lemma A.5 on [3], we have
(33) d (AP L)ET
From [33] and [24], we have
(34) d’ el
The conclusion is [31], [32], and [34].

Case rule S-ExT-2:

We have
(35) d = (A Unit)
(36) = A— A’
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37) d=AP A)
By rule T-ID, we have
(38) TrA: A
By rule T-MAP on [38], we have
BN THAPB A: A A
By rule I-Map-Map, we have
(40) A A EAD A
By rule I-D on [39] and [40], we have
41) A A)EA—> A
From [41], [37] and [36], we have
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Lemma A.2.
vd,d’,I.,T,T.
del A
T'vrd:T—
dwd el

Proof.

(42) d' =1 By inversion of rule I-D, rule T-Join, rule I-UNIL and rule
By Lemma A.6 on [3], [35] and [37], we have I-D.
(43) d’ el

The conclusion is [42], [39], and [43].

Case rule S-ApD-2: Lemma A.3.

’
Similar to case rule S-ApD-1. Zfi;dl’l/,\rj.
Using rule T-ID instead of rule T-UNIT. Fed: T —
Using rule I-MAapr-MaP instead of rule I-Mar-KEy. d d-' T

Case rule S-ExT-3:
Similar to case rule S-ExT1-2. Proof.
Using rule T-Map-KEy instead of rule T-ID. Symmetric to Lemma A.2.
Using rule I-Mapr-KEy and then rule I-Mapr-Map’
instead of rule I-MAp-MApP.

Case rule S-ADpD-3: Lemma A.4.

Similar to case rule S-ApD-1. j;vrl;e(zd)a g'dom )
Using rule T-MaPr-KEy instead of rule T-UNIT. . -
Using rule I-MaP-KEy and then rule I-Map-Map’ Cvd: T
instead of rule I-Mapr-KEy. '
Using Lemma A.9 instead of Lemma A.6.
Proof.

Case rule S-UNT: Immediate from structural induction on d.
We have
(44) 1= I] U Iz
(45) d,I; »d”
(46) d”,L>d’
By induction hypothesis on [45], [2] and [3], we have
47y d” e L
(48) Trd”:T”

Lemma A.5.
vd,d’,I.
del A
free(d’) =0
N

(49) d” eI ded eI
By induction hypothesis on [46], [47], [49] and [48],
we have
(50) d E IZ Proof. ‘
1) d' el By Lemma A.2 and Lemma A 4.
(52) d' £ L

(G3) Trd': T’

By rule I-Un1 on [52] and [50], we have
(54) d EL UL VA, AL
From [54] and [44], we have A L)ET

(55) d' eI -
The conclusion is [55], [53], and [51]. AP A)EI

Lemma A.6.
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Proof.
We assume

(1) (A L) EIT
We prove

AP ANEI

By inversion on [1] (with rule I-D),
2)0rA> L: T,
(3) T el

By inversion on [2] (with rule T-Map),
(1) h,=A—> T’
G) OrL:T

By inversion on [5] (with rule T-UnrT),
(6) T’ = Unit

From [4] and [6]
(7) T, = A — Unit

From [3] and [7]
(8) (A— Unit) I

By inversion on [8] (with rule I-Mapr-KEyY),

©) I=[A]
By rule I-Mapr-KEy, we have
(10) A— A’k [A]
From [10] and [9]
(1) Ao A'E T
By rule T-ID, we have
(12) TFA": A
By rule T-MaP on [12], we have
(I3) TFAPL A:A—> A
By rule I-D on [13] and [11], we have
(14) (A A EI

Lemma A.7.
VT1,To,1.

UL EI

N

(T] IZI)V(TZ IZI)
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Proof.

By induction on the derivation of Ty U T; k 1.

The only inductive case is rule I-UN1.

The cases for the rule I-UNIL, rule I-UNIR are straightfor-
ward.

Lemma A.8.
Yd,,d,, 1.

d1 > d2 El
-

(deD)V (dy )

Proof.
By inversion on d; ™ d; k I and rule I-D, we have
(1) Ordy»dy: T
(2) Tel
By inversion on [1], we have
T=T{UT,
0 F dl = T1
0 F dz = Tg
Then, the conclusion is straightforward from
Lemma A.7, and rule I-D.

Lemma A.9.
VYd,A A’ I

dx (A 1)EI
-

de (A (A L) EI

Proof.
Similar to Lemma A.6.
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B Benchmarks
B.1 Graph Benchmark
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(b) Benchmark: Graph. Workload: 90% Query, 10% Update.

1

throughput = operations / time (second)

Figure 11. Actual throughput for candidate representations
and the synthesized representation. The optimum and syn-
thesized candidates for both platforms P; and P, are the
same.

Figure 11 shows the graph for the query-dominated work-
load with 1% updates that is elided from Figure 10 of the
main body. In this experiment, we increase the size of the
lock array for the nodes that are shaded in Figure 10.(a) from
16 to 256. The size of the lock array for the other nodes is
constant, 128 in Figure 11.(b). As noted in the paper, we see a
trend of throughput increase for the decompositions from I
to IV. This suggest that wider decompositions deliver higher
performance for query-dominated workloads.

B.2 Process Scheduler

This subsection presents the Process Scheduler benchmark
adopted from [21]. The relation represents processes. The
set of attributes are the process identifier pid, its namespace
ns, its state state (that is running or idle) and its assigned pro-
cessor cpu. The functional dependency ns, pid — state, cpu
states that given a namespace and a process identifier, there
are unique values for the the state and the processor.

We study the effect of increasing the number of locks on
the throughput with a query-dominated workload with 1%
updates in Figure 14 and also a workload with 10% updates
in Figure 15. The query ratio is evenly distributed between
the get methods. We increase the size of the lock array for
the nodes that are shaded in Figure 13 from 128 to 1024.
The size of the lock array for the other nodes is 128 for
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all the other nodes. Decompositions with shared leaf nodes
are generally more efficient for update dominant scenarios
because an update is done for all branches. However, the
same sharing causes query dominated scenarios to have
lower performance.

(A = |pid, ns, state, cpu},

F = {ns,pid — state, cpu},

I = {(ns— [pid], 45%),
{ns, pidy — cpu, 45%),
(state — [cpu], 5%)},

P:=  5%)

Figure 12. Relational Specification of the Process Scheduler
Use-case
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Figure 13. Decomposition candidates for the interface of
Figure 12
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Figure 14. Benchmark: Process scheduler. Workload: 99%
Query 1% Update

-10¢
T

e
synthesize(l)

I\

(best)
a5 1 I jies v

7

—— I =11

—— I ——1V

throughput = operations / time (second)

PRSI IR SIS e o e
27 29 ZM) 27 29 210 27 2!) 210 27 29 210
Number of locks in shaded node

Figure 15. Benchmark: Process scheduler. Workload: 90%
Query, 10% Update
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Figure 19

B.3 File System

This subsection presents the File System benchmark adopted
from [21]. The set of attributes A is {parent, name, child}.
Each parent directory entry has zero or more child directory
entries, each with a distinct file name. The set of functional
dependency ¥ is the single dependency parent, name —
child. The interface I is the set of three access methods.
The first one gets all the names in a directory in case of
unmounting a filesystem. The second one gets a file given
its parent directory and name. The third one gets the paths
of a file in case of search.

We study the effect of increasing the number of locks on
the throughput with a query-dominated workload with 1%
updates in Figure 18 and also a workload with 10% updates in
Figure 19. The query ratio is evenly distributed between the
get methods. We increase the size of the lock array for the
nodes that are shaded in Figure 17 from 128 to 1024. The size
of the lock array for the other nodes is 128 for all the other
nodes. As observed in the graph benchmark, increasing the
size of the lock array of the inner map increases the cost of
iteration and reduces performance.

(A = {parent,name,child},

F . {parent,name — child},

I := {(parent — [name], 40%),
{(parent,name) — child, 40%),
(child — [{parent,name)], 10%), },

P = 5%)

Figure 16. Relational Specification of the File System Use-
case
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@ @O @
DE e ©
1 I
p : parent

n : name

c : child

Figure 17. Decomposition for the File System Use-case

B.4 Sat4]

Queries can result a set of values and the user can apply
the aggregation functions to results. However for conve-
nience, we support aggregation queries and use them in this
benchmark. Aggregation queries accept a predicate and an
aggregate function on the output attributes. For example, the
interface A; — [A2], p, f, given a value of the aggregation
function f on all the corresponding values of the attribute
A, that satisfy the predicate p.

This subsection presents the Sat4] benchmark adopted

from [31]. The set of attributes A is {var, level, reason,
posWatch}. The set of functional dependency ¥ is the single

dependency var — level, reason, posWatch. The interface
T is the set of three access methods.

The first, second and third get methods return the level,
the reason and the posWatch values associated with the var
respectively. The method ([var], (Avar. T),count) calculates
the size of the map by counting all the vars in the data
structure. The predicate on this interface returns true for all
vars. The method var? returns whether the relation contains
var.

Figure 22 shows performance of two different workloads
for this benchmark. Changing the number of locks has dif-
ferent effects on the throughput for the two workloads. The
method ([var], (Avar. T),count) translates to iteration. When
the method has a high ratio (50%), iteration impacts the
throughput. If the ratio of the method is moderate (10%),
increasing the number of locks reduces contention for other
methods and improves the throughput but only up to a cer-
tain optimum.

war;

1 : level
T reason

pw : posWatch

Figure 20. Decomposition for the Sat4] Use-case
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(A := {key,state,diskSize,inUse},

F := {key — state,diskSize,inUse},

I {(key — (state,diskSize,inUse), 10%),

(state — [diskSize], (A diskSize. T), sum, 40%),
(state — [(state,diskSize,inUse)], 29%),
((state,inUse)y — [(state,diskSize,inUse)], 20%)},
1%)

)
i

Figure 23. Relational Specification of the Ztopo

< b ¢

k : key
st
7 :inUse
d : diskSize

Figure 24. Decomposition for the Ztopo Use-case
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Figure 25. Performance for the ZTopo Use-case.

(A = {var,level,reason,posWatch},
F := {var — level,reason,posWatch},
I := {{var — level, 22%),

{var — reason, 22%),

(var — posWatch, 1%),

(var?, 5%),

([var], (A var. T),count, 50%)},
P:= 1%)

Figure 21. Relational Specification of the Sat4] Use-case
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Figure 22. Performance for the Sat4] Use-case. The method
poolsize() is ([var], (Avar. T),count).

B.5 ZTopo

This subsection presents the ZTopo adopted from [31]. The
set of attributes A is {key, state, diskSize, inUse}. The set
of functional dependency 7 is the single dependency key
— state, diskSize, inUse. The interface 1 is the set of five
access methods. The interface results in the decomposition
shown in Figure 24.

In Figure 25, we study the effect of increasing the number
of locks for state on the throughput with two workloads. We
increase the size of the lock array for state from 128 to 1024.
The size of the lock array for the other nodes is the constant,
128.

The two workloads have different ratios for the two meth-
ods getEntity() that is (state,inUse) —
[(state,diskSize,inUse)] and getTotalDiskSize() that is
(state — [diskSize], (A diskSize. T), sum. In the first work-
load, the ratios of the two methods are 20% and 40% respec-
tively. In the second workload, the ratios of the two methods
are 55% and 5% respectively. The method getTotalDiskSize()
aggregates list elements; thus, the throughput decrease as
its ratio is increased.
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C Related Work

Synthesizing data structures. The importance of data
structure synthesis has been recognized since 70s. Iterator
inversion [15] automatically constructs iterators over data
representations. SETL [41] dynamically maps abstract set
and map types to concrete implementations. PReps [13] in-
puts relational specifications and annotations that aid com-
pilation to efficient data structures. DiSTiL [44] presents a
declarative language for data structure specifications and
replaces specifications with low-level implementations. In
contrast, LEQsY supports more general relational specifica-
tions, learns the performance model and statically synthe-
sizes more elaborate concurrent data structures.

RelC [21, 22] synthesizes both sequential and concurrent
data representations. Cozy [31] synthesizes efficient sequen-
tial data structures using a static cost model. In a follow-up
work [30], it supports operations across data structures and
automatically synthesizes updates as well as queries. In con-
trast, LEQsY learns a performance model instead of using a
static model and synthesizes concurrent data structures.

Sketching [45, 46] automatically completes a sketch imple-
mentation of a concurrent data structure. Boosting [23] and
Semantic Locking [19] use commutative pessimistic synchro-
nization while Predication [6] and Transactional Libraries
[47] use optimistic synchronization [24] to implement com-
posable concurrent data structures. Users can use these tech-
niques to compose atomic structures manually. However,
LEQsy automatically synthesizes them.

Learning and concurrent data structures. Machine
learning has aided concurrent systems. It has been used to
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predict the number of concurrent threads for optimum per-
formance. [38, 39, 48]. Smartlocks [17] uses machine learn-
ing models to adapt spin-locks to dynamic workloads. Smart
Data Structures [16] use online learning to adapt the data
structure to varying workloads. Similarly, Chameleon [43]
dynamically profiles client calls on data structures to suggest
efficient data structure implementations. In contrast, LEQsY
learns a performance model and statically synthesizes the
most efficient data structure for a target workload. Data Cal-
culator [27] synthesizes data structures and predicts their
performance based on user-defined layout specifications and
target architectures. It learns and uses performance models
for its primitives. In contrast, LEQsY does not require layouts,
supports put and query operations, learns the performance
model of layouts, and explores the space of layouts.
Synthesizing concurrent programs. Various projects
[5, 12, 14, 20, 26, 33, 55] infer atomic sections and insert
locks to implement them. Others [2, 8, 9, 18] apply semantic-
preserving transformations to efficiently synchronize, repair
or verify synchronization. Similarly, Paraglider [51] and AGS
[52] explore the execution space to iteratively add synchro-

nization that removes violating interleavings. Other works
[1, 3, 28] automatically insert fence instructions to data struc-

tures. RCU [34] and RLU [32] automatically reduces latency
of read/write accesses to the data structure. Elixir [36, 37]
synthesizes synchronization for parallel graph processing.
These works synthesize synchronization with no quanti-
tative [4, 7, 10, 11] measures. Quantitative synthesis [50]
however, uses analytical performance models to synthesize
concurrent programs. On the other hand, LEQsy learns and
uses the performance model for quantitative comparisons.



