
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Grafs: Graph Analytics Fusion and Synthesis
Appendix

ANONYMOUS AUTHOR(S)

Contents

Contents
1 Use-case Specifications 1
2 Specification and Fusion 8
2.1 Semantics 8
2.2 Language and Fusion Extensions 10
2.2.1 Common Operation Elimination 11
2.2.2 Domain 12
2.2.3 Unary operations and Literals 12
2.2.4 Vertex Variables 13
2.2.5 Syntactic Sugar 15
2.2.6 Nested Triple-lets 17
2.3 Example Fusions 20
3 Mapping Specification to Iteration-Map-Reduce 22
3.1 Iterative Reduction and its Correctness 22
3.1.1 Pull Model 22
3.1.2 Push Model 24
3.1.3 Asynchronous Model 28
3.1.4 Streaming Graphs 31
3.1.5 Factored Path-based Reductions 33
3.2 Synthesis of Iterative Reduction 34
4 Proofs 37
4.1 Helper Definitions 37
4.2 Semantics Compositionality 38
4.3 Soundness of Fusion 40
4.4 Iteration Correctness Conditions 45
4.4.1 Pull, Idempotent 45
4.4.2 Pull, Non-idempotent 49
4.4.3 Push, Idempotent 53
4.4.4 Push, Non-idempotent 57
4.4.5 Termination 64
5 Implementation 66
5.1 Mapping Iteration-Map-Reduce to Graph Frameworks 66
5.2 PowerGraph 67
5.3 Ligra 70
5.4 Graphit 71
5.5 Gemini 72
5.6 GridGraph 74
5.7 Path-based Reduction Synthesis 75
6 Experimental Results 78
6.1 Fusion Scalability 79

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Anon.

6.2 The Effect of Fusion 80
6.3 Fusion Types 81
6.4 Gemini Framework Analysis 82
6.5 Streaming Evaluation 83
References 85

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

1

1 Use-case Specifications

SSSP(𝑠) (𝑣) = min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝) Shortest Path

NP(𝑠) (𝑣) = | Paths(𝑠, 𝑣) | Number of Paths

LP(𝑠) (𝑣) = max
𝑝∈Paths(𝑠,𝑣)

weight(𝑝) Longest Path

SL(𝑠) (𝑣) = min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Shortest Length

LL(𝑠) (𝑣) = max
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Longest Length

WP(𝑠) (𝑣) = max
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝) Widest Path

NP(𝑠) (𝑣) = min
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝) Narrowest Path

FR(𝑠) (𝑣) =
∨

𝑝∈Paths(𝑠,𝑣)
True Forward Reachability

CC(𝑣) = min
𝑝∈Paths(𝑣)

head(𝑝) Connected Components

CCS(𝑣) =
⋃

𝑝∈Paths(𝑣)
{ head(𝑝) } Connected Component Set

BR(𝑠) (𝑣) =
∨

𝑝∈Paths(𝑣,𝑠)
True Backward Reachability

BFS(𝑠) (𝑣) = penultimate(argmin
𝑝∈Paths(𝑠,𝑣)

length(𝑝)) Breadth-First Search

Fig. 1. Use-cases for R
𝑝∈𝑃

𝑓 (𝑝) and 𝑓 (argR
𝑝∈𝑃

𝑓 (𝑝))

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

2 Anon.

WSP(𝑠) (𝑣) = let 𝑃 B argsmin
𝑝∈Paths(𝑠,𝑣)

length(𝑝) in Widest Shortest Paths

max
𝑝∈𝑃

capacity(𝑝)

NSP(𝑠) (𝑣) =

����� argsmin
𝑝∈Paths(𝑠,𝑣)

weight(𝑝)
����� Number of Shortest Paths

HLP(𝑣) = head(argmax
𝑝∈Paths(𝑣)

weight(𝑝)) Head of Longest Path

HLL(𝑣) = head(argmax
𝑝∈Paths(𝑣)

length(𝑝)) Head of Longest Length

HNP(𝑣) = head(argmin
𝑝∈Paths(𝑣)

capacity(𝑝)) Head of Narrowest Path

SWSL(𝑠) (𝑣) =
Shortest Weight in

Shortest Length Paths
let 𝑃 B argsmin

𝑝∈Paths(𝑠,𝑣)
length(𝑝) in

min
𝑝∈𝑃

weight(𝑝)

WSLSW(𝑠) (𝑣) =

Widest in
Shortest Length in

Shortest Weight Paths
let 𝑃 B argsmin

𝑝∈Paths(𝑠,𝑣)
weight(𝑝) in

let 𝑃 ′ B argsmin
𝑝∈𝑃

length(𝑝) in

max
𝑝∈𝑃 ′

capacity(𝑝)

LNP(𝑠) (𝑣) = Longest Narrowest Path
let 𝑃 B argsmin

𝑝∈Paths(𝑠,𝑣)
capacity(𝑝) in

max
𝑝∈𝑃

length(𝑝)

HNP(𝑣) = Heads of Narrowest Paths
𝑃 B argsmin

𝑝∈Paths(𝑣)
capacity(𝑝) in⋃

𝑝∈𝑃
{ head(𝑝) }

CCSS(𝑣) =

������ ⋃
𝑝∈Paths(𝑣)

{ head(𝑝) }

������ Connected Component Set Size

Fig. 2. Use-cases for nested R
𝑝∈𝑃

𝑓 (𝑝), part 1

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

3

NWSP(𝑠) (𝑣) = Number of Widest Shortest Paths
let 𝑃 B argsmin

𝑝∈Paths(𝑠,𝑣)
weight(𝑝) in

let 𝑃 ′ B argsmax
𝑝∈𝑃

capacity(𝑝)

| 𝑃 ′ |

NSWSL(𝑠) (𝑣) =

Number of
Shortest Weight in

Shortest Length Paths
let 𝑃 B argsmin

𝑝∈Paths(𝑠,𝑣)
length(𝑝) in

let 𝑃 ′ B argsmin
𝑝∈𝑃

weight(𝑝 ′) in

| 𝑃 ′ |

Fig. 3. Use-cases for nested R
𝑝∈𝑃

𝑓 (𝑝), part 2

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

4 Anon.

NWR(𝑠) (𝑣) =

min
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝)

max
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝) Narrowest to Widest Path Ratio

LSD(𝑠) (𝑣) = LP(𝑠) (𝑣) − SSSP(𝑠) (𝑣) Difference between
Longest and Shortest Path

= max
𝑝∈Paths(𝑠,𝑣)

weight(𝑝) − min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝)

SP2(𝑠, 𝑠 ′) (𝑣) = min (SSSP(𝑠) (𝑣), SSSP(𝑠 ′) (𝑣)) Shortest Path from
Two Sources

= min
(

min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝), min
𝑝∈Paths(𝑠′,𝑣)

weight(𝑝)
)

SPR(𝑠, 𝑠 ′) (𝑣) =
SSSP(𝑠) (𝑣)
SSSP(𝑠 ′) (𝑣)

Ratio of Shortest Paths
from Two Sources

=

min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝)

max
𝑝∈Paths(𝑠′,𝑣)

weight(𝑝)

Fig. 4. Use-cases for nested𝑚 ⊕𝑚

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

5

Ecc(𝑠) = max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Eccentricity

WPG(𝑠) = min
𝑣∈V

WP(𝑠) (𝑣)
The Capacity of the Narrowest of

the Widest Paths
from 𝑠 to All Vertices

= min
𝑣∈V

max
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝)

LNPG(𝑠) = max
𝑣∈V

LNP(𝑠) (𝑣)
The Length of the Longest of

the Narrowest Paths
from 𝑠 to All Vertices

= let 𝑃 (𝑣) B argsmin
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝) in

max
𝑣∈V

max
𝑝∈𝑃 (𝑣)

length(𝑝)

NCC =

����� ⋃
𝑣∈V

CC(𝑣)
����� Number of Connected Components

=

����� ⋃
𝑣∈V
{ min
𝑝∈Paths(𝑣)

head(𝑝)}
�����

FRA(𝑠) =
∧
𝑣∈V

FR(𝑠) (𝑣) Reachability to All Vertices

=
∧
𝑣∈V

∨
𝑝∈Paths(𝑠,𝑣)

True

RFA =
⋂
𝑠∈V

CCS(𝑠) Vertices Reachable to All Vertices

=
⋂
𝑣∈V

⋃
𝑝∈Paths(𝑣)

{ head(𝑝) }

Fig. 5. Use-cases for R
𝑣∈V

𝑚

DS(𝑠) =
⋃

𝑣∈V∧ SSSP(𝑠) (𝑣) > 7
{𝑣} Vertices with the distance of at least 7

=
⋃

𝑣∈V∧ min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝) > 7
{𝑣}

SCC(𝑠) (𝑣) =
⋃

𝑣′∈V ∧ ∨
𝑝∈Paths(𝑣,𝑣′) True∧

∨
𝑝∈Paths(𝑣′,𝑣) True

{𝑣 ′} Strongly Connected Component

Fig. 6. Use-cases for R
𝑣∈V∧𝑚

𝑚

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

6 Anon.

Radius = min
𝑠∈{𝑣 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Radius Sampled on vertices {𝑣}

Diam = max
𝑠∈{𝑣 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Diameter Sampled on vertices {𝑣}

DRR =
Diam
Radius

Diameter to Radius Ratio

=

max
𝑠∈{𝑣 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝)

min
𝑠∈{𝑣 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝)

BC(𝑠) = let S B 𝜆𝑠, 𝑣 . min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) in

let N B 𝜆𝑠, 𝑣 .

����args min
𝑝∈Paths(𝑠,𝑣)

length(𝑝)
���� in

∑
𝑣∈𝑠

∑
𝑣≠𝑡 ∈𝑉 ∧
S(𝑣) (𝑠)+S(𝑠) (𝑡)=S(𝑣) (𝑡)

N(𝑣) (𝑠) × N(𝑠) (𝑡)

∑
𝑣≠𝑡 ∈𝑉

N(𝑣, 𝑡)

Fig. 7. Use-cases for 𝑟 ⊕ 𝑟

BC specifies the betweenness centrality algorithm from a sampled set of nodes 𝑠 . For every
pair of nodes (source is from sampled set and destination is over all the nodes), it calculates the
number of shortest paths that goes through 𝑠 . The nominator calculates the number of sortest paths
(N) from 𝑣 to 𝑡 that passes through 𝑠 . It uses a vertex-based reduction constrained by path-based
reductions similar to DS. Similarly, the denominator calculates all the shortest paths from 𝑣 to
𝑡 . Finally, Betweenness Centrality measure is calculated using sum vertex-based reduction over
sampled nodes.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

7

NPH(𝑠) (𝑣) =
∑

𝑝∈Paths(𝑠,𝑣)
length(𝑝) ↦→ 1 Number of Paths Histogram

LSP(𝑠) (𝑣) =
∑

𝑝′∈ argsmin
𝑝∈Paths(𝑠,𝑣)

weight(𝑝)
length(𝑝) ↦→ 1 Length of Shortest Paths

CCH(𝑣) =
∑
𝑣∈V
(min
𝑝∈Paths(𝑣)

head(𝑝)) ↦→ 1 Connected Components Sizes

Fig. 8. Use-cases with map values

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

8 Anon.

2 Specification and Fusion
2.1 Semantics

SPReds
R
𝑝∈𝑃
F (𝑝)

{
(𝑔) = [v ↦→ R {F (𝑝) | 𝑝 ∈ J 𝑃 K (𝑔) (v)}]

v∈V(𝑔)

SMBin
J𝑚 ⊕𝑚′ K (𝑔) = J𝑚 K (𝑔) ⊕ J𝑚′ K (𝑔)

SMLet
J ilet 𝑋 B 𝑀 in 𝑒 K (𝑔) = [v ↦→ J 𝑒 [𝑋 B J𝑀 K (𝑔) (v)] K]

v∈V(𝑔)

Var
J𝑥 K (𝑔) = ⊥

SVReds
R
V

𝑚

{
(𝑔) = R

{
J𝑚 K(𝑔) (v)

v∈V(𝑔)
} SRBin

J 𝑟 ⊕ 𝑟 ′ K (𝑔) = J 𝑟 K (𝑔) ⊕ J 𝑟 ′ K (𝑔)

SRLetu

ww
v

ilet 𝑋 B 𝑀 in

mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

}

��
~(𝑔) =

q
𝑒
[
𝑋 ′′ B

q
𝑅
[
𝑋 ′ B J𝐸 [𝑋 B J𝑀 K (𝑔)] K

] y
(𝑔)

] y

SPaths
JPaths K (𝑔) = [v ↦→ {𝑝 | 𝑝 ∈ Paths(𝑔) ∧ tail(𝑝) = v}]

v∈V(𝑔)

SArgsRt

argsR
𝑝∈𝑃

F (𝑝)
|

(𝑔) = [v ↦→ {𝑝 | 𝑝 ∈ P ∧ F (𝑝) = 𝑛}]
v∈V(𝑔) where

P = J 𝑃 K(𝑔) (v)
R ∈ {min,max}
𝑛 = R {F (𝑝) | 𝑝 ∈ P}

SMPair
J ⟨𝑀,𝑀 ′⟩ K (𝑔) =

〈
J𝑀 K(𝑔), J𝑀 ′ K(𝑔)

〉 SMM

JR F K =
s
R

𝑝∈Paths
F (𝑝)

{ SRPair
J ⟨𝑅, 𝑅′⟩ K (𝑔) =

〈
J𝑅 K(𝑔), J𝑅′ K(𝑔)

〉
SRRr
R

〈
[v ↦→ 𝑛v]v∈V(𝑔) , .., [v ↦→ 𝑛′

v
]
v∈V(𝑔)

〉 z
=

s
R
V

(
[n ↦→ ⟨𝑛v, .., 𝑛′v⟩]v∈V(𝑔)

) {

SEBin
J 𝑒 ⊕ 𝑒 ′ K = J 𝑒 K ⊕ J 𝑒 ′ K

SEVal
J n K = n

SEM
J𝑑 K = 𝑑

SEEPair
J ⟨𝐸, 𝐸 ′⟩ K =

〈
J𝐸 K , J𝐸 ′ K

〉
Fig. 9. Denotational Semantics of the language presented in Fig. 9 of the main paper. The notation [𝑘𝑖 ↦→ 𝑣𝑖]𝑖
represents a finite map that maps each key 𝑘𝑖 to value 𝑣𝑖 over the range 𝑖 . The notation 𝑋 B 𝑉 represents

pointwise replacement of the variables 𝑋 with the values 𝑉 .

We now define a denotational semantics for the language that we presented in Fig. 9 of the main
paper. We first present the semantics and then prove that it is compositional.
The semantics is defined in Fig. 9. Given a graph 𝑔, separate rules define the semantics J K of

each term constructor. The semantics of an undefined or stuck computation is represented by ⊥. In
each rule, it is assumed that the semantics of subterms are not undefined; otherwise, the semantics
of the term is undefined as well. The semantics of term constructors with no rules is ⊥ too.

The semantics of𝑚 terms are defined by the rules SPRed, SMBin, SMLet and Var. Given a graph
𝑔, the semantic domain D𝑚 of𝑚-terms is a finite map V(𝑔) ↦→ N from each vertex of 𝑔 to natural
numbers, and ⊥ (for undefined). The rule SPRed defines the semantics of the path-base reduction
R
𝑝∈𝑃
F (𝑝). (We use the notation [𝑘𝑖 ↦→ 𝑣𝑖]𝑖 for a finite map that maps each key 𝑘𝑖 to value 𝑣𝑖 over

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

9

the range 𝑖 .) It uses the semantics of paths 𝑃 that is a map from each vertex v to the set of paths
to v. For each vertex v, it applies the function F to each path to v and then applies the reduction
function R to the resulting values. Since the reduction functions R (in the semantic domain) are
commutative and associative, they can be applied to the set in any order. The rule SMBin defines
the the semantics of𝑚 ⊕𝑚′ as the result of the operator ⊕ on the semantics of𝑚 and𝑚′. Whether
the notations R and ⊕ refer to the syntactic or semantic domains is clear from the context: they are
in the syntactic and semantic domains when they are respectively on the left- and right-hand side of
the rules. The operator ⊕ is simply lifted to maps of the same domain by the pointwise application
for each key. The rule SMLet defines the semantics of ilet 𝑋 B 𝑀 in 𝑒 as the pointwise substitution
of the variables 𝑋 with the semantics of 𝑀 in 𝑒 . Pointwise substitution replaces variables with
values from a corresponding pair of structures. (The formal definition of substitution is available in
the appendix § 4.1). The rule Var states that the semantics of free variables is undefined.

The semantics of 𝑟 terms is defined by the rules SVRed, SRBin, and SRLet and Var. The domain
𝐷𝑟 of of 𝑟 -terms is the natural numbers N and ⊥. The rule SVRed defines the semantics of the
vertex-based reduction R

V

𝑚 using the map resulted from the semantics of𝑚; it reduces the values
of the map for all vertices. The rule SRBin defines the semantics of 𝑟 ⊕ 𝑟 ′ as the result of applying
the operator ⊕ to the semantics of 𝑟 and 𝑟 ′. The rule SRLet defines the semantics of triple-let terms
by three subsequent substitutions: the substitution of the variables 𝑋 with the semantics of𝑀 in 𝐸,
the substitution of the variables 𝑋 ′ with the semantics of 𝐸 in 𝑅, and finally the substitution of the
variables 𝑋 ′′ with the semantics of 𝑅 in 𝑒 .

The semantics of paths 𝑃 is defined by the rules SPaths and SArgsR. The rule SPaths defines
the semantics of the term Paths as a map from each vertex to the set of paths to the vertex. The
rule SArgsR defines the semantics of argsR

𝑝∈𝑃
F (𝑝) where R is min or max using the map resulted

from the semantics J 𝑃 K of 𝑃 ; it maps each vertex v to a subset of the paths that J 𝑃 K maps 𝑣 to: the
paths that their F value is the minimum or the maximum.

The rules SMPair, SRPair, and SEEPair define the semantics of pairs of𝑀 , 𝑅 and 𝐸 inductively.
The two rules SMM and SRR reduce the semantics of single factored reductions to normal reductions.
The rule SMM defines the semantics of R F as a path-based reduction on the paths Paths. The rule
SRR defines the semantics of R

〈
[v ↦→ 𝑛v]v∈V(𝑔) , .., [v ↦→ 𝑛′

v
]
v∈V(𝑔)

〉
as a vertex-based reduction

on ⟨𝑛v, .., 𝑛′v⟩v∈V(𝑔) . The rules SEBin, SEVal, and SEM define the semantics of expressions 𝑒 . An
expression 𝑒 can represent both a number and a vertex-based reduction. The operator ⊕ is overloaded
for both numbers and maps in the semantic domain.

The semantics is compositional. If two terms are semantically equivalent, replacing one with the
other in any context is semantics-preserving. Compositionality of the semantics is used to prove
that the fusion transformations are semantic-preserving. The following theorem states that all the
terms 𝑟 ,𝑚,𝑀 and 𝑅 are compositional. The proofs are available in the appendix § 4.2.

Lemma 1 (Compositionality).
For all 𝑟 , 𝑟 ′ and R, if J 𝑟 K = J 𝑟 ′ K then JR[𝑟] K = JR[𝑟 ′] K.
For all𝑚,𝑚′, andM, if J𝑚 K = J𝑚′ K then JM[𝑚] K = JM[𝑚′] K.
For all𝑀 ,𝑀 ′, andMs, if J𝑀 K = J𝑀 ′ K then JMs[𝑀] K = JMs[𝑀 ′] K.
For all 𝑅, 𝑅′, and Rs, if J𝑅 K = J𝑅′ K then JRs[𝑅] K = JRs[𝑅′] K.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

10 Anon.

2.2 Language and Fusion Extensions
In this section, we describe the language extensions and their corresponding fusion rules. Fig. 10
represents the extensions to the syntax for the following subsections.

𝑟 B R
V

𝑚 ⊕ 𝑟 | R
𝑣∈V

𝑚 | 𝑟 ⊕ 𝑟 | ◦ 𝑟 | 𝑛 | Vertex-based Reduction

ilet 𝑋 B 𝑀 in

mlet 𝑋 B 𝐸 in

rlet 𝑋 B 𝑅 in

𝑒 | 𝑥
𝑚 B R

𝑝∈𝑃
𝐹 (𝑝) | 𝑚 ⊕𝑚 | Path-based Reduction

ilet 𝑋 B 𝑀 in 𝑣 𝑒 | 𝑥

𝑃 B Paths(𝑣) | Paths(𝑣, 𝑣 ′) | argsR
𝑝∈𝑃

𝐹 (𝑝) Paths

𝑀 B ⟨𝑀,𝑀⟩ | R
𝑐
F

R B ... | R
V

𝑚 ⊕ R Context for 𝑟

𝑣 Vertex Variable
𝑠 B 𝑣 | ⊥ Source
𝑜 B → | ← Orientation
𝑐 B 𝑠 𝑜 | ⟨𝑐, 𝑐⟩ Path Configuration
R B ... | ∪ | ∩ Reduction Operation

F B ... | head | penultimate Path Function

Fig. 10. Extended Syntax. Dashed boxes for § 2.2.2 and § 2.2.3, solid boxes for § 2.2.6, and double solid boxes

for § 2.2.4

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

11

2.2.1 Common Operation Elimination

IElim©­­­«
ilet ⟨𝑋1, 𝑋2⟩ B ⟨R F ,R F ⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬⇒
©­­­«

ilet 𝑋1 B R F in

mlet 𝑋 ′ B 𝐸 [𝑋2 ↦→ 𝑋1] in
rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬
ICom©­­­«

ilet ⟨𝑋1, 𝑋2⟩ B ⟨𝑀1, 𝑀2⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬⇒
©­­­«

ilet ⟨𝑋2, 𝑋1⟩ B ⟨𝑀2, 𝑀1⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬
IAssL©­­­«

ilet ⟨𝑋1, ⟨𝑋2, 𝑋3⟩⟩ B ⟨𝑀1, ⟨𝑀2, 𝑀3⟩⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬⇒
©­­­«

ilet ⟨⟨𝑋1, 𝑋2⟩, 𝑋3⟩ B ⟨⟨𝑋1, 𝑋2⟩, 𝑀3⟩⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬
IAssR©­­­«

ilet ⟨⟨𝑋1, 𝑋2⟩, 𝑋3⟩ B ⟨⟨𝑀1, 𝑀2⟩, 𝑀3⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬⇒
©­­­«

ilet ⟨𝑋1, ⟨𝑋2, 𝑋3⟩⟩ B ⟨𝑀1, ⟨𝑀2, 𝑀3⟩⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬
Fig. 11. Common Operation Elimination

Fusion factors the path-based reduction, and vertex-basedmappings and reductions. The factoring
facilitates common operation elimination. For example, if a path-based reduction is calculated twice
and assigned to two sets of variables, the extra calculation can be eliminated and the result of one
calculation can be assigned to both sets of variables.

Fig. 11 shows the elimination rules for path-based reductions. The rule IElim applies to adjacent
similar path-based reductions. The second reduction is eliminated. The variables for the second
reduction are substituted with the variables for the first reduction. To bring two path-based
reductions adjacent to each other, the rules ICom, IAssL and IAssR state the commutativity and
associativity properties of pairs of path-based reductions.

Similar eliminations can be applied to the factored vertex-based mappings in the second let and
the factored vertex-based reductions in the third let.

As an example of common operation elimination, see the fusion of the use-case DRR in § 2.3.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

12 Anon.

2.2.2 Domain
The scalar semantic domain of the core language was confined to the natural numbers. The

domain can be simply extended to booleans, vertex identifiers and also sets of values. The reduction
operations are extended with union ∪ and intersection ∩ and the path functions are extended with
head and penultimate. The function head returns the identifier of the head vertex of the path and
the function penultimate returns the identifier of the penultimate (that is the vertex before the last)
of the path. These extensions are shown in dashed boxes in Fig. 10

2.2.3 Unary operations and Literals

FILit
𝑛 ⇒ ilet 𝑥 B ⊥ in 𝑛

FMLVar
𝑥 ⇒ ilet 𝑥 ′ B ⊥ in 𝑥

FMPair′
⟨𝑋, 𝑥⟩ B ⟨𝑀,⊥⟩ → 𝑋 B 𝑀

FMPair′′
⟨𝑥,𝑋 ⟩ B ⟨⊥, 𝑀⟩ → 𝑋 B 𝑀

FRLit
𝑛 ⇒ ilet 𝑥 B ⊥ in

mlet 𝑥 ′ B ⊥ in

rlet 𝑥 ′′ B ⊥ in 𝑛

FRPair′
⟨𝑋, 𝑥⟩ B ⟨𝑅,⊥⟩ → 𝑋 B 𝑅

FRPair′′
⟨𝑥,𝑋 ⟩ B ⟨⊥, 𝑅⟩ → 𝑋 B 𝑅

FIUni
◦ (ilet 𝑋 B 𝑀 in 𝑒) ⇒ ilet 𝑋 B 𝑀 in ◦ 𝑒

FRUni

◦
©­­­«

ilet 𝑋 B 𝑀 in

mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬ ⇒
©­­­«

ilet 𝑋 B 𝑀 in

mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

◦ 𝑒

ª®®®¬
Fig. 12. Extended Fusion Rules for Unary operators and constants

In this section, we present the fusion rules for the natural number literals n and unary operators
◦. As other rules expect terms to be in the let form, the two rules FILit and FRLit transform a
literal to dummy𝑚 let and 𝑟 let forms. Since the two rules FMPair and FRPair apply to only non-⊥
reductions, the rules FMPair′, FMPair′′, FRPair′ and FRPair′′ remove the dummy ⊥ reductions.
The two rules FIUni and FRUni simply apply the unary operator ◦ to the resulting expression 𝑒 .

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

13

2.2.4 Vertex Variables

FPRed
R

𝑝∈Paths(𝑣)
F (𝑝)

⇒𝑚

ilet 𝑥 B R
⊥→
F in 𝑣 𝑥

FPRed′
R

𝑝∈Paths(𝑣,𝑣′)
𝐹 (𝑝)

⇒𝑚

ilet 𝑥 B R
𝑣→
F in 𝑣 ′ 𝑥

FPRed′′
R

𝑝∈Paths(𝑣,𝑣′)
F (𝑝)

⇒𝑚

ilet 𝑥 B R
𝑣′←
F in 𝑣 𝑥

FILetBin
(ilet 𝑋1 B 𝑀1 in 𝑣 𝑒1) ⊕ (ilet 𝑋2 B 𝑀2 in 𝑣 𝑒2)

⇒𝑚

ilet ⟨𝑋1, 𝑋2⟩ B ⟨𝑀1, 𝑀2⟩ in 𝑣 (𝑒1 ⊕ 𝑒2)
if free(𝑒1) ∩ 𝑋2 = ∅

free(𝑒2) ∩ 𝑋1 = ∅

FMPair〈
R
𝑐
F ,R ′

𝑐′
F ′

〉
⇒𝑀 R ′′

⟨𝑐,𝑐′⟩
F ′′

where 𝑓 ′′ B 𝜆𝑝. ⟨𝐹 ′(𝑝), 𝐹 (𝑝)⟩
R ′′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨R(𝑎, 𝑎′),R ′(𝑏, 𝑏 ′)⟩

FVRed
R
𝑣∈V
(ilet 𝑋 B R ′

𝑐
𝑓 in 𝑣 𝑒) ⇒𝑟 ilet 𝑋 B R ′

𝑐
𝑓 in

mlet 𝑥 B 𝑒 in

rlet 𝑥 ′ B R 𝑥 in 𝑥 ′

Fig. 13. Extended Fusion Rules for Vertex Variables

The syntax of the core language offers the simple term Paths that does not specify the source
and destination of paths. Further, the vertex-based reduction R

V

𝑚 does not bind a vertex variable.
In this section, we extend the core syntax with path terms that can specify vertex variables as
source and destination and vertex-based reductions that can bind vertex variables. We extend the
fusion rules for the extended syntax.

In Fig. 10, the double boxes shows the extension to the core syntax presented in Fig. 9 to support
vertex variables. Only the changed or new non-terminals are shown and the updated parts are
boxed with solid lines. The extended vertex-based reduction R

𝑣∈V
𝑚 binds the vertex variable 𝑣 . The

path constructors specify source and destination: the term Paths(𝑣) specifies the set of paths with
any source and the destination 𝑣 and the term Paths(𝑣, 𝑣 ′) specifies the set of paths with the source
𝑣 and the destination 𝑣 ′. In its simplest form, a factored path-based reduction 𝑀 calculates the
reduction over paths from a source vertex 𝑣 to every destination vertex 𝑣 ′ and stores the result
in the destination vertices 𝑣 ′. It can also calculate the reduction over paths from every source
vertex 𝑣 to a destination vertex 𝑣 ′ and store the result in the source vertices 𝑣 . We call the vertex
variable where the result is stored, the target vertex. The let constructor ilet 𝑋 B 𝑀 in 𝑣 𝑒 of the
path-based reductions𝑚 carries the vertex 𝑣 that stores the result of the factored reduction𝑀 with
the expression 𝑒 .
The source 𝑠 of paths can be either a vertex 𝑣 or none ⊥. The orientation 𝑜 of paths is either

forward→ or backward←. The configuration 𝑐 of paths is the pair of their source and orientation, or
a pair of other configurations. A single factored path-based reduction R

𝑐
F carries its configuration

𝑐 .
Fig. 13 shows the extension of the core fusion rules presented in Fig. 11. Only the updated fusion

rules are shown. The rules FPRed, FPRed′ and FPRed′′ convert path-based reductions over paths
terms to the let form. The rule FPRed converts a path-based reduction over Paths(𝑣) to a let term
with a factored path-based reduction that has no source ⊥, forward orientation→, and the target
vertex 𝑣 . The rules FPRed′ and FPRed′′ both convert a path-based reduction over Paths(𝑣, 𝑣 ′) to let
forms. The former stores the results in the destination vertices and the latter stores the results in

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

14 Anon.

the source vertices. The former results in a let term with with a factored path-based reduction that
has source 𝑣 , forward orientation→, and the target vertex 𝑣 ′. The latter, on the other hand, results
in a let term with a factored path-based reduction that has source 𝑣 ′, backward orientation←, and
the target vertex 𝑣 .

The rule FILetBin fuses an operation between two path-based reductions in the let form to one.
The operation can be applied to the resulting expressions of the two let terms only if they are
stored in the same target vertex. Therefore, the rule checks that the explicit target vertex of the
two let terms match.

The rule FMPair simply passes the configurations of the two reductions to the fused reduction.
A vertex-based reduction applies a reduction to the results of a path-based reduction over

all vertices. The rule FVRed converts the application of a vertex-based reduction to a path-based
reduction to the triple-let form; it checks that the vertex bound by the nesting vertex-based reduction
matches the target vertex of the path-based reduction.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

15

2.2.5 Syntactic Sugar
FMRed
F (argR

𝑝∈𝑃
F ′(𝑝)) B ilet ⟨𝑥, 𝑥 ′⟩ B R ′

𝑝∈𝑃
F ′′(𝑝) in 𝑥 ′ where R ∈ {min,max}

F ′′ B 𝜆𝑝. ⟨F ′(𝑝), F (𝑝)⟩
R ′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B if (R(𝑎, 𝑎′) = 𝑎) then ⟨𝑎, 𝑏⟩ else ⟨𝑎′, 𝑏 ′⟩

PSize
|𝑃 | B

∑
𝑝∈𝑃

1

ROp
R

𝑣∈{v1,..,𝑣𝑛 }
𝑚 B ((𝑚[𝑣 B 𝑣1] R 𝑚[𝑣 B 𝑣2]) R .. 𝑚[𝑣 B 𝑣𝑛])

VSel
R

𝑣∈V∧𝑚′
𝑚 B ilet ⟨𝑥, 𝑥 ′⟩ B R ′

𝑣∈V
⟨𝑚′,𝑚⟩ in

if 𝑥 then 𝑥 ′else ⊥
where
R ′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B

if (𝑎 ∧ 𝑎′) then ⟨𝑎,R(𝑏,𝑏 ′)⟩
else if (𝑎′) then ⟨𝑎′, 𝑏 ′⟩
else ⟨𝑎, 𝑏⟩

Fig. 14. Syntactic Sugar

Syntactic sugar enable concise specifications. In Fig. 14, we present the syntactic sugar and the
rules that desugar them.
The term F (argR

𝑝∈𝑃
F ′(𝑝)) where R is either min or max first finds a path 𝑝 in 𝑃 with the

minimum or maximum value for the function F ′ and then returns the result of applying F to 𝑝 . It
is used to specify the BFS use-case. The rule FMRed expands this term to a path-based reduction in
the let form ilet ⟨𝑥, 𝑥 ′⟩ B R ′

𝑝∈𝑃
F ′′(𝑝) in 𝑥 ′. The path function F ′′ returns the pair of the results of

F ′ and F . The reduction function R ′ returns the input pair with the minimum or maximum first
element.
The term |𝑃 | specifies the size of the set of paths 𝑃 . It is used to specify the NSP use-case. The

rule PSize simply expands it to the path-based reduction
∑
𝑝∈𝑃

1 that counts the number of paths.

The term R
𝑣∈{𝑣1,..,𝑣𝑛 }

𝑚 is a vertex-based reduction over a limited set of vertices {𝑣1, .., 𝑣𝑛}. It is
used to specify the Radius use-case. The rule ROp expands this term to operations between to
path-based reductions𝑚[𝑣 B 𝑣𝑖], 𝑖 ∈ {1..𝑛}. The operation corresponds to the reduction function
R; for example, the reduction function

∑
is unrolled to the operation +.

The term R
𝑣∈V∧𝑚′

𝑚 specifies a vertex-based reduction of𝑚 over the selected vertices 𝑣 for which
𝑚′ evaluates to true. This idiom was used to specify the DS use-case. The rule VSel expands it to
the path-based reduction R ′

𝑣∈V
⟨𝑚′,𝑚⟩. The path-based reduction calculates a pair of values for𝑚′

and𝑚 at every vertex. Then, the vertex-based reduction R ′ only reduces the second elements of
the pairs whose first element is true. Given two input pair, the vertex-based reduction R ′ applies
the reduction R to the second elements if the first elements of both pairs are true. Otherwise, the
pair whose first element is true is selected. If the first element of both pairs is false, either of them
can be selected; this definition selects the first. Finally, in the following if expression, there are two

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

16 Anon.

cases. If there has been pairs whose first element is true, the result of the reduction is a pair with
true as the first element and the result of the reduction as the second element. In this case, the
second element is returned. Otherwise, there has not been any pair with true as the first element.
In this case, none is returned.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

17

2.2.6 Nested Triple-lets

FRR
𝑟1 ⇒𝑟 𝑟2

R[𝑟1] ⇒𝑟 R[𝑟2]

Fig. 15. Extended Fusion Rules for Multiple Rounds

The core syntax supports expressions that can be fused to a single iteration-map-reduce triple-let
term. In this subsection, we extend the core syntax to support nested vertex-based reductions, and
extend the fusion rules to fuse nested reductions. Nested triple-let terms that are closed (i.e. do
not have free variables) can be factored out. Thus, nested triple-let terms can be translated to a
sequence of iteration-map-reduce rounds on the graph.

In Fig. 10, the single boxes show the extensions to the core syntax presented in Fig. 9 to support
multiple rounds. The constructors of vertex-based reductions 𝑟 include the new term R

V

𝑚 ⊕ 𝑟 where
an operation ⊕ can be applied to a path-based reduction𝑚 and a nested vertex-based reduction
𝑟 . This nested 𝑟 leads to a round of iteration-map-reduce. Similarly, the vertex-based reduction
contexts R include the term R

V

𝑚 ⊕ R so that the nested vertex-based reductions can be fused as
well. As Fig. 15 shows, the fusion rules are extended by the rule FRR to allow the fusion of nested
vertex-based reductions.

For example, consider the following use-case LTrust that calculates the capacity of narrowest
path to the nodes that fall out of the radius from the node 𝑠 .

LTrust(𝑠) = let SSSP B 𝜆𝑠, 𝑣 . min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝) in

let NP B 𝜆𝑠, 𝑣 . min
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝) in

min
𝑣∈V∧ SSSP(𝑠, 𝑣) < Radius

NP(𝑠, 𝑣)

Unrolling the let terms results in the following:

LTrust(𝑠) = min

𝑣∈V∧

(
min

𝑝∈Paths(𝑠,𝑣)
weight(𝑝)

)
< Radius

(
min

𝑝∈Paths(𝑠,𝑣)
capacity(𝑝)

)

By the rule VSel, this specification is desugared to the following:

LTrust(𝑠) = R
𝑣∈V

〈(
min

𝑝∈Paths(𝑠,𝑣)
weight(𝑝)

)
< Radius,

(
min

𝑝∈Paths(𝑠,𝑣)
capacity(𝑝)

)〉
where R(𝑏, ⟨𝑎′, 𝑏 ′⟩) B

if (𝑎′) then min(𝑏, 𝑏 ′)
else 𝑏

We note that in the above specification, the path-based reduction SSSP(𝑠, 𝑣) < Radius includes
the nested vertex-based reduction Radius. From Fig. 2, Radius can be fused to following:

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

18 Anon.

Radius =

©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
where

F B 𝜆𝑝. ⟨length(𝑝), length(𝑝)⟩
R ′ (⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨min(𝑎, 𝑎′),min(𝑏,𝑏 ′)⟩

R ′′ (⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨max(𝑎, 𝑎′),max(𝑏,𝑏 ′)⟩

Therefore, The rules FRR can be used to fuse the nested Radius term to the above triple-let
term. Then, since Radius is a closed term, it can be factored out as a let term. Thus, LTrust can be
rewritten as follows:

LTrust(𝑠) = let radius :=
©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
in

R
𝑣∈V

〈(
min

𝑝∈Paths(𝑠,𝑣)
weight(𝑝)

)
< radius,

(
min

𝑝∈Paths(𝑠,𝑣)
capacity(𝑝)

)〉
By the rule FPRed (and then for the first element of the pair, the rules FMLVar, FILetBin and

FMPair′), it can be fused to the following:

LTrust(𝑠) = let radius B
©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
in

R
𝑣∈V

〈
ilet 𝑥 B min

𝑠
weight in 𝑥 < radius, ilet 𝑦 B min

𝑠
capacity in 𝑦

〉
By the rule FILetBin, it is fused to the following:

LTrust(𝑠) = let radius B
©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
in

R
𝑣∈V

(
ilet ⟨𝑥,𝑦⟩ B ⟨min

𝑠
weight,min

𝑠
capacity⟩ in ⟨𝑥 < radius, 𝑦⟩

)
By the rule FMPair, it is fused to the following:

LTrust(𝑠) = let radius B
©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
in

R
𝑣∈V

(
ilet ⟨𝑥,𝑦⟩ B R ′′′

⟨𝑠,𝑠 ⟩
F ′ in ⟨𝑥 < radius, 𝑦⟩

)
where F ′ B 𝜆𝑝. ⟨weight(𝑝), capacity′(𝑝)⟩

R ′′′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨min(𝑎, 𝑎′),min(𝑏, 𝑏 ′)⟩

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

19

By the rule FVRed, it is fused to the following:

LTrust(𝑠) = let radius B
©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
in

©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′′

⟨𝑠,𝑠 ⟩
F ′

mlet ⟨𝑥 ′, 𝑦 ′⟩ B in ⟨𝑥 < radius, 𝑦⟩
rlet 𝑥 ′′ B R ⟨𝑥 ′, 𝑦 ′⟩ in
𝑥 ′′

ª®®®®¬
The above specification is the sequence of two iteration-map-reduce triple let terms.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

20 Anon.

2.3 Example Fusions
We saw the fusion of the Radius use-case in the paper, Fig. 2, and the fusion of the LTrust use-case
in § 2.2.6. In this subsection, we present the fusion of the DS and DRR use-cases.

DS(𝑠)
=

⋃
𝑣∈V∧

(
min

𝑝∈Paths(𝑠,𝑣)
weight(𝑝)

)
> 7

{𝑣} By VSel

= R
𝑣∈V

〈(
min

𝑝∈Paths(𝑠,𝑣)
weight(𝑝)

)
> 7, {𝑣}

〉
where

R(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
if (𝑎 ∧ 𝑎′) then ⟨𝑎, 𝑏 ∪ 𝑏 ′⟩
else(𝑎) then ⟨𝑎, 𝑏⟩
else ⟨𝑎′, 𝑏 ′⟩

By FPRed and FILit

= R
𝑣∈V
⟨
(
ilet 𝑥 B min

𝑠
weight in 𝑥

)
> ilet 𝑥 ′ B ⊥ in 7,

ilet 𝑥 ′′ B ⊥ in {𝑣}⟩ where

R(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
if (𝑎 ∧ 𝑎′) then ⟨𝑎, 𝑏 ∪ 𝑏 ′⟩
else(𝑎) then ⟨𝑎, 𝑏⟩
else ⟨𝑎′, 𝑏 ′⟩

By FILetBin

= R
𝑣∈V

(
ilet ⟨⟨𝑥, 𝑥 ′⟩, 𝑥 ′′⟩ B ⟨⟨min

𝑠
weight,⊥⟩,⊥⟩ in ⟨𝑥 > 7, {𝑣}⟩

)
By FMPair′

= R
𝑣∈V

(
ilet 𝑥 B min

𝑠
weight in ⟨𝑥 > 7, {𝑣}⟩

)
By FVRed

=

©­­­­«
ilet 𝑥 B min

𝑠
weight in

mlet 𝑥 ′ B ⟨𝑥 > 7, {𝑣}⟩ in
rlet 𝑥 ′′ B R 𝑥 ′ in
𝑥 ′′

ª®®®®¬
where

R(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
if (𝑎 ∧ 𝑎′) then ⟨𝑎, 𝑏 ∪ 𝑏 ′⟩
else(𝑎) then ⟨𝑎, 𝑏⟩
else ⟨𝑎′, 𝑏 ′⟩

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

21

DRR =
Diam
Radius

=

max
𝑠∈{𝑠1,𝑠2 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝)

min
𝑠∈{𝑠1,𝑠2 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Similar to Fig. 2 for

Radius in the paper.

=

©­­­­«
ilet ⟨𝑥1, 𝑦1⟩ B min

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′1, 𝑦
′
1⟩ B ⟨𝑥1, 𝑦1⟩ in

rlet ⟨𝑥 ′′1 , 𝑦
′′
1 ⟩ B R ⟨𝑥

′
1, 𝑦
′
1⟩ in

max(𝑥 ′′1 , 𝑦
′′
1)

ª®®®®¬©­­­­«
ilet ⟨𝑥2, 𝑦2⟩ B min

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′2, 𝑦
′
2⟩ B ⟨𝑥2, 𝑦2⟩ in

rlet ⟨𝑥 ′′2 , 𝑦
′′
2 ⟩ B R ⟨𝑥

′
2, 𝑦
′
2⟩ in

min(𝑥 ′′2 , 𝑦
′′
2)

ª®®®®¬
where

F B 𝜆𝑝. ⟨length(𝑝), length(𝑝)⟩
R (⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨max(𝑎, 𝑎′),max(𝑏,𝑏 ′)⟩

By FLetsBin

=

©­­­­«
ilet ⟨⟨𝑥1, 𝑦1⟩, ⟨𝑥2, 𝑦2⟩⟩ B ⟨ min

⟨𝑠1,𝑠2 ⟩
F , min
⟨𝑠1,𝑠2 ⟩

F ⟩ in

mlet ⟨⟨𝑥 ′1, 𝑦
′
1⟩, ⟨𝑥2, 𝑦2⟩⟩ B ⟨⟨𝑥1, 𝑦1⟩, ⟨𝑥2, 𝑦2⟩⟩ in

rlet ⟨⟨𝑥 ′′1 , 𝑦
′′
1 ⟩, ⟨𝑥

′′
2 , 𝑦
′′
2 ⟩⟩ B ⟨R ⟨𝑥

′
1, 𝑦
′
1⟩,R ⟨𝑥

′
2, 𝑦
′
2⟩⟩ in

max(𝑥 ′′1 , 𝑦
′′
1)/min(𝑥 ′′2 , 𝑦

′′
2)

ª®®®®¬
By IElim
Common

path-based
reduction

elimination

=

©­­­­«
ilet ⟨𝑥1, 𝑦1⟩ B min

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨⟨𝑥 ′1, 𝑦
′
1⟩, ⟨𝑥2, 𝑦2⟩⟩ B ⟨⟨𝑥1, 𝑦1⟩, ⟨𝑥1, 𝑦1⟩⟩ in

rlet ⟨⟨𝑥 ′′1 , 𝑦
′′
1 ⟩, ⟨𝑥

′′
2 , 𝑦
′′
2 ⟩⟩ B ⟨R ⟨𝑥

′
1, 𝑦
′
1⟩,R ⟨𝑥

′
2, 𝑦
′
2⟩⟩ in

max(𝑥 ′′1 , 𝑦
′′
1)/min(𝑥 ′′2 , 𝑦

′′
2)

ª®®®®¬
Similarly,

by Common
vertex-based

mapping
elimination

=

©­­­­«
ilet ⟨𝑥1, 𝑦1⟩ B min

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′1, 𝑦
′
1⟩ B ⟨𝑥1, 𝑦1⟩ in

rlet ⟨⟨𝑥 ′′1 , 𝑦
′′
1 ⟩, ⟨𝑥

′′
2 , 𝑦
′′
2 ⟩⟩ B ⟨R ⟨𝑥

′
1, 𝑦
′
1⟩,R ⟨𝑥

′
1, 𝑦
′
1⟩⟩ in

max(𝑥 ′′1 , 𝑦
′′
1)/min(𝑥 ′′2 , 𝑦

′′
2)

ª®®®®¬
Similarly,

by Common
vertex-based

reduction
elimination

=

©­­­­«
ilet ⟨𝑥1, 𝑦1⟩ B min

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′1, 𝑦
′
1⟩ B ⟨𝑥1, 𝑦1⟩ in

rlet ⟨𝑥 ′′1 , 𝑦
′′
1 ⟩ B R ⟨𝑥

′
1, 𝑦
′
1⟩ in

max(𝑥 ′′1 , 𝑦
′′
1)/min(𝑥 ′′1 , 𝑦

′′
2)

ª®®®®¬
where

F B 𝜆𝑝. ⟨length(𝑝), length(𝑝)⟩
R (⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨max(𝑎, 𝑎′),max(𝑏, 𝑏 ′)⟩

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

22 Anon.

3 Mapping Specification to Iteration-Map-Reduce
3.1 Iterative Reduction and its Correctness
We consider four variants of iterative reduction based on whether the values of the predecessors
are pulled by the vertex itself or pushed by the predecessors, and whether the reduction function
R is idempotent.

3.1.1 Pull Model
Pull model with idempotent reduction.

Theorem 8 (Correctness of Pull (idempotent reduction)). For all R, F , C, I, P, and 𝑘 ≥ 1,
if the conditions C1 - C9 hold, then S𝑘

pull+ (𝑣) = S𝑝𝑒𝑐
𝑘 (𝑣).

The full proof is available in the appendix § 4.4.1. We prove by induction that after each iteration
𝑘 , the value S𝑘

pull+ (𝑣) of each vertex 𝑣 is S𝑝𝑒𝑐𝑘 (𝑣) that is the reduction over paths to 𝑣 of length
less than 𝑘 . At the iteration 𝑘 = 1, the specification S𝑝𝑒𝑐1 (𝑣) requires reduction on only the paths
of length zero to each vertex. Therefore, by the conditions C1 - C2, the initialization function I
properly initializes each vertex 𝑣 to S𝑝𝑒𝑐1 (𝑣). In each iteration 𝑘 + 1, if there is any predecessor
of the vertex 𝑣 whose value is changed in the previous iteration 𝑘 , then their new values are
propagated by P and reduced together by R and then reduced with the current value of 𝑣 . By the
conditions C7 and C8, the reduction function R is commutative and associative, and can be applied
to the propagated values in any order. By the induction hypothesis, the value of each predecessor 𝑢
is the reduction of the paths to 𝑢 of length 𝑙 , 0 ≤ 𝑙 < 𝑘 . The predecessors that have no paths and
store ⊥ are ignored by the conditions C3 and C6. By the conditions C4 and C5, the propagation of
the value of a predecessor 𝑢 of the vertex 𝑣 is equal to the reduction over the paths to 𝑣 that pass
through 𝑢. Since these paths include at least the edge (from 𝑢 to 𝑣), their length 𝑙 is 0 < 𝑙 < 𝑘 + 1.
The previous value of 𝑣 itself is the reduction over paths to 𝑣 of length 𝑙 , 0 ≤ 𝑙 < 𝑘 . Since, the
reduction function R is idempotent, reducing these two values absorbs the values of the repeated
paths and results in the reduction over all paths of length 𝑙 , 0 ≤ 𝑙 < 𝑘 + 1. If the value of none of
the predecessors is changed in the previous iteration, then the above reduction is skipped, and it
can be shown that the current value of the vertex is already equal to the above reduction.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

23

Pull model with non-idempotent reduction.

Theorem 9 (Correctness of Pull (non-idempotent reduction)). For all R, F , I, P, 𝑘 ≥ 1,
and 𝑠 , let C(𝑝) B (head(𝑝) = 𝑠), if the conditions C1 - C8 hold, and 𝑠 is not on any cycle, S𝑘

pull− (𝑣) =
S𝑝𝑒𝑐𝑘 (𝑣).

The full proof is available in the appendix § 4.4.2. The proof of this theorem is similar to the
proof of Theorem 8. Based on the induction hypothesis, the reduction of the propagated values
covers the paths of length 𝑙 , 0 < 𝑙 < 𝑘 + 1. The current value of 𝑣 itself covers the paths of length 𝑙 ,
0 ≤ 𝑙 < 𝑘 . Since the two sets of paths overlap and the reduction function may not be idempotent,
the reduction with the latter is avoided. However, no path is missed by avoiding the reduction. The
difference is only the paths of length 0. The vertices other than the source 𝑠 do not have a path of
length 0 from 𝑠 . The source 𝑠 is correctly initialized to the value of F on the zero-length path ⟨𝑠, 𝑠⟩
from 𝑠 to itself, and since 𝑠 is not on any cycle, its correct value is never overwritten.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

24 Anon.

3.1.2 Push Model
Push model with idempotent reduction.

Theorem 10 (Correctness of Push (idempotent reduction)). For all R, F , C, I, P, and
𝑘 ≥ 1, if the conditions C1 - C9 hold, S𝑘

push+ (𝑣) = S𝑝𝑒𝑐
𝑘 (𝑣).

The full proof is available in § 4.4.3. Similar to the proof of Theorem 8, the reduction function
should be idempotent since the reduced values may cover overlapping sets of paths. The main
difference is that instead of propagating and reducing the values of all the predecessors of 𝑣 , only
the values of the predecessors {𝑢} of 𝑣 that have been changed in the previous iteration 𝑘 are
propagated and reduced. Therefore, the values of the unchanged predecessors {𝑤} of 𝑣 are not
reduced with the current value of 𝑣 . However, the resulting value of 𝑣 does not miss any path to 𝑣
that goes through an unchanged predecessor𝑤 . If𝑤 is never changed, there is no path from the
source(s) to it. If it is changed in the previous iterations, in the last such iteration, its value has been
already reduced with the current value of 𝑣 .

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

25

Push model with non-idempotent reduction.
This model works for non-idempotent (in addition to idempotent) reduction functions. We

consider two instances of this model: first the basic and then the optimized iteration model.
The first variant of push, non-idempotent was defined in Fig. 8, Def. 4.

Theorem 11 (Correctness of Push (non-idempotent reduction) I).
For all R, F , I, P, 𝑘 ≥ 1, and 𝑠 , let C(𝑝) B (head(𝑝) = 𝑠), if the conditions C1 - C8 hold, and 𝑠

is not on any cycle, S𝑘
push− (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

The full proof is available in the appendix § 4.4.4. The proof of this theorem is similar to the
proof of Theorem 9. Based on the induction hypothesis, the reduction of the propagated values
covers the paths of length 𝑙 , 0 < 𝑙 < 𝑘 + 1. Let us consider the paths of length 0. The vertices other
than the source 𝑠 do not have a path of length 0 from 𝑠 . The source 𝑠 is correctly initialized to the
value of F on the zero-length path ⟨𝑠, 𝑠⟩ from 𝑠 to itself, and since 𝑠 is not on any cycle, its correct
value is never overwritten.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

26 Anon.

The second variant is represented in Def. 7 below. Let the value of the vertex 𝑣 in the iteration 𝑘
be represented as S𝑘

push− (𝑣). The main difference with the previous model is that every changed
predecessor 𝑢𝑖 first rollbacks its previous update before applying its new update. The rollback
function B, given a value 𝑛 and an edge ⟨𝑢, 𝑣⟩ where 𝑛 is the previous value of 𝑢, defines the value
that is propagated to 𝑣 to be rolled back. The rollback value is expected to cancel the previously
propagated value. For example, for the PageRank use-case as Fig. 7 shows, the rollback function
returns the negation of the previously propagated value. For each predecessor 𝑢𝑖 , the rollback
function B is applied to the previous value S𝑘−1

push− (𝑢𝑖) of 𝑢𝑖 and the edge ⟨𝑢𝑖 , 𝑣⟩, and the propagate
function P is applied to the latest value S𝑘

push− (𝑢𝑖) of 𝑢𝑖 and the edge ⟨𝑢𝑖 , 𝑣⟩. The two resulting
values are reduced with the current value of 𝑣 .

Definition 7 (Push (non-idempotent reduction) II).
S0
push− (𝑣) B ⊥
S1
push− (𝑣) B I(𝑣)
S𝑘+1
push− (𝑣) B E(𝑆𝑛), 𝑘 ≥ 1 where
let {𝑢0, .., 𝑢𝑛−1} B CPreds

𝑘 (𝑣) in
𝑆0 B S𝑘

push− (𝑣)
𝑆𝑖+1 B R(R(𝑆𝑖 ,
B

(
S𝑘−1
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

)
),

P
(
S𝑘
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

)
)

The correctness of this variant of iteration is dependent on the following condition for the
propagation and rollback functions.

C11 (Rollback) :
∀𝑛, 𝑛′. R(𝑛,R(P(𝑛′, 𝑒),

B (𝑛′, 𝑒))) = 𝑛

As we saw in Def. 7, in this variant of push model with non-idempotent reduction S𝑘
push− (𝑣),

each predecessor first rollbacks its previously propagated value before propagating its new value.
The rollback value is expected to cancel the previously propagated value. This requirement is
captured as the condition C11 above. As an example, the number of shortest paths use-case NSP,
after fusion, calculates a pair for each vertex where the first element is the shortest path weight
and the second element is the number of such paths. For NSP, the propagate function is P =

𝜆⟨𝑤,𝑛⟩, 𝑒 . ⟨𝑤 + weight(𝑒), 𝑛⟩ and the rollback function is B = 𝜆⟨𝑤,𝑛⟩, 𝑒 . ⟨𝑤,−𝑛⟩.
For synthesis in this model, after the propagation function P is synthesized, the condition C11 is

used to synthesize the rollback function B.
The following theorem states that if the conditions C1 - C8 and the condition C11 hold, this model

complies with the specification S𝑝𝑒𝑐𝑘 (𝑣).

Theorem 12 (Correctness of Push (non-idempotent reduction) II). For all R, F , C, I, P,
and 𝑘 ≥ 1, if the conditions C1 - C8 and C11 hold, S𝑘

push− (𝑣) = S𝑝𝑒𝑐
𝑘 (𝑣).

The full proof is available in § 4.4.4. First, we show that after each iteration 𝑘 +1, the value of each
vertex 𝑣 is the reduction of its initial value and the value of predecessors in the previous iteration
𝑘 . Even though only the changed predecessors push values, similar to the proof of Theorem 10,
the value of no predecessor is missed. If a predecessor is never changed, it has the value ⊥ that
is ignored in the reduction anyway. If it is changed in the previous iterations, in the last such

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

27

iteration, its value has been pushed and reduced with the current value of 𝑣 . Since reduction is not
idempotent, each predecessor first rollbacks its old value before applying its new value. Second,
using the first fact, we show by induction that the value of each vertex 𝑣 is the reduction of the
paths to 𝑣 of length less than 𝑘 + 1. Similar to the previous proofs, it can be shown that the initial
value of 𝑣 is the result of reduction on paths to 𝑣 of length 0. Further, using the induction hypothesis,
it can be shown that the propagation of values from the predecessors in iteration 𝑘 + 1 results in the
reduction over paths to 𝑣 of length 𝑙 , 0 < 𝑙 < 𝑘 + 1. Reducing the two values results in the reduction
over paths to 𝑣 of length 𝑙 , 0 ≤ 𝑙 < 𝑘 + 1 that the specification S𝑝𝑒𝑐𝑘+1 (𝑣) requires.

Number of Shortest Paths (NSP)
I B 𝜆𝑣. if (𝑣 = 𝑠) ⟨0, 1⟩ else ⊥
P B 𝜆𝑛, 𝑒. 𝑛 + weight(𝑒)
R B 𝜆⟨𝑤,𝑛⟩, ⟨𝑤 ′, 𝑛′⟩.

if (𝑤 = 𝑤 ′) ⟨𝑤,𝑛 + 𝑛′⟩
elseif (𝑤 > 𝑤 ′) ⟨𝑤 ′, 𝑛′⟩
else ⟨𝑤,𝑛⟩

E B 𝜆𝑛. 𝑛

B B 𝜆⟨𝑤,𝑛⟩, 𝑒 . ⟨𝑤,−𝑛⟩

Fig. 16. The number of shortest paths

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

28 Anon.

3.1.3 Asynchronous Model
The predecessors of the vertex 𝑣 that changed value in the iteration 𝑘 :
CPreds

𝑘 (𝑣) =
{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘 (𝑢) ≠ S𝑘−1 (𝑢)

}
Definition 8 (Pull (idempotent reduction)).
S0
apull+ (𝑣) B ⊥
S1
apull+ (𝑣) B I(𝑣)

S𝑘+1
apull+ (𝑣) B


S𝑘
apull+ (𝑣) if CPreds

𝑘 (𝑣) = ∅

E
[
R
(
S𝑘
apull+ (𝑣), R𝑢∈preds(𝑣) P

(
S𝑘
apull+ (𝑢) ?S

𝑘+1
apull+ (𝑢), ⟨𝑢, 𝑣⟩

))]
else

𝑘 ≥ 1

Definition 9 (Pull (non-idempotent reduction)).
S0
apull− (𝑣) B ⊥
S1
apull− (𝑣) B I(𝑣)

S𝑘+1
apull− (𝑣) B


S𝑘
apull− (𝑣) if CPreds

𝑘 (𝑣) = ∅

E
[
R𝑢∈preds(𝑣) P

(
S𝑘
apull− (𝑢) ?S

𝑘+1
apull− (𝑢), ⟨𝑢, 𝑣⟩

)]
else

𝑘 ≥ 1

Definition 10 (Push (idempotent reduction)).
S0
apush+ (𝑣) B ⊥
S1
apush+ (𝑣) B I(𝑣)
S𝑘+1
apush+ (𝑣) B E(𝑆𝑛), 𝑘 ≥ 1 where

let {𝑢0, .., 𝑢𝑛−1} B CPreds
𝑘 (𝑣) in

let𝑚𝑖 B |CPreds𝑘 (𝑢𝑖) | in
𝑆0 (𝑣) B S𝑘

apush+ (𝑣)

𝑆𝑖+1 (𝑣) B R
(
𝑆𝑖 (𝑣), P

(
?𝑗 ∈{1..𝑚𝑖 } 𝑆 𝑗 (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

))
Definition 11 (Push (non-idempotent reduction)).

S0
apush− (𝑣) B ⊥
S1
apush− (𝑣) B I(𝑣)
S𝑘+1
apush− (𝑣) B E(𝑆𝑛 (𝑣)), 𝑘 ≥ 1 where

let {𝑢0, .., 𝑢𝑛−1} B CPreds
𝑘 (𝑣) in

𝑆0 (𝑣) B S𝑘
apush− (𝑣)

𝑆𝑖+1 (𝑣) B R(R(𝑆𝑖 (𝑣),
B

(
𝑏𝑘−1 (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

)
),

P
(
𝑏𝑘 (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

)
)

𝑏𝑘+1 (𝑣) B ?𝑖∈{0..𝑛} 𝑆𝑖 (𝑣)

Fig. 17. Four Iterative ReductionMethods (in the asynchronous mode). The operator ? is the non-deterministic

choice operator.

The iteration models that were presented in Fig. 8 are synchronous. In the synchronous model, in
each iteration 𝑘 + 1, each vertex 𝑣 stores both its previous value S𝑘 (𝑣) and its new value S𝑘+1 (𝑣).
The previous value S𝑘 (𝑣) of 𝑣 is propagated to update other vertices and updates to the value of 𝑣
are stored in its new value S𝑘+1 (𝑣). Therefore, the updates in the current iteration do not affect
the values that are propagated. In the asynchronous model, however, each vertex stores one value.
The single value is used to both propagate the current value of the vertex and store its new value.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

29

Asynchronous model can save space and converge faster but is more subtle. The values that are
propagated in iteration 𝑘 + 1 can be either the previous value S𝑘 (𝑣), the old value S𝑘+1 (𝑣) or an
intermediate value between the two. The high-level idea is that the new value has more information
than the old value i.e. covers more paths. Thus, vertices reach convergence faster.
The asynchronous pull model for idempotent and non-idempotent reduction functions are

presented in Def. 8 and Def. 9. They are very similar to the corresponding synchronous pull models
that were presented in Def. 1 and Def. 2. Now, the propagated value is either the previous value
S𝑘
apull+ (𝑢) or the new value S𝑘+1

apull+ (𝑢) of the predecessor 𝑢. The operator ? is the non-deterministic
choice operator that non-deterministically returns one if its operands.
The asynchronous push model for idempotent reduction functions is presented in Def. 10. It

is similar to the corresponding synchronous definition presented in Def. 3. The difference is that
instead of the previous value S𝑘

push+ (𝑢𝑖) of each predecessor𝑢𝑖 , one of its intermediate values 𝑆 𝑗 (𝑢𝑖)
is propagated. Assuming that the predecessor 𝑢𝑖 has𝑚𝑖 changed predecessors itself, 𝑢𝑖 has the
intermediate values 𝑆 𝑗 (𝑢) where 𝑗 ∈ {1..𝑚𝑖 }, one after each push from its predecessors. The value
propagated to 𝑣 can non-deterministically be any of the intermediate values.
The asynchronous push model for non-idempotent reduction functions is presented in Def. 11.

It not similar to the corresponding synchronous definition presented in Def. 4. The difference is
that the values propagated by a vertex can be any of its intermediate values and not necessarily
its value at the end of the last iteration. Thus, we need to store the previously propagated values
to roll them back before propagating new values. Consider a vertex 𝑣 and its predecessor 𝑢𝑖 . The
value that 𝑢𝑖 propagates to 𝑣 in iteration 𝑘 is stored as 𝑏𝑘 (𝑢𝑖). In iteration 𝑘 + 1, to push from the
predecessor 𝑢𝑖 to the vertex 𝑣 , the value 𝑏𝑘−1 (𝑢𝑖) is rolled back by the rollback function B and the
new value 𝑏𝑘 (𝑢𝑖) is propagated by the propagation function P.

We define 𝑃∞ (𝑣) as all the paths to the vertex 𝑣 (that satisfy the condition C).

Definition 12 (Paths). 𝑃∞ (𝑣) = {𝑝 | 𝑝 ∈ Paths(𝑣) ∧ C(𝑝)}

The definition of specificationS𝑝𝑒𝑐 (𝑣) is the same as definition Def. 5; only the paths are factored
to 𝑃∞ (𝑣).

Definition 13 (Specification). S𝑝𝑒𝑐 (𝑣) = R𝑝∈𝑃∞ (𝑣) F (𝑝)

We define 𝑃𝑘 (𝑣) as the paths to the vertex 𝑣 of length less than 𝑘 (that satisfy the condition C).

Definition 14 (𝑘-Paths). 𝑃𝑘 (𝑣) = {𝑝 | 𝑝 ∈ Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝) < 𝑘}

The definition of specification for iteration 𝑘 , S𝑝𝑒𝑐𝑘 (𝑣), is the same as definition Def. 6; only the
paths are factored to 𝑃𝑘 (𝑣).

Definition 15 (𝑘-Specification). S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ 𝑃𝑘 (𝑣) F (𝑝)

Since in the asynchronous model, in an iteration 𝑘 , the value of vertices may cover paths of
length 𝑘 or longer, we define 𝑎𝑃𝑘 (𝑣) as the set of paths that include paths of length less than 𝑘 and
maybe more.

Definition 16 (a-𝑘-Paths). 𝑎𝑃𝑘 (𝑣) = {𝑃 | 𝑃 (𝑘) ⊆ 𝑃 ⊆ 𝑃∞ (𝑣)}

Since in the asynchronous model, vertices may propagate any one of the multiple intermediate
values, we define asynchronous specification for iteration 𝑘 , 𝑎S𝑝𝑒𝑐𝑘 (𝑣), as set of values: the
reductions of any set of paths 𝑃 in 𝑎𝑃𝑘 (𝑣).

Definition 17 (a-𝑘-Specification). 𝑎S𝑝𝑒𝑐𝑘 (𝑣) = {R𝑝 ∈ 𝑃 F (𝑝) | 𝑃 ∈ 𝑎𝑃𝑘 (𝑣)}

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

30 Anon.

All the asynchronous models presented in Fig. 17 comply with the asynchronous specification.
In each iteration, the value stored at vertex 𝑣 is in the set of values 𝑎S𝑝𝑒𝑐𝑘 (𝑣).

Theorem 13 (Correctness of Pull (idempotent reduction)). Forall R, F , C, I, P, and 𝑘 ≥ 1,
if the conditions C1 - C4 and C6 - C9 hold, then S𝑘

apull+ (𝑣) ∈ 𝑎S𝑝𝑒𝑐
𝑘 (𝑣)

The proof is similar to the proof of Theorem 8. The set of paths covered by S𝑘+1
apull+ (𝑢) is a superset

of path covered by S𝑘
apull+ (𝑢). The reduction over the set of paths in the difference is factored out

in the proof.

Theorem 14 (Correctness of Pull (non-idempotent reduction)). Forall R, F , I, P, 𝑘 ≥ 1,
and 𝑠 , let C(𝑝) B (head(𝑝) = 𝑠), if the conditions C1 - C4 and C6 - C8 hold, and 𝑠 is not on any cycle,
S𝑘
apull− (𝑣) ∈ 𝑎S𝑝𝑒𝑐

𝑘 (𝑣)

The proof is similar to the proof of Theorem 9. The set of paths covered by S𝑘+1
apull+ (𝑢) is a superset

of path covered by S𝑘
apull+ (𝑢). The reduction over the set of paths in the difference is factored out

in the proof.

Theorem 15 (Correctness of Push (idempotent reduction)). Forall R, F , C, I, P, and 𝑘 ≥ 1,
if the conditions C1 - C4 and C6 - C9 hold, S𝑘

apush+ (𝑣) ∈ 𝑎S𝑝𝑒𝑐
𝑘 (𝑣)

The proof is similar to the proof of Theorem 10. The set of paths covered by 𝑆 𝑗 (𝑢𝑖) is a superset
of path covered by S𝑘

push+ (𝑢𝑖). The reduction over the set of paths in the difference is factored out
in the proof.

Theorem 16 (Correctness of Push (non-idempotent reduction)). Forall R, F , C, I, P, and
𝑘 ≥ 1, if the conditions C1 - C8 hold, S𝑘

apush− (𝑣) ∈ 𝑎S𝑝𝑒𝑐
𝑘 (𝑣)

The proof is similar to the proof of Theorem 25. The set of paths covered by 𝑏𝑘 (𝑢𝑖) is a superset
of path covered by S𝑘

pull− (𝑢𝑖). The reduction over the set of paths in the difference is factored out
in the proof.

Theorem 17 (Termination). Forall R, F , and C, if the graph is acyclic or the condition C10 holds,
then there exists 𝑘 ′ such that for every 𝑘 ≥ 𝑘 ′, 𝑎S𝑝𝑒𝑐𝑘 (𝑣) = {S𝑝𝑒𝑐 (𝑣)}.

The proof is similar to the proof of Theorem 27. Let 𝑙 be the longest simple path to 𝑣 . If the
graph is acyclic, there is no path longer than 𝑙 . Thus, for any 𝑘 > 𝑙 + 1, 𝑃𝑘 (𝑣) = {𝑃∞ (𝑣)}. Therefore,
𝑎S𝑝𝑒𝑐𝑘 (𝑣) = {S𝑝𝑒𝑐 (𝑣)}. Even if the graph is cyclic, for any path 𝑝 longer than 𝑙 , the condition
C10 states that reducing the value of 𝑝 with the value of simple(𝑝) leaves the value of simple(𝑝)
unchanged. Thus, R𝑝 ∈ 𝑃𝑘 (𝑣) F (𝑝) = R𝑝 ∈ 𝑃𝑙+1 (𝑣) F (𝑝). Thus, 𝑎S𝑝𝑒𝑐𝑘 (𝑣) = {R𝑝 ∈ 𝑃𝑙+1 (𝑣) F (𝑝)}. Simi-
larly, it can be shown that S𝑝𝑒𝑐 (𝑣) = {R𝑝 ∈ 𝑃𝑙+1 (𝑣) F (𝑝)}. Therefore, 𝑎S𝑝𝑒𝑐𝑘 (𝑣) = {S𝑝𝑒𝑐 (𝑣)}.

An immediate corollary of the above theorem is that if the graph is acyclic or the condition C10
holds, then all the four asynchronous iteration models eventually terminate and converge to the
specification (if their corresponding conditions in Theorem 13 to Theorem 16 hold). For example
the corollary for the asynchronous pull model for idempotent reduction functions is the following.
The corollary for the other models is similar.

Corollary 18 (Termination). Forall R, F , C, I, and P, if the conditions C1 - C4 and C6 - C9
hold and the graph is acyclic or the condition C10 holds, then there exists an iteration 𝑘 such that
S𝑘
apull+ (𝑣) = S𝑝𝑒𝑐 (𝑣)

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

31

3.1.4 Streaming Graphs
In contrast to a static graph, a streaming graph can continuously change in response to external

events. Thus, to have up-to-date results, the graph analytics computations should be periodically
repeated. Stream graph processing strives to benefit from the results computed prior to the updates
instead of restarting the iteration form the initial values. The idea is that starting from the prior result
can accelerate the convergence. What are the conditions such that the incremental computation
yields the correct results? We first consider addition and then removal of edges and present the
correctness conditions for incremental commutation after each.

Incremental Computation. Consider a graph 𝐺 . Let us denote the result of a path-based
reduction S𝑝𝑒𝑐 (𝑣) on 𝐺 as S𝑝𝑒𝑐𝐺 (𝑣). Let 𝐺 + 𝛿 be the result of updating (adding or removing) an
edge 𝑒 = ⟨𝑠𝑒 , 𝑡𝑒⟩ in 𝐺 . The incremental computation on 𝐺 + 𝛿 starts from the prior result S𝑝𝑒𝑐𝐺 (𝑣)
for 𝐺 . The incremental pull model is similar to the basic model (of Def. 1). The difference is that
(1) the starting state is S𝑝𝑒𝑐𝐺 (𝑣) instead of I(𝑣) except for the sink node 𝑡𝑒 and if the update
is a removal, and (2) that the vertex 𝑡𝑒 is updated in the starting iteration. Thus, the state of the
incremental computation at iteration 𝑘 denoted as S𝑘

𝐺+𝛿 (𝑣) is defined as follows:

Definition 18 (Incremental pull model (with idempotent reduction)).

S1
𝐺+𝛿 (𝑣) B

{
I(𝑣) if (𝛿 is removal) ∧ (𝑣 = 𝑡𝑒)
S𝑝𝑒𝑐𝐺 (𝑣) else

S𝑘+1
𝐺+𝛿 (𝑣) B

{
R
[
S𝑘
𝐺+𝛿 (𝑣), R𝑢∈preds(𝑣) P

(
S𝑘
𝐺+𝛿 (𝑢), ⟨𝑢, 𝑣⟩

)]
if (𝑘 = 1 ∧ 𝑣 = 𝑡𝑒) ∨ (CPreds𝑘 (𝑣) ≠ ∅)

S𝑘
𝐺+𝛿 (𝑣) else

𝑘 ≥ 1

Addition of Edges. If the update 𝛿 in 𝐺 + 𝛿 is adding an edge, does the result of incremental
computation S𝑘

𝐺+𝛿 (𝑣) converge to its specification S𝑝𝑒𝑐 (𝑣)? It turns out that it does with the same
conditions as the static case. Adding an edge only increases the set of paths. The prior value of
a vertex is the result of reduction on the old set of paths to that vertex. That set may now be
incomplete. However, the prior values can help the incremental computation skip most of the
initial iterations. For example, in the shortest path SSSP use-case, the newly added edge may
improve the previously found shortest path only for some of the vertices. Subsequent iterations
will eventually reduce the values of all the new paths with the prior values of the vertices. As the
reduction function is assumed to be commutative, associative and idempotent, the reduction order
and repeated reductions of a path do not affect the result. Thus, we can state the following theorem
for the correctness of incremental reduction after adding edges.

Theorem 19 (Correctness after adding edges). For all R, F , I and P, if the conditions C1 -
C10 hold and the update 𝛿 is addition of an edge, then there exists 𝑘 such that S𝑘

𝐺+𝛿 (𝑣) = S𝑝𝑒𝑐 (𝑣).

Removal of Edges. In contrast to adding, if the update is removing an edge, the incremental
computation is not necessarily correct. When an edge ⟨𝑠𝑒 , 𝑡𝑒⟩ is removed, the value of 𝑡𝑒 becomes
incorrect if it has been calculated using the value of 𝑠𝑒 . Thus, the incremental computation (Def. 18)
recalculates the value of 𝑡𝑒 based on the values of its remaining predecessors. The intention is that
this update calculates the correct value of 𝑡𝑒 . However, as Fig. 18a shows, if there is a loop from 𝑡𝑒
back to one of its predecessors 𝑢, and the value of 𝑢 has been calculated based on the old value of
𝑡𝑒 , the recalculated value of 𝑡𝑒 is still incorrect. The new value of 𝑡𝑒 can lead to calculation of new
values back to 𝑢 and then again for 𝑡𝑒 . The question is whether the iterative calculation around the
loop eventually forgets the incorrect value. It turns out that it does, if extending a path with an
edge makes the value of the path less favorable during reduction. For example, in the SSSP use-case,
the value of a path is its weight and the weight of an extended path increases; thus, the extended
path is less favorable for the min reduction function. The cycle can take only larger values back to

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

32 Anon.

(a) Removing an edge and the subsequent

update through a cycle

(b) Removing an edge in the CC use-case

Fig. 18. Removing edges

𝑡𝑒 through the predecessor 𝑢, and eventually, the values coming from the other predecessors will
be smaller and thus, chosen by the min reduction function. Thus, the incremental computation for
the shortest path use-case SSSP will eventually converge to the correct values.

Streaming:
C12 (Worsening) :
∀𝑝, 𝑒. R(F (𝑝), F (𝑝 · 𝑒)) = F (𝑝) ≠ F (𝑝 · 𝑒)

Fig. 19. Correctness and Termination Conditions

However, in the CC use-case, the value of
a path is the identifier of its source; thus, the
value of an extended path stays the same. Con-
sider the graph in Fig. 18b where two cycles
are connected by the edge 𝑒 = ⟨𝑠𝑒 , 𝑡𝑒⟩ where
the cycle on the 𝑠𝑒 side has the vertex with the
smallest identifier 0. The iteration for𝐺 results in 0 as the component identifier of all vertices. Upon
the removal of 𝑒 , the neighbors 𝑢 of 𝑡𝑒 in the loop continue feeding 0 back to 𝑡𝑒 which prevents
spreading the larger identifier 4 in the cycle. Vertices adopt smaller identifier from their neighbors.
The iteration incorrectly converges to 0 as the component identifier of the cycle. We have captured
the above sufficient condition in Fig. 19 as the worsening property C12. Extending a path 𝑝 with an
edge 𝑒 should result in an unequal and worse value. Thus, we can state the following theorem for
the correctness of incremental reduction after removing edges.

Theorem 20 (Correctness after removing edges). For all R, F , I and P, if the conditions C1
- C10 and C12 hold and the update 𝛿 is removal of an edge, then there exists 𝑘 such that S𝑘

𝐺+𝛿 (𝑣) =
S𝑝𝑒𝑐 (𝑣).

However, if the condition C12 does not hold, then all the prior values cannot be simply used and
the value of all vertices that are reachable form the vertex 𝑡𝑒 should be reset to their initial values.
In the example of the CC use-case above, the values of the vertices in the cycle are all reset to their
own identifiers. The iteration then correctly converges to the smallest identifier in the cycle. As an
optimization, the dependencies between the value of vertices can be tracked at runtime and the
values of only the vertices that are dependent on 𝑡𝑒 should be reset.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

33

3.1.5 Factored Path-based Reductions
Consider the factored path-based reduction R

𝑐
F with a general configuration 𝑐 . We show that the

correctness conditions for its iterative execution are captured by the conditions that were presented
in Fig. 13.

Let us define 𝐶𝑐 as follows:
C𝑠 (𝑝) B head(𝑝) = 𝑠

C⊥ (𝑝) B True

(1)

Let us define F 𝑐 as follows:
⟨F1, F2⟩ ⟨𝑐1,𝑐2 ⟩ (𝑝) B ⟨F 𝑐1

1 (𝑝), F
𝑐2
2 (𝑝)⟩

F 𝑐 (𝑝) B if (C𝑐 (𝑝)) F (𝑝) else ⊥ (2)

The specification of the factored path-based reduction R
𝑐
F is the following:

R𝑝 ∈Paths(𝑣) F 𝑐 (𝑝)
that can be captured by the specification S𝑝𝑒𝑐 (𝑣) defined in Def. 5 with C(𝑝) instantiated with
True and F instantiated with F 𝑐 .

Thus, the correctness conditions for the factored path-based reduction R
𝑐
F can be captured by

the conditions that were presented in Fig. 13 with C(𝑝) instantiated with True and F instantiated
with F 𝑐 . In particular, the initialization condition C2 is trivial and C1 is simplified to

I(𝑣) = F 𝑐 (⟨𝑣, 𝑣⟩) (3)
For example, by Eq. 3 and Eq. 2, for a path-based reduction R

⟨𝑐1,𝑐2 ⟩
⟨F1, F2⟩, the initialization conditions

are the following
∀𝑣 . C𝑐1 (⟨𝑣, 𝑣⟩) → fst(I(𝑣)) = F1 (⟨𝑣, 𝑣⟩)
∀𝑣 . ¬C𝑐1 (⟨𝑣, 𝑣⟩) → fst(I(𝑣)) = ⊥
∀𝑣 . C𝑐2 (⟨𝑣, 𝑣⟩) → snd(I(𝑣)) = F2 (⟨𝑣, 𝑣⟩)
∀𝑣 . ¬C𝑐2 (⟨𝑣, 𝑣⟩) → snd(I(𝑣)) = ⊥

(4)

This means that the initialization for each element of the state tuple mirrors the initialization
conditions C1 and C2.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

34 Anon.

3.2 Synthesis of Iterative Reduction
To find candidate expressions for the body of the kernel functions, we apply a type-guided enumer-
ative search to the expression grammar presented in Fig. 20b. The expression constructors have
union types; for example, the plus operator + can be applied to both integers Int and floating point
Float numbers. The procedureCandidates in Fig. 20a returns the set of expressions of the input type
𝑇 and size size. It is a recursive procedure that uses memoization to avoid redundant enumeration.
It keeps a map from types to maps from sizes to the set of previously synthesized expressions. To
synthesize an expression of type 𝑇 , it only considers the expression constructors with the return
type 𝑇 . A constructor itself uses one unit of size. For each constructor 𝑐 , the Candidates procedure
considers all the possible distributions of the remained size, that is size − 1, between the parameters
of 𝑐 . For each distribution, it recursively obtains a set of expressions 𝐸𝑖 for each parameter 𝑝𝑖 using
its type and its allocated size. It then applies 𝑐 to each element of the product of the sets 𝐸𝑖 to yield
candidate expressions. It memoizes and returns the set of these candidates.

The functions Fig. 20c and Fig. 20d synthesize the functions I and P. We consider synthesis for
P; synthesis for I is similar. Fig. 20d presents the SynthP procedure that given the path function
F and the reduction function R of a path-based reduction, synthesizes the propagation function P.
It starts by memoizing expressions of size one, variables and literals, to make them available for
the synthesis of the body of P. Let 𝑇 be the return type of F ; vertices store values of type 𝑇 . The
propagation function P takes a value stored at a vertex (of type of 𝑇) and an edge (of type Edge)
and returns a vertex value (of type 𝑇). Thus, the two input variables of the two input types, the
variable 𝑛 of type 𝑇 and the variable 𝑙 of type Edge, are memoized as available expressions. Then,
candidate expressions of type𝑇 are obtained from the Candidates procedure. Expressions of larger
sizes are incrementally checked as candidate bodies for P.

A candidate propagation function 𝜆𝑛, 𝑙 . 𝑒 is correct if the conditions C4 and C5 are valid when P
is replaced by the candidate. We use the notation of A ⊢ A ′ to represent whether the assertion
A ′ is valid in the context of the assumed assertion(s) A. To check the validity of an assertion, we
use off-the-shelf SMT solvers to check the satisfiability of its negation. The context of the validity
check F ;R; Γ is the definition of the functions F and R from the given path-based reduction, and
a set of assertions Γ that define basic graph functions and relations.
Fig. 21 represents the context assertions Γ: assertions for the path functions length, weight,

punultimate and capacity. We define graph functions and relations in the combination of the
quantified uninterpreted functions and list theories. We represent a path P as a list of vertices V.
The edge weight eweight is a function on pairs of vertices ⟨V,V⟩ and the path weight weight is a
function on paths P to natural numbers N. If the list for the path is empty or has a single vertex,
the weight of the path is trivially zero; otherwise, the weight of the path is recursively the sum of
the weight of the path without the last edge and the edge weight of the last edge.

For the push model with non-idempotent reduction (Def. 7), after the propagation function P is
synthesized, the condition C11 is used to synthesize the rollback function B.
We note that since the path functions F never return none ⊥, the reduction function R ′ is

simplified to R in the condition C4.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

35

def Candidates(𝑇, size)
if (already memoized 𝐸

for 𝑇 and size)
return 𝐸

𝐸 ← ∅
foreach (expression constructor 𝑐
with the return type 𝑇)
foreach (distribution 𝑠𝑖 of size − 1
between parameters 𝑝𝑖 of 𝑐)
foreach (𝑝𝑖 with type 𝑇𝑖)
𝐸𝑖 ← Candidates(𝑇𝑖 , 𝑠𝑖)

𝐸 ← 𝐸 ∪ {𝑐 (𝑒) | 𝑒 ∈ ×𝐸𝑖 }
memoize 𝐸 for 𝑇 and size
return 𝐸

(a) Type-guided expression
enumeration

𝑒 ::= 𝑛 | 𝑣 Exp
| 𝑒 + 𝑒 | 𝑒 − 𝑒
| 𝑒 = 𝑒 | 𝑒 < 𝑒

| min(𝑒, 𝑒) | max(𝑒, 𝑒)
| if (𝑒) then 𝑒 else 𝑒

| weight(𝑒) | capacity(𝑒)
| indeg(𝑒) | outdeg(𝑒)
| src(𝑒) | dst(𝑒)
| |𝑉 |

𝑛 ::= 0 | 1 | .. | True | False Literal
𝑣 Variable
𝑇 ::= Int | Float | Bool |

Edge | Vertex Type

(b) Grammar

def SynthI (F)
𝐼1 memoize the variable 𝑣 for type Vertex and size 1
𝐼2 foreach (literal 𝑙𝑖 with type 𝑇𝑖)
𝐼3 memoize 𝑙𝑖 for 𝑇𝑖 and size 1
𝐼4 size← 1
𝐼5 while (true)
𝐼6 𝐸 ← Candidates(return type of F , size)
𝐼7 foreach (𝑒 ∈ 𝐸)
𝐼8 if F ; Γ ⊢ (C1 ∧ C2) [I ↦→ (𝜆𝑣. 𝑒)]
𝐼9 return (𝜆𝑣. 𝑒)
𝐼10 size← size + 1

(c) Synthesis of the initialization function I

def SynthP (F ,R)
let 𝑇 be the return type of F .

𝑃1 memoize variable 𝑛 for 𝑇 and size 1
𝑃2 memoize variable 𝑙 for type Edge and size 1
𝑃3 foreach (literal 𝑙𝑖 with type 𝑇𝑖)
𝑃4 memoize 𝑙𝑖 for 𝑇𝑖 and size 1
𝑃5 size← 1
𝑃6 while (true)
𝑃7 𝐸 ← Candidates (𝑇, size)
𝑃8 foreach (𝑒 ∈ 𝐸)
𝑃9 if F ;R; Γ ⊢ (C4 ∧ C5) [P B (𝜆𝑛, 𝑙 . 𝑒)]
𝑃10 return (𝜆𝑛, 𝑙 . 𝑒)
𝑃11 size← size + 1

(d) Synthesis of the propagation function P

Fig. 20. Synthesis Grammar and functions

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

36 Anon.

Γ =

P B List[V],

length : P→ N
elength : ⟨V,V⟩ → N
∀⟨𝑢, 𝑣⟩. if (𝑢 = 𝑣) elength(⟨𝑢, 𝑣⟩) = 0

else

elength(⟨𝑢, 𝑣⟩) = 1
∀𝑝. if (𝑝 = ⊥) length(𝑝) = 0

else

let 𝑣 B head(𝑝), 𝑝 ′ B tail(𝑝) in
if (𝑝 ′ = ⊥) length(𝑝) = 0
else

let 𝑣 ′ B head(𝑝 ′) in
length(𝑝) =
length(𝑝 ′) + elength(⟨𝑣 ′, 𝑣⟩)

penultimate : P→ V

∀𝑝. if (𝑝 = ⊥) penultimate(𝑝) = ⊥
else

let 𝑣 B head(𝑝), 𝑝 ′ B tail(𝑝) in
if (𝑝 ′ = ⊥) penultimate(𝑝) = 𝑣

else

penultimate(𝑝) = head(𝑝 ′)

weight : ⟨V,V⟩ → N
∀𝑣 . eweight(⟨𝑣, 𝑣⟩) = 0
∀𝑝. if (𝑝 = ⊥) weight(𝑝) = 0

else

let 𝑣 B head(𝑝), 𝑝 ′ B tail(𝑝) in
if (𝑝 ′ = ⊥) weight(𝑝) = 0
else

let 𝑣 ′ B head(𝑝 ′) in
weight(𝑝) =
weight(𝑝 ′) + eweight(⟨𝑣 ′, 𝑣⟩)

capacity : P→ N
ecapacity : ⟨V,V⟩ → N
∀𝑣 . ecapacity(⟨𝑣, 𝑣⟩) = ⊥
∀𝑝. if (𝑝 = ⊥) capacity(𝑝) = ⊥

else

let 𝑣 B head(𝑝), 𝑝 ′ B tail(𝑝) in
if (𝑝 ′ = ⊥) capacity(𝑝) = ⊥
else

let 𝑣 ′ B head(𝑝 ′) in
capacity(𝑝) =
min(capacity(𝑝 ′), ecapacity(⟨𝑣 ′, 𝑣⟩))

Fig. 21. Context assertions Γ

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

37

4 Proofs
4.1 Helper Definitions

Definition 19 (Substitution).
Substitution 𝐸 B 𝑁 :
𝑁 B n | ⟨𝑁, 𝑁 ⟩

⟨𝐸, 𝐸 ′⟩[𝑋 B 𝑁] = ⟨𝐸 [𝑋 B 𝑁], 𝐸 ′[𝑋 B 𝑁]⟩
𝑒 [⟨𝑋,𝑋 ′⟩ B ⟨𝑁, 𝑁 ′⟩] = 𝑒 [𝑋 B 𝑁] [𝑋 ′ B 𝑁 ′]
𝑒 ⊕ 𝑒 ′[𝑥 B n] = 𝑒 [𝑥 B n] ⊕ 𝑒 ′[𝑥 B n]
𝑥 [𝑥 B n] = n

𝑥 ′[𝑥 B n] = 𝑥 ′

The definitions of substitution for 𝑒 B 𝐷 , 𝐸 B 𝐷 , and 𝑅 B 𝐷 are similar.
𝐷 B 𝑑 | ⟨𝐷,𝐷⟩

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

38 Anon.

4.2 Semantics Compositionality
Lemma 2 (Compositionality for 𝑟).
For all 𝑟 , 𝑟 ′ and R, if J 𝑟 K = J 𝑟 ′ K then JR[𝑟] K = JR[𝑟 ′] K.

Proof.
Induction on R:

Case
(1) R = []
Immediate.

Case
(2) R = R′ ⊕ 𝑟
Immediate by the rule SRBin.

Lemma 3 (Compositionality for𝑚).
For all𝑚,𝑚′, andM, if J𝑚 K = J𝑚′ K then JM[𝑚] K = JM[𝑚′] K.

Proof.
Induction onM:

Case
(1) M = []
Immediate.

Case
(2) M = R

V

M′

Immediate by the rule SVRed.
Case

(3) M = M′ ⊕𝑚
Immediate by the rule SMBin.

Case
(4) M =𝑚 ⊕M′
Immediate by the rule SMBin.

Lemma 4 (Compositionality for𝑀).
For all𝑀 ,𝑀 ′, andMs, if J𝑀 K = J𝑀 ′ K then JMs[𝑀] K = JMs[𝑀 ′] K.

Proof.
Induction onMs:

Case
(1) Ms = []
Immediate.

Case
(2) Ms = ⟨Ms, 𝑀⟩
Immediate by the rule SMPair.

Case
(3) Ms = ⟨𝑀,Ms⟩
Immediate by the rule SMPair.

Case
(4) Ms = ilet 𝑋 B Ms in 𝑒

Immediate by the rule SMLet.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

39

Case
(5) Ms =

ilet 𝑋 B Ms in

mlet 𝑋 B 𝐸 in

rlet 𝑋 B 𝑅 in 𝑒

Immediate by the rule SRLet.

Lemma 5 (Compositionality for 𝑅).
For all 𝑅, 𝑅′, and Rs, if J𝑅 K = J𝑅′ K then JRs[𝑅] K = JRs[𝑅′] K.

Proof.
Induction on Rs:

Case
(1) Rs = []
Immediate.

Case
(2) Rs = ⟨Rs, 𝑅⟩
Immediate by the rule SRPair.

Case
(3) Rs = ⟨𝑅,Rs⟩
Immediate by the rule SRPair.

Case
(4) Rs =

ilet 𝑋 B 𝑀 in

mlet 𝑋 B 𝐸 in

rlet 𝑋 B Rs in 𝑒

Immediate by the rule SRLet.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

40 Anon.

4.3 Soundness of Fusion
Theorem 21 (Semantics-preserving Fusion for 𝑟).
For all 𝑟1 and 𝑟2, if 𝑟1 ⇒𝑟 𝑟2 then J 𝑟1 K = J 𝑟2 K.

Proof.
Case analysis on 𝑟1 ⇒𝑟 𝑟2:

Case rule FMInR:
Immediate from Lemma 6 and Lemma 4.

Case rule FVRed:
Immediate the rules SVRed and SMLet on 𝑟1 and SRLet on 𝑟2.

Case rule FLetsBin:
By the rules SRLet, SMPair, SEEPair, SRPair, SEBin.
Similar to Lemma 6, the case for FILetBin.

Case rule FMInLets:
Immediate from Lemma 7, Lemma 4 and SRLet.

Case rule FRinLets:
Immediate from Lemma 8, Lemma 5 and SRLet.

Lemma 6 (Semantics-preserving Fusion for𝑚).
For all𝑚1 and𝑚2, if𝑚1 ⇒𝑚 𝑚2 then J𝑚1 K = J𝑚2 K.

Proof.
Induction on𝑚1 ⇒𝑚 𝑚2:

Case rule FMInM:
Immediate from the induction hypothesis and Lemma 3.

Case rule FPNest:
(1) 𝑠 = R

𝑝 ∈ args R′
𝑝′∈𝑃

F′ (𝑝′)
F (𝑝)

(2) 𝑠 ′ = ilet ⟨𝑥, 𝑥 ′⟩ B R ′′
𝑝′∈𝑃
F ′′(𝑝 ′) in 𝑥 ′

(3) R ′ ∈ {min,max}
(4) 𝑓 ′′ B 𝜆𝑝. ⟨F ′(𝑝), F (𝑝)⟩
(5) R ′′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B

if (𝑎′ = 𝑎) then ⟨𝑎,R(𝑏, 𝑏 ′)⟩
else if (R ′(𝑎, 𝑎′) = 𝑎) then ⟨𝑎, 𝑏⟩ else ⟨𝑎′, 𝑏 ′⟩

By the rules SPRed and SArgsR on [1],
(6) J 𝑠 K =

[
v ↦→ R

{
F (𝑝) | 𝑝 ∈

{
𝑝 | 𝑝 ∈ {𝑝} ∧ F ′(𝑝) = R ′

{
F ′(𝑝) | 𝑝 ′ ∈ {𝑝}

}}}]
v∈V(𝑔)

where
(7) {𝑝} = J 𝑃 K (𝑔) (v)
(8) R ′ ∈ {min,max}

By the rules SMLet and SPRed on [2],
(9) J 𝑠 ′ K = [v ↦→ second (R ′′ {F ′′(𝑝) | 𝑝 ∈ J 𝑃 K (𝑔) (v)})]

v∈V(𝑔)
From [7] and [9],

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

41

(10) J 𝑠 ′ K =
[
v ↦→ R ′′

{
F ′′(𝑝) | 𝑝 ∈ {𝑝}

}]
v∈V(𝑔)

From [6] and [10], we need to show that for all 𝑃 ,
(11) R {F (𝑝) | 𝑝 ∈ 𝑃 ∧ F ′(𝑝) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃}} =

second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃})
The proof is by by induction on 𝑃 .
Base Case:

(12) 𝑃 = {𝑝∗}
Form [12],

(13) R {F (𝑝) | 𝑝 ∈ 𝑃 ∧ F ′(𝑝) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃}} =
R {F (𝑝) | 𝑝 ∈ {𝑝∗} ∧ F ′(𝑝) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ {𝑝∗}}} =
R {F (𝑝) | 𝑝 ∈ {𝑝∗} ∧ F ′(𝑝) = F ′(𝑝∗)} =
F (𝑝∗)

Form [12] and [4],
(14) second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃}) =

second (⟨F ′(𝑝∗), F (𝑝∗)⟩) =
F (𝑝∗)

The conclusion is immediate from [13] and [14],

Inductive Case:
(15) 𝑃 = 𝑃 ′ ∪ {𝑝∗}
Induction Hypothesis:

(16) R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∧ F ′(𝑝) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}} =
second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′})

We show that
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′ ∪ {𝑝∗}}} =

second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗}})
That is
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =

second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗)))
From [5], By induction on 𝑆 , it can be proved that

(17) ∀𝑆. first(R ′′ 𝑆) = R ′ {𝑎 | ⟨𝑎, 𝑎′⟩ ∈ 𝑆}
We consider two cases:
Case

(18) F ′(𝑝∗) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}
From [18],

(19) R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = F ′(𝑝∗) = {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}} =
R (R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}} , F (𝑝∗))

From [18] and [17],
(20) first(R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′}) = F ′(𝑝∗)

We have
(21) second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗))) =
By [4],

second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , ⟨F ′(𝑝∗), F (𝑝∗)⟩)) =
By [5] and [20],

second (⟨F ′(𝑝∗),R (second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′}) , F (𝑝∗))⟩) =
R (second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′}) , F (𝑝∗))

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

42 Anon.

Thus
(22) second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗))) =

R (second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′}) , F (𝑝∗))
From [19] and [22], we have the conclusion:
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =

second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗)))
Case

(23) F ′(𝑝∗) ≠ R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}
We assume R ′ = max. The other case R ′ = min is similar.
We consider two sub-cases.

Sub-case
(24) R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗)) = F ′(𝑝∗)
From [23] and [24],

(25) ∀𝑝 ′ ∈ 𝑃 ′. F ′(𝑝 ′) < F ′(𝑝∗)
We have

(26) R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =
By [24]
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = F ′(𝑝∗)} =

By [25]
F (𝑝∗)

Thus
(27) R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =
F (𝑝∗)

From [18] and [23],
(28) first(R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′}) ≠ F ′(𝑝∗)

We have
(29) second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗))) =
By [4],

second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , ⟨F ′(𝑝∗), F (𝑝∗)⟩)) =
By [5], [28] and [24],

second (⟨F ′(𝑝∗), F (𝑝∗)⟩) =
F (𝑝∗)

Thus
(30) second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗))) =
F (𝑝∗)

From [27] and [30], we have the conclusion:
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =
second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗)))

Sub-case
(31) R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗)) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}
This sub-case is similar to the previous sub-case.
F ′(𝑝∗) and R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} replace each other.

Case rule FPRed:
Immediate from the rules SMLet and SMM.

Case rule FILetBin:
(32) 𝑠 = (ilet 𝑋1 B 𝑀1 in 𝑒1) ⊕ (ilet 𝑋2 B 𝑀2 in 𝑒2)

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

43

(33) 𝑠 ′ = ilet ⟨𝑋1, 𝑋2⟩ B ⟨𝑀1, 𝑀2⟩ in 𝑒1 ⊕ 𝑒2
(34) free(𝑒1) ∩ 𝑋2 = ∅
(35) free(𝑒2) ∩ 𝑋1 = ∅
By rules SMBin and SMLet on [32], we have

(36) J 𝑠 K = [v ↦→ J 𝑒1 [𝑋1 B J𝑀1 K (𝑔) (v)] K ⊕ J 𝑒2 [𝑋2 B J𝑀2 K (𝑔) (v)] K]
v∈V(𝑔)

By rules SMLet on [33], we have
(37) J 𝑠 ′ K = [v ↦→ J (𝑒1 ⊕ 𝑒2) [⟨𝑋1, 𝑋2⟩ B J ⟨𝑀1, 𝑀2⟩ K (𝑔) (v)] K]v∈V(𝑔)

By [37] and the rule SMPair, we have
(38) J 𝑠 ′ K = [v ↦→ J (𝑒1 ⊕ 𝑒2) [⟨𝑋1, 𝑋2⟩ B ⟨J𝑀1 K (𝑔) (v), J𝑀2 K (𝑔) (v)⟩] K]

v∈V(𝑔)
From [38], and the rule SEBin, we have

(39) J 𝑠 ′ K = [v ↦→ J 𝑒1 [⟨𝑋1, 𝑋2⟩ B ⟨J𝑀1 K (𝑔) (v), J𝑀2 K (𝑔) (v)⟩] K ⊕
J 𝑒2 [⟨𝑋1, 𝑋2⟩ B ⟨J𝑀1 K (𝑔) (v), J𝑀2 K (𝑔) (v)⟩] K]

v∈V(𝑔)
From [39], [34] and [35], we have

(40) J 𝑠 ′ K = [v ↦→ J 𝑒1 [𝑋1 B J𝑀1 K (𝑔) (v)] K ⊕ J 𝑒2 [𝑋2 B J𝑀2 K (𝑔) (v)] K]
v∈V(𝑔)

From [36] and [40], we have
J 𝑠 K = J 𝑠 ′ K

Case rule FMInILet:
Immediate from Lemma 7, Lemma 4 and SMLet.

Lemma 7 (Semantics-preserving Fusion for𝑀).
For all𝑀1 and𝑀2, if𝑀1 ⇒𝑀 𝑀2 then J𝑀1 K = J𝑀2 K.

Proof.
Induction on𝑀1 ⇒𝑀 𝑀2:

Case rule FMPair:
(1) 𝑀1 = ⟨R F ,R ′ F ′⟩
(2) 𝑀2 = R ′′ 𝐹 ′′
(3) 𝑓 ′′ B 𝜆𝑝. ⟨F ′(𝑝), F (𝑝)⟩
(4) R ′′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B ⟨R(𝑎, 𝑎′),R ′(𝑏, 𝑏 ′)⟩
By SMPair, SMM and SPRed on [1], we have

(5) J𝑀1 K =
〈
[v ↦→ R {F (𝑝) | 𝑝 ∈ JPaths K (v)}]

v∈V(𝑔) , [v ↦→ R ′ {F ′(𝑝) | 𝑝 ∈ JPaths K (v)}]
v∈V(𝑔)

〉
By SMM and SPRed on [2] and [3] and [4], we have

(6) J𝑀2 K = [v ↦→ R ′′ {⟨F (𝑝), F ′(𝑝)⟩ | 𝑝 ∈ JPaths K (v)}]
v∈V(𝑔)

By [6] and [4], we have
(7) J𝑀2 K =

〈
[v ↦→ R {F (𝑝) | 𝑝 ∈ JPaths K (v)}]

v∈V(𝑔) , [v ↦→ R ′ {F ′(𝑝) | 𝑝 ∈ JPaths K (v)}]
v∈V(𝑔)

〉
From [5] and [7], we have

(8) J𝑀1 K = J𝑀2 K

Lemma 8 (Semantics-preserving Fusion for 𝑅).
For all 𝑅1, 𝑅2, 𝑋 and 𝑑 where 𝑑 ∈ D𝑚 , if 𝑅1 ⇒𝑅 𝑅2 then

r
𝑅1 [𝑋 B 𝑑]

z
=

r
𝑅2 [𝑋 B 𝑑]

z
.

Proof.
Induction on 𝑅1 ⇒𝑅 𝑅2:

Case rule FRPair:

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

44 Anon.

(1) 𝑅1 = ⟨R1 𝑥1,R2 𝑥2⟩
(2) 𝑅2 = R3 ⟨𝑥1, 𝑥2⟩
(3) R3 (⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B ⟨R1 (𝑎, 𝑎′),R2 (𝑏, 𝑏 ′)⟩
If 𝑥1 or 𝑥2 ∉ 𝑋 , 𝑥1 [𝑋 B 𝑑] = ⊥ or 𝑥2 [𝑋 B 𝑑] = ⊥
as the rule SRR is the only semantic rule for 𝑅,

(4)
r
𝑅1 [𝑋 B 𝑑]

z
=

r
𝑅2 [𝑋 B 𝑑]

z
= ⊥.

Thus, the remained case is that
(5) 𝑥1 B [v ↦→ 𝑛v]v∈V(𝑔) ∈ 𝑋 B 𝑑

(6) 𝑥2 B [v ↦→ 𝑛′
v
]
v∈V(𝑔) ∈ 𝑋 B 𝑑

From [1], [5] and [6], we have
(7) 𝑅1 =

〈
R1 [v ↦→ 𝑛v]v∈V(𝑔) ,R2 [v ↦→ 𝑛′

v
]
v∈V(𝑔)

〉
From [2], [5] and [6], we have

(8) 𝑅2 = R3

〈
[v ↦→ 𝑛v]v∈V(𝑔) , [v ↦→ 𝑛′

v
]
v∈V(𝑔)

〉
By SRPair, SRR and SVRed on [7], we have

(9) J𝑅1 K =
〈
R1 {𝑛v v∈V(𝑔) },R2 {𝑛′v v∈V(𝑔) }

〉
By SRPair, SRR and SVRed on [8], we have

(10) J𝑅2 K = R3

{
⟨𝑛v, 𝑛′v⟩v∈V(𝑔)

}
From [10] and [3], we have

(11) J𝑅2 K = ⟨R1 {𝑛v}v∈V(𝑔) ,R2 {𝑛′v}v∈V(𝑔)⟩
From [9] and [11], we haver

𝑅1 [𝑋 B 𝑑]
z
=

r
𝑅2 [𝑋 B 𝑑]

z
.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

45

4.4 Iteration Correctness Conditions
4.4.1 Pull, Idempotent

Theorem 22 (Correctness of Pull (idempotent reduction)).
For all R, F , C, I, P, and 𝑘 ≥ 1, if the conditions C1 - C9 hold,
S𝑘
pull+ (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

We assume that
(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑛. R(𝑛, 𝑛) = 𝑛

(5) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(6) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(7) ∀𝑒. P(⊥, 𝑒) = ⊥
(8) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(9) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)
Form Def. 6, we have
S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)

Proof by induction on 𝑘 :
Base Case:

𝑘 = 1
We should show that
S1
pull+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<1}F (𝑝)

that is
S1
pull+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩∧ C(𝑝) }F (𝑝)

We consider two cases:
Case:

(10) C(⟨𝑣, 𝑣⟩)
We should show that
S1
pull+ (𝑣) = R { ⟨𝑣,𝑣⟩ }F (𝑝)

that is
S1
pull+ (𝑣) = F (⟨𝑣, 𝑣⟩)

that is straightforward from Def. 1, [5] and [10].
Case:

(11) ¬C(⟨𝑣, 𝑣⟩)
We should show that
S1
pull+ (𝑣) = R∅ F (𝑝)

that is
S1
pull+ (𝑣) = ⊥

that is straightforward from Def. 1, [6] and [11].

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

46 Anon.

Inductive Case:
(12) 𝑘 > 1
The induction hypothesis is:

(13) S𝑘′
pull+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘′ }F (𝑝) for all 𝑣 and 𝑘 ′ ≤ 𝑘

We should show that
S𝑘+1
pull+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

From Def. 1, we consider two cases:
Case:

(14) CPreds
𝑘 (𝑣) ≠ ∅

(15) S𝑘+1
pull+ (𝑣) = R

[
S𝑘
pull+ (𝑣), R𝑢∈preds(𝑣) P

(
S𝑘
pull+ (𝑢), ⟨𝑢, 𝑣⟩

)]
From [15] and [13]

(16) S𝑘+1
pull+ (𝑣) = R[
S𝑘
pull+ (𝑣),
R𝑢∈preds(𝑣)

[
P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)]
]

In the case that the size of the set of paths is more than one, from [8], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [9], and
in the case that the set of paths is empty, from R∅ = ⊥ and [7],

we have
(17) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
After substituting [17] in [16]

(18) S𝑘+1
pull+ (𝑣) = R[
S𝑘
pull+ (𝑣),
R𝑢∈preds(𝑣)

[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

]
]

that is
(19) S𝑘+1

pull+ (𝑣) = R[
S𝑘
pull+ (𝑣),
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)]

From [19] and Lemma 9
(20) S𝑘+1

pull+ (𝑣) = R[
S𝑘
pull+ (𝑣),
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)]

that is
(21) S𝑘+1

pull+ (𝑣) = R[
S𝑘
pull+ (𝑣),
R𝑝′ ∈ {𝑝′ | 𝑝′∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′)]

From [21] and [13]
(22) S𝑘+1

push+ (𝑣) = R[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝),
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ 0<length(𝑝)<𝑘+1}F (𝑝)]

From [22] and [4]
S𝑘+1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),

Case:

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

47

(23) CPreds
𝑘 (𝑣) = ∅

(24) S𝑘+1
pull+ (𝑣) = S

𝑘
pull+ (𝑣)

(25) CPreds
𝑘 (𝑣) =

{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘

pull+ (𝑢) ≠ S
𝑘−1
pull+ (𝑢)

}
From [13] and [24],

(26) S𝑘+1
pull+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝)

From [26] and [1],
(27) S𝑘+1

pull+ (𝑣) = R[
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ 0<length(𝑝 · ⟨𝑢,𝑣⟩)<𝑘 }F (𝑝),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]

From [27] and Lemma 9,
(28) S𝑘+1

pull+ (𝑣) = R[
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ 0<length(𝑝 · ⟨𝑢,𝑣⟩)<𝑘 }F (𝑝),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]

From [28], [2] and [3]
(29) S𝑘+1

pull+ (𝑣) = R[
R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | ∃𝑢. 𝑝′∈Paths(𝑢) ∧ C(𝑝′) ∧ length(𝑝′)<𝑘−1}F (𝑝 ′ · ⟨𝑢, 𝑣⟩),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]

In the case that the size of the set of paths is more than one, from [8], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [9], and
in the case that the set of paths is empty, from R∅ = ⊥ and [7],
(30) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝 · ⟨𝑢, 𝑣⟩)
From [29] and [30], we have

(31) S𝑘+1
pull+ (𝑣) = R[
R𝑢∈preds(𝑣) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝), ⟨𝑢, 𝑣⟩

)
,

R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]
From [31] and [13], we have

(32) S𝑘+1
pull+ (𝑣) = R[

R𝑢∈preds(𝑣) P
(
𝑆𝑘−1
pull+ (𝑢), ⟨𝑢, 𝑣⟩

)
,

R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]
From [23] and [25], we have

(33) For all 𝑢 ∈ preds(𝑣): S𝑘
pull+ (𝑢) = S

𝑘−1
pull+ (𝑢)

From [32] and [33], we have
(34) S𝑘+1

pull+ (𝑣) = R[

R𝑢∈preds(𝑣) P
(
𝑆𝑘
pull+ (𝑢), ⟨𝑢, 𝑣⟩

)
,

R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]
From [34] and [13], we have

(35) S𝑘+1
pull+ (𝑣) = R[
R𝑢∈preds(𝑣) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
,

R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]
In the case that the size of the set of paths is more than one, from [8], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [9], and
in the case that the set of paths is empty, from R∅ = ⊥ and [7],
(36) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

48 Anon.

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
From [35] and [36], we have

(37) S𝑘+1
pull+ (𝑣) = R[
R𝑢∈preds(𝑣) R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]

that is
(38) S𝑘+1

pull+ (𝑣) = R[
R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 ′),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]

From [25] and Lemma 9,
(39) S𝑘+1

pull+ (𝑣) = R[
R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 ′),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]

From [39], [2] and [3], we have
(40) S𝑘+1

pull+ (𝑣) = R[
R𝑝′ ∈ {𝑝′ | ∃𝑢. 𝑢∈preds(𝑣) ∧ 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 ′),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]

that is
(41) S𝑘+1

pull+ (𝑣) = R[
R𝑝′ ∈ {𝑝′ | 𝑝∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C(⟨𝑣,𝑣⟩) }F (𝑝)]

that is
S𝑘+1
pull+ (𝑣) = R𝑝′ ∈ {𝑝′ | 𝑝∈Paths(𝑣) ∧ C(𝑝′) ∧ length(𝑝′)<𝑘+1}F (𝑝 ′)

Lemma 9.
∀𝑝, 𝑣 . let 𝑢 B tail(𝑝) in C(𝑝) ↔ C(𝑝 · ⟨𝑢, 𝑣⟩)

Proof.
We consider the two cases:
Case:

(1) C(𝑝) = (ℎ𝑒𝑎𝑑 (𝑝) = 𝑠)
Straightforward by

ℎ𝑒𝑎𝑑 (𝑝) = 𝑠 ↔ ℎ𝑒𝑎𝑑 (𝑝 · ⟨𝑢, 𝑣⟩) = 𝑠

(2) C(𝑝) = True

Straightforward by
True↔ True

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

49

4.4.2 Pull, Non-idempotent

Theorem 23 (Correctness of Pull (non-idempotent reduction)).
For all R, F , I, P, 𝑘 ≥ 1 and 𝑠 ,
let C(𝑝) = (head(𝑝) = 𝑠), and
there is no cycle that contains 𝑠 ,
if the conditions C1 - C8 hold,
S𝑘
pull− (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

Proof.
We assume that

(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(5) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(6) ∀𝑒. P(⊥, 𝑒) = ⊥
(7) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(8) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)
(9) C(𝑝) = (head(𝑝) = 𝑠)
(10) There is no cycle that contains 𝑠 .

Form Def. 6, we have
S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)

Proof by induction on 𝑘 :
Base Case:

𝑘 = 1
We should show that
S1
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<1}F (𝑝)

that is
S1
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩∧ C(𝑝) }F (𝑝)

We consider two cases:
Case:

(11) C(⟨𝑣, 𝑣⟩)
We should show that
S1
pull− (𝑣) = R { ⟨𝑣,𝑣⟩ }F (𝑝)

that is
S1
pull− (𝑣) = F (⟨𝑣, 𝑣⟩)

that is straightforward from Def. 2, [4] and [11].
Case:

(12) ¬C(⟨𝑣, 𝑣⟩)
We should show that
S1
pull− (𝑣) = R∅ F (𝑝)

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

50 Anon.

that is
S1
pull− (𝑣) = ⊥

that is straightforward from Def. 2, [5] and [12].

Inductive Case:
(13) 𝑘 > 1
The induction hypothesis is:

(14) S𝑘′
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘′ }F (𝑝) for all 𝑣 and 𝑘 ′ ≤ 𝑘

We should show that
S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

We consider two cases:
Case:

(15) 𝑣 = 𝑠

By Lemma 11 on [9] and [4], [5], and [10],
(16) S𝑘+1

pull− (𝑠) = I(𝑠)
By [4] and [9],

(17) I(𝑠) = F (⟨𝑠, 𝑠⟩)
From [16] and [17],

(18) S𝑘+1
pull− (𝑠) = F (⟨𝑠, 𝑠⟩)

From [9] and [10],
(19) R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑠) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝) =

R𝑝 ∈ {𝑝 | 𝑝∈Paths ∧ tail(𝑝)=𝑠 ∧ head(𝑝)=𝑠 ∧ length(𝑝)<𝑘+1}F (𝑝) =
R𝑝 ∈ {⟨𝑠,𝑠 ⟩ }F (𝑝) =
F (⟨𝑠, 𝑠⟩)

From [18] and [19],
S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

Case:
(20) 𝑣 ≠ 𝑠

From Def. 2, we consider two sub-cases:
Sub-case:

(21) CPreds
𝑘 (𝑣) ≠ ∅

(22) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) P

(
S𝑘
pull− (𝑢), ⟨𝑢, 𝑣⟩

)
From [22] and [14]

(23) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣)

[
P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)]
In the case that the size of the set of paths is more than one, from [7], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [8], and
in the case that the set of paths is empty, from R∅ = ⊥ and [6],
we have

(24) P
(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
After substituting [24] in [23]

(25) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣)

[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

]
that is

(26) S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

From [26] and Lemma 9

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

51

(27) S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

that is
(28) S𝑘+1

pull− (𝑣) = R𝑝′ ∈ {𝑝′ | 𝑝′∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′)
From [28] and [20]
S𝑘+1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),

Sub-case:
(29) CPreds

𝑘 (𝑣) = ∅
(30) S𝑘+1

pull− (𝑣) = S
𝑘
pull− (𝑣)

(31) CPreds
𝑘 (𝑣) =

{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘

pull− (𝑢) ≠ S
𝑘−1
pull− (𝑢)

}
From [30] and [14],

(32) S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝)

From [32] and [20],
(33) S𝑘+1

pull− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ 0<length(𝑝 · ⟨𝑢,𝑣⟩)<𝑘 }F (𝑝)
From [33] and Lemma 9,

(34) S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ 0<length(𝑝 · ⟨𝑢,𝑣⟩)<𝑘 }F (𝑝)

From [34], [2] and [3]
(35) S𝑘+1

pull− (𝑣) = R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | ∃𝑢. 𝑝′∈Paths(𝑢) ∧ C(𝑝′) ∧ length(𝑝′)<𝑘−1}F (𝑝 ′ · ⟨𝑢, 𝑣⟩)
In the case that the size of the set of paths is more than one, from [7], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [8], and
in the case that the set of paths is empty, from R∅ = ⊥ and [6],

(36) P
(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝 · ⟨𝑢, 𝑣⟩)
From [35] and [36], we have

(37) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝), ⟨𝑢, 𝑣⟩

)
From [37] and [14], we have

(38) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) P

(
𝑆𝑘−1
pull− (𝑢), ⟨𝑢, 𝑣⟩

)
From [29] and [31], we have

(39) For all 𝑢 ∈ preds(𝑣): S𝑘
pull− (𝑢) = S

𝑘−1
pull− (𝑢)

From [38] and [39], we have
(40) S𝑘+1

pull− (𝑣) = R𝑢∈preds(𝑣) P
(
𝑆𝑘
pull− (𝑢), ⟨𝑢, 𝑣⟩

)
From [40] and [14], we have

(41) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
In the case that the size of the set of paths is more than one, from [7], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [8], and
in the case that the set of paths is empty, from R∅ = ⊥ and [6],

(42) P
(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
From [41] and [42], we have

(43) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

that is
(44) S𝑘+1

pull− (𝑣) = R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 ′)
From [31] and Lemma 9,

(45) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 ′)

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

52 Anon.

From [45], [2] and [3], we have
(46) S𝑘+1

pull− (𝑣) = R𝑝′ ∈ {𝑝′ | ∃𝑢. 𝑢∈preds(𝑣) ∧ 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 ′)
that is

(47) S𝑘+1
pull− (𝑣) = R𝑝′ ∈ {𝑝′ | 𝑝∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′)

From [47] and [20], we have
S𝑘+1
pull− (𝑣) = R𝑝′ ∈ {𝑝′ | 𝑝∈Paths(𝑣) ∧ C(𝑝′) ∧ length(𝑝′)<𝑘+1}F (𝑝 ′)

Lemma 10.
For all R, F , C, I, P, 𝑘 ≥ 1 and 𝑠 , 𝑣 , where
(1) C(𝑝) = (head(𝑝) = 𝑠),
(2) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(3) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
if S𝑘

pull− (𝑣) ≠ S
𝑘−1
pull− (𝑣),

then 𝑣 is reachable from 𝑠 .

Proof.
Immediate from induction on 𝑘 and case analysis on branches of Def. 2.
The base case is from [1], [2] and [3].

Lemma 11.
For all R, F , C, I, P, 𝑘 ≥ 1 and 𝑠 , 𝑣 , where
(1) C(𝑝) = (head(𝑝) = 𝑠),
(2) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(3) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
there is no cycle that contains 𝑠 ,
then S𝑘

pull− (𝑠) = I(𝑠).

Proof.
Immediate from induction on 𝑘 and case analysis on branches of Def. 2.
The second branch is refuted by Lemma 10 and the assumption of acyclicity for 𝑠 .

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

53

4.4.3 Push, Idempotent

Theorem 24 (Correctness of Push (idempotent reduction)).
For all R, F , C, I, P, and 𝑘 ≥ 1, if the conditions C1 - C9 hold,
S𝑘
push+ (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

Proof.
We assume that

(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑛. R(𝑛, 𝑛) = 𝑛

(5) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(6) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(7) ∀𝑒. P(⊥, 𝑒) = ⊥
(8) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(9) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)
Form Def. 6, we have
S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)

Proof by induction on 𝑘 :
Base Case:

We should show that
S1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<1}F (𝑝)

that is
S1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩∧ C(𝑝) }F (𝑝)

We consider two cases:
Case:

(10) C(⟨𝑣, 𝑣⟩)
We should show that
S1
push+ (𝑣) = R { ⟨𝑣,𝑣⟩ }F (𝑝)

that is
S1
push+ (𝑣) = F (⟨𝑣, 𝑣⟩)

that is straightforward from Def. 3, [5] and [10].
Case:

(11) ¬C(⟨𝑣, 𝑣⟩)
We should show that
S1
push+ (𝑣) = R∅ F (𝑝)

that is
S1
push+ (𝑣) = ⊥

that is straightforward from Def. 3, [6] and [11].

Inductive Case:

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

54 Anon.

The induction hypothesis is:
(12) S𝑘

push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), 𝑘 > 1
We should show that
S𝑘+1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

From Def. 3, we have that
(13) S𝑘+1

push+ (𝑣) = 𝑆𝑛

(14) {𝑢1, .., 𝑢𝑛} = 𝑢 ∈
{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘

push+ (𝑢) ≠ S
𝑘−1
push+ (𝑢)

}
(15) 𝑆0 = S𝑘

push+ (𝑣)

(16) 𝑆𝑖+1 = R
(
𝑆𝑖 , P(S𝑘

push+ (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩)
)

From [13]-[16], and [2] and [3], we have
(17) S𝑘+1

push+ (𝑣) = R
[
R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘

push+ (𝑢)≠S
𝑘−1
push+ (𝑢) }

[
P(S𝑘

push+ (𝑢), ⟨𝑢, 𝑣⟩)
]
, S𝑘

push+ (𝑣)
]

From Lemma 12, and [2], [3], and [4], we have
(18) S𝑘

push+ (𝑣) = R
(
S𝑘
push+ (𝑣),R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘

push+ (𝑢)=S
𝑘−1
push+ (𝑢) }

P(S𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩)

)
After substituting [18] in [17]

(19) S𝑘+1
push+ (𝑣) = R[R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘

push+ (𝑢)≠S
𝑘−1
push+ (𝑢) }

[
P(S𝑘

push+ (𝑢), ⟨𝑢, 𝑣⟩)
]
,

R(S𝑘
push+ (𝑣),R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘

push+ (𝑢)=S
𝑘−1
push+ (𝑢) }

[
P(S𝑘

push+ (𝑢), ⟨𝑢, 𝑣⟩)
]
)]

From [19], [2] and [3]
(20) S𝑘+1

push+ (𝑣) = R
[
R𝑢∈preds(𝑣)

[
P(S𝑘

push+ (𝑢), ⟨𝑢, 𝑣⟩)
]
, S𝑘

push+ (𝑣)
]

From [20] and [12]
(21) S𝑘+1

push+ (𝑣) = R[
R𝑢∈preds(𝑣)

[
P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)]
,

S𝑘
push+ (𝑣)]

In the case that the size of the set of paths is more than one, from [8], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [9], and
in the case that the set of paths is empty, from R∅ = ⊥ and [7],
we have

(22) P(R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩) =
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

After substituting [22] in [21]
(23) S𝑘+1

push+ (𝑣) = R[
R𝑢∈preds(𝑣)

[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

]
,

S𝑘
push+ (𝑣)]

that is
(24) S𝑘+1

push+ (𝑣) = R[
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩),
S𝑘
push+ (𝑣)]

From [24] and Lemma 9
(25) S𝑘+1

push+ (𝑣) = R[
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩),
S𝑘
push+ (𝑣)]

that is
(26) S𝑘+1

push+ (𝑣) = R[

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

55

R𝑝′ ∈ {𝑝′ | 𝑝′∈Paths(𝑣) ∧ C(𝑝′) ∧ length(𝑝′)<𝑘+1}F (𝑝 ′),
S𝑘
push+ (𝑣)]

From [26] and [12]
(27) S𝑘+1

push+ (𝑣) = R[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝)]

From [27] and [4]
(28) S𝑘+1

push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),

Lemma 12.
For all R, F , C, I, P, if the conditions C1 - C10 hold,
∀𝑣,𝑢, 𝑘.
𝑘 ≥ 1 ∧ 𝑢 ∈ preds(𝑣) ∧ S𝑘

push+ (𝑢) = S
𝑘−1
push+ (𝑢) →

S𝑘
push+ (𝑣) = R(S

𝑘
push+ (𝑣),P(S

𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩))

Proof.
We assume that

(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑛. R(𝑛, 𝑛) = 𝑛

(5) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(6) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(7) ∀𝑒. P(⊥, 𝑒) = ⊥
(8) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

C(𝑝1) ∧ C(𝑝2) ∧
tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(9) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)

Proof by induction on 𝑘 :
Base Case:

(10) 𝑘 = 1
We assume that

(11) 𝑢 ∈ preds(𝑣)
(12) S1

push+ (𝑢) = S
0
push+ (𝑢)

From Def. 3 on [12]
(13) S1

push+ (𝑢) = ⊥
We need to show that

(14) S1
push+ (𝑣) = R(S

1
push+ (𝑣),P(S

1
push+ (𝑢), ⟨𝑢, 𝑣⟩))

From [13] and [7], we need to show that
(15) S1

push+ (𝑣) = R(S
1
push+ (𝑣),⊥)

that is immediate from [1].

Inductive Case:

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

56 Anon.

The induction hypothesis is
(16) ∀𝑣,𝑢.

𝑢 ∈ preds(𝑣) ∧ S𝑘−1
push+ (𝑢) = S

𝑘−2
push+ (𝑢) →

S𝑘−1
push+ (𝑣) = R(S

𝑘−1
push+ (𝑣),P(S

𝑘−1
push+ (𝑢), ⟨𝑢, 𝑣⟩))

We assume that
(17) 𝑘 > 1
(18) 𝑢 ∈ preds(𝑣)
(19) S𝑘

push+ (𝑢) = S
𝑘−1
push+ (𝑢)

We show that
S𝑘
push+ (𝑣) = R(S

𝑘
push+ (𝑣),P(S

𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩))

From Def. 3 on [17], we have that
(20) S𝑘

push+ (𝑣) = 𝑆𝑛

(21) {𝑢1, .., 𝑢𝑛} = 𝑢 ∈
{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘−1

push+ (𝑢) ≠ S
𝑘−2
push+ (𝑢)

}
(22) 𝑆0 = S𝑘−1

push+ (𝑣)

(23) 𝑆𝑖+1 = R
(
𝑆𝑖 , P(S𝑘−1

push+ (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩)
)

From [20]-[23], and [2] and [3], we have
(24) S𝑘

push+ (𝑣) = R
[
R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘−2

push+ (𝑢)≠S
𝑘−1
push+ (𝑢) }

[
P(S𝑘−1

push+ (𝑢), ⟨𝑢, 𝑣⟩)
]
, S𝑘−1

push+ (𝑣)
]

We consider two cases:
Case:

(25) S𝑘−2
push+ (𝑢) ≠ S

𝑘−1
push+ (𝑢)

From [24], [25], and [4] we have
(26) S𝑘

push+ (𝑣) = R
(
S𝑘
push+ (𝑣),P(S

𝑘−1
push+ (𝑢), ⟨𝑢, 𝑣⟩)

)
From [26] and [19]
S𝑘
push+ (𝑣) = R

(
S𝑘
push+ (𝑣),P(S

𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩)

)
Case:

(27) S𝑘−2
push+ (𝑢) = S

𝑘−1
push+ (𝑢)

From [24] and [4] we have
(28) S𝑘

push+ (𝑣) = R
(
S𝑘
push+ (𝑣),S

𝑘−1
push+ (𝑣)

)
From [27] and [19], we have

(29) S𝑘−1
push+ (𝑢) = S

𝑘−2
push+ (𝑢)

From [16] on [18] and [29] and then [19], we have
(30) S𝑘−1

push+ (𝑣) = R(S
𝑘−1
push+ (𝑣),P(S

𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩))

From [28], [30] and [2], we have
S𝑘
push+ (𝑣) = R(S

𝑘
push+ (𝑣),P(S

𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩))

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

57

4.4.4 Push, Non-idempotent

We consider the two variants in turn.
The first variant of push, non-idempotent was defined in Fig. 8, Def. 4.

Theorem 25 (Correctness of Push (non-idempotent reduction) I).
For all R, F , I, P, 𝑘 ≥ 1, and 𝑠 ,
let C(𝑝) = (head(𝑝) = 𝑠),
if the conditions C1 - C8 hold, and
𝑠 is not on any cycle,
S𝑘
push− (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

Proof.
We assume that

(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(5) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(6) ∀𝑒. P(⊥, 𝑒) = ⊥
(7) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(8) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)
(9) C(𝑝) = (head(𝑝) = 𝑠)
(10) There is no cycle that contains 𝑠 .

Form Def. 6, we have
S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)

Proof by induction on 𝑘 :
Base Case:

𝑘 = 1
We should show that
S1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<1}F (𝑝)

that is
S1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩∧ C(𝑝) }F (𝑝)

We consider two cases:
Case:

(11) C(⟨𝑣, 𝑣⟩)
We should show that
S1
push− (𝑣) = R { ⟨𝑣,𝑣⟩ }F (𝑝)

that is
S1
push− (𝑣) = F (⟨𝑣, 𝑣⟩)

that is straightforward from Def. 4, [4] and [11].
Case:

(12) ¬C(⟨𝑣, 𝑣⟩)

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

58 Anon.

We should show that
S1
push− (𝑣) = R∅ F (𝑝)

that is
S1
push− (𝑣) = ⊥

that is straightforward from Def. 4, [5] and [12].

Inductive Case:
(13) 𝑘 > 1
The induction hypothesis is:

(14) S𝑘′
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘′ }F (𝑝) for all 𝑣 and 𝑘 ′ ≤ 𝑘

We should show that
S𝑘+1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

We consider two cases:
Case:

(15) 𝑣 = 𝑠

By Lemma 14 on [9] and [4], [5] and [10],
(16) S𝑘+1

push− (𝑠) = I(𝑠)
By [4] and [9],

(17) I(𝑠) = F (⟨𝑠, 𝑠⟩)
From [16] and [17],

(18) S𝑘+1
push− (𝑠) = F (⟨𝑠, 𝑠⟩)

From [9] and [10],
(19) R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑠) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝) =

R𝑝 ∈ {𝑝 | 𝑝∈Paths ∧ tail(𝑝)=𝑠 ∧ head(𝑝)=𝑠 ∧ length(𝑝)<𝑘+1}F (𝑝) =
R𝑝 ∈ {⟨𝑠,𝑠 ⟩ }F (𝑝) =
F (⟨𝑠, 𝑠⟩)

From [18] and [19],
S𝑘+1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

Case:
(20) 𝑣 ≠ 𝑠

From Def. 4, [1], [2], and [3], we have
(21) S𝑘+1

push− (𝑣) = R𝑢∈preds(𝑣) P
(
S𝑘
push− (𝑢), ⟨𝑢, 𝑣⟩

)
From [21] and [14]

(22) S𝑘+1
push− (𝑣) = R𝑢∈preds(𝑣)

[
P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)]
In the case that the size of the set of paths is more than one, from [7], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [8], and
in the case that the set of paths is empty, from R∅ = ⊥ and [6],
we have

(23) P
(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
After substituting [23] in [22]

(24) S𝑘+1
push− (𝑣) = R𝑢∈preds(𝑣)

[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

]
that is

(25) S𝑘+1
push− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

From [25] and Lemma 9

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

59

(26) S𝑘+1
push− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

that is
(27) S𝑘+1

push− (𝑣) = R𝑝′ ∈ {𝑝′ | 𝑝′∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′)
From [27] and [20]
S𝑘+1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),

Lemma 13.
For all R, F , C, I, P, 𝑘 ≥ 1 and 𝑠 , 𝑣 , where
(1) C(𝑝) = (head(𝑝) = 𝑠),
(2) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(3) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
if S𝑘

push− (𝑣) ≠ S
𝑘−1
push− (𝑣),

then 𝑣 is reachable from 𝑠 .

Proof.
Immediate from induction on 𝑘 for Def. 4.
The base case is from [1], [2] and [3].

Lemma 14.
For all R, F , C, I, P, 𝑘 ≥ 1 and 𝑠 , 𝑣 , where
(1) C(𝑝) = (head(𝑝) = 𝑠),
(2) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(3) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
there is no cycle that contains 𝑠 ,
then S𝑘

push− (𝑠) = I(𝑠).

Proof.
Immediate from induction on 𝑘 for Def. 4.
The inductive case is refuted by Lemma 13 and the assumption of acyclicity for 𝑠 .

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

60 Anon.

We now consider the second variant. The second variant of push, non-idempotent was defined
in Def. 7.

Theorem 26 (Correctness of Push (non-idempotent reduction) II).
For all R, F , C, I, P, and 𝑘 ≥ 1, if the conditions C1 - C8 and C11 hold,
S𝑘
push− (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

We assume that
(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(5) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(6) ∀𝑒. P(⊥, 𝑒) = ⊥
(7) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(8) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)
(9) ∀𝑛, 𝑛′. R(𝑛,R(P(𝑛′, ⟨𝑢, 𝑣⟩),

B (𝑛′, ⟨𝑢, 𝑣⟩))) = 𝑛

Form Def. 6, we have
S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)

Proof by induction on 𝑘 :
Base Case:

𝑘 = 1
We should show that
S1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<1}F (𝑝)

that is
S1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩∧ C(𝑝) }F (𝑝)

We consider two cases:
Case:

(10) C(⟨𝑣, 𝑣⟩)
We should show that
S1
push− (𝑣) = R { ⟨𝑣,𝑣⟩ }F (𝑝)

that is
S1
push− (𝑣) = F (⟨𝑣, 𝑣⟩)

that is straightforward from Def. 4, [4] and [10].
Case:

(11) ¬C(⟨𝑣, 𝑣⟩)
We should show that
S1
push− (𝑣) = R∅ F (𝑝)

that is
S1
push− (𝑣) = ⊥

that is straightforward from Def. 4, [5] and [11].

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

61

Inductive Case:
(12) 𝑘 > 1
The induction hypothesis is:

(13) S𝑘′
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘′ }F (𝑝) for all 𝑣 and 𝑘 ′ ≤ 𝑘

We should show that
S𝑘+1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

By Lemma 15 on [1], [2], [3], [6] and [9], we have
(14) S𝑘+1

push− (𝑣) = R
[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S𝑘

push− (𝑢), ⟨𝑢, 𝑣⟩)
]]

From [14] and [13]
(15) S𝑘+1

push− (𝑣) = R[
I(𝑣),
R𝑢∈preds(𝑣)

[
P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)]
]

In the case that the size of the set of paths is more than one, from [7], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [8], and
in the case that the set of paths is empty, from R∅ = ⊥ and [6],
we have

(16) P
(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
After substituting [16] in [15]

(17) S𝑘+1
push− (𝑣) = R[
I(𝑣),
R𝑢∈preds(𝑣)

[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

]
]

that is
(18) S𝑘+1

push− (𝑣) = R[
I(𝑣),
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)]

From [18] and Lemma 9
(19) S𝑘+1

push− (𝑣) = R[
I(𝑣),
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)]

that is
(20) S𝑘+1

push− (𝑣) = R[
I(𝑣),
R𝑝′ ∈ {𝑝′ | 𝑝′∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′)]

From [4] and [5],
(21) R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)=0}F (𝑝) = I(𝑣)

From [20] and [10],
(22) S𝑘+1

push+ (𝑣) = R[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)=0}F (𝑝),
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ 0<length(𝑝)<𝑘+1}F (𝑝)]

that is
S𝑘+1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

62 Anon.

Lemma 15.
For all R, F , C, I, P, 𝑘 ≥ 1 if the conditions C1 - C9 hold,
S𝑘
push− (𝑣) = R

[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
]]

Proof.
We assume that

(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑒. P(⊥, 𝑒) = ⊥
(5) ∀𝑛, 𝑛′. R(𝑛,R(P(𝑛′, ⟨𝑢, 𝑣⟩),

B (𝑛′, ⟨𝑢, 𝑣⟩))) = 𝑛

Proof by induction on 𝑘 :
Base Case:

(6) 𝑘 = 1
By Def. 4,

(7) ∀𝑢. S0
push− (𝑢) = ⊥

(8) ∀𝑢. S1
push− (𝑢) = I(𝑢)

From [7], [4] and [1],
(9) R

[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S0

push− (𝑢), ⟨𝑢, 𝑣⟩)
]]

= I(𝑣)
From [9] and [8],
S1
push− (𝑢) = R

[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S0

push− (𝑢), ⟨𝑢, 𝑣⟩)
]]

Inductive Case:
The induction hypothesis is

(10) S𝑘
push− (𝑣) = R

[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
]]

forall 𝑘 ′ ≤ 𝑘

We show that
S𝑘+1
push− (𝑣) = R(I(𝑣),R𝑢∈preds(𝑣)

[
P(S𝑘

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
)

From Def. 4, we have that
(11) S𝑘+1

push− (𝑣) B 𝑆𝑛

(12) {𝑢1, .., 𝑢𝑛} = 𝑢 ∈
{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘

push− (𝑢) ≠ S
𝑘−1
push− (𝑢)

}
(13) 𝑆0 B S𝑘

push− (𝑣)
(14) 𝑆𝑖+1 B R(R(𝑆𝑖 ,

B
(
S𝑘−1
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

)
)

P
(
S𝑘
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

)
From [11]-[14], and [2] and [3], we have

(15) S𝑘+1
push+ (𝑣) = R(S

𝑘
push− (𝑣),
R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘

push− (𝑢)≠S
𝑘−1
push− (𝑢) }

R(

B
[
S𝑘−1
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

]
P
[
S𝑘
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

]
)

From [15] and [10], we have

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

63

(16) S𝑘+1
push+ (𝑣) = R(R

[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
]]

,

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)≠S

𝑘−1
push− (𝑢) }

R(

B
[
S𝑘−1
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

]
P
[
S𝑘
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

]
)

that is
(17) S𝑘+1

push+ (𝑣) = R(R(I(𝑣),R(

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)=S

𝑘−1
push− (𝑢) }

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
,

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)≠S

𝑘−1
push− (𝑢) }

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
))

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)≠S

𝑘−1
push− (𝑢) }

R(

B
[
S𝑘−1
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

]
P
[
S𝑘
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

]
)

that by [5] is
(18) S𝑘+1

push+ (𝑣) = R(I(𝑣),R(

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)=S

𝑘−1
push− (𝑢) }

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
,

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)≠S

𝑘−1
push− (𝑢) }

P
[
S𝑘
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

]
))

that is
(19) S𝑘+1

push+ (𝑣) = R(I(𝑣),R(

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)=S

𝑘−1
push− (𝑢) }

[
P(S𝑘

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
,

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)≠S

𝑘−1
push− (𝑢) }

P
[
S𝑘
push− (𝑢𝑖), ⟨𝑢𝑖 , 𝑣⟩

]
))

that is
(20) S𝑘+1

push+ (𝑣) = R(I(𝑣),

R𝑢∈preds(𝑣)
[
P(S𝑘

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
)

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

64 Anon.

4.4.5 Termination

Theorem 27 (Termination).
For all R, F , and C,
if the graph is acyclic or the condition C10 holds, then there exists 𝑘 such that for every 𝑘 ′ ≥ 𝑘

S𝑝𝑒𝑐𝑘′ (𝑣) = S𝑝𝑒𝑐 (𝑣).

Proof.
We assume that

(1) S𝑝𝑒𝑐 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) } F (𝑝)
(2) S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)
(3) The graph is acyclic or
C10 : R(F (𝑝), F (simple(𝑝))) = F (simple(𝑝))

Let
(4) 𝑙 be the longest simple path to 𝑣 (that satisfies C).

Let
(5) 𝑃𝑙+1 = {𝑝 | 𝑝 ∈ Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝) < 𝑙 + 1}
(6) 𝑃𝑙+𝑖 = {𝑝 | 𝑝 ∈ Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝) < 𝑙 + 𝑖}, 𝑖 > 1
(7) 𝑃 = {𝑝 | 𝑝 ∈ Paths(𝑣) ∧ C(𝑝)}

From [2], [5] and [6], we have
(8) S𝑝𝑒𝑐 (𝑣) = R𝑃 F (𝑝)
(9) S𝑝𝑒𝑐𝑙+1 (𝑣) = R𝑃𝑙+1 F (𝑝)
(10) S𝑝𝑒𝑐𝑙+𝑖 (𝑣) = R𝑃𝑙+𝑖 F (𝑝)

From [4], [7], and [5],
(11) No path in 𝑃 \ 𝑃𝑙+1 is simple.
(12) No path in 𝑃 \ 𝑃𝑙+𝑖 is simple.

From [3], we consider two cases:
Case:

(13) The graph is acyclic.
From [11], [12] and [13], we have

(14) 𝑃𝑙+1 = 𝑃𝑙+𝑖 = 𝑃

Thus, from [8], [9] and [10], for 𝑘 ′ = 𝑙 + 1, for all 𝑘 ′ ≥ 𝑘 , we have
S𝑝𝑒𝑐𝑘′ (𝑣) = S𝑝𝑒𝑐 (𝑣)

Case:
(15) ∀𝑝. R(F (𝑝), F (simple(𝑝))) = F (simple(𝑝))
From [11] and [4], we have

(16) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → length(simple(𝑝1)) < 𝑙 + 1
From [7], we have

(17) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → 𝑝 ∈ Paths(𝑣)
(18) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → C(𝑝)

From [17], we have
(19) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → simple(𝑝) ∈ Paths(𝑣)

By Lemma 16 and [18],
(20) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → C(simple(𝑝))

From [19], [20], [16] and [5]
(21) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → simple(𝑝) ∈ 𝑃𝑙+1

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

65

From [15],
(22) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → R(F (𝑝), F (simple(𝑝))) = F (simple(𝑝))

From [21] and [22],
(23) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → R(F (𝑝),R𝑃𝑙+1 F (𝑝)) = R𝑃𝑙+1 F (𝑝)

therefore
(24) R(R𝑃\𝑃𝑙+1 F (𝑝),R𝑃𝑙+1 F (𝑝)) = R𝑃𝑙+1 F (𝑝)

that is
(25) R𝑃 F (𝑝) = R𝑃𝑙+1 F (𝑝)

From [25], [8] and [9], we have
(26) S𝑝𝑒𝑐 (𝑣) = S𝑝𝑒𝑐𝑙+1 (𝑣)

Similarly, for every 𝑘 > 𝑙 + 1, we can prove that
(27) S𝑝𝑒𝑐𝑘 (𝑣) = S𝑝𝑒𝑐𝑙+1 (𝑣)

From [26] and [27], we have that for 𝑘 ′ ≥ 𝑙 + 1,
S𝑝𝑒𝑐𝑘′ (𝑣) = S𝑝𝑒𝑐 (𝑣)

Lemma 16.
∀𝑝. C(𝑝) ↔ C(simple(𝑝))

Proof.
We consider the two cases:
Case:

(1) C(𝑝) = (ℎ𝑒𝑎𝑑 (𝑝) = 𝑠)
Simplification removes cycles but does not change the source vertex, therefore,

ℎ𝑒𝑎𝑑 (𝑝) = 𝑠 ↔ ℎ𝑒𝑎𝑑 (𝑝 · ⟨𝑢, 𝑣⟩) = 𝑠

(2) C(𝑝) = True

Straightforward by
True↔ True

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

66 Anon.

5 Implementation
5.1 Mapping Iteration-Map-Reduce to Graph Frameworks
In this section, we map our synthesized functions to graph computations on different graph
processing frameworks. We first present the runtime for each framework to understand how
different user-defined functions get invoked in these frameworks, and then show how init_vertex,
reduce and propagate get utilized for path computations on these frameworks. We select four
different graph processing frameworks: PowerGraph [1] and Gemini [4] are distributed graph
processing systems, Ligra [2] is a shared-memory graph processing system while GridGraph [5] is
a disk-based out-of-core graph processing system. Since these frameworks are highly parallel, we
will also discuss how transaction semantics get maintained by our reduce.

We note that Gemini, GridGraph and PowerGraph do not inherently support non-idempotent
functions. However, all these frameworks can be used to calculate non-idempotent reductions by
converting them into idempotent reductions. For example, for the NSP use-case, the non-idempotent
sum function can be expressed as a “differential sum” which aggregates only the change in the
value instead of the entire new value.

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

67

class Engine<graph, gather_reducer,

message_reducer> {

void run() {

active: Set of signaled vertices

next_active = ∅;

while(active != ∅) {

par_for(v ∈ signalled) {

init(v, msg);

dir_type gd = gather_edges(v);

par_for(e ∈ edges(v, gd))

gv = gather(v, e);

apply(v, gv);

dir_type sd = scatter_edges(v);

par_for(e ∈ edges(v, sd))

scatter(v, e);

} }

active = next_active;

next_active = ∅;

} };

int main() {

Graph<vertex_type, edge_type> g;

g.load();

g.transform_vertices(initialize);

g.transform_edges(init_edge);

Engine engine = new Engine<g,

gather_reducer,

message_reducer>

engine.map_reduce_edges(signal_vertices);

// engine.signal_all();

engine.run();

// T aggregated_value =

// engine.map_reduce_vertices<T>(transform);

}

Fig. 22. PowerGraph Runtime

5.2 PowerGraph
PowerGraph is a distributed graph processing system that provides a shared-memory programming
abstraction. It efficiently processes power-law graphs by incorporating a vertex-cut strategy for
balanced workload distribution, and by parallelizing vertex computations across edges. It achieves
this by splitting vertex-computations across three steps: gather, apply, and scatter. Figure 22
shows PowerGraph’s iterative processing model. The run() method processes a set of vertices in
each iteration by invoking five functions (marked in blue). The gather() function iterates through
edges of a vertex (incoming, outgoing, both or none, as defined by gather_edges()) to aggregate
the values from its neighbors. The apply() function computes a new value of the vertex based on
the aggregated value from the gather step. Finally, the scatter() function iterates through edges
of a vertex (incoming, outgoing, both or none, as defined by scatter_edges()) to propagate its
new value to its neighbors.
In each iteration, the set of vertices to be processed are identified via explicit vertex-signaling

mechanism. Typically, if a vertex’s value changes, it ‘signals’ its neighbors in the scatter()
function so that they get processed in the subsequent iteration. For the first iteration, the set of
vertices to be processed are signalled before invoking the run() method (as shown in main()).

Apart from iterative processing, PowerGraph also provides capabilities for transforming and
reducing vertex (and edge) values. The map_reduce_vertices() function shown in main() can
be used to perform vertex-based reductions.

Mapping Synthesized Functions.
PowerGraph allows expressing graph computations in pull mode (Figure 23) and in push mode
(Figure 24). In pull mode, the propagation of values across edges occurs in the gather step, and the
values propagated to a vertex (or ‘pulled by a vertex’) in this step are passed through an aggregator
as defined in struct reducer. In push mode, value propagation occurs in the scatter step and

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

68 Anon.

struct reducer {

VValueType value;

reducer& operator+=(reducer& other) {

value = reduce(value, other.value);

return *this;

} }

bool changed = false;

void init(vertex_type& v, empty_type& m) { }

dir_type gather_edges(vertex_type& v) {

return in_edges; }

reducer gather(vertex_type& v, edge_type& e) {

if (e.source().data() != none) {

return propagate(e.source(), e);

} else {

return none;

} }

void apply(vertex_type& v, reducer& red_gv) {

changed = false;

if(reduce(red_gv.value, v.data()) !=

v.data()) {

v.data() = red_gv.value;

changed = true;

}

}

dir_type scatter_edges(vertex_type& v) {

return changed ? out_edges : no_edges;

}

void scatter(vertex_type& v,

edge_type& e) {

signal(e.target());

}

Fig. 23. PowerGraph Pull

struct reducer {

VValueType value;

reducer& operator+=(reducer& other) {

value = reduce(value, other.value);

return *this;

} }

bool changed = false;

reducer msg;

void init(vertex_type& v,

empty_type& m) {

msg = m;

}

dir_type gather_edges(vertex_type& v) {

return no_edges;

}

reducer gather(vertex_type& v,

edge_type& e) { }

void apply(vertex_type& v,

reducer& red_gv) {

changed = false;

if(reduce(msg.value, v.data()) !=

v.data()) {

v.data() = msg.value;

changed = true;

} }

dir_type scatter_edges(vertex_type& v) {

return changed ? out_edges : no_edges;

}

void scatter(vertex_type& v,

edge_type& e) {

VValueType new_val = propagate(v, e);

if(reduce(new_val, e.target().data()) !=

e.target().data()) {

signal(e.target(), new_val);

} }

Fig. 24. PowerGraph Push

the values propagated to a vertex (or ‘pushed to a vertex’) in this step are passed through the
aggregator.
In both the modes, the aggregated value is again passed to reduce() operation along with the

vertex’s current value to identify whether the aggregated value is useful. Due to monotonic nature
of reduce(), the usefulness of the value is directly determined by != operator. It is interesting

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

69

to note that push mode can eliminate unnecessary value propagations by invoking reduce() on
the neighboring vertex during scatter to check usefulness of the value before propagating. Also,
since PowerGraph’s semantics ensure that the entire vertex program (gather-apply-scatter) gets
executed atomically, we synthesize reduce() using simple (non-atomic) operators.

Finally, vertex initializations are achieved via amap operation on vertices (by transform_vertices()
operation in main() function). Furthermore, vertex-based reduction is achieved by passing two
functions to map_reduce_vertices(): an aggregation function that performs reduction, and a
transformation function that updates vertex values before aggregation.

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

70 Anon.

5.3 Ligra
Ligra is a single machine shared memory graph processing system that parallelizes computations
across edges and vertices. Since our path-based computations wholly operate on edges, we show
Ligra’s edgeMap() operation in Figure 25. Given a subset of vertices U and an edge function f(),
the edgeMap applies f() on all the outgoing edges of vertices in U. It is interesting to note that edge
function f() must maintain atomicity.

Mapping Synthesized Functions.
Since edgeMap operates on outgoing edges, we compute our path algorithms in push mode. As
shown in Figure 25, our compute() method iteratively invokes edgeMap() on frontier vertices,
i.e., those whose values have been updated. The initial vertex frontier can be defined as the source
vertex for computations relying on the source, or as the entire vertex set when source is not
available (e.g., for connected components algorithm).

Figure 25 shows the structure of our edge function. It propagates value from source to destination
and immediately reduces the propagated value with the destination’s current value. The reduction
operation writes the new value for destination vertex if the propagated value is better than des-
tination’s current value. It is important to note that Ligra invokes edge operations concurrently
without atomicity guarantees like PowerGraph. To maintain atomicity in our edgeFunction(),
our reduce() operation writes the final value using CAS operation.
While Ligra does not natively provide aggregation over vertices, we implemented a parallel

vertex aggregator that maps over vertices and aggregates their values to perform vertex-based
reductions.
vertexSubset edgeMap(graph g,

vertexSubset U, func f, func c) {

vertexSubset out = ∅;

par_for(v ∈ U)

par_for(ngh ∈ out_neighbors(v))

if(c(ngh) && f(v, ngh, w(ngh)))

out = out.insert(ngh);

return out;

}

void compute(graph g) {

VValueType* values =

new VValueType[g.n];

par_for(VIdType i=0;i<n;i++)

values[i] = initialize(i);

vertexSubset frontier(n,src);

// vertexSubset frontier(n, n,

// [1, 1, .., 1]);

while(!frontier.isEmpty()) {

next_frontier = edgeMap(g,

frontier, edgeFunction,

condFunction);

frontier.del();

frontier = next_frontier;

}

frontier.del();

}

bool edgeFunction(VIdType s, VIdType d,

EWeightType w) {

return reduce(&values[d],

propagate(s, EdgeType(s, d, w)));

}

bool condFunction(VIdType d)

{ return true; }

Fig. 25. Ligra Runtime & Push

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

71

5.4 Graphit
Graphit is a single machine shared memory graph processing DSL and framework that parallelizes
computations across edges and vertices Graphit utilizes different scheduling models. Grafs has
adopted the push scheduling model shown in the 26. Given a frontier U and an struct type containing
the edge function f(), the edgeMap applies f() on all the outgoing edges of vertices in U. It is
interesting to note that edge function f() must maintain atomicity.

Mapping Synthesized Functions.
As shown in Figure 26, the main()method iteratively invokes edgeMap() on frontier vertices, i.e.,
those whose values have been updated. The initial vertex frontier can be defined as the source vertex
for computations relying on the source, or as the entire vertex set when source is not available
(e.g., for connected components algorithm).

Figure 26 edgeMap() shows the structure of our edge function. It propagates value from source to
destination and immediately reduces the propagated value with the destination’s current value. The
reduction operation writes the new value for destination vertex if the propagated value is better than
destination’s current value. It is important to note that Graphit invokes edge operations concurrently
without atomicity guarantees like PowerGraph. To maintain atomicity in the edgeMap(), the
reduce() operation writes the final value using CAS operation. To support map and reduce over
the vertices, we have adopted parallel for structure in Graphit framework.

template<typename EDGE_MAP>

vertexSubset edgeset_apply(WGraph g,

vertexSubset U, EDGE_MAP f) {

vertexSubset out = ∅;

par_for(v ∈ U)

par_for(ngh ∈ out_neighbors(v))

if(f(v, ngh, w(ngh)))

out = out.insert(ngh);

return out;

}

struct edgeMap {

bool operator(NodeID s, NodeID d, int w) {

return reduce(&values[d],

propagate(s, EdgeType(s, d, w)));

}

}

int main() {

WGraph g;

g.load();

VValueType* values =

new VValueType[g.n];

par_for(VIdType i=0;i<n;i++)

values[i] = initialize(i);

vertexSubset frontier(n,src);

//vertexSubset frontier(n,n);

addVertex(frontier, src) ;

while(!frontier.isEmpty()) {

next_frontier =

edgeset_apply(edges, frontier, edgeMap());

frontier.del();

frontier = next_frontier;

}

frontier.del();

}

Fig. 26. Graphit Runtime & Push

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

72 Anon.

5.5 Gemini
Gemini is a NUMA-aware, distributed, high-performance graph processing system. It extracts
parallelism across multicores by partitioning threads across NUMA nodes, and uses MPI for
coordination across machines. It incorporates a hybrid push-pull processing model that dynamically
switches between pull mode and push mode depending on the number of active vertices. The pull
mode is performed when number of active vertices is large (based on a threshold), and it effectively
iterates over all the incoming edges of a vertex to compute its next value. On the other hand, the
push mode is performed when number of active vertices is small and it iterates over all the outgoing
edges of a vertex to compute their next value.
Similar to Ligra, we show process_edges() in Figure 27 since our path-based computations

operate on edges only. As we can see, process_edges() accepts four user-defined callbacks along
with a bitmask indicating the set of active vertices. The bitmask is first checked to determine sparsity
of the iteration, based on which, either the first two callbacks are invoked (if sparse), or the other two
call backs are invoked (if dense). The sparse_signal and dense_signal callbacks determine the
value to be propagated from/to a vertex to/from its outgoing and incoming neighbors respectively.
These values are maintained in form of messages, that are shuffled and sorted across NUMA nodes
and machines. Then, the sparse_slot and dense_slot callbacks compute the new vertex value
based on the propagated values (or messages) from sparse_signal and dense_signal respectively,
and also activate neighboring vertices to be processed in the next iteration. It is interesting to note
that iterating over the incoming and outgoing edges is performed by the user-defined callbacks, as
opposed to the runtime as achieved in PowerGraph and Ligra.

Mapping Synthesized Functions.
We leverage Gemini’s hybrid push-pull processing model by expressing our path-based computa-
tions in both, push mode and pull mode. The main() method in Figure 27 first activates the source
vertex by setting its bit value, and then iteratively calls process_edges() (setting all bits activates
all vertices, as required by algorithms like connected components).
In push mode (sparse_signal and sparse_slot), the source vertex emits its value which is

propagated to the outgoing neighbors. Similarly, in the pull mode (dense_signal and dense_slot),
the destination propagates in the values from its incoming neighbors using which it computes the
best value for itself. To ensure atomicity, similar to that for Ligra, CAS operation is used to write
the final value in reduce(). Vertex-based reductions are also achieved in same manner as in Ligra.

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

73

VertexId process_edges(func sparse_signal,

func sparse_slot, func dense_signal,

func dense_slot, Bitmap* active) {

sparse = compute_sparsity(active);

if(sparse) {

par_for(VertexId v ∈ active)

sparse_signal(v);

exchange_messages();

par_for(msg ∈ messages) {

VertexId source = message.vertex;

sparse_slot(source, message.msg_data, outAdjList[v]);

}

} else {

par_for(VertexId v ∈ V)

dense_signal(v, inAdjList[v]);

exchange_messages();

par_for(msg ∈ messages) {

VertexId target = message.vertex;

dense_slot(target, message.msg_data);

}

}

}

int main() {

Graph g;

g.load();

values = g->alloc_vertex_array<VValueType>();

VertexSubset* active_in = g->alloc_vertex_subset();

VertexSubset* active_out = g->alloc_vertex_subset();

for(VertexId i=0; i<g->vertices; ++i)

values[i] = initialize(i);

active_in->clear();

active_in->set_bit(src);

VertexId num_active_vertices = 1;

// active_in->fill();

// VertexId num_active_vertices = graph->vertices;

while(num_active_vertices > 0) {

active_out->clear();

num_active_vertices = g->process_edges(

[&](VertexId src){

g->emit(src, values[src]);

},

[&](VertexId src, VValueType msg, AdjList out_nbrs) {

VertexId activated = 0;

for (AdjUnit* ptr ∈ out_nbrs) {

VertexId dst = ptr->neighbour;

if(reduce(&values[dst], propagate(msg,

EdgeType(src, dst, ptr->edge_data)))) {

active_out->set_bit(dst);

activated += 1;

}

}

return activated;

},

[&](VertexId dst, AdjList in_nbrs) {

VValueType msg = none;

for (AdjUnit* ptr ∈ in_nbrs) {

VertexId src = ptr->neighbour;

reduce(&msg, propagate(values[src],

EdgeType(src, dst, ptr->edge_data)));

}

if (msg != none) g->emit(dst, msg);

},

[&](VertexId dst, VValueType msg) {

if(reduce(&values[dst], msg)) {

active_out->set_bit(dst);

return 1;

}

return 0;

},

active_in

);

swap(active_in, active_out);

}

}

Fig. 27. Gemini Hybrid Push-Pull Runtime

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

74 Anon.

5.6 GridGraph
GridGraph is an out-of-core disk-based graph processing system. It maintains the graph in a
2D grid layout that resides on disk, and uses a streaming partition based processing model to
sequentially accesses disk partitions. Figure 28 shows stream_edges and stream_vertices that
are used to process the graph. The stream_edges function processes active set of edges by reading
the corresponding partitions from disk one-by-one and invoking the user-defined process function
on the edge. The stream_vertices function invokes a user-defined function on active vertices
(similar to map operation). It is interesting to note that both these methods take care of disk
operations so that the user-defined functions can focus solely on edge and vertex computations.

Mapping Synthesized Functions.
Similar to Ligra, we express our path computations on GridGraph in push mode. The main func-
tion first initializes the vertex values using stream_vertices, after which it iteratively calls
stream_edges on outgoing edges of active vertices. For each edge, the computation propagates
the source’s value to the destination in parallel (CAS operation used in reduce() for atomicity).

void stream_edges(func process, Bitmap* active) {

for(partition p ∈ partitions) {

if(p ∉ active)

continue;

for(Edge e ∈ p)

if(e.source ∈ active)

process(e);

}

}

void stream_vertices(func process, Bitmap* active) {

par_for(VertexId v ∈ V) {

if(v ∈ active)

process(v);

}

}

int main() {

Graph g(load_path);

Bitmap* active_in = g.alloc_bitmap();

Bitmap* active_out = g.alloc_bitmap();

vertex_values.init(vertex_path, g.vertices);

g.stream_vertices<VertexId>([&](VertexId i) {

vertex_values[i] = initialize(i);

return 0;

});

active_out->clear();

active_out->set_bit(src);

VertexId num_active_vertices = 1;

// active_out->fill();

// VertexId num_active_vertices = g.vertices;

while (num_active_vertices > 0) {

swap(active_in, active_out);

active_out->clear();

active_vertices = g.stream_edges<VertexId>([&]

(Edge& e) {

if (reduce(&vertex_values[e.target],

propagate(

e.source,

EdgeType(e.source, e.target, e.w))

)) {

active_out->set_bit(e.target);

return 1;

}

return 0;

}, active_in);

} }

Fig. 28. GridGraph Runtime

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

75

5.7 Path-based Reduction Synthesis

//NWR usecase

struct VValueType{

uint32_t first;

uint32_t second;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first < c.first) {

w.first = b.first;

} else {

if (b.first > c.first) {

w.first = c.first;

}

}if (b.second > c.second) {

w.second = b.second;

} else {

if (b.second < c.second) {

w.second = c.second;

}

}

} while(((b.second > c.second ||

b.first < c.first) &&

!(r=cas(a,c,w))));

return r;

}

//Radius usecase

struct VValueType{

uint32_t first;

uint32_t second;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first < c.first) {

w.first = b.first;

} else {

if (b.first > c.first) {

w.first = c.first;

}

}if (b.second < c.second) {

w.second = b.second;

} else {

if (b.second > c.second) {

w.second = c.second;

}

}

} while(((b.second < c.second ||

b.first < c.first) &&

!(r=cas(a,c,w))));

return r;

}

Fig. 29. Generated atomic reduce functions for more elaborate use-cases. The rule FMPair is used to generate

atomic reduce functions for NWR and Radius use-cases, respectively.

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

76 Anon.

//BFS usecase

struct VValueType{

uint32_t first;

uint32_t second;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first < c.first) {

w.first = b.first;

w.second = b.second;

} else {

if (b.first > c.first) {

w.first = c.first;

w.second = c.second;

}

}

} while((b.first < c.first &&

!(r=cas(a,c,w)))); return r;

}

//CC usecase

struct VValueType{

uint32_t first;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first > c.first) {

w.first = b.first;

} else {

if (b.first < c.first) {

w.first = c.first;

}

}

} while((b.first > c.first &&

!(r=cas(a,c,w)))); return r;

}

//SP usecase

struct VValueType{

uint32_t first;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first < c.first) {

w.first = b.first;

} else {

if (b.first > c.first) {

w.first = c.first;

}

}

} while((b.first < c.first &&

!(r=cas(a,c,w)))); return r;

}

//WP usecase

struct VValueType{

uint32_t first;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first > c.first) {

w.first = b.first;

} else {

if (b.first < c.first) {

w.first = c.first;

}

}

} while((b.first > c.first &&

!(r=cas(a,c,w)))); return r;

}

Fig. 30. Generated atomic reduce functions for simple use-cases.

3823

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

77

//WSP usecase

struct VValueType{

uint32_t first;

uint32_t second;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first < c.first) {

w.first = b.first;

w.second = b.second;

} else {

if (b.first > c.first) {

w.first = c.first;

w.second = c.second;

}

}if (c.first == b.first) {

w.first = c.first;

w.second = std::max(b.second, c.second);

}

} while(((b.first < c.first ||

(c.first == b.first &&

b.second > c.second)) &&

!(r=cas(a,c,w))));

return r;

}

Fig. 31. Generated atomic reduce function for WSP

usecase. The rule FPNest is used to generate atomic

reduce functions for WSP usecase.

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

78 Anon.

6 Experimental Results
We presented the core of our experimental results in the main body of the paper. We present the
rest of the experimental results in this section.
• In § 6.1, we study the scalability of fusion. We measure the speedup as the number of fusions
increase.
• In § 6.2 we report the weighted graphs execution times for the unweighted graph execution
times reported in the main body of the paper § 7, Fig. 15.
• In § 6.3, we report the execution times for the normalized execution times reported in the
main body of the paper § 7, Fig. 16.
• In § 6.4, we compare the performance of the push, pull and the hybrid models.
• In § 6.5, we compare the synthesized and handwritten programs for streaming graphs.

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

79

6.1 Fusion Scalability

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 t

im
e

of Iterative path-based reductions

Normalized-Fused Normalized-Unfused

(a)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

N
o

rm
al

iz
e

d
 e

d
ge

 o
p

s

of Iterative path-based reductions

Normalized-Fused Normalized-Unfused

(b)

Fig. 32. Fusion scalability of Grafs on the Radius use-case. The graph is unweighted LiveJournal. The backend

is PowerGraph. (a) Normalized execution time with respect to the execution time of one path-based reduction

and (b) Normalized number of edge operations with respect to the number of edge operations for one

path-based reduction.

In this section, we study the scalability of the fusion transformations. We show that the performance
of the synthesized code scales with the number of fusions.

We compare the fused and unfused implementations of the Radius use-case over several sample
sizes. We increase the size of the sample source set from 1 to 7. Thus, the number of path-based
reductions is increased from 1 to 7. Accordingly, the number of possible fusions is increased from 1
to 7 as well. We run the experiment on the unweighted LiveJournal graph in PowerGraph (push
model) framework. Fig. 32 presents the results that are normalized with respect to the Radius
instance with sample size of one i.e. one path-based reduction.
Fig. 32a shows the execution time of both fused and unfused implementations of the code,

normalized with respect to the execution time of one path-based reduction. Fig. 32b shows the
number of processed edges in both fused and unfused implementations, normalized with respect to
number of edges processed by one path-based reduction. With the increase in the sample size, we
observe a linear increase in the execution time and processed edges for the unfused implementation.
The reason for the linear increase is that the unfused implementation performs the iterative
computations for the sources separately. However, the fused implementation benefits from the
overlapping computations in each iteration and performs them together. Hence, it results in a faster
execution time and a fewer number of edge operations. Thus, it exhibits more scalability than the
unfused implementation.

We note that fusion might be beneficial up to a limit on the number of fused operations. Fusing
many values into a tuple may lead to memory overheads and affect performance due to lack of
locality. A cost model can automatically determine whether fusion can improve performance, and
the granularity of fusion. The cost model can be developed by profiling the dynamic behavior of
the queries on the input graphs.

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

80 Anon.

6.2 The Effect of Fusion

Table 3. Execution times (in seconds). H: Handwritten, S: Synthesized, R: the ratio
𝐻
𝑆
.

Prog. Input Ligra GridGraph Gemini PowerGraph (Push) PowerGraph (Pull) GraphIt (Push)
S H R S H R S H R S H R S H R S H R

DRR

LJ 1.2 2.7 2.3 3.7 16.3 4.3 0.5 1.4 2.8 9.4 31.7 3.3 16.5 60 3.6 0.75 2.2 2.9

TW - - - 82 215 2.6 7 16 2.2 61 184 3 107 392 3.6 12 41 3.3

TM - - - 130 325 2.5 33 110 3.3 94 313 3.3 223 760 3.4 202 345 1.7

FR - - - 223 464 2 27 68 2.5 202 520 2.5 297 1093 3.6 - - -

Trust

LJ 1.1 2.6 2.3 6.2 16 2.5 0.7 1.32 1.8 - - - 19.7 54 2.7 1 2.2 2.1

TW - - - 2413 2433 1 11.9 16 1.3 - - - 151 392 2.6 23 48 2.1

TM - - - 3215 5312 1.6 24 18 0.75 - - - 214 636 3 940 370 0.4

FR - - - 540 620 1.1 7965 11105 1.4 364 419 1.1 367 1003 2.7 - - -

LTrust

LJ 1.7 2.2 1.4 6.7 10 1.5 0.8 1.2 1.4 23 33 1.4 - - - 1.3 2.2 1.7

TW - - - 86 168 1.9 10 15.3 1.5 150 193 1.2 - - - 25 41 1.6

TM - - - 142 186 1.3 12 16.2 1.3 281 324 1.1 - - - 324 679 2.1

FR - - - 584 1048 1.8 5300 7315 1.3 389 442 1.2 - - - - - -

0
20
40
60
80
100

N
or
m
al
iz
ed

#
of

op
s(
%)

Ligra Grid

Graph

Gemini PG

Push

PG

Pull

GraphIt

(DRR)

Ligra Grid

Graph

Gemini PG

Push

PG

Pull

GraphIt

(Trust)

Ligra Grid

Graph

Gemini PG

Push

PG

Pull

GraphIt

(LTrust)

Fig. 33. Edge-work Ratio: Normalized # of edges processed by the fused over the unfused version. Missing

bars are due time-out after 24 hours.

Here we present the results for the effect of fusion on more elaborated use-cases. Similar to
Fig. 15 and Table 1 in section § 7, we report The edge-work ratio and absolute execution times for
weighted graphs in Fig. 33 and Table 3 respectively. We can observe that like unweighted graphs,
fusing results in overal 2.1× speedup across different frameworks and input graphs.

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

81

6.3 Fusion Types

Use-case Input Ligra GridGraph Gemini PowerGraph (Push) PowerGraph (Pull)
H S R H S R H S R H S R H S R

WSP
LJ 1 0.7 1.4 5.3 3.2 1.65 0.54 0.4 1.35 7 3.2 2.1 18.3 8.9 2
TW 37.4 19.6 1.9 10 6.5 1.5 47.2 27 1.74 130.9 69.6 1.9
TM 71 37.4 1.9 14.3 9.3 1.5 78.7 45.3 1.7 199.2 92.5 2.1
FR 142.6 81 1.7 15.7 9.9 1.5 116.1 59.6 1.9 237.5 116.8 2

Radius
LJ 1.3 0.9 1.4 7.3 3.2 2.2 1.6 1.18 1.45 7.1 4.1 1.73 19 11.7 1.6
TW 40.8 21 1.9 38.6 24.6 1.6 55 45.7 1.2 156 80.6 1.9
TM 70.2 35.6 1.9 66.6 39.6 1.6 84.3 67.7 1.2 237 130.6 1.8
FR 151.4 89.4 1.7 218.2 104.2 2 115 75.9 1.5 234 126 1.8

NWR
LJ 0.9 1.2 1.3 4 2.9 1.4 0.6 0.4 1.4 7.8 3.6 2.1 17.7 8 2.2
TW 37.8 20.8 1.8 14.4 6.7 2.1 52.7 23.4 2.2 132.7 63 2.1
TM 62 41 1.5 22 11 2 76 38.1 2 200 97.1 2
FR 134.4 72.4 1.8 22.6 10.5 2.1 116.2 63.6 1.8 226.9 115.1 1.9

Table 2. Execution times in seconds of the fused and unfused implementations. (H: Handwritten, F: Synthe-

sized, R=
𝐻
𝑆
). Missing cells are due to out of memory executions.

In order to study the performance benefits of the different fusion types that the fusion rules
represent, in § 7, we studied the three use-cases WSP, NWR and Radius (from Fig. 6). In § 7,
Fig. 16, we compared the number of edges processed by the synthesized fused programs with
that by the unfused versions for unweighted graphs. Here, we compare the execution time of the
synthesized programs with that of the unfused versions for weighted graphs. Table 2 presents the
execution times of both synthesized and handwritten implementations along with the speedup of
the synthesized implementations over the handwritten implementations that is the execution time
of the later divided by the former. In spite of variances across different input graphs and different
frameworks, as expected, synthesized implementations benefiting from fusion rules can execute
faster than the handwritten versions. Fusion results in an overall speedup of 1.4-2.1×.

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

82 Anon.

6.4 Gemini Framework Analysis

𝐿
𝐽

𝑇
𝑊

𝑇
𝑀 𝐹
𝑅

𝐿
𝐽

𝑇
𝑊

𝑇
𝑀 𝐹
𝑅

𝐿
𝐽

𝑇
𝑊

𝑇
𝑀 𝐹
𝑅

WSP NWR Radius

50

100

150

200

#
of

ed
ge

op
s

(a) Push
𝐿
𝐽

𝑇
𝑊

𝑇
𝑀 𝐹
𝑅

𝐿
𝐽

𝑇
𝑊

𝑇
𝑀 𝐹
𝑅

𝐿
𝐽

𝑇
𝑊

𝑇
𝑀 𝐹
𝑅

WSP NWR Radius

50

100

150

#
of

ed
ge

op
s

(b) Hybrid

𝐿
𝐽

𝑇
𝑊

𝑇
𝑀 𝐹
𝑅

𝐿
𝐽

𝑇
𝑊

𝑇
𝑀 𝐹
𝑅

𝐿
𝐽

𝑇
𝑊

𝑇
𝑀 𝐹
𝑅

WSP NWR Radius

50

100

150

#
of

ed
ge

op
s

Fused
Handwritten

(c) Pull

Fig. 34. Normalized number of edge operations in Gemini framework

We compared the performance of the push, pull and hybrid models on the Gemini framework.
Fig. 34 presents the number of edge operations that each of the WSP, NWR and Radius use-cases
process for each of the input graphs separately for each of the push, pull and hybrid models. The
number of processed edges for each use-case and input graph is normalized with respect to the
number of edges that the use-case processes on that input graph in the unfused implementation
with the pull model. We observe that overall, the push model is more efficient than the hybrid
model and the hybrid model is more efficient than the pull model. Similar to Fig. 16 in the main
body § 7, we also observe again that the fused versions process about 50% less edges than the
unfused versions.

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

83

6.5 Streaming Evaluation
In this section we present the evaluation of dynamic graphs with edge mutations. Fig. 35 shows the
normalized execution time of the handwritten implementation in KickStarter framework [3] with
respect to the synthesized code for the same framework on the Grafs for SSSP and CC use-cases.
We also report the absolute execution times in Table 3. The experiments show that Grafs can
effectively synthesize streaming use-cases that run on dynamic graphs and match the performance
of the handwritten implementations in the KickStarter framework.

1k 10k 100k

80
90
100
110
120

N
or
m
al
iz
ed

Ex
ec
.

tim
e
(%
)

(a) SSSP

1k 10k 100k

80
90
100
110
120

N
or
m
al
iz
ed

Ex
ec
.

tim
e
(%
)

(b) CC

Fig. 35. Normalized execution time of the handwritten implementation in KickStarter framework with respect

to the synthesized version in the Grafs for a) SSSP and b) CC use-cases on dynamic input graphs with 1k,

10k and 100k edge mutations.

Edge Mutations Use-case LJ TW TM FR
H S H S H S H S

1𝑘
SSSP

0.0056 0.0054 0.0186 0.016 0.0182 0.0179 0.0311 0.031
10𝑘 0.0095 0.0093 0.0223 0.0229 0.0270 0.0265 0.0401 0.0383
100𝑘 0.0253 0.0263 0.032 0.0312 0.036 0.0339 0.0716 0.0792
1𝑘

CC
0.004 0.0036 0.0123 0.0123 0.0148 0.0174 0.0216 0.0229

10𝑘 0.006 0.006 0.0185 0.018 0.0224 0.0228 0.0348 0.0387
100𝑘 0.0156 0.0166 0.0244 0.0258 0.0282 0.0338 0.0493 0.0549

Table 3. Execution times in seconds of the synthesized and handwritten implementations. (H: Handwritten, S:

Synthesized)

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

84 Anon.

PageRank (PR)
I B 𝜆𝑣. 1 / |𝑉 |
P B 𝜆𝑛, 𝑒. 𝑛 / outdeg(src(𝑒))
R B 𝜆𝑣, 𝑣 ′. 𝑣 + 𝑣 ′
E B 𝜆𝑛. 𝛾 ∗ 𝑛 + (1 − 𝛾) / |𝑉 |
B B 𝜆𝑛, 𝑒. − E-1 (𝑛) / outdeg(src(𝑒))

Fig. 36. Optimized PageRank Use-case using Def. 7. E-1 (𝑛) denotes the inverse of the E function. Note that

the back propagation (B) is calculated starting from the second iteration.

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

85

References
[1] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Powergraph: Distributed graph-

parallel computation on natural graphs. In Presented as part of the 10th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 12), pages 17–30, 2012.

[2] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework for shared memory. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, pages 135–146,
New York, NY, USA, 2013. ACM.

[3] Keval Vora, Rajiv Gupta, and Guoqing Xu. KickStarter: Fast and Accurate Computations on Streaming Graphs via
Trimmed Approximations. pages 237–251, 2017.

[4] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A computation-centric distributed graph
processing system. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pages
301–316, 2016.

[5] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale graph processing on a single machine using
2-level hierarchical partitioning. In 2015 {USENIX} Annual Technical Conference ({USENIX}{ATC} 15), pages 375–386,
2015.

	Contents
	1 Use-case Specifications
	2 Specification and Fusion
	2.1 Semantics
	2.2 Language and Fusion Extensions
	2.3 Example Fusions

	3 Mapping Specification to Iteration-Map-Reduce
	3.1 Iterative Reduction and its Correctness
	3.2 Synthesis of Iterative Reduction

	4 Proofs
	4.1 Helper Definitions
	4.2 Semantics Compositionality
	4.3 Soundness of Fusion
	4.4 Iteration Correctness Conditions

	5 Implementation
	5.1 Mapping Iteration-Map-Reduce to Graph Frameworks
	5.2 PowerGraph
	5.3 Ligra
	5.4 Graphit
	5.5 Gemini
	5.6 GridGraph
	5.7 Path-based Reduction Synthesis

	6 Experimental Results
	6.1 Fusion Scalability
	6.2 The Effect of Fusion
	6.3 Fusion Types
	6.4 Gemini Framework Analysis
	6.5 Streaming Evaluation

	References

