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1 Use-case Specifications

SSSP(𝑠) (𝑣) = min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝) Shortest Path

NP(𝑠) (𝑣) = | Paths(𝑠, 𝑣) | Number of Paths

LP(𝑠) (𝑣) = max
𝑝∈Paths(𝑠,𝑣)

weight(𝑝) Longest Path

SL(𝑠) (𝑣) = min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Shortest Length

LL(𝑠) (𝑣) = max
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Longest Length

WP(𝑠) (𝑣) = max
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝) Widest Path

NP(𝑠) (𝑣) = min
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝) Narrowest Path

FR(𝑠) (𝑣) =
∨

𝑝∈Paths(𝑠,𝑣)
True Forward Reachability

CC(𝑣) = min
𝑝∈Paths(𝑣)

head(𝑝) Connected Components

CCS(𝑣) =
⋃

𝑝∈Paths(𝑣)
{ head(𝑝) } Connected Component Set

BR(𝑠) (𝑣) =
∨

𝑝∈Paths(𝑣,𝑠)
True Backward Reachability

BFS(𝑠) (𝑣) = penultimate( argmin
𝑝∈Paths(𝑠,𝑣)

length(𝑝)) Breadth-First Search

Fig. 1. Use-cases for R
𝑝∈𝑃

𝑓 (𝑝) and 𝑓 (argR
𝑝∈𝑃

𝑓 (𝑝))
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WSP(𝑠) (𝑣) = let 𝑃 B argsmin
𝑝∈Paths(𝑠,𝑣)

length(𝑝) in Widest Shortest Paths

max
𝑝∈𝑃

capacity(𝑝)

NSP(𝑠) (𝑣) =

����� argsmin
𝑝∈Paths(𝑠,𝑣)

weight(𝑝)
����� Number of Shortest Paths

HLP(𝑣) = head( argmax
𝑝∈Paths(𝑣)

weight(𝑝)) Head of Longest Path

HLL(𝑣) = head( argmax
𝑝∈Paths(𝑣)

length(𝑝)) Head of Longest Length

HNP(𝑣) = head( argmin
𝑝∈Paths(𝑣)

capacity(𝑝)) Head of Narrowest Path

SWSL(𝑠) (𝑣) =
Shortest Weight in

Shortest Length Paths
let 𝑃 B argsmin

𝑝∈Paths(𝑠,𝑣)
length(𝑝) in

min
𝑝∈𝑃

weight(𝑝)

WSLSW(𝑠) (𝑣) =

Widest in
Shortest Length in

Shortest Weight Paths
let 𝑃 B argsmin

𝑝∈Paths(𝑠,𝑣)
weight(𝑝) in

let 𝑃 ′ B argsmin
𝑝∈𝑃

length(𝑝) in

max
𝑝∈𝑃 ′

capacity(𝑝)

LNP(𝑠) (𝑣) = Longest Narrowest Path
let 𝑃 B argsmin

𝑝∈Paths(𝑠,𝑣)
capacity(𝑝) in

max
𝑝∈𝑃

length(𝑝)

HNP(𝑣) = Heads of Narrowest Paths
𝑃 B argsmin

𝑝∈Paths(𝑣)
capacity(𝑝) in⋃

𝑝∈𝑃
{ head(𝑝) }

CCSS(𝑣) =

������ ⋃
𝑝∈Paths(𝑣)

{ head(𝑝) }

������ Connected Component Set Size

Fig. 2. Use-cases for nested R
𝑝∈𝑃

𝑓 (𝑝), part 1



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

3

NWSP(𝑠) (𝑣) = Number of Widest Shortest Paths
let 𝑃 B argsmin

𝑝∈Paths(𝑠,𝑣)
weight(𝑝) in

let 𝑃 ′ B argsmax
𝑝∈𝑃

capacity(𝑝)

| 𝑃 ′ |

NSWSL(𝑠) (𝑣) =

Number of
Shortest Weight in

Shortest Length Paths
let 𝑃 B argsmin

𝑝∈Paths(𝑠,𝑣)
length(𝑝) in

let 𝑃 ′ B argsmin
𝑝∈𝑃

weight(𝑝 ′) in

| 𝑃 ′ |

Fig. 3. Use-cases for nested R
𝑝∈𝑃

𝑓 (𝑝), part 2
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4 Anon.

NWR(𝑠) (𝑣) =

min
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝)

max
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝) Narrowest to Widest Path Ratio

LSD(𝑠) (𝑣) = LP(𝑠) (𝑣) − SSSP(𝑠) (𝑣) Difference between
Longest and Shortest Path

= max
𝑝∈Paths(𝑠,𝑣)

weight(𝑝) − min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝)

SP2(𝑠, 𝑠 ′) (𝑣) = min (SSSP(𝑠) (𝑣), SSSP(𝑠 ′) (𝑣)) Shortest Path from
Two Sources

= min
(

min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝), min
𝑝∈Paths(𝑠′,𝑣)

weight(𝑝)
)

SPR(𝑠, 𝑠 ′) (𝑣) =
SSSP(𝑠) (𝑣)
SSSP(𝑠 ′) (𝑣)

Ratio of Shortest Paths
from Two Sources

=

min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝)

max
𝑝∈Paths(𝑠′,𝑣)

weight(𝑝)

Fig. 4. Use-cases for nested𝑚 ⊕𝑚
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5

Ecc(𝑠) = max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Eccentricity

WPG(𝑠) = min
𝑣∈V

WP(𝑠) (𝑣)
The Capacity of the Narrowest of

the Widest Paths
from 𝑠 to All Vertices

= min
𝑣∈V

max
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝)

LNPG(𝑠) = max
𝑣∈V

LNP(𝑠) (𝑣)
The Length of the Longest of

the Narrowest Paths
from 𝑠 to All Vertices

= let 𝑃 (𝑣) B argsmin
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝) in

max
𝑣∈V

max
𝑝∈𝑃 (𝑣)

length(𝑝)

NCC =

����� ⋃
𝑣∈V

CC(𝑣)
����� Number of Connected Components

=

����� ⋃
𝑣∈V
{ min
𝑝∈Paths(𝑣)

head(𝑝)}
�����

FRA(𝑠) =
∧
𝑣∈V

FR(𝑠) (𝑣) Reachability to All Vertices

=
∧
𝑣∈V

∨
𝑝∈Paths(𝑠,𝑣)

True

RFA =
⋂
𝑠∈V

CCS(𝑠) Vertices Reachable to All Vertices

=
⋂
𝑣∈V

⋃
𝑝∈Paths(𝑣)

{ head(𝑝) }

Fig. 5. Use-cases for R
𝑣∈V

𝑚

DS(𝑠) =
⋃

𝑣∈V∧ SSSP(𝑠) (𝑣) > 7
{𝑣} Vertices with the distance of at least 7

=
⋃

𝑣∈V∧ min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝) > 7
{𝑣}

SCC(𝑠) (𝑣) =
⋃

𝑣′∈V ∧ ∨
𝑝∈Paths(𝑣,𝑣′) True∧

∨
𝑝∈Paths(𝑣′,𝑣) True

{𝑣 ′} Strongly Connected Component

Fig. 6. Use-cases for R
𝑣∈V∧𝑚

𝑚
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6 Anon.

Radius = min
𝑠∈{𝑣 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Radius Sampled on vertices {𝑣}

Diam = max
𝑠∈{𝑣 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Diameter Sampled on vertices {𝑣}

DRR =
Diam
Radius

Diameter to Radius Ratio

=

max
𝑠∈{𝑣 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝)

min
𝑠∈{𝑣 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝)

BC(𝑠) = let S B 𝜆𝑠, 𝑣 . min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) in

let N B 𝜆𝑠, 𝑣 .

����args min
𝑝∈Paths(𝑠,𝑣)

length(𝑝)
���� in

∑
𝑣∈𝑠

∑
𝑣≠𝑡 ∈𝑉 ∧
S(𝑣) (𝑠)+S(𝑠) (𝑡 )=S(𝑣) (𝑡 )

N(𝑣) (𝑠) × N(𝑠) (𝑡)

∑
𝑣≠𝑡 ∈𝑉

N(𝑣, 𝑡)

Fig. 7. Use-cases for 𝑟 ⊕ 𝑟

BC specifies the betweenness centrality algorithm from a sampled set of nodes 𝑠 . For every
pair of nodes (source is from sampled set and destination is over all the nodes), it calculates the
number of shortest paths that goes through 𝑠 . The nominator calculates the number of sortest paths
(N) from 𝑣 to 𝑡 that passes through 𝑠 . It uses a vertex-based reduction constrained by path-based
reductions similar to DS. Similarly, the denominator calculates all the shortest paths from 𝑣 to
𝑡 . Finally, Betweenness Centrality measure is calculated using sum vertex-based reduction over
sampled nodes.
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7

NPH(𝑠) (𝑣) =
∑

𝑝∈Paths(𝑠,𝑣)
length(𝑝) ↦→ 1 Number of Paths Histogram

LSP(𝑠) (𝑣) =
∑

𝑝′∈ argsmin
𝑝∈Paths(𝑠,𝑣)

weight(𝑝)
length(𝑝) ↦→ 1 Length of Shortest Paths

CCH(𝑣) =
∑
𝑣∈V
( min
𝑝∈Paths(𝑣)

head(𝑝)) ↦→ 1 Connected Components Sizes

Fig. 8. Use-cases with map values
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8 Anon.

2 Specification and Fusion
2.1 Semantics

SPReds
R
𝑝∈𝑃
F (𝑝)

{
(𝑔) = [v ↦→ R {F (𝑝) | 𝑝 ∈ J 𝑃 K (𝑔) (v)}]

v∈V(𝑔)

SMBin
J𝑚 ⊕𝑚′ K (𝑔) = J𝑚 K (𝑔) ⊕ J𝑚′ K (𝑔)

SMLet
J ilet 𝑋 B 𝑀 in 𝑒 K (𝑔) = [v ↦→ J 𝑒 [𝑋 B J𝑀 K (𝑔) (v)] K]

v∈V(𝑔)

Var
J𝑥 K (𝑔) = ⊥

SVReds
R
V

𝑚

{
(𝑔) = R

{
J𝑚 K(𝑔) (v)

v∈V(𝑔)
} SRBin

J 𝑟 ⊕ 𝑟 ′ K (𝑔) = J 𝑟 K (𝑔) ⊕ J 𝑟 ′ K (𝑔)

SRLetu

ww
v

ilet 𝑋 B 𝑀 in

mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

}

��
~(𝑔) =

q
𝑒
[
𝑋 ′′ B

q
𝑅
[
𝑋 ′ B J𝐸 [𝑋 B J𝑀 K (𝑔)] K

] y
(𝑔)

] y

SPaths
JPaths K (𝑔) = [v ↦→ {𝑝 | 𝑝 ∈ Paths(𝑔) ∧ tail(𝑝) = v}]

v∈V(𝑔)

SArgsRt

argsR
𝑝∈𝑃

F (𝑝)
|

(𝑔) = [v ↦→ {𝑝 | 𝑝 ∈ P ∧ F (𝑝) = 𝑛}]
v∈V(𝑔) where

P = J 𝑃 K(𝑔) (v)
R ∈ {min,max}
𝑛 = R {F (𝑝) | 𝑝 ∈ P}

SMPair
J ⟨𝑀,𝑀 ′⟩ K (𝑔) =

〈
J𝑀 K(𝑔), J𝑀 ′ K(𝑔)

〉 SMM

JR F K =
s
R

𝑝∈Paths
F (𝑝)

{ SRPair
J ⟨𝑅, 𝑅′⟩ K (𝑔) =

〈
J𝑅 K(𝑔), J𝑅′ K(𝑔)

〉
SRRr
R

〈
[v ↦→ 𝑛v]v∈V(𝑔) , .., [v ↦→ 𝑛′

v
]
v∈V(𝑔)

〉 z
=

s
R
V

(
[n ↦→ ⟨𝑛v, .., 𝑛′v⟩]v∈V(𝑔)

) {

SEBin
J 𝑒 ⊕ 𝑒 ′ K = J 𝑒 K ⊕ J 𝑒 ′ K

SEVal
J n K = n

SEM
J𝑑 K = 𝑑

SEEPair
J ⟨𝐸, 𝐸 ′⟩ K =

〈
J𝐸 K , J𝐸 ′ K

〉
Fig. 9. Denotational Semantics of the language presented in Fig. 9 of the main paper. The notation [𝑘𝑖 ↦→ 𝑣𝑖 ]𝑖
represents a finite map that maps each key 𝑘𝑖 to value 𝑣𝑖 over the range 𝑖 . The notation 𝑋 B 𝑉 represents

pointwise replacement of the variables 𝑋 with the values 𝑉 .

We now define a denotational semantics for the language that we presented in Fig. 9 of the main
paper. We first present the semantics and then prove that it is compositional.
The semantics is defined in Fig. 9. Given a graph 𝑔, separate rules define the semantics J K of

each term constructor. The semantics of an undefined or stuck computation is represented by ⊥. In
each rule, it is assumed that the semantics of subterms are not undefined; otherwise, the semantics
of the term is undefined as well. The semantics of term constructors with no rules is ⊥ too.

The semantics of𝑚 terms are defined by the rules SPRed, SMBin, SMLet and Var. Given a graph
𝑔, the semantic domain D𝑚 of𝑚-terms is a finite map V(𝑔) ↦→ N from each vertex of 𝑔 to natural
numbers, and ⊥ (for undefined). The rule SPRed defines the semantics of the path-base reduction
R
𝑝∈𝑃
F (𝑝). (We use the notation [𝑘𝑖 ↦→ 𝑣𝑖 ]𝑖 for a finite map that maps each key 𝑘𝑖 to value 𝑣𝑖 over
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9

the range 𝑖 .) It uses the semantics of paths 𝑃 that is a map from each vertex v to the set of paths
to v. For each vertex v, it applies the function F to each path to v and then applies the reduction
function R to the resulting values. Since the reduction functions R (in the semantic domain) are
commutative and associative, they can be applied to the set in any order. The rule SMBin defines
the the semantics of𝑚 ⊕𝑚′ as the result of the operator ⊕ on the semantics of𝑚 and𝑚′. Whether
the notations R and ⊕ refer to the syntactic or semantic domains is clear from the context: they are
in the syntactic and semantic domains when they are respectively on the left- and right-hand side of
the rules. The operator ⊕ is simply lifted to maps of the same domain by the pointwise application
for each key. The rule SMLet defines the semantics of ilet 𝑋 B 𝑀 in 𝑒 as the pointwise substitution
of the variables 𝑋 with the semantics of 𝑀 in 𝑒 . Pointwise substitution replaces variables with
values from a corresponding pair of structures. (The formal definition of substitution is available in
the appendix § 4.1). The rule Var states that the semantics of free variables is undefined.

The semantics of 𝑟 terms is defined by the rules SVRed, SRBin, and SRLet and Var. The domain
𝐷𝑟 of of 𝑟 -terms is the natural numbers N and ⊥. The rule SVRed defines the semantics of the
vertex-based reduction R

V

𝑚 using the map resulted from the semantics of𝑚; it reduces the values
of the map for all vertices. The rule SRBin defines the semantics of 𝑟 ⊕ 𝑟 ′ as the result of applying
the operator ⊕ to the semantics of 𝑟 and 𝑟 ′. The rule SRLet defines the semantics of triple-let terms
by three subsequent substitutions: the substitution of the variables 𝑋 with the semantics of𝑀 in 𝐸,
the substitution of the variables 𝑋 ′ with the semantics of 𝐸 in 𝑅, and finally the substitution of the
variables 𝑋 ′′ with the semantics of 𝑅 in 𝑒 .

The semantics of paths 𝑃 is defined by the rules SPaths and SArgsR. The rule SPaths defines
the semantics of the term Paths as a map from each vertex to the set of paths to the vertex. The
rule SArgsR defines the semantics of argsR

𝑝∈𝑃
F (𝑝) where R is min or max using the map resulted

from the semantics J 𝑃 K of 𝑃 ; it maps each vertex v to a subset of the paths that J 𝑃 K maps 𝑣 to: the
paths that their F value is the minimum or the maximum.

The rules SMPair, SRPair, and SEEPair define the semantics of pairs of𝑀 , 𝑅 and 𝐸 inductively.
The two rules SMM and SRR reduce the semantics of single factored reductions to normal reductions.
The rule SMM defines the semantics of R F as a path-based reduction on the paths Paths. The rule
SRR defines the semantics of R

〈
[v ↦→ 𝑛v]v∈V(𝑔) , .., [v ↦→ 𝑛′

v
]
v∈V(𝑔)

〉
as a vertex-based reduction

on ⟨𝑛v, .., 𝑛′v⟩v∈V(𝑔) . The rules SEBin, SEVal, and SEM define the semantics of expressions 𝑒 . An
expression 𝑒 can represent both a number and a vertex-based reduction. The operator ⊕ is overloaded
for both numbers and maps in the semantic domain.

The semantics is compositional. If two terms are semantically equivalent, replacing one with the
other in any context is semantics-preserving. Compositionality of the semantics is used to prove
that the fusion transformations are semantic-preserving. The following theorem states that all the
terms 𝑟 ,𝑚,𝑀 and 𝑅 are compositional. The proofs are available in the appendix § 4.2.

Lemma 1 (Compositionality).
For all 𝑟 , 𝑟 ′ and R, if J 𝑟 K = J 𝑟 ′ K then JR[𝑟 ] K = JR[𝑟 ′] K.
For all𝑚,𝑚′, andM, if J𝑚 K = J𝑚′ K then JM[𝑚] K = JM[𝑚′] K.
For all𝑀 ,𝑀 ′, andMs, if J𝑀 K = J𝑀 ′ K then JMs[𝑀] K = JMs[𝑀 ′] K.
For all 𝑅, 𝑅′, and Rs, if J𝑅 K = J𝑅′ K then JRs[𝑅] K = JRs[𝑅′] K.
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2.2 Language and Fusion Extensions
In this section, we describe the language extensions and their corresponding fusion rules. Fig. 10
represents the extensions to the syntax for the following subsections.

𝑟 B R
V

𝑚 ⊕ 𝑟 | R
𝑣∈V

𝑚 | 𝑟 ⊕ 𝑟 | ◦ 𝑟 | 𝑛 | Vertex-based Reduction

ilet 𝑋 B 𝑀 in

mlet 𝑋 B 𝐸 in

rlet 𝑋 B 𝑅 in

𝑒 | 𝑥
𝑚 B R

𝑝∈𝑃
𝐹 (𝑝) | 𝑚 ⊕𝑚 | Path-based Reduction

ilet 𝑋 B 𝑀 in 𝑣 𝑒 | 𝑥

𝑃 B Paths(𝑣) | Paths(𝑣, 𝑣 ′) | argsR
𝑝∈𝑃

𝐹 (𝑝) Paths

𝑀 B ⟨𝑀,𝑀⟩ | R
𝑐
F

R B ... | R
V

𝑚 ⊕ R Context for 𝑟

𝑣 Vertex Variable
𝑠 B 𝑣 | ⊥ Source
𝑜 B → | ← Orientation
𝑐 B 𝑠 𝑜 | ⟨𝑐, 𝑐⟩ Path Configuration
R B ... | ∪ | ∩ Reduction Operation

F B ... | head | penultimate Path Function

Fig. 10. Extended Syntax. Dashed boxes for § 2.2.2 and § 2.2.3, solid boxes for § 2.2.6, and double solid boxes

for § 2.2.4
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2.2.1 Common Operation Elimination

IElim©­­­«
ilet ⟨𝑋1, 𝑋2⟩ B ⟨R F ,R F ⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬⇒
©­­­«

ilet 𝑋1 B R F in

mlet 𝑋 ′ B 𝐸 [𝑋2 ↦→ 𝑋1] in
rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬
ICom©­­­«

ilet ⟨𝑋1, 𝑋2⟩ B ⟨𝑀1, 𝑀2⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬⇒
©­­­«

ilet ⟨𝑋2, 𝑋1⟩ B ⟨𝑀2, 𝑀1⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬
IAssL©­­­«

ilet ⟨𝑋1, ⟨𝑋2, 𝑋3⟩⟩ B ⟨𝑀1, ⟨𝑀2, 𝑀3⟩⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬⇒
©­­­«

ilet ⟨⟨𝑋1, 𝑋2⟩, 𝑋3⟩ B ⟨⟨𝑋1, 𝑋2⟩, 𝑀3⟩⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬
IAssR©­­­«

ilet ⟨⟨𝑋1, 𝑋2⟩, 𝑋3⟩ B ⟨⟨𝑀1, 𝑀2⟩, 𝑀3⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬⇒
©­­­«

ilet ⟨𝑋1, ⟨𝑋2, 𝑋3⟩⟩ B ⟨𝑀1, ⟨𝑀2, 𝑀3⟩⟩ in
mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬
Fig. 11. Common Operation Elimination

Fusion factors the path-based reduction, and vertex-basedmappings and reductions. The factoring
facilitates common operation elimination. For example, if a path-based reduction is calculated twice
and assigned to two sets of variables, the extra calculation can be eliminated and the result of one
calculation can be assigned to both sets of variables.

Fig. 11 shows the elimination rules for path-based reductions. The rule IElim applies to adjacent
similar path-based reductions. The second reduction is eliminated. The variables for the second
reduction are substituted with the variables for the first reduction. To bring two path-based
reductions adjacent to each other, the rules ICom, IAssL and IAssR state the commutativity and
associativity properties of pairs of path-based reductions.

Similar eliminations can be applied to the factored vertex-based mappings in the second let and
the factored vertex-based reductions in the third let.

As an example of common operation elimination, see the fusion of the use-case DRR in § 2.3.
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2.2.2 Domain
The scalar semantic domain of the core language was confined to the natural numbers. The

domain can be simply extended to booleans, vertex identifiers and also sets of values. The reduction
operations are extended with union ∪ and intersection ∩ and the path functions are extended with
head and penultimate. The function head returns the identifier of the head vertex of the path and
the function penultimate returns the identifier of the penultimate (that is the vertex before the last)
of the path. These extensions are shown in dashed boxes in Fig. 10

2.2.3 Unary operations and Literals

FILit
𝑛 ⇒ ilet 𝑥 B ⊥ in 𝑛

FMLVar
𝑥 ⇒ ilet 𝑥 ′ B ⊥ in 𝑥

FMPair′
⟨𝑋, 𝑥⟩ B ⟨𝑀,⊥⟩ → 𝑋 B 𝑀

FMPair′′
⟨𝑥,𝑋 ⟩ B ⟨⊥, 𝑀⟩ → 𝑋 B 𝑀

FRLit
𝑛 ⇒ ilet 𝑥 B ⊥ in

mlet 𝑥 ′ B ⊥ in

rlet 𝑥 ′′ B ⊥ in 𝑛

FRPair′
⟨𝑋, 𝑥⟩ B ⟨𝑅,⊥⟩ → 𝑋 B 𝑅

FRPair′′
⟨𝑥,𝑋 ⟩ B ⟨⊥, 𝑅⟩ → 𝑋 B 𝑅

FIUni
◦ (ilet 𝑋 B 𝑀 in 𝑒) ⇒ ilet 𝑋 B 𝑀 in ◦ 𝑒

FRUni

◦
©­­­«

ilet 𝑋 B 𝑀 in

mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

𝑒

ª®®®¬ ⇒
©­­­«

ilet 𝑋 B 𝑀 in

mlet 𝑋 ′ B 𝐸 in

rlet 𝑋 ′′ B 𝑅 in

◦ 𝑒

ª®®®¬
Fig. 12. Extended Fusion Rules for Unary operators and constants

In this section, we present the fusion rules for the natural number literals n and unary operators
◦. As other rules expect terms to be in the let form, the two rules FILit and FRLit transform a
literal to dummy𝑚 let and 𝑟 let forms. Since the two rules FMPair and FRPair apply to only non-⊥
reductions, the rules FMPair′, FMPair′′, FRPair′ and FRPair′′ remove the dummy ⊥ reductions.
The two rules FIUni and FRUni simply apply the unary operator ◦ to the resulting expression 𝑒 .
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2.2.4 Vertex Variables

FPRed
R

𝑝∈Paths(𝑣)
F (𝑝)

⇒𝑚

ilet 𝑥 B R
⊥→
F in 𝑣 𝑥

FPRed′
R

𝑝∈Paths(𝑣,𝑣′)
𝐹 (𝑝)

⇒𝑚

ilet 𝑥 B R
𝑣→
F in 𝑣 ′ 𝑥

FPRed′′
R

𝑝∈Paths(𝑣,𝑣′)
F (𝑝)

⇒𝑚

ilet 𝑥 B R
𝑣′←
F in 𝑣 𝑥

FILetBin
(ilet 𝑋1 B 𝑀1 in 𝑣 𝑒1) ⊕ (ilet 𝑋2 B 𝑀2 in 𝑣 𝑒2)

⇒𝑚

ilet ⟨𝑋1, 𝑋2⟩ B ⟨𝑀1, 𝑀2⟩ in 𝑣 (𝑒1 ⊕ 𝑒2)
if free(𝑒1) ∩ 𝑋2 = ∅

free(𝑒2) ∩ 𝑋1 = ∅

FMPair〈
R
𝑐
F ,R ′

𝑐′
F ′

〉
⇒𝑀 R ′′

⟨𝑐,𝑐′⟩
F ′′

where 𝑓 ′′ B 𝜆𝑝. ⟨𝐹 ′(𝑝), 𝐹 (𝑝)⟩
R ′′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨R(𝑎, 𝑎′),R ′(𝑏, 𝑏 ′)⟩

FVRed
R
𝑣∈V
(ilet 𝑋 B R ′

𝑐
𝑓 in 𝑣 𝑒) ⇒𝑟 ilet 𝑋 B R ′

𝑐
𝑓 in

mlet 𝑥 B 𝑒 in

rlet 𝑥 ′ B R 𝑥 in 𝑥 ′

Fig. 13. Extended Fusion Rules for Vertex Variables

The syntax of the core language offers the simple term Paths that does not specify the source
and destination of paths. Further, the vertex-based reduction R

V

𝑚 does not bind a vertex variable.
In this section, we extend the core syntax with path terms that can specify vertex variables as
source and destination and vertex-based reductions that can bind vertex variables. We extend the
fusion rules for the extended syntax.

In Fig. 10, the double boxes shows the extension to the core syntax presented in Fig. 9 to support
vertex variables. Only the changed or new non-terminals are shown and the updated parts are
boxed with solid lines. The extended vertex-based reduction R

𝑣∈V
𝑚 binds the vertex variable 𝑣 . The

path constructors specify source and destination: the term Paths(𝑣) specifies the set of paths with
any source and the destination 𝑣 and the term Paths(𝑣, 𝑣 ′) specifies the set of paths with the source
𝑣 and the destination 𝑣 ′. In its simplest form, a factored path-based reduction 𝑀 calculates the
reduction over paths from a source vertex 𝑣 to every destination vertex 𝑣 ′ and stores the result
in the destination vertices 𝑣 ′. It can also calculate the reduction over paths from every source
vertex 𝑣 to a destination vertex 𝑣 ′ and store the result in the source vertices 𝑣 . We call the vertex
variable where the result is stored, the target vertex. The let constructor ilet 𝑋 B 𝑀 in 𝑣 𝑒 of the
path-based reductions𝑚 carries the vertex 𝑣 that stores the result of the factored reduction𝑀 with
the expression 𝑒 .
The source 𝑠 of paths can be either a vertex 𝑣 or none ⊥. The orientation 𝑜 of paths is either

forward→ or backward←. The configuration 𝑐 of paths is the pair of their source and orientation, or
a pair of other configurations. A single factored path-based reduction R

𝑐
F carries its configuration

𝑐 .
Fig. 13 shows the extension of the core fusion rules presented in Fig. 11. Only the updated fusion

rules are shown. The rules FPRed, FPRed′ and FPRed′′ convert path-based reductions over paths
terms to the let form. The rule FPRed converts a path-based reduction over Paths(𝑣) to a let term
with a factored path-based reduction that has no source ⊥, forward orientation→, and the target
vertex 𝑣 . The rules FPRed′ and FPRed′′ both convert a path-based reduction over Paths(𝑣, 𝑣 ′) to let
forms. The former stores the results in the destination vertices and the latter stores the results in
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the source vertices. The former results in a let term with with a factored path-based reduction that
has source 𝑣 , forward orientation→, and the target vertex 𝑣 ′. The latter, on the other hand, results
in a let term with a factored path-based reduction that has source 𝑣 ′, backward orientation←, and
the target vertex 𝑣 .

The rule FILetBin fuses an operation between two path-based reductions in the let form to one.
The operation can be applied to the resulting expressions of the two let terms only if they are
stored in the same target vertex. Therefore, the rule checks that the explicit target vertex of the
two let terms match.

The rule FMPair simply passes the configurations of the two reductions to the fused reduction.
A vertex-based reduction applies a reduction to the results of a path-based reduction over

all vertices. The rule FVRed converts the application of a vertex-based reduction to a path-based
reduction to the triple-let form; it checks that the vertex bound by the nesting vertex-based reduction
matches the target vertex of the path-based reduction.
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2.2.5 Syntactic Sugar
FMRed
F (argR

𝑝∈𝑃
F ′(𝑝)) B ilet ⟨𝑥, 𝑥 ′⟩ B R ′

𝑝∈𝑃
F ′′(𝑝) in 𝑥 ′ where R ∈ {min,max}

F ′′ B 𝜆𝑝. ⟨F ′(𝑝), F (𝑝)⟩
R ′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B if (R(𝑎, 𝑎′) = 𝑎) then ⟨𝑎, 𝑏⟩ else ⟨𝑎′, 𝑏 ′⟩

PSize
|𝑃 | B

∑
𝑝∈𝑃

1

ROp
R

𝑣∈{v1,..,𝑣𝑛 }
𝑚 B ((𝑚[𝑣 B 𝑣1] R 𝑚[𝑣 B 𝑣2]) R .. 𝑚[𝑣 B 𝑣𝑛])

VSel
R

𝑣∈V∧𝑚′
𝑚 B ilet ⟨𝑥, 𝑥 ′⟩ B R ′

𝑣∈V
⟨𝑚′,𝑚⟩ in

if 𝑥 then 𝑥 ′else ⊥
where
R ′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B

if (𝑎 ∧ 𝑎′) then ⟨𝑎,R(𝑏,𝑏 ′)⟩
else if (𝑎′) then ⟨𝑎′, 𝑏 ′⟩
else ⟨𝑎, 𝑏⟩

Fig. 14. Syntactic Sugar

Syntactic sugar enable concise specifications. In Fig. 14, we present the syntactic sugar and the
rules that desugar them.
The term F (argR

𝑝∈𝑃
F ′(𝑝)) where R is either min or max first finds a path 𝑝 in 𝑃 with the

minimum or maximum value for the function F ′ and then returns the result of applying F to 𝑝 . It
is used to specify the BFS use-case. The rule FMRed expands this term to a path-based reduction in
the let form ilet ⟨𝑥, 𝑥 ′⟩ B R ′

𝑝∈𝑃
F ′′(𝑝) in 𝑥 ′. The path function F ′′ returns the pair of the results of

F ′ and F . The reduction function R ′ returns the input pair with the minimum or maximum first
element.
The term |𝑃 | specifies the size of the set of paths 𝑃 . It is used to specify the NSP use-case. The

rule PSize simply expands it to the path-based reduction
∑
𝑝∈𝑃

1 that counts the number of paths.

The term R
𝑣∈{𝑣1,..,𝑣𝑛 }

𝑚 is a vertex-based reduction over a limited set of vertices {𝑣1, .., 𝑣𝑛}. It is
used to specify the Radius use-case. The rule ROp expands this term to operations between to
path-based reductions𝑚[𝑣 B 𝑣𝑖 ], 𝑖 ∈ {1..𝑛}. The operation corresponds to the reduction function
R; for example, the reduction function

∑
is unrolled to the operation +.

The term R
𝑣∈V∧𝑚′

𝑚 specifies a vertex-based reduction of𝑚 over the selected vertices 𝑣 for which
𝑚′ evaluates to true. This idiom was used to specify the DS use-case. The rule VSel expands it to
the path-based reduction R ′

𝑣∈V
⟨𝑚′,𝑚⟩. The path-based reduction calculates a pair of values for𝑚′

and𝑚 at every vertex. Then, the vertex-based reduction R ′ only reduces the second elements of
the pairs whose first element is true. Given two input pair, the vertex-based reduction R ′ applies
the reduction R to the second elements if the first elements of both pairs are true. Otherwise, the
pair whose first element is true is selected. If the first element of both pairs is false, either of them
can be selected; this definition selects the first. Finally, in the following if expression, there are two



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

16 Anon.

cases. If there has been pairs whose first element is true, the result of the reduction is a pair with
true as the first element and the result of the reduction as the second element. In this case, the
second element is returned. Otherwise, there has not been any pair with true as the first element.
In this case, none is returned.
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2.2.6 Nested Triple-lets

FRR
𝑟1 ⇒𝑟 𝑟2

R[𝑟1] ⇒𝑟 R[𝑟2]

Fig. 15. Extended Fusion Rules for Multiple Rounds

The core syntax supports expressions that can be fused to a single iteration-map-reduce triple-let
term. In this subsection, we extend the core syntax to support nested vertex-based reductions, and
extend the fusion rules to fuse nested reductions. Nested triple-let terms that are closed (i.e. do
not have free variables) can be factored out. Thus, nested triple-let terms can be translated to a
sequence of iteration-map-reduce rounds on the graph.

In Fig. 10, the single boxes show the extensions to the core syntax presented in Fig. 9 to support
multiple rounds. The constructors of vertex-based reductions 𝑟 include the new term R

V

𝑚 ⊕ 𝑟 where
an operation ⊕ can be applied to a path-based reduction𝑚 and a nested vertex-based reduction
𝑟 . This nested 𝑟 leads to a round of iteration-map-reduce. Similarly, the vertex-based reduction
contexts R include the term R

V

𝑚 ⊕ R so that the nested vertex-based reductions can be fused as
well. As Fig. 15 shows, the fusion rules are extended by the rule FRR to allow the fusion of nested
vertex-based reductions.

For example, consider the following use-case LTrust that calculates the capacity of narrowest
path to the nodes that fall out of the radius from the node 𝑠 .

LTrust(𝑠) = let SSSP B 𝜆𝑠, 𝑣 . min
𝑝∈Paths(𝑠,𝑣)

weight(𝑝) in

let NP B 𝜆𝑠, 𝑣 . min
𝑝∈Paths(𝑠,𝑣)

capacity(𝑝) in

min
𝑣∈V∧ SSSP(𝑠, 𝑣) < Radius

NP(𝑠, 𝑣)

Unrolling the let terms results in the following:

LTrust(𝑠) = min

𝑣∈V∧

(
min

𝑝∈Paths(𝑠,𝑣)
weight(𝑝)

)
< Radius

(
min

𝑝∈Paths(𝑠,𝑣)
capacity(𝑝)

)

By the rule VSel, this specification is desugared to the following:

LTrust(𝑠) = R
𝑣∈V

〈(
min

𝑝∈Paths(𝑠,𝑣)
weight(𝑝)

)
< Radius,

(
min

𝑝∈Paths(𝑠,𝑣)
capacity(𝑝)

)〉
where R(𝑏, ⟨𝑎′, 𝑏 ′⟩) B

if (𝑎′) then min(𝑏, 𝑏 ′)
else 𝑏

We note that in the above specification, the path-based reduction SSSP(𝑠, 𝑣) < Radius includes
the nested vertex-based reduction Radius. From Fig. 2, Radius can be fused to following:
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Radius =

©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
where

F B 𝜆𝑝. ⟨length(𝑝), length(𝑝)⟩
R ′ (⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨min(𝑎, 𝑎′),min(𝑏,𝑏 ′)⟩

R ′′ (⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨max(𝑎, 𝑎′),max(𝑏,𝑏 ′)⟩

Therefore, The rules FRR can be used to fuse the nested Radius term to the above triple-let
term. Then, since Radius is a closed term, it can be factored out as a let term. Thus, LTrust can be
rewritten as follows:

LTrust(𝑠) = let radius :=
©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
in

R
𝑣∈V

〈(
min

𝑝∈Paths(𝑠,𝑣)
weight(𝑝)

)
< radius,

(
min

𝑝∈Paths(𝑠,𝑣)
capacity(𝑝)

)〉
By the rule FPRed (and then for the first element of the pair, the rules FMLVar, FILetBin and

FMPair′), it can be fused to the following:

LTrust(𝑠) = let radius B
©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
in

R
𝑣∈V

〈
ilet 𝑥 B min

𝑠
weight in 𝑥 < radius, ilet 𝑦 B min

𝑠
capacity in 𝑦

〉
By the rule FILetBin, it is fused to the following:

LTrust(𝑠) = let radius B
©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
in

R
𝑣∈V

(
ilet ⟨𝑥,𝑦⟩ B ⟨min

𝑠
weight,min

𝑠
capacity⟩ in ⟨𝑥 < radius, 𝑦⟩

)
By the rule FMPair, it is fused to the following:

LTrust(𝑠) = let radius B
©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
in

R
𝑣∈V

(
ilet ⟨𝑥,𝑦⟩ B R ′′′

⟨𝑠,𝑠 ⟩
F ′ in ⟨𝑥 < radius, 𝑦⟩

)
where F ′ B 𝜆𝑝. ⟨weight(𝑝), capacity′(𝑝)⟩

R ′′′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨min(𝑎, 𝑎′),min(𝑏, 𝑏 ′)⟩
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By the rule FVRed, it is fused to the following:

LTrust(𝑠) = let radius B
©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′, 𝑦 ′⟩ B ⟨𝑥,𝑦⟩ in
rlet ⟨𝑥 ′′, 𝑦 ′′⟩ B R ′′ ⟨𝑥 ′, 𝑦 ′⟩ in
min(𝑥 ′′, 𝑦 ′′)

ª®®®®¬
in

©­­­­«
ilet ⟨𝑥,𝑦⟩ B R ′′

⟨𝑠,𝑠 ⟩
F ′

mlet ⟨𝑥 ′, 𝑦 ′⟩ B in ⟨𝑥 < radius, 𝑦⟩
rlet 𝑥 ′′ B R ⟨𝑥 ′, 𝑦 ′⟩ in
𝑥 ′′

ª®®®®¬
The above specification is the sequence of two iteration-map-reduce triple let terms.
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2.3 Example Fusions
We saw the fusion of the Radius use-case in the paper, Fig. 2, and the fusion of the LTrust use-case
in § 2.2.6. In this subsection, we present the fusion of the DS and DRR use-cases.

DS(𝑠)
=

⋃
𝑣∈V∧

(
min

𝑝∈Paths(𝑠,𝑣)
weight(𝑝)

)
> 7

{𝑣} By VSel

= R
𝑣∈V

〈(
min

𝑝∈Paths(𝑠,𝑣)
weight(𝑝)

)
> 7, {𝑣}

〉
where

R(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
if (𝑎 ∧ 𝑎′) then ⟨𝑎, 𝑏 ∪ 𝑏 ′⟩
else(𝑎) then ⟨𝑎, 𝑏⟩
else ⟨𝑎′, 𝑏 ′⟩

By FPRed and FILit

= R
𝑣∈V
⟨
(
ilet 𝑥 B min

𝑠
weight in 𝑥

)
> ilet 𝑥 ′ B ⊥ in 7,

ilet 𝑥 ′′ B ⊥ in {𝑣}⟩ where

R(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
if (𝑎 ∧ 𝑎′) then ⟨𝑎, 𝑏 ∪ 𝑏 ′⟩
else(𝑎) then ⟨𝑎, 𝑏⟩
else ⟨𝑎′, 𝑏 ′⟩

By FILetBin

= R
𝑣∈V

(
ilet ⟨⟨𝑥, 𝑥 ′⟩, 𝑥 ′′⟩ B ⟨⟨min

𝑠
weight,⊥⟩,⊥⟩ in ⟨𝑥 > 7, {𝑣}⟩

)
By FMPair′

= R
𝑣∈V

(
ilet 𝑥 B min

𝑠
weight in ⟨𝑥 > 7, {𝑣}⟩

)
By FVRed

=

©­­­­«
ilet 𝑥 B min

𝑠
weight in

mlet 𝑥 ′ B ⟨𝑥 > 7, {𝑣}⟩ in
rlet 𝑥 ′′ B R 𝑥 ′ in
𝑥 ′′

ª®®®®¬
where

R(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
if (𝑎 ∧ 𝑎′) then ⟨𝑎, 𝑏 ∪ 𝑏 ′⟩
else(𝑎) then ⟨𝑎, 𝑏⟩
else ⟨𝑎′, 𝑏 ′⟩
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DRR =
Diam
Radius

=

max
𝑠∈{𝑠1,𝑠2 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝)

min
𝑠∈{𝑠1,𝑠2 }

max
𝑣∈V

min
𝑝∈Paths(𝑠,𝑣)

length(𝑝) Similar to Fig. 2 for

Radius in the paper.

=

©­­­­«
ilet ⟨𝑥1, 𝑦1⟩ B min

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′1, 𝑦
′
1⟩ B ⟨𝑥1, 𝑦1⟩ in

rlet ⟨𝑥 ′′1 , 𝑦
′′
1 ⟩ B R ⟨𝑥

′
1, 𝑦
′
1⟩ in

max(𝑥 ′′1 , 𝑦
′′
1 )

ª®®®®¬©­­­­«
ilet ⟨𝑥2, 𝑦2⟩ B min

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′2, 𝑦
′
2⟩ B ⟨𝑥2, 𝑦2⟩ in

rlet ⟨𝑥 ′′2 , 𝑦
′′
2 ⟩ B R ⟨𝑥

′
2, 𝑦
′
2⟩ in

min(𝑥 ′′2 , 𝑦
′′
2 )

ª®®®®¬
where

F B 𝜆𝑝. ⟨length(𝑝), length(𝑝)⟩
R (⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨max(𝑎, 𝑎′),max(𝑏,𝑏 ′)⟩

By FLetsBin

=

©­­­­«
ilet ⟨⟨𝑥1, 𝑦1⟩, ⟨𝑥2, 𝑦2⟩⟩ B ⟨ min

⟨𝑠1,𝑠2 ⟩
F , min
⟨𝑠1,𝑠2 ⟩

F ⟩ in

mlet ⟨⟨𝑥 ′1, 𝑦
′
1⟩, ⟨𝑥2, 𝑦2⟩⟩ B ⟨⟨𝑥1, 𝑦1⟩, ⟨𝑥2, 𝑦2⟩⟩ in

rlet ⟨⟨𝑥 ′′1 , 𝑦
′′
1 ⟩, ⟨𝑥

′′
2 , 𝑦
′′
2 ⟩⟩ B ⟨R ⟨𝑥

′
1, 𝑦
′
1⟩,R ⟨𝑥

′
2, 𝑦
′
2⟩⟩ in

max(𝑥 ′′1 , 𝑦
′′
1 )/min(𝑥 ′′2 , 𝑦

′′
2 )

ª®®®®¬
By IElim
Common

path-based
reduction

elimination

=

©­­­­«
ilet ⟨𝑥1, 𝑦1⟩ B min

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨⟨𝑥 ′1, 𝑦
′
1⟩, ⟨𝑥2, 𝑦2⟩⟩ B ⟨⟨𝑥1, 𝑦1⟩, ⟨𝑥1, 𝑦1⟩⟩ in

rlet ⟨⟨𝑥 ′′1 , 𝑦
′′
1 ⟩, ⟨𝑥

′′
2 , 𝑦
′′
2 ⟩⟩ B ⟨R ⟨𝑥

′
1, 𝑦
′
1⟩,R ⟨𝑥

′
2, 𝑦
′
2⟩⟩ in

max(𝑥 ′′1 , 𝑦
′′
1 )/min(𝑥 ′′2 , 𝑦

′′
2 )

ª®®®®¬
Similarly,

by Common
vertex-based

mapping
elimination

=

©­­­­«
ilet ⟨𝑥1, 𝑦1⟩ B min

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′1, 𝑦
′
1⟩ B ⟨𝑥1, 𝑦1⟩ in

rlet ⟨⟨𝑥 ′′1 , 𝑦
′′
1 ⟩, ⟨𝑥

′′
2 , 𝑦
′′
2 ⟩⟩ B ⟨R ⟨𝑥

′
1, 𝑦
′
1⟩,R ⟨𝑥

′
1, 𝑦
′
1⟩⟩ in

max(𝑥 ′′1 , 𝑦
′′
1 )/min(𝑥 ′′2 , 𝑦

′′
2 )

ª®®®®¬
Similarly,

by Common
vertex-based

reduction
elimination

=

©­­­­«
ilet ⟨𝑥1, 𝑦1⟩ B min

⟨𝑠1,𝑠2 ⟩
F in

mlet ⟨𝑥 ′1, 𝑦
′
1⟩ B ⟨𝑥1, 𝑦1⟩ in

rlet ⟨𝑥 ′′1 , 𝑦
′′
1 ⟩ B R ⟨𝑥

′
1, 𝑦
′
1⟩ in

max(𝑥 ′′1 , 𝑦
′′
1 )/min(𝑥 ′′1 , 𝑦

′′
2 )

ª®®®®¬
where

F B 𝜆𝑝. ⟨length(𝑝), length(𝑝)⟩
R (⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B
⟨max(𝑎, 𝑎′),max(𝑏, 𝑏 ′)⟩
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3 Mapping Specification to Iteration-Map-Reduce
3.1 Iterative Reduction and its Correctness
We consider four variants of iterative reduction based on whether the values of the predecessors
are pulled by the vertex itself or pushed by the predecessors, and whether the reduction function
R is idempotent.

3.1.1 Pull Model
Pull model with idempotent reduction.

Theorem 8 (Correctness of Pull (idempotent reduction)). For all R, F , C, I, P, and 𝑘 ≥ 1,
if the conditions C1 - C9 hold, then S𝑘

pull+ (𝑣) = S𝑝𝑒𝑐
𝑘 (𝑣).

The full proof is available in the appendix § 4.4.1. We prove by induction that after each iteration
𝑘 , the value S𝑘

pull+ (𝑣) of each vertex 𝑣 is S𝑝𝑒𝑐𝑘 (𝑣) that is the reduction over paths to 𝑣 of length
less than 𝑘 . At the iteration 𝑘 = 1, the specification S𝑝𝑒𝑐1 (𝑣) requires reduction on only the paths
of length zero to each vertex. Therefore, by the conditions C1 - C2, the initialization function I
properly initializes each vertex 𝑣 to S𝑝𝑒𝑐1 (𝑣). In each iteration 𝑘 + 1, if there is any predecessor
of the vertex 𝑣 whose value is changed in the previous iteration 𝑘 , then their new values are
propagated by P and reduced together by R and then reduced with the current value of 𝑣 . By the
conditions C7 and C8, the reduction function R is commutative and associative, and can be applied
to the propagated values in any order. By the induction hypothesis, the value of each predecessor 𝑢
is the reduction of the paths to 𝑢 of length 𝑙 , 0 ≤ 𝑙 < 𝑘 . The predecessors that have no paths and
store ⊥ are ignored by the conditions C3 and C6. By the conditions C4 and C5, the propagation of
the value of a predecessor 𝑢 of the vertex 𝑣 is equal to the reduction over the paths to 𝑣 that pass
through 𝑢. Since these paths include at least the edge (from 𝑢 to 𝑣), their length 𝑙 is 0 < 𝑙 < 𝑘 + 1.
The previous value of 𝑣 itself is the reduction over paths to 𝑣 of length 𝑙 , 0 ≤ 𝑙 < 𝑘 . Since, the
reduction function R is idempotent, reducing these two values absorbs the values of the repeated
paths and results in the reduction over all paths of length 𝑙 , 0 ≤ 𝑙 < 𝑘 + 1. If the value of none of
the predecessors is changed in the previous iteration, then the above reduction is skipped, and it
can be shown that the current value of the vertex is already equal to the above reduction.
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Pull model with non-idempotent reduction.

Theorem 9 (Correctness of Pull (non-idempotent reduction)). For all R, F , I, P, 𝑘 ≥ 1,
and 𝑠 , let C(𝑝) B (head(𝑝) = 𝑠), if the conditions C1 - C8 hold, and 𝑠 is not on any cycle, S𝑘

pull− (𝑣) =
S𝑝𝑒𝑐𝑘 (𝑣).

The full proof is available in the appendix § 4.4.2. The proof of this theorem is similar to the
proof of Theorem 8. Based on the induction hypothesis, the reduction of the propagated values
covers the paths of length 𝑙 , 0 < 𝑙 < 𝑘 + 1. The current value of 𝑣 itself covers the paths of length 𝑙 ,
0 ≤ 𝑙 < 𝑘 . Since the two sets of paths overlap and the reduction function may not be idempotent,
the reduction with the latter is avoided. However, no path is missed by avoiding the reduction. The
difference is only the paths of length 0. The vertices other than the source 𝑠 do not have a path of
length 0 from 𝑠 . The source 𝑠 is correctly initialized to the value of F on the zero-length path ⟨𝑠, 𝑠⟩
from 𝑠 to itself, and since 𝑠 is not on any cycle, its correct value is never overwritten.
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3.1.2 Push Model
Push model with idempotent reduction.

Theorem 10 (Correctness of Push (idempotent reduction)). For all R, F , C, I, P, and
𝑘 ≥ 1, if the conditions C1 - C9 hold, S𝑘

push+ (𝑣) = S𝑝𝑒𝑐
𝑘 (𝑣).

The full proof is available in § 4.4.3. Similar to the proof of Theorem 8, the reduction function
should be idempotent since the reduced values may cover overlapping sets of paths. The main
difference is that instead of propagating and reducing the values of all the predecessors of 𝑣 , only
the values of the predecessors {𝑢} of 𝑣 that have been changed in the previous iteration 𝑘 are
propagated and reduced. Therefore, the values of the unchanged predecessors {𝑤} of 𝑣 are not
reduced with the current value of 𝑣 . However, the resulting value of 𝑣 does not miss any path to 𝑣
that goes through an unchanged predecessor𝑤 . If𝑤 is never changed, there is no path from the
source(s) to it. If it is changed in the previous iterations, in the last such iteration, its value has been
already reduced with the current value of 𝑣 .
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Push model with non-idempotent reduction.
This model works for non-idempotent (in addition to idempotent) reduction functions. We

consider two instances of this model: first the basic and then the optimized iteration model.
The first variant of push, non-idempotent was defined in Fig. 8, Def. 4.

Theorem 11 (Correctness of Push (non-idempotent reduction) I).
For all R, F , I, P, 𝑘 ≥ 1, and 𝑠 , let C(𝑝) B (head(𝑝) = 𝑠), if the conditions C1 - C8 hold, and 𝑠

is not on any cycle, S𝑘
push− (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

The full proof is available in the appendix § 4.4.4. The proof of this theorem is similar to the
proof of Theorem 9. Based on the induction hypothesis, the reduction of the propagated values
covers the paths of length 𝑙 , 0 < 𝑙 < 𝑘 + 1. Let us consider the paths of length 0. The vertices other
than the source 𝑠 do not have a path of length 0 from 𝑠 . The source 𝑠 is correctly initialized to the
value of F on the zero-length path ⟨𝑠, 𝑠⟩ from 𝑠 to itself, and since 𝑠 is not on any cycle, its correct
value is never overwritten.
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The second variant is represented in Def. 7 below. Let the value of the vertex 𝑣 in the iteration 𝑘
be represented as S𝑘

push− (𝑣). The main difference with the previous model is that every changed
predecessor 𝑢𝑖 first rollbacks its previous update before applying its new update. The rollback
function B, given a value 𝑛 and an edge ⟨𝑢, 𝑣⟩ where 𝑛 is the previous value of 𝑢, defines the value
that is propagated to 𝑣 to be rolled back. The rollback value is expected to cancel the previously
propagated value. For example, for the PageRank use-case as Fig. 7 shows, the rollback function
returns the negation of the previously propagated value. For each predecessor 𝑢𝑖 , the rollback
function B is applied to the previous value S𝑘−1

push− (𝑢𝑖 ) of 𝑢𝑖 and the edge ⟨𝑢𝑖 , 𝑣⟩, and the propagate
function P is applied to the latest value S𝑘

push− (𝑢𝑖 ) of 𝑢𝑖 and the edge ⟨𝑢𝑖 , 𝑣⟩. The two resulting
values are reduced with the current value of 𝑣 .

Definition 7 (Push (non-idempotent reduction) II).
S0
push− (𝑣) B ⊥
S1
push− (𝑣) B I(𝑣)
S𝑘+1
push− (𝑣) B E(𝑆𝑛), 𝑘 ≥ 1 where
let {𝑢0, .., 𝑢𝑛−1} B CPreds

𝑘 (𝑣) in
𝑆0 B S𝑘

push− (𝑣)
𝑆𝑖+1 B R(R(𝑆𝑖 ,
B

(
S𝑘−1
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

)
),

P
(
S𝑘
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

)
)

The correctness of this variant of iteration is dependent on the following condition for the
propagation and rollback functions.

C11 (Rollback) :
∀𝑛, 𝑛′. R(𝑛,R(P(𝑛′, 𝑒),

B (𝑛′, 𝑒))) = 𝑛

As we saw in Def. 7, in this variant of push model with non-idempotent reduction S𝑘
push− (𝑣),

each predecessor first rollbacks its previously propagated value before propagating its new value.
The rollback value is expected to cancel the previously propagated value. This requirement is
captured as the condition C11 above. As an example, the number of shortest paths use-case NSP,
after fusion, calculates a pair for each vertex where the first element is the shortest path weight
and the second element is the number of such paths. For NSP, the propagate function is P =

𝜆⟨𝑤,𝑛⟩, 𝑒 . ⟨𝑤 + weight(𝑒), 𝑛⟩ and the rollback function is B = 𝜆⟨𝑤,𝑛⟩, 𝑒 . ⟨𝑤,−𝑛⟩.
For synthesis in this model, after the propagation function P is synthesized, the condition C11 is

used to synthesize the rollback function B.
The following theorem states that if the conditions C1 - C8 and the condition C11 hold, this model

complies with the specification S𝑝𝑒𝑐𝑘 (𝑣).

Theorem 12 (Correctness of Push (non-idempotent reduction) II). For all R, F , C, I, P,
and 𝑘 ≥ 1, if the conditions C1 - C8 and C11 hold, S𝑘

push− (𝑣) = S𝑝𝑒𝑐
𝑘 (𝑣).

The full proof is available in § 4.4.4. First, we show that after each iteration 𝑘 +1, the value of each
vertex 𝑣 is the reduction of its initial value and the value of predecessors in the previous iteration
𝑘 . Even though only the changed predecessors push values, similar to the proof of Theorem 10,
the value of no predecessor is missed. If a predecessor is never changed, it has the value ⊥ that
is ignored in the reduction anyway. If it is changed in the previous iterations, in the last such
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iteration, its value has been pushed and reduced with the current value of 𝑣 . Since reduction is not
idempotent, each predecessor first rollbacks its old value before applying its new value. Second,
using the first fact, we show by induction that the value of each vertex 𝑣 is the reduction of the
paths to 𝑣 of length less than 𝑘 + 1. Similar to the previous proofs, it can be shown that the initial
value of 𝑣 is the result of reduction on paths to 𝑣 of length 0. Further, using the induction hypothesis,
it can be shown that the propagation of values from the predecessors in iteration 𝑘 + 1 results in the
reduction over paths to 𝑣 of length 𝑙 , 0 < 𝑙 < 𝑘 + 1. Reducing the two values results in the reduction
over paths to 𝑣 of length 𝑙 , 0 ≤ 𝑙 < 𝑘 + 1 that the specification S𝑝𝑒𝑐𝑘+1 (𝑣) requires.

Number of Shortest Paths (NSP)
I B 𝜆𝑣. if (𝑣 = 𝑠) ⟨0, 1⟩ else ⊥
P B 𝜆𝑛, 𝑒. 𝑛 + weight(𝑒)
R B 𝜆⟨𝑤,𝑛⟩, ⟨𝑤 ′, 𝑛′⟩.

if (𝑤 = 𝑤 ′) ⟨𝑤,𝑛 + 𝑛′⟩
elseif (𝑤 > 𝑤 ′) ⟨𝑤 ′, 𝑛′⟩
else ⟨𝑤,𝑛⟩

E B 𝜆𝑛. 𝑛

B B 𝜆⟨𝑤,𝑛⟩, 𝑒 . ⟨𝑤,−𝑛⟩

Fig. 16. The number of shortest paths
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3.1.3 Asynchronous Model
The predecessors of the vertex 𝑣 that changed value in the iteration 𝑘 :
CPreds

𝑘 (𝑣) =
{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘 (𝑢) ≠ S𝑘−1 (𝑢)

}
Definition 8 (Pull (idempotent reduction)).
S0
apull+ (𝑣) B ⊥
S1
apull+ (𝑣) B I(𝑣)

S𝑘+1
apull+ (𝑣) B


S𝑘
apull+ (𝑣) if CPreds

𝑘 (𝑣) = ∅

E
[
R
(
S𝑘
apull+ (𝑣), R𝑢∈preds(𝑣) P

(
S𝑘
apull+ (𝑢) ?S

𝑘+1
apull+ (𝑢), ⟨𝑢, 𝑣⟩

))]
else

𝑘 ≥ 1

Definition 9 (Pull (non-idempotent reduction)).
S0
apull− (𝑣) B ⊥
S1
apull− (𝑣) B I(𝑣)

S𝑘+1
apull− (𝑣) B


S𝑘
apull− (𝑣) if CPreds

𝑘 (𝑣) = ∅

E
[
R𝑢∈preds(𝑣) P

(
S𝑘
apull− (𝑢) ?S

𝑘+1
apull− (𝑢), ⟨𝑢, 𝑣⟩

)]
else

𝑘 ≥ 1

Definition 10 (Push (idempotent reduction)).
S0
apush+ (𝑣) B ⊥
S1
apush+ (𝑣) B I(𝑣)
S𝑘+1
apush+ (𝑣) B E(𝑆𝑛), 𝑘 ≥ 1 where

let {𝑢0, .., 𝑢𝑛−1} B CPreds
𝑘 (𝑣) in

let𝑚𝑖 B |CPreds𝑘 (𝑢𝑖 ) | in
𝑆0 (𝑣) B S𝑘

apush+ (𝑣)

𝑆𝑖+1 (𝑣) B R
(
𝑆𝑖 (𝑣), P

(
?𝑗 ∈{1..𝑚𝑖 } 𝑆 𝑗 (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

))
Definition 11 (Push (non-idempotent reduction)).

S0
apush− (𝑣) B ⊥
S1
apush− (𝑣) B I(𝑣)
S𝑘+1
apush− (𝑣) B E(𝑆𝑛 (𝑣)), 𝑘 ≥ 1 where

let {𝑢0, .., 𝑢𝑛−1} B CPreds
𝑘 (𝑣) in

𝑆0 (𝑣) B S𝑘
apush− (𝑣)

𝑆𝑖+1 (𝑣) B R(R(𝑆𝑖 (𝑣),
B

(
𝑏𝑘−1 (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

)
),

P
(
𝑏𝑘 (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

)
)

𝑏𝑘+1 (𝑣) B ?𝑖∈{0..𝑛} 𝑆𝑖 (𝑣)

Fig. 17. Four Iterative ReductionMethods (in the asynchronous mode). The operator ? is the non-deterministic

choice operator.

The iteration models that were presented in Fig. 8 are synchronous. In the synchronous model, in
each iteration 𝑘 + 1, each vertex 𝑣 stores both its previous value S𝑘 (𝑣) and its new value S𝑘+1 (𝑣).
The previous value S𝑘 (𝑣) of 𝑣 is propagated to update other vertices and updates to the value of 𝑣
are stored in its new value S𝑘+1 (𝑣). Therefore, the updates in the current iteration do not affect
the values that are propagated. In the asynchronous model, however, each vertex stores one value.
The single value is used to both propagate the current value of the vertex and store its new value.
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Asynchronous model can save space and converge faster but is more subtle. The values that are
propagated in iteration 𝑘 + 1 can be either the previous value S𝑘 (𝑣), the old value S𝑘+1 (𝑣) or an
intermediate value between the two. The high-level idea is that the new value has more information
than the old value i.e. covers more paths. Thus, vertices reach convergence faster.
The asynchronous pull model for idempotent and non-idempotent reduction functions are

presented in Def. 8 and Def. 9. They are very similar to the corresponding synchronous pull models
that were presented in Def. 1 and Def. 2. Now, the propagated value is either the previous value
S𝑘
apull+ (𝑢) or the new value S𝑘+1

apull+ (𝑢) of the predecessor 𝑢. The operator ? is the non-deterministic
choice operator that non-deterministically returns one if its operands.
The asynchronous push model for idempotent reduction functions is presented in Def. 10. It

is similar to the corresponding synchronous definition presented in Def. 3. The difference is that
instead of the previous value S𝑘

push+ (𝑢𝑖 ) of each predecessor𝑢𝑖 , one of its intermediate values 𝑆 𝑗 (𝑢𝑖 )
is propagated. Assuming that the predecessor 𝑢𝑖 has𝑚𝑖 changed predecessors itself, 𝑢𝑖 has the
intermediate values 𝑆 𝑗 (𝑢) where 𝑗 ∈ {1..𝑚𝑖 }, one after each push from its predecessors. The value
propagated to 𝑣 can non-deterministically be any of the intermediate values.
The asynchronous push model for non-idempotent reduction functions is presented in Def. 11.

It not similar to the corresponding synchronous definition presented in Def. 4. The difference is
that the values propagated by a vertex can be any of its intermediate values and not necessarily
its value at the end of the last iteration. Thus, we need to store the previously propagated values
to roll them back before propagating new values. Consider a vertex 𝑣 and its predecessor 𝑢𝑖 . The
value that 𝑢𝑖 propagates to 𝑣 in iteration 𝑘 is stored as 𝑏𝑘 (𝑢𝑖 ). In iteration 𝑘 + 1, to push from the
predecessor 𝑢𝑖 to the vertex 𝑣 , the value 𝑏𝑘−1 (𝑢𝑖 ) is rolled back by the rollback function B and the
new value 𝑏𝑘 (𝑢𝑖 ) is propagated by the propagation function P.

We define 𝑃∞ (𝑣) as all the paths to the vertex 𝑣 (that satisfy the condition C).

Definition 12 (Paths). 𝑃∞ (𝑣) = {𝑝 | 𝑝 ∈ Paths(𝑣) ∧ C(𝑝)}

The definition of specificationS𝑝𝑒𝑐 (𝑣) is the same as definition Def. 5; only the paths are factored
to 𝑃∞ (𝑣).

Definition 13 (Specification). S𝑝𝑒𝑐 (𝑣) = R𝑝∈𝑃∞ (𝑣) F (𝑝)

We define 𝑃𝑘 (𝑣) as the paths to the vertex 𝑣 of length less than 𝑘 (that satisfy the condition C).

Definition 14 (𝑘-Paths). 𝑃𝑘 (𝑣) = {𝑝 | 𝑝 ∈ Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝) < 𝑘}

The definition of specification for iteration 𝑘 , S𝑝𝑒𝑐𝑘 (𝑣), is the same as definition Def. 6; only the
paths are factored to 𝑃𝑘 (𝑣).

Definition 15 (𝑘-Specification). S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ 𝑃𝑘 (𝑣) F (𝑝)

Since in the asynchronous model, in an iteration 𝑘 , the value of vertices may cover paths of
length 𝑘 or longer, we define 𝑎𝑃𝑘 (𝑣) as the set of paths that include paths of length less than 𝑘 and
maybe more.

Definition 16 (a-𝑘-Paths). 𝑎𝑃𝑘 (𝑣) = {𝑃 | 𝑃 (𝑘) ⊆ 𝑃 ⊆ 𝑃∞ (𝑣)}

Since in the asynchronous model, vertices may propagate any one of the multiple intermediate
values, we define asynchronous specification for iteration 𝑘 , 𝑎S𝑝𝑒𝑐𝑘 (𝑣), as set of values: the
reductions of any set of paths 𝑃 in 𝑎𝑃𝑘 (𝑣).

Definition 17 (a-𝑘-Specification). 𝑎S𝑝𝑒𝑐𝑘 (𝑣) = {R𝑝 ∈ 𝑃 F (𝑝) | 𝑃 ∈ 𝑎𝑃𝑘 (𝑣)}
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All the asynchronous models presented in Fig. 17 comply with the asynchronous specification.
In each iteration, the value stored at vertex 𝑣 is in the set of values 𝑎S𝑝𝑒𝑐𝑘 (𝑣).

Theorem 13 (Correctness of Pull (idempotent reduction)). Forall R, F , C, I, P, and 𝑘 ≥ 1,
if the conditions C1 - C4 and C6 - C9 hold, then S𝑘

apull+ (𝑣) ∈ 𝑎S𝑝𝑒𝑐
𝑘 (𝑣)

The proof is similar to the proof of Theorem 8. The set of paths covered by S𝑘+1
apull+ (𝑢) is a superset

of path covered by S𝑘
apull+ (𝑢). The reduction over the set of paths in the difference is factored out

in the proof.

Theorem 14 (Correctness of Pull (non-idempotent reduction)). Forall R, F , I, P, 𝑘 ≥ 1,
and 𝑠 , let C(𝑝) B (head(𝑝) = 𝑠), if the conditions C1 - C4 and C6 - C8 hold, and 𝑠 is not on any cycle,
S𝑘
apull− (𝑣) ∈ 𝑎S𝑝𝑒𝑐

𝑘 (𝑣)

The proof is similar to the proof of Theorem 9. The set of paths covered by S𝑘+1
apull+ (𝑢) is a superset

of path covered by S𝑘
apull+ (𝑢). The reduction over the set of paths in the difference is factored out

in the proof.

Theorem 15 (Correctness of Push (idempotent reduction)). Forall R, F , C, I, P, and 𝑘 ≥ 1,
if the conditions C1 - C4 and C6 - C9 hold, S𝑘

apush+ (𝑣) ∈ 𝑎S𝑝𝑒𝑐
𝑘 (𝑣)

The proof is similar to the proof of Theorem 10. The set of paths covered by 𝑆 𝑗 (𝑢𝑖 ) is a superset
of path covered by S𝑘

push+ (𝑢𝑖 ). The reduction over the set of paths in the difference is factored out
in the proof.

Theorem 16 (Correctness of Push (non-idempotent reduction)). Forall R, F , C, I, P, and
𝑘 ≥ 1, if the conditions C1 - C8 hold, S𝑘

apush− (𝑣) ∈ 𝑎S𝑝𝑒𝑐
𝑘 (𝑣)

The proof is similar to the proof of Theorem 25. The set of paths covered by 𝑏𝑘 (𝑢𝑖 ) is a superset
of path covered by S𝑘

pull− (𝑢𝑖 ). The reduction over the set of paths in the difference is factored out
in the proof.

Theorem 17 (Termination). Forall R, F , and C, if the graph is acyclic or the condition C10 holds,
then there exists 𝑘 ′ such that for every 𝑘 ≥ 𝑘 ′, 𝑎S𝑝𝑒𝑐𝑘 (𝑣) = {S𝑝𝑒𝑐 (𝑣)}.

The proof is similar to the proof of Theorem 27. Let 𝑙 be the longest simple path to 𝑣 . If the
graph is acyclic, there is no path longer than 𝑙 . Thus, for any 𝑘 > 𝑙 + 1, 𝑃𝑘 (𝑣) = {𝑃∞ (𝑣)}. Therefore,
𝑎S𝑝𝑒𝑐𝑘 (𝑣) = {S𝑝𝑒𝑐 (𝑣)}. Even if the graph is cyclic, for any path 𝑝 longer than 𝑙 , the condition
C10 states that reducing the value of 𝑝 with the value of simple(𝑝) leaves the value of simple(𝑝)
unchanged. Thus, R𝑝 ∈ 𝑃𝑘 (𝑣) F (𝑝) = R𝑝 ∈ 𝑃𝑙+1 (𝑣) F (𝑝). Thus, 𝑎S𝑝𝑒𝑐𝑘 (𝑣) = {R𝑝 ∈ 𝑃𝑙+1 (𝑣) F (𝑝)}. Simi-
larly, it can be shown that S𝑝𝑒𝑐 (𝑣) = {R𝑝 ∈ 𝑃𝑙+1 (𝑣) F (𝑝)}. Therefore, 𝑎S𝑝𝑒𝑐𝑘 (𝑣) = {S𝑝𝑒𝑐 (𝑣)}.

An immediate corollary of the above theorem is that if the graph is acyclic or the condition C10
holds, then all the four asynchronous iteration models eventually terminate and converge to the
specification (if their corresponding conditions in Theorem 13 to Theorem 16 hold). For example
the corollary for the asynchronous pull model for idempotent reduction functions is the following.
The corollary for the other models is similar.

Corollary 18 (Termination). Forall R, F , C, I, and P, if the conditions C1 - C4 and C6 - C9
hold and the graph is acyclic or the condition C10 holds, then there exists an iteration 𝑘 such that
S𝑘
apull+ (𝑣) = S𝑝𝑒𝑐 (𝑣)
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3.1.4 Streaming Graphs
In contrast to a static graph, a streaming graph can continuously change in response to external

events. Thus, to have up-to-date results, the graph analytics computations should be periodically
repeated. Stream graph processing strives to benefit from the results computed prior to the updates
instead of restarting the iteration form the initial values. The idea is that starting from the prior result
can accelerate the convergence. What are the conditions such that the incremental computation
yields the correct results? We first consider addition and then removal of edges and present the
correctness conditions for incremental commutation after each.

Incremental Computation. Consider a graph 𝐺 . Let us denote the result of a path-based
reduction S𝑝𝑒𝑐 (𝑣) on 𝐺 as S𝑝𝑒𝑐𝐺 (𝑣). Let 𝐺 + 𝛿 be the result of updating (adding or removing) an
edge 𝑒 = ⟨𝑠𝑒 , 𝑡𝑒⟩ in 𝐺 . The incremental computation on 𝐺 + 𝛿 starts from the prior result S𝑝𝑒𝑐𝐺 (𝑣)
for 𝐺 . The incremental pull model is similar to the basic model (of Def. 1). The difference is that
(1) the starting state is S𝑝𝑒𝑐𝐺 (𝑣) instead of I(𝑣) except for the sink node 𝑡𝑒 and if the update
is a removal, and (2) that the vertex 𝑡𝑒 is updated in the starting iteration. Thus, the state of the
incremental computation at iteration 𝑘 denoted as S𝑘

𝐺+𝛿 (𝑣) is defined as follows:

Definition 18 (Incremental pull model (with idempotent reduction)).

S1
𝐺+𝛿 (𝑣) B

{
I(𝑣) if (𝛿 is removal) ∧ (𝑣 = 𝑡𝑒 )
S𝑝𝑒𝑐𝐺 (𝑣) else

S𝑘+1
𝐺+𝛿 (𝑣) B

{
R
[
S𝑘
𝐺+𝛿 (𝑣), R𝑢∈preds(𝑣) P

(
S𝑘
𝐺+𝛿 (𝑢), ⟨𝑢, 𝑣⟩

)]
if (𝑘 = 1 ∧ 𝑣 = 𝑡𝑒 ) ∨ (CPreds𝑘 (𝑣) ≠ ∅)

S𝑘
𝐺+𝛿 (𝑣) else

𝑘 ≥ 1

Addition of Edges. If the update 𝛿 in 𝐺 + 𝛿 is adding an edge, does the result of incremental
computation S𝑘

𝐺+𝛿 (𝑣) converge to its specification S𝑝𝑒𝑐 (𝑣)? It turns out that it does with the same
conditions as the static case. Adding an edge only increases the set of paths. The prior value of
a vertex is the result of reduction on the old set of paths to that vertex. That set may now be
incomplete. However, the prior values can help the incremental computation skip most of the
initial iterations. For example, in the shortest path SSSP use-case, the newly added edge may
improve the previously found shortest path only for some of the vertices. Subsequent iterations
will eventually reduce the values of all the new paths with the prior values of the vertices. As the
reduction function is assumed to be commutative, associative and idempotent, the reduction order
and repeated reductions of a path do not affect the result. Thus, we can state the following theorem
for the correctness of incremental reduction after adding edges.

Theorem 19 (Correctness after adding edges). For all R, F , I and P, if the conditions C1 -
C10 hold and the update 𝛿 is addition of an edge, then there exists 𝑘 such that S𝑘

𝐺+𝛿 (𝑣) = S𝑝𝑒𝑐 (𝑣).

Removal of Edges. In contrast to adding, if the update is removing an edge, the incremental
computation is not necessarily correct. When an edge ⟨𝑠𝑒 , 𝑡𝑒⟩ is removed, the value of 𝑡𝑒 becomes
incorrect if it has been calculated using the value of 𝑠𝑒 . Thus, the incremental computation (Def. 18)
recalculates the value of 𝑡𝑒 based on the values of its remaining predecessors. The intention is that
this update calculates the correct value of 𝑡𝑒 . However, as Fig. 18a shows, if there is a loop from 𝑡𝑒
back to one of its predecessors 𝑢, and the value of 𝑢 has been calculated based on the old value of
𝑡𝑒 , the recalculated value of 𝑡𝑒 is still incorrect. The new value of 𝑡𝑒 can lead to calculation of new
values back to 𝑢 and then again for 𝑡𝑒 . The question is whether the iterative calculation around the
loop eventually forgets the incorrect value. It turns out that it does, if extending a path with an
edge makes the value of the path less favorable during reduction. For example, in the SSSP use-case,
the value of a path is its weight and the weight of an extended path increases; thus, the extended
path is less favorable for the min reduction function. The cycle can take only larger values back to
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(a) Removing an edge and the subsequent

update through a cycle

(b) Removing an edge in the CC use-case

Fig. 18. Removing edges

𝑡𝑒 through the predecessor 𝑢, and eventually, the values coming from the other predecessors will
be smaller and thus, chosen by the min reduction function. Thus, the incremental computation for
the shortest path use-case SSSP will eventually converge to the correct values.

Streaming:
C12 (Worsening) :
∀𝑝, 𝑒. R(F (𝑝), F (𝑝 · 𝑒)) = F (𝑝) ≠ F (𝑝 · 𝑒)

Fig. 19. Correctness and Termination Conditions

However, in the CC use-case, the value of
a path is the identifier of its source; thus, the
value of an extended path stays the same. Con-
sider the graph in Fig. 18b where two cycles
are connected by the edge 𝑒 = ⟨𝑠𝑒 , 𝑡𝑒⟩ where
the cycle on the 𝑠𝑒 side has the vertex with the
smallest identifier 0. The iteration for𝐺 results in 0 as the component identifier of all vertices. Upon
the removal of 𝑒 , the neighbors 𝑢 of 𝑡𝑒 in the loop continue feeding 0 back to 𝑡𝑒 which prevents
spreading the larger identifier 4 in the cycle. Vertices adopt smaller identifier from their neighbors.
The iteration incorrectly converges to 0 as the component identifier of the cycle. We have captured
the above sufficient condition in Fig. 19 as the worsening property C12. Extending a path 𝑝 with an
edge 𝑒 should result in an unequal and worse value. Thus, we can state the following theorem for
the correctness of incremental reduction after removing edges.

Theorem 20 (Correctness after removing edges). For all R, F , I and P, if the conditions C1
- C10 and C12 hold and the update 𝛿 is removal of an edge, then there exists 𝑘 such that S𝑘

𝐺+𝛿 (𝑣) =
S𝑝𝑒𝑐 (𝑣).

However, if the condition C12 does not hold, then all the prior values cannot be simply used and
the value of all vertices that are reachable form the vertex 𝑡𝑒 should be reset to their initial values.
In the example of the CC use-case above, the values of the vertices in the cycle are all reset to their
own identifiers. The iteration then correctly converges to the smallest identifier in the cycle. As an
optimization, the dependencies between the value of vertices can be tracked at runtime and the
values of only the vertices that are dependent on 𝑡𝑒 should be reset.
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3.1.5 Factored Path-based Reductions
Consider the factored path-based reduction R

𝑐
F with a general configuration 𝑐 . We show that the

correctness conditions for its iterative execution are captured by the conditions that were presented
in Fig. 13.

Let us define 𝐶𝑐 as follows:
C𝑠 (𝑝) B head(𝑝) = 𝑠

C⊥ (𝑝) B True

(1)

Let us define F 𝑐 as follows:
⟨F1, F2⟩ ⟨𝑐1,𝑐2 ⟩ (𝑝) B ⟨F 𝑐1

1 (𝑝), F
𝑐2
2 (𝑝)⟩

F 𝑐 (𝑝) B if (C𝑐 (𝑝)) F (𝑝) else ⊥ (2)

The specification of the factored path-based reduction R
𝑐
F is the following:

R𝑝 ∈Paths(𝑣) F 𝑐 (𝑝)
that can be captured by the specification S𝑝𝑒𝑐 (𝑣) defined in Def. 5 with C(𝑝) instantiated with
True and F instantiated with F 𝑐 .

Thus, the correctness conditions for the factored path-based reduction R
𝑐
F can be captured by

the conditions that were presented in Fig. 13 with C(𝑝) instantiated with True and F instantiated
with F 𝑐 . In particular, the initialization condition C2 is trivial and C1 is simplified to

I(𝑣) = F 𝑐 (⟨𝑣, 𝑣⟩) (3)
For example, by Eq. 3 and Eq. 2, for a path-based reduction R

⟨𝑐1,𝑐2 ⟩
⟨F1, F2⟩, the initialization conditions

are the following
∀𝑣 . C𝑐1 (⟨𝑣, 𝑣⟩) → fst(I(𝑣)) = F1 (⟨𝑣, 𝑣⟩)
∀𝑣 . ¬C𝑐1 (⟨𝑣, 𝑣⟩) → fst(I(𝑣)) = ⊥
∀𝑣 . C𝑐2 (⟨𝑣, 𝑣⟩) → snd(I(𝑣)) = F2 (⟨𝑣, 𝑣⟩)
∀𝑣 . ¬C𝑐2 (⟨𝑣, 𝑣⟩) → snd(I(𝑣)) = ⊥

(4)

This means that the initialization for each element of the state tuple mirrors the initialization
conditions C1 and C2.
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3.2 Synthesis of Iterative Reduction
To find candidate expressions for the body of the kernel functions, we apply a type-guided enumer-
ative search to the expression grammar presented in Fig. 20b. The expression constructors have
union types; for example, the plus operator + can be applied to both integers Int and floating point
Float numbers. The procedureCandidates in Fig. 20a returns the set of expressions of the input type
𝑇 and size size. It is a recursive procedure that uses memoization to avoid redundant enumeration.
It keeps a map from types to maps from sizes to the set of previously synthesized expressions. To
synthesize an expression of type 𝑇 , it only considers the expression constructors with the return
type 𝑇 . A constructor itself uses one unit of size. For each constructor 𝑐 , the Candidates procedure
considers all the possible distributions of the remained size, that is size − 1, between the parameters
of 𝑐 . For each distribution, it recursively obtains a set of expressions 𝐸𝑖 for each parameter 𝑝𝑖 using
its type and its allocated size. It then applies 𝑐 to each element of the product of the sets 𝐸𝑖 to yield
candidate expressions. It memoizes and returns the set of these candidates.

The functions Fig. 20c and Fig. 20d synthesize the functions I and P. We consider synthesis for
P; synthesis for I is similar. Fig. 20d presents the SynthP procedure that given the path function
F and the reduction function R of a path-based reduction, synthesizes the propagation function P.
It starts by memoizing expressions of size one, variables and literals, to make them available for
the synthesis of the body of P. Let 𝑇 be the return type of F ; vertices store values of type 𝑇 . The
propagation function P takes a value stored at a vertex (of type of 𝑇 ) and an edge (of type Edge)
and returns a vertex value (of type 𝑇 ). Thus, the two input variables of the two input types, the
variable 𝑛 of type 𝑇 and the variable 𝑙 of type Edge, are memoized as available expressions. Then,
candidate expressions of type𝑇 are obtained from the Candidates procedure. Expressions of larger
sizes are incrementally checked as candidate bodies for P.

A candidate propagation function 𝜆𝑛, 𝑙 . 𝑒 is correct if the conditions C4 and C5 are valid when P
is replaced by the candidate. We use the notation of A ⊢ A ′ to represent whether the assertion
A ′ is valid in the context of the assumed assertion(s) A. To check the validity of an assertion, we
use off-the-shelf SMT solvers to check the satisfiability of its negation. The context of the validity
check F ;R; Γ is the definition of the functions F and R from the given path-based reduction, and
a set of assertions Γ that define basic graph functions and relations.
Fig. 21 represents the context assertions Γ: assertions for the path functions length, weight,

punultimate and capacity. We define graph functions and relations in the combination of the
quantified uninterpreted functions and list theories. We represent a path P as a list of vertices V.
The edge weight eweight is a function on pairs of vertices ⟨V,V⟩ and the path weight weight is a
function on paths P to natural numbers N. If the list for the path is empty or has a single vertex,
the weight of the path is trivially zero; otherwise, the weight of the path is recursively the sum of
the weight of the path without the last edge and the edge weight of the last edge.

For the push model with non-idempotent reduction (Def. 7), after the propagation function P is
synthesized, the condition C11 is used to synthesize the rollback function B.
We note that since the path functions F never return none ⊥, the reduction function R ′ is

simplified to R in the condition C4.
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def Candidates(𝑇, size)
if (already memoized 𝐸

for 𝑇 and size)
return 𝐸

𝐸 ← ∅
foreach (expression constructor 𝑐
with the return type 𝑇 )
foreach (distribution 𝑠𝑖 of size − 1
between parameters 𝑝𝑖 of 𝑐)
foreach (𝑝𝑖 with type 𝑇𝑖 )
𝐸𝑖 ← Candidates(𝑇𝑖 , 𝑠𝑖 )

𝐸 ← 𝐸 ∪ {𝑐 (𝑒) | 𝑒 ∈ ×𝐸𝑖 }
memoize 𝐸 for 𝑇 and size
return 𝐸

(a) Type-guided expression
enumeration

𝑒 ::= 𝑛 | 𝑣 Exp
| 𝑒 + 𝑒 | 𝑒 − 𝑒
| 𝑒 = 𝑒 | 𝑒 < 𝑒

| min(𝑒, 𝑒) | max(𝑒, 𝑒)
| if (𝑒) then 𝑒 else 𝑒

| weight(𝑒) | capacity(𝑒)
| indeg(𝑒) | outdeg(𝑒)
| src(𝑒) | dst(𝑒)
| |𝑉 |

𝑛 ::= 0 | 1 | .. | True | False Literal
𝑣 Variable
𝑇 ::= Int | Float | Bool |

Edge | Vertex Type

(b) Grammar

def SynthI (F )
𝐼1 memoize the variable 𝑣 for type Vertex and size 1
𝐼2 foreach (literal 𝑙𝑖 with type 𝑇𝑖 )
𝐼3 memoize 𝑙𝑖 for 𝑇𝑖 and size 1
𝐼4 size← 1
𝐼5 while (true)
𝐼6 𝐸 ← Candidates(return type of F , size)
𝐼7 foreach (𝑒 ∈ 𝐸)
𝐼8 if F ; Γ ⊢ (C1 ∧ C2) [I ↦→ (𝜆𝑣. 𝑒)]
𝐼9 return (𝜆𝑣. 𝑒)
𝐼10 size← size + 1

(c) Synthesis of the initialization function I

def SynthP (F ,R)
let 𝑇 be the return type of F .

𝑃1 memoize variable 𝑛 for 𝑇 and size 1
𝑃2 memoize variable 𝑙 for type Edge and size 1
𝑃3 foreach (literal 𝑙𝑖 with type 𝑇𝑖 )
𝑃4 memoize 𝑙𝑖 for 𝑇𝑖 and size 1
𝑃5 size← 1
𝑃6 while (true)
𝑃7 𝐸 ← Candidates (𝑇, size)
𝑃8 foreach (𝑒 ∈ 𝐸)
𝑃9 if F ;R; Γ ⊢ (C4 ∧ C5) [P B (𝜆𝑛, 𝑙 . 𝑒)]
𝑃10 return (𝜆𝑛, 𝑙 . 𝑒)
𝑃11 size← size + 1

(d) Synthesis of the propagation function P

Fig. 20. Synthesis Grammar and functions
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Γ =

P B List[V],

length : P→ N
elength : ⟨V,V⟩ → N
∀⟨𝑢, 𝑣⟩. if (𝑢 = 𝑣) elength(⟨𝑢, 𝑣⟩) = 0

else

elength(⟨𝑢, 𝑣⟩) = 1
∀𝑝. if (𝑝 = ⊥) length(𝑝) = 0

else

let 𝑣 B head(𝑝), 𝑝 ′ B tail(𝑝) in
if (𝑝 ′ = ⊥) length(𝑝) = 0
else

let 𝑣 ′ B head(𝑝 ′) in
length(𝑝) =
length(𝑝 ′) + elength(⟨𝑣 ′, 𝑣⟩)

penultimate : P→ V

∀𝑝. if (𝑝 = ⊥) penultimate(𝑝) = ⊥
else

let 𝑣 B head(𝑝), 𝑝 ′ B tail(𝑝) in
if (𝑝 ′ = ⊥) penultimate(𝑝) = 𝑣

else

penultimate(𝑝) = head(𝑝 ′)

weight : ⟨V,V⟩ → N
∀𝑣 . eweight(⟨𝑣, 𝑣⟩) = 0
∀𝑝. if (𝑝 = ⊥) weight(𝑝) = 0

else

let 𝑣 B head(𝑝), 𝑝 ′ B tail(𝑝) in
if (𝑝 ′ = ⊥) weight(𝑝) = 0
else

let 𝑣 ′ B head(𝑝 ′) in
weight(𝑝) =
weight(𝑝 ′) + eweight(⟨𝑣 ′, 𝑣⟩)

capacity : P→ N
ecapacity : ⟨V,V⟩ → N
∀𝑣 . ecapacity(⟨𝑣, 𝑣⟩) = ⊥
∀𝑝. if (𝑝 = ⊥) capacity(𝑝) = ⊥

else

let 𝑣 B head(𝑝), 𝑝 ′ B tail(𝑝) in
if (𝑝 ′ = ⊥) capacity(𝑝) = ⊥
else

let 𝑣 ′ B head(𝑝 ′) in
capacity(𝑝) =
min(capacity(𝑝 ′), ecapacity(⟨𝑣 ′, 𝑣⟩))

Fig. 21. Context assertions Γ
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4 Proofs
4.1 Helper Definitions

Definition 19 (Substitution).
Substitution 𝐸 B 𝑁 :
𝑁 B n | ⟨𝑁, 𝑁 ⟩

⟨𝐸, 𝐸 ′⟩[𝑋 B 𝑁 ] = ⟨𝐸 [𝑋 B 𝑁 ], 𝐸 ′[𝑋 B 𝑁 ]⟩
𝑒 [⟨𝑋,𝑋 ′⟩ B ⟨𝑁, 𝑁 ′⟩] = 𝑒 [𝑋 B 𝑁 ] [𝑋 ′ B 𝑁 ′]
𝑒 ⊕ 𝑒 ′[𝑥 B n] = 𝑒 [𝑥 B n] ⊕ 𝑒 ′[𝑥 B n]
𝑥 [𝑥 B n] = n

𝑥 ′[𝑥 B n] = 𝑥 ′

The definitions of substitution for 𝑒 B 𝐷 , 𝐸 B 𝐷 , and 𝑅 B 𝐷 are similar.
𝐷 B 𝑑 | ⟨𝐷,𝐷⟩
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4.2 Semantics Compositionality
Lemma 2 (Compositionality for 𝑟 ).
For all 𝑟 , 𝑟 ′ and R, if J 𝑟 K = J 𝑟 ′ K then JR[𝑟 ] K = JR[𝑟 ′] K.

Proof.
Induction on R:

Case
(1) R = [ ]
Immediate.

Case
(2) R = R′ ⊕ 𝑟
Immediate by the rule SRBin.

Lemma 3 (Compositionality for𝑚).
For all𝑚,𝑚′, andM, if J𝑚 K = J𝑚′ K then JM[𝑚] K = JM[𝑚′] K.

Proof.
Induction onM:

Case
(1) M = [ ]
Immediate.

Case
(2) M = R

V

M′

Immediate by the rule SVRed.
Case

(3) M = M′ ⊕𝑚
Immediate by the rule SMBin.

Case
(4) M =𝑚 ⊕M′
Immediate by the rule SMBin.

Lemma 4 (Compositionality for𝑀).
For all𝑀 ,𝑀 ′, andMs, if J𝑀 K = J𝑀 ′ K then JMs[𝑀] K = JMs[𝑀 ′] K.

Proof.
Induction onMs:

Case
(1) Ms = [ ]
Immediate.

Case
(2) Ms = ⟨Ms, 𝑀⟩
Immediate by the rule SMPair.

Case
(3) Ms = ⟨𝑀,Ms⟩
Immediate by the rule SMPair.

Case
(4) Ms = ilet 𝑋 B Ms in 𝑒

Immediate by the rule SMLet.
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Case
(5) Ms =

ilet 𝑋 B Ms in

mlet 𝑋 B 𝐸 in

rlet 𝑋 B 𝑅 in 𝑒

Immediate by the rule SRLet.

Lemma 5 (Compositionality for 𝑅).
For all 𝑅, 𝑅′, and Rs, if J𝑅 K = J𝑅′ K then JRs[𝑅] K = JRs[𝑅′] K.

Proof.
Induction on Rs:

Case
(1) Rs = [ ]
Immediate.

Case
(2) Rs = ⟨Rs, 𝑅⟩
Immediate by the rule SRPair.

Case
(3) Rs = ⟨𝑅,Rs⟩
Immediate by the rule SRPair.

Case
(4) Rs =

ilet 𝑋 B 𝑀 in

mlet 𝑋 B 𝐸 in

rlet 𝑋 B Rs in 𝑒

Immediate by the rule SRLet.
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4.3 Soundness of Fusion
Theorem 21 (Semantics-preserving Fusion for 𝑟 ).
For all 𝑟1 and 𝑟2, if 𝑟1 ⇒𝑟 𝑟2 then J 𝑟1 K = J 𝑟2 K.

Proof.
Case analysis on 𝑟1 ⇒𝑟 𝑟2:

Case rule FMInR:
Immediate from Lemma 6 and Lemma 4.

Case rule FVRed:
Immediate the rules SVRed and SMLet on 𝑟1 and SRLet on 𝑟2.

Case rule FLetsBin:
By the rules SRLet, SMPair, SEEPair, SRPair, SEBin.
Similar to Lemma 6, the case for FILetBin.

Case rule FMInLets:
Immediate from Lemma 7, Lemma 4 and SRLet.

Case rule FRinLets:
Immediate from Lemma 8, Lemma 5 and SRLet.

Lemma 6 (Semantics-preserving Fusion for𝑚).
For all𝑚1 and𝑚2, if𝑚1 ⇒𝑚 𝑚2 then J𝑚1 K = J𝑚2 K.

Proof.
Induction on𝑚1 ⇒𝑚 𝑚2:

Case rule FMInM:
Immediate from the induction hypothesis and Lemma 3.

Case rule FPNest:
(1) 𝑠 = R

𝑝 ∈ args R′
𝑝′∈𝑃

F′ (𝑝′)
F (𝑝)

(2) 𝑠 ′ = ilet ⟨𝑥, 𝑥 ′⟩ B R ′′
𝑝′∈𝑃
F ′′(𝑝 ′) in 𝑥 ′

(3) R ′ ∈ {min,max}
(4) 𝑓 ′′ B 𝜆𝑝. ⟨F ′(𝑝), F (𝑝)⟩
(5) R ′′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B

if (𝑎′ = 𝑎) then ⟨𝑎,R(𝑏, 𝑏 ′)⟩
else if (R ′(𝑎, 𝑎′) = 𝑎) then ⟨𝑎, 𝑏⟩ else ⟨𝑎′, 𝑏 ′⟩

By the rules SPRed and SArgsR on [1],
(6) J 𝑠 K =

[
v ↦→ R

{
F (𝑝) | 𝑝 ∈

{
𝑝 | 𝑝 ∈ {𝑝} ∧ F ′(𝑝) = R ′

{
F ′(𝑝) | 𝑝 ′ ∈ {𝑝}

}}}]
v∈V(𝑔)

where
(7) {𝑝} = J 𝑃 K (𝑔) (v)
(8) R ′ ∈ {min,max}

By the rules SMLet and SPRed on [2],
(9) J 𝑠 ′ K = [v ↦→ second (R ′′ {F ′′(𝑝) | 𝑝 ∈ J 𝑃 K (𝑔) (v)})]

v∈V(𝑔)
From [7] and [9],



2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

41

(10) J 𝑠 ′ K =
[
v ↦→ R ′′

{
F ′′(𝑝) | 𝑝 ∈ {𝑝}

}]
v∈V(𝑔)

From [6] and [10], we need to show that for all 𝑃 ,
(11) R {F (𝑝) | 𝑝 ∈ 𝑃 ∧ F ′(𝑝) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃}} =

second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃})
The proof is by by induction on 𝑃 .
Base Case:

(12) 𝑃 = {𝑝∗}
Form [12],

(13) R {F (𝑝) | 𝑝 ∈ 𝑃 ∧ F ′(𝑝) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃}} =
R {F (𝑝) | 𝑝 ∈ {𝑝∗} ∧ F ′(𝑝) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ {𝑝∗}}} =
R {F (𝑝) | 𝑝 ∈ {𝑝∗} ∧ F ′(𝑝) = F ′(𝑝∗)} =
F (𝑝∗)

Form [12] and [4],
(14) second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃}) =

second (⟨F ′(𝑝∗), F (𝑝∗)⟩) =
F (𝑝∗)

The conclusion is immediate from [13] and [14],

Inductive Case:
(15) 𝑃 = 𝑃 ′ ∪ {𝑝∗}
Induction Hypothesis:

(16) R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∧ F ′(𝑝) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}} =
second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′})

We show that
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′ ∪ {𝑝∗}}} =

second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗}})
That is
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =

second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗)))
From [5], By induction on 𝑆 , it can be proved that

(17) ∀𝑆. first(R ′′ 𝑆) = R ′ {𝑎 | ⟨𝑎, 𝑎′⟩ ∈ 𝑆}
We consider two cases:
Case

(18) F ′(𝑝∗) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}
From [18],

(19) R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = F ′(𝑝∗) = {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}} =
R (R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}} , F (𝑝∗))

From [18] and [17],
(20) first(R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′}) = F ′(𝑝∗)

We have
(21) second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗))) =
By [4],

second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , ⟨F ′(𝑝∗), F (𝑝∗)⟩)) =
By [5] and [20],

second (⟨F ′(𝑝∗),R (second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′}) , F (𝑝∗))⟩) =
R (second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′}) , F (𝑝∗))
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Thus
(22) second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗))) =

R (second (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′}) , F (𝑝∗))
From [19] and [22], we have the conclusion:
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =

second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗)))
Case

(23) F ′(𝑝∗) ≠ R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}
We assume R ′ = max. The other case R ′ = min is similar.
We consider two sub-cases.

Sub-case
(24) R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗)) = F ′(𝑝∗)
From [23] and [24],

(25) ∀𝑝 ′ ∈ 𝑃 ′. F ′(𝑝 ′) < F ′(𝑝∗)
We have

(26) R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =
By [24]
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = F ′(𝑝∗)} =

By [25]
F (𝑝∗)

Thus
(27) R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =
F (𝑝∗)

From [18] and [23],
(28) first(R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′}) ≠ F ′(𝑝∗)

We have
(29) second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗))) =
By [4],

second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , ⟨F ′(𝑝∗), F (𝑝∗)⟩)) =
By [5], [28] and [24],

second (⟨F ′(𝑝∗), F (𝑝∗)⟩) =
F (𝑝∗)

Thus
(30) second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗))) =
F (𝑝∗)

From [27] and [30], we have the conclusion:
R {F (𝑝) | 𝑝 ∈ 𝑃 ′ ∪ {𝑝∗} ∧ F ′(𝑝) = R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗))} =
second (R ′′ (R ′′ {F ′′(𝑝) | 𝑝 ∈ 𝑃 ′} , F ′′(𝑝∗)))

Sub-case
(31) R ′ (R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} , F ′(𝑝∗)) = R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′}
This sub-case is similar to the previous sub-case.
F ′(𝑝∗) and R ′ {F ′(𝑝) | 𝑝 ′ ∈ 𝑃 ′} replace each other.

Case rule FPRed:
Immediate from the rules SMLet and SMM.

Case rule FILetBin:
(32) 𝑠 = (ilet 𝑋1 B 𝑀1 in 𝑒1) ⊕ (ilet 𝑋2 B 𝑀2 in 𝑒2)
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(33) 𝑠 ′ = ilet ⟨𝑋1, 𝑋2⟩ B ⟨𝑀1, 𝑀2⟩ in 𝑒1 ⊕ 𝑒2
(34) free(𝑒1) ∩ 𝑋2 = ∅
(35) free(𝑒2) ∩ 𝑋1 = ∅
By rules SMBin and SMLet on [32], we have

(36) J 𝑠 K = [v ↦→ J 𝑒1 [𝑋1 B J𝑀1 K (𝑔) (v)] K ⊕ J 𝑒2 [𝑋2 B J𝑀2 K (𝑔) (v)] K]
v∈V(𝑔)

By rules SMLet on [33], we have
(37) J 𝑠 ′ K = [v ↦→ J (𝑒1 ⊕ 𝑒2) [⟨𝑋1, 𝑋2⟩ B J ⟨𝑀1, 𝑀2⟩ K (𝑔) (v)] K]v∈V(𝑔)

By [37] and the rule SMPair, we have
(38) J 𝑠 ′ K = [v ↦→ J (𝑒1 ⊕ 𝑒2) [⟨𝑋1, 𝑋2⟩ B ⟨J𝑀1 K (𝑔) (v), J𝑀2 K (𝑔) (v)⟩] K]

v∈V(𝑔)
From [38], and the rule SEBin, we have

(39) J 𝑠 ′ K = [v ↦→ J 𝑒1 [⟨𝑋1, 𝑋2⟩ B ⟨J𝑀1 K (𝑔) (v), J𝑀2 K (𝑔) (v)⟩] K ⊕
J 𝑒2 [⟨𝑋1, 𝑋2⟩ B ⟨J𝑀1 K (𝑔) (v), J𝑀2 K (𝑔) (v)⟩] K]

v∈V(𝑔)
From [39], [34] and [35], we have

(40) J 𝑠 ′ K = [v ↦→ J 𝑒1 [𝑋1 B J𝑀1 K (𝑔) (v)] K ⊕ J 𝑒2 [𝑋2 B J𝑀2 K (𝑔) (v)] K]
v∈V(𝑔)

From [36] and [40], we have
J 𝑠 K = J 𝑠 ′ K

Case rule FMInILet:
Immediate from Lemma 7, Lemma 4 and SMLet.

Lemma 7 (Semantics-preserving Fusion for𝑀).
For all𝑀1 and𝑀2, if𝑀1 ⇒𝑀 𝑀2 then J𝑀1 K = J𝑀2 K.

Proof.
Induction on𝑀1 ⇒𝑀 𝑀2:

Case rule FMPair:
(1) 𝑀1 = ⟨R F ,R ′ F ′⟩
(2) 𝑀2 = R ′′ 𝐹 ′′
(3) 𝑓 ′′ B 𝜆𝑝. ⟨F ′(𝑝), F (𝑝)⟩
(4) R ′′(⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B ⟨R(𝑎, 𝑎′),R ′(𝑏, 𝑏 ′)⟩
By SMPair, SMM and SPRed on [1], we have

(5) J𝑀1 K =
〈
[v ↦→ R {F (𝑝) | 𝑝 ∈ JPaths K (v)}]

v∈V(𝑔) , [v ↦→ R ′ {F ′(𝑝) | 𝑝 ∈ JPaths K (v)}]
v∈V(𝑔)

〉
By SMM and SPRed on [2] and [3] and [4], we have

(6) J𝑀2 K = [v ↦→ R ′′ {⟨F (𝑝), F ′(𝑝)⟩ | 𝑝 ∈ JPaths K (v)}]
v∈V(𝑔)

By [6] and [4], we have
(7) J𝑀2 K =

〈
[v ↦→ R {F (𝑝) | 𝑝 ∈ JPaths K (v)}]

v∈V(𝑔) , [v ↦→ R ′ {F ′(𝑝) | 𝑝 ∈ JPaths K (v)}]
v∈V(𝑔)

〉
From [5] and [7], we have

(8) J𝑀1 K = J𝑀2 K

Lemma 8 (Semantics-preserving Fusion for 𝑅).
For all 𝑅1, 𝑅2, 𝑋 and 𝑑 where 𝑑 ∈ D𝑚 , if 𝑅1 ⇒𝑅 𝑅2 then

r
𝑅1 [𝑋 B 𝑑]

z
=

r
𝑅2 [𝑋 B 𝑑]

z
.

Proof.
Induction on 𝑅1 ⇒𝑅 𝑅2:

Case rule FRPair:
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(1) 𝑅1 = ⟨R1 𝑥1,R2 𝑥2⟩
(2) 𝑅2 = R3 ⟨𝑥1, 𝑥2⟩
(3) R3 (⟨𝑎, 𝑏⟩, ⟨𝑎′, 𝑏 ′⟩) B ⟨R1 (𝑎, 𝑎′),R2 (𝑏, 𝑏 ′)⟩
If 𝑥1 or 𝑥2 ∉ 𝑋 , 𝑥1 [𝑋 B 𝑑] = ⊥ or 𝑥2 [𝑋 B 𝑑] = ⊥
as the rule SRR is the only semantic rule for 𝑅,

(4)
r
𝑅1 [𝑋 B 𝑑]

z
=

r
𝑅2 [𝑋 B 𝑑]

z
= ⊥.

Thus, the remained case is that
(5) 𝑥1 B [v ↦→ 𝑛v]v∈V(𝑔) ∈ 𝑋 B 𝑑

(6) 𝑥2 B [v ↦→ 𝑛′
v
]
v∈V(𝑔) ∈ 𝑋 B 𝑑

From [1], [5] and [6], we have
(7) 𝑅1 =

〈
R1 [v ↦→ 𝑛v]v∈V(𝑔) ,R2 [v ↦→ 𝑛′

v
]
v∈V(𝑔)

〉
From [2], [5] and [6], we have

(8) 𝑅2 = R3

〈
[v ↦→ 𝑛v]v∈V(𝑔) , [v ↦→ 𝑛′

v
]
v∈V(𝑔)

〉
By SRPair, SRR and SVRed on [7], we have

(9) J𝑅1 K =
〈
R1 {𝑛v v∈V(𝑔) },R2 {𝑛′v v∈V(𝑔) }

〉
By SRPair, SRR and SVRed on [8], we have

(10) J𝑅2 K = R3

{
⟨𝑛v, 𝑛′v⟩v∈V(𝑔)

}
From [10] and [3], we have

(11) J𝑅2 K = ⟨R1 {𝑛v}v∈V(𝑔) ,R2 {𝑛′v}v∈V(𝑔)⟩
From [9] and [11], we haver

𝑅1 [𝑋 B 𝑑]
z
=

r
𝑅2 [𝑋 B 𝑑]

z
.



2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

45

4.4 Iteration Correctness Conditions
4.4.1 Pull, Idempotent

Theorem 22 (Correctness of Pull (idempotent reduction)).
For all R, F , C, I, P, and 𝑘 ≥ 1, if the conditions C1 - C9 hold,
S𝑘
pull+ (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

We assume that
(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑛. R(𝑛, 𝑛) = 𝑛

(5) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(6) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(7) ∀𝑒. P(⊥, 𝑒) = ⊥
(8) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(9) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)
Form Def. 6, we have
S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)

Proof by induction on 𝑘 :
Base Case:

𝑘 = 1
We should show that
S1
pull+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<1}F (𝑝)

that is
S1
pull+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩∧ C(𝑝) }F (𝑝)

We consider two cases:
Case:

(10) C(⟨𝑣, 𝑣⟩)
We should show that
S1
pull+ (𝑣) = R { ⟨𝑣,𝑣⟩ }F (𝑝)

that is
S1
pull+ (𝑣) = F (⟨𝑣, 𝑣⟩)

that is straightforward from Def. 1, [5] and [10].
Case:

(11) ¬C(⟨𝑣, 𝑣⟩)
We should show that
S1
pull+ (𝑣) = R∅ F (𝑝)

that is
S1
pull+ (𝑣) = ⊥

that is straightforward from Def. 1, [6] and [11].
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Inductive Case:
(12) 𝑘 > 1
The induction hypothesis is:

(13) S𝑘′
pull+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘′ }F (𝑝) for all 𝑣 and 𝑘 ′ ≤ 𝑘

We should show that
S𝑘+1
pull+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

From Def. 1, we consider two cases:
Case:

(14) CPreds
𝑘 (𝑣) ≠ ∅

(15) S𝑘+1
pull+ (𝑣) = R

[
S𝑘
pull+ (𝑣), R𝑢∈preds(𝑣) P

(
S𝑘
pull+ (𝑢), ⟨𝑢, 𝑣⟩

)]
From [15] and [13]

(16) S𝑘+1
pull+ (𝑣) = R[
S𝑘
pull+ (𝑣),
R𝑢∈preds(𝑣)

[
P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

) ]
]

In the case that the size of the set of paths is more than one, from [8], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [9], and
in the case that the set of paths is empty, from R∅ = ⊥ and [7],

we have
(17) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
After substituting [17] in [16]

(18) S𝑘+1
pull+ (𝑣) = R[
S𝑘
pull+ (𝑣),
R𝑢∈preds(𝑣)

[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

]
]

that is
(19) S𝑘+1

pull+ (𝑣) = R[
S𝑘
pull+ (𝑣),
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)]

From [19] and Lemma 9
(20) S𝑘+1

pull+ (𝑣) = R[
S𝑘
pull+ (𝑣),
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)]

that is
(21) S𝑘+1

pull+ (𝑣) = R[
S𝑘
pull+ (𝑣),
R𝑝′ ∈ {𝑝′ | 𝑝′∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′)]

From [21] and [13]
(22) S𝑘+1

push+ (𝑣) = R[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝),
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ 0<length(𝑝)<𝑘+1}F (𝑝)]

From [22] and [4]
S𝑘+1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),

Case:
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(23) CPreds
𝑘 (𝑣) = ∅

(24) S𝑘+1
pull+ (𝑣) = S

𝑘
pull+ (𝑣)

(25) CPreds
𝑘 (𝑣) =

{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘

pull+ (𝑢) ≠ S
𝑘−1
pull+ (𝑢)

}
From [13] and [24],

(26) S𝑘+1
pull+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝)

From [26] and [1],
(27) S𝑘+1

pull+ (𝑣) = R[
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ 0<length(𝑝 · ⟨𝑢,𝑣⟩)<𝑘 }F (𝑝),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]

From [27] and Lemma 9,
(28) S𝑘+1

pull+ (𝑣) = R[
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ 0<length(𝑝 · ⟨𝑢,𝑣⟩)<𝑘 }F (𝑝),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]

From [28], [2] and [3]
(29) S𝑘+1

pull+ (𝑣) = R[
R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | ∃𝑢. 𝑝′∈Paths(𝑢) ∧ C(𝑝′) ∧ length(𝑝′)<𝑘−1}F (𝑝 ′ · ⟨𝑢, 𝑣⟩),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]

In the case that the size of the set of paths is more than one, from [8], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [9], and
in the case that the set of paths is empty, from R∅ = ⊥ and [7],
(30) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝 · ⟨𝑢, 𝑣⟩)
From [29] and [30], we have

(31) S𝑘+1
pull+ (𝑣) = R[
R𝑢∈preds(𝑣) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝), ⟨𝑢, 𝑣⟩

)
,

R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]
From [31] and [13], we have

(32) S𝑘+1
pull+ (𝑣) = R[

R𝑢∈preds(𝑣) P
(
𝑆𝑘−1
pull+ (𝑢), ⟨𝑢, 𝑣⟩

)
,

R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]
From [23] and [25], we have

(33) For all 𝑢 ∈ preds(𝑣): S𝑘
pull+ (𝑢) = S

𝑘−1
pull+ (𝑢)

From [32] and [33], we have
(34) S𝑘+1

pull+ (𝑣) = R[

R𝑢∈preds(𝑣) P
(
𝑆𝑘
pull+ (𝑢), ⟨𝑢, 𝑣⟩

)
,

R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]
From [34] and [13], we have

(35) S𝑘+1
pull+ (𝑣) = R[
R𝑢∈preds(𝑣) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
,

R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]
In the case that the size of the set of paths is more than one, from [8], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [9], and
in the case that the set of paths is empty, from R∅ = ⊥ and [7],
(36) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=
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R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
From [35] and [36], we have

(37) S𝑘+1
pull+ (𝑣) = R[
R𝑢∈preds(𝑣) R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]

that is
(38) S𝑘+1

pull+ (𝑣) = R[
R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 ′),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]

From [25] and Lemma 9,
(39) S𝑘+1

pull+ (𝑣) = R[
R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 ′),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]

From [39], [2] and [3], we have
(40) S𝑘+1

pull+ (𝑣) = R[
R𝑝′ ∈ {𝑝′ | ∃𝑢. 𝑢∈preds(𝑣) ∧ 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 ′),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]

that is
(41) S𝑘+1

pull+ (𝑣) = R[
R𝑝′ ∈ {𝑝′ | 𝑝∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′),
R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩ ∧ C( ⟨𝑣,𝑣⟩) }F (𝑝)]

that is
S𝑘+1
pull+ (𝑣) = R𝑝′ ∈ {𝑝′ | 𝑝∈Paths(𝑣) ∧ C(𝑝′) ∧ length(𝑝′)<𝑘+1}F (𝑝 ′)

Lemma 9.
∀𝑝, 𝑣 . let 𝑢 B tail(𝑝) in C(𝑝) ↔ C(𝑝 · ⟨𝑢, 𝑣⟩)

Proof.
We consider the two cases:
Case:

(1) C(𝑝) = (ℎ𝑒𝑎𝑑 (𝑝) = 𝑠)
Straightforward by

ℎ𝑒𝑎𝑑 (𝑝) = 𝑠 ↔ ℎ𝑒𝑎𝑑 (𝑝 · ⟨𝑢, 𝑣⟩) = 𝑠

(2) C(𝑝) = True

Straightforward by
True↔ True
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4.4.2 Pull, Non-idempotent

Theorem 23 (Correctness of Pull (non-idempotent reduction)).
For all R, F , I, P, 𝑘 ≥ 1 and 𝑠 ,
let C(𝑝) = (head(𝑝) = 𝑠), and
there is no cycle that contains 𝑠 ,
if the conditions C1 - C8 hold,
S𝑘
pull− (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

Proof.
We assume that

(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(5) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(6) ∀𝑒. P(⊥, 𝑒) = ⊥
(7) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(8) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)
(9) C(𝑝) = (head(𝑝) = 𝑠)
(10) There is no cycle that contains 𝑠 .

Form Def. 6, we have
S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)

Proof by induction on 𝑘 :
Base Case:

𝑘 = 1
We should show that
S1
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<1}F (𝑝)

that is
S1
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩∧ C(𝑝) }F (𝑝)

We consider two cases:
Case:

(11) C(⟨𝑣, 𝑣⟩)
We should show that
S1
pull− (𝑣) = R { ⟨𝑣,𝑣⟩ }F (𝑝)

that is
S1
pull− (𝑣) = F (⟨𝑣, 𝑣⟩)

that is straightforward from Def. 2, [4] and [11].
Case:

(12) ¬C(⟨𝑣, 𝑣⟩)
We should show that
S1
pull− (𝑣) = R∅ F (𝑝)
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that is
S1
pull− (𝑣) = ⊥

that is straightforward from Def. 2, [5] and [12].

Inductive Case:
(13) 𝑘 > 1
The induction hypothesis is:

(14) S𝑘′
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘′ }F (𝑝) for all 𝑣 and 𝑘 ′ ≤ 𝑘

We should show that
S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

We consider two cases:
Case:

(15) 𝑣 = 𝑠

By Lemma 11 on [9] and [4], [5], and [10],
(16) S𝑘+1

pull− (𝑠) = I(𝑠)
By [4] and [9],

(17) I(𝑠) = F (⟨𝑠, 𝑠⟩)
From [16] and [17],

(18) S𝑘+1
pull− (𝑠) = F (⟨𝑠, 𝑠⟩)

From [9] and [10],
(19) R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑠) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝) =

R𝑝 ∈ {𝑝 | 𝑝∈Paths ∧ tail(𝑝)=𝑠 ∧ head(𝑝)=𝑠 ∧ length(𝑝)<𝑘+1}F (𝑝) =
R𝑝 ∈ {⟨𝑠,𝑠 ⟩ }F (𝑝) =
F (⟨𝑠, 𝑠⟩)

From [18] and [19],
S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

Case:
(20) 𝑣 ≠ 𝑠

From Def. 2, we consider two sub-cases:
Sub-case:

(21) CPreds
𝑘 (𝑣) ≠ ∅

(22) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) P

(
S𝑘
pull− (𝑢), ⟨𝑢, 𝑣⟩

)
From [22] and [14]

(23) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣)

[
P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

) ]
In the case that the size of the set of paths is more than one, from [7], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [8], and
in the case that the set of paths is empty, from R∅ = ⊥ and [6],
we have

(24) P
(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
After substituting [24] in [23]

(25) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣)

[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

]
that is

(26) S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

From [26] and Lemma 9
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(27) S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

that is
(28) S𝑘+1

pull− (𝑣) = R𝑝′ ∈ {𝑝′ | 𝑝′∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′)
From [28] and [20]
S𝑘+1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),

Sub-case:
(29) CPreds

𝑘 (𝑣) = ∅
(30) S𝑘+1

pull− (𝑣) = S
𝑘
pull− (𝑣)

(31) CPreds
𝑘 (𝑣) =

{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘

pull− (𝑢) ≠ S
𝑘−1
pull− (𝑢)

}
From [30] and [14],

(32) S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝)

From [32] and [20],
(33) S𝑘+1

pull− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ 0<length(𝑝 · ⟨𝑢,𝑣⟩)<𝑘 }F (𝑝)
From [33] and Lemma 9,

(34) S𝑘+1
pull− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ 0<length(𝑝 · ⟨𝑢,𝑣⟩)<𝑘 }F (𝑝)

From [34], [2] and [3]
(35) S𝑘+1

pull− (𝑣) = R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | ∃𝑢. 𝑝′∈Paths(𝑢) ∧ C(𝑝′) ∧ length(𝑝′)<𝑘−1}F (𝑝 ′ · ⟨𝑢, 𝑣⟩)
In the case that the size of the set of paths is more than one, from [7], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [8], and
in the case that the set of paths is empty, from R∅ = ⊥ and [6],

(36) P
(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝 · ⟨𝑢, 𝑣⟩)
From [35] and [36], we have

(37) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘−1}F (𝑝), ⟨𝑢, 𝑣⟩

)
From [37] and [14], we have

(38) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) P

(
𝑆𝑘−1
pull− (𝑢), ⟨𝑢, 𝑣⟩

)
From [29] and [31], we have

(39) For all 𝑢 ∈ preds(𝑣): S𝑘
pull− (𝑢) = S

𝑘−1
pull− (𝑢)

From [38] and [39], we have
(40) S𝑘+1

pull− (𝑣) = R𝑢∈preds(𝑣) P
(
𝑆𝑘
pull− (𝑢), ⟨𝑢, 𝑣⟩

)
From [40] and [14], we have

(41) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
In the case that the size of the set of paths is more than one, from [7], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [8], and
in the case that the set of paths is empty, from R∅ = ⊥ and [6],

(42) P
(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
From [41] and [42], we have

(43) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

that is
(44) S𝑘+1

pull− (𝑣) = R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 ′)
From [31] and Lemma 9,

(45) S𝑘+1
pull− (𝑣) = R𝑢∈preds(𝑣) R𝑝′ ∈ {𝑝′ | 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 ′)
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From [45], [2] and [3], we have
(46) S𝑘+1

pull− (𝑣) = R𝑝′ ∈ {𝑝′ | ∃𝑢. 𝑢∈preds(𝑣) ∧ 𝑝′=𝑝 · ⟨𝑢,𝑣⟩ ∧ 𝑝∈Paths(𝑢) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 ′)
that is

(47) S𝑘+1
pull− (𝑣) = R𝑝′ ∈ {𝑝′ | 𝑝∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′)

From [47] and [20], we have
S𝑘+1
pull− (𝑣) = R𝑝′ ∈ {𝑝′ | 𝑝∈Paths(𝑣) ∧ C(𝑝′) ∧ length(𝑝′)<𝑘+1}F (𝑝 ′)

Lemma 10.
For all R, F , C, I, P, 𝑘 ≥ 1 and 𝑠 , 𝑣 , where
(1) C(𝑝) = (head(𝑝) = 𝑠),
(2) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(3) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
if S𝑘

pull− (𝑣) ≠ S
𝑘−1
pull− (𝑣),

then 𝑣 is reachable from 𝑠 .

Proof.
Immediate from induction on 𝑘 and case analysis on branches of Def. 2.
The base case is from [1], [2] and [3].

Lemma 11.
For all R, F , C, I, P, 𝑘 ≥ 1 and 𝑠 , 𝑣 , where
(1) C(𝑝) = (head(𝑝) = 𝑠),
(2) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(3) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
there is no cycle that contains 𝑠 ,
then S𝑘

pull− (𝑠) = I(𝑠).

Proof.
Immediate from induction on 𝑘 and case analysis on branches of Def. 2.
The second branch is refuted by Lemma 10 and the assumption of acyclicity for 𝑠 .
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4.4.3 Push, Idempotent

Theorem 24 (Correctness of Push (idempotent reduction)).
For all R, F , C, I, P, and 𝑘 ≥ 1, if the conditions C1 - C9 hold,
S𝑘
push+ (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

Proof.
We assume that

(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑛. R(𝑛, 𝑛) = 𝑛

(5) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(6) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(7) ∀𝑒. P(⊥, 𝑒) = ⊥
(8) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(9) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)
Form Def. 6, we have
S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)

Proof by induction on 𝑘 :
Base Case:

We should show that
S1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<1}F (𝑝)

that is
S1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩∧ C(𝑝) }F (𝑝)

We consider two cases:
Case:

(10) C(⟨𝑣, 𝑣⟩)
We should show that
S1
push+ (𝑣) = R { ⟨𝑣,𝑣⟩ }F (𝑝)

that is
S1
push+ (𝑣) = F (⟨𝑣, 𝑣⟩)

that is straightforward from Def. 3, [5] and [10].
Case:

(11) ¬C(⟨𝑣, 𝑣⟩)
We should show that
S1
push+ (𝑣) = R∅ F (𝑝)

that is
S1
push+ (𝑣) = ⊥

that is straightforward from Def. 3, [6] and [11].

Inductive Case:
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The induction hypothesis is:
(12) S𝑘

push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), 𝑘 > 1
We should show that
S𝑘+1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

From Def. 3, we have that
(13) S𝑘+1

push+ (𝑣) = 𝑆𝑛

(14) {𝑢1, .., 𝑢𝑛} = 𝑢 ∈
{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘

push+ (𝑢) ≠ S
𝑘−1
push+ (𝑢)

}
(15) 𝑆0 = S𝑘

push+ (𝑣)

(16) 𝑆𝑖+1 = R
(
𝑆𝑖 , P(S𝑘

push+ (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩)
)

From [13]-[16], and [2] and [3], we have
(17) S𝑘+1

push+ (𝑣) = R
[
R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘

push+ (𝑢)≠S
𝑘−1
push+ (𝑢) }

[
P(S𝑘

push+ (𝑢), ⟨𝑢, 𝑣⟩)
]
, S𝑘

push+ (𝑣)
]

From Lemma 12, and [2], [3], and [4], we have
(18) S𝑘

push+ (𝑣) = R
(
S𝑘
push+ (𝑣),R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘

push+ (𝑢)=S
𝑘−1
push+ (𝑢) }

P(S𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩)

)
After substituting [18] in [17]

(19) S𝑘+1
push+ (𝑣) = R[R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘

push+ (𝑢)≠S
𝑘−1
push+ (𝑢) }

[
P(S𝑘

push+ (𝑢), ⟨𝑢, 𝑣⟩)
]
,

R(S𝑘
push+ (𝑣),R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘

push+ (𝑢)=S
𝑘−1
push+ (𝑢) }

[
P(S𝑘

push+ (𝑢), ⟨𝑢, 𝑣⟩)
]
)]

From [19], [2] and [3]
(20) S𝑘+1

push+ (𝑣) = R
[
R𝑢∈preds(𝑣)

[
P(S𝑘

push+ (𝑢), ⟨𝑢, 𝑣⟩)
]
, S𝑘

push+ (𝑣)
]

From [20] and [12]
(21) S𝑘+1

push+ (𝑣) = R[
R𝑢∈preds(𝑣)

[
P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

) ]
,

S𝑘
push+ (𝑣)]

In the case that the size of the set of paths is more than one, from [8], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [9], and
in the case that the set of paths is empty, from R∅ = ⊥ and [7],
we have

(22) P(R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩) =
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

After substituting [22] in [21]
(23) S𝑘+1

push+ (𝑣) = R[
R𝑢∈preds(𝑣)

[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

]
,

S𝑘
push+ (𝑣)]

that is
(24) S𝑘+1

push+ (𝑣) = R[
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩),
S𝑘
push+ (𝑣)]

From [24] and Lemma 9
(25) S𝑘+1

push+ (𝑣) = R[
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩),
S𝑘
push+ (𝑣)]

that is
(26) S𝑘+1

push+ (𝑣) = R[
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R𝑝′ ∈ {𝑝′ | 𝑝′∈Paths(𝑣) ∧ C(𝑝′) ∧ length(𝑝′)<𝑘+1}F (𝑝 ′),
S𝑘
push+ (𝑣)]

From [26] and [12]
(27) S𝑘+1

push+ (𝑣) = R[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝)]

From [27] and [4]
(28) S𝑘+1

push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),

Lemma 12.
For all R, F , C, I, P, if the conditions C1 - C10 hold,
∀𝑣,𝑢, 𝑘.
𝑘 ≥ 1 ∧ 𝑢 ∈ preds(𝑣) ∧ S𝑘

push+ (𝑢) = S
𝑘−1
push+ (𝑢) →

S𝑘
push+ (𝑣) = R(S

𝑘
push+ (𝑣),P(S

𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩))

Proof.
We assume that

(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑛. R(𝑛, 𝑛) = 𝑛

(5) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(6) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(7) ∀𝑒. P(⊥, 𝑒) = ⊥
(8) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

C(𝑝1) ∧ C(𝑝2) ∧
tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(9) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)

Proof by induction on 𝑘 :
Base Case:

(10) 𝑘 = 1
We assume that

(11) 𝑢 ∈ preds(𝑣)
(12) S1

push+ (𝑢) = S
0
push+ (𝑢)

From Def. 3 on [12]
(13) S1

push+ (𝑢) = ⊥
We need to show that

(14) S1
push+ (𝑣) = R(S

1
push+ (𝑣),P(S

1
push+ (𝑢), ⟨𝑢, 𝑣⟩))

From [13] and [7], we need to show that
(15) S1

push+ (𝑣) = R(S
1
push+ (𝑣),⊥)

that is immediate from [1].

Inductive Case:
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The induction hypothesis is
(16) ∀𝑣,𝑢.

𝑢 ∈ preds(𝑣) ∧ S𝑘−1
push+ (𝑢) = S

𝑘−2
push+ (𝑢) →

S𝑘−1
push+ (𝑣) = R(S

𝑘−1
push+ (𝑣),P(S

𝑘−1
push+ (𝑢), ⟨𝑢, 𝑣⟩))

We assume that
(17) 𝑘 > 1
(18) 𝑢 ∈ preds(𝑣)
(19) S𝑘

push+ (𝑢) = S
𝑘−1
push+ (𝑢)

We show that
S𝑘
push+ (𝑣) = R(S

𝑘
push+ (𝑣),P(S

𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩))

From Def. 3 on [17], we have that
(20) S𝑘

push+ (𝑣) = 𝑆𝑛

(21) {𝑢1, .., 𝑢𝑛} = 𝑢 ∈
{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘−1

push+ (𝑢) ≠ S
𝑘−2
push+ (𝑢)

}
(22) 𝑆0 = S𝑘−1

push+ (𝑣)

(23) 𝑆𝑖+1 = R
(
𝑆𝑖 , P(S𝑘−1

push+ (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩)
)

From [20]-[23], and [2] and [3], we have
(24) S𝑘

push+ (𝑣) = R
[
R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘−2

push+ (𝑢)≠S
𝑘−1
push+ (𝑢) }

[
P(S𝑘−1

push+ (𝑢), ⟨𝑢, 𝑣⟩)
]
, S𝑘−1

push+ (𝑣)
]

We consider two cases:
Case:

(25) S𝑘−2
push+ (𝑢) ≠ S

𝑘−1
push+ (𝑢)

From [24], [25], and [4] we have
(26) S𝑘

push+ (𝑣) = R
(
S𝑘
push+ (𝑣),P(S

𝑘−1
push+ (𝑢), ⟨𝑢, 𝑣⟩)

)
From [26] and [19]
S𝑘
push+ (𝑣) = R

(
S𝑘
push+ (𝑣),P(S

𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩)

)
Case:

(27) S𝑘−2
push+ (𝑢) = S

𝑘−1
push+ (𝑢)

From [24] and [4] we have
(28) S𝑘

push+ (𝑣) = R
(
S𝑘
push+ (𝑣),S

𝑘−1
push+ (𝑣)

)
From [27] and [19], we have

(29) S𝑘−1
push+ (𝑢) = S

𝑘−2
push+ (𝑢)

From [16] on [18] and [29] and then [19], we have
(30) S𝑘−1

push+ (𝑣) = R(S
𝑘−1
push+ (𝑣),P(S

𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩))

From [28], [30] and [2], we have
S𝑘
push+ (𝑣) = R(S

𝑘
push+ (𝑣),P(S

𝑘
push+ (𝑢), ⟨𝑢, 𝑣⟩))
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4.4.4 Push, Non-idempotent

We consider the two variants in turn.
The first variant of push, non-idempotent was defined in Fig. 8, Def. 4.

Theorem 25 (Correctness of Push (non-idempotent reduction) I).
For all R, F , I, P, 𝑘 ≥ 1, and 𝑠 ,
let C(𝑝) = (head(𝑝) = 𝑠),
if the conditions C1 - C8 hold, and
𝑠 is not on any cycle,
S𝑘
push− (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

Proof.
We assume that

(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(5) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(6) ∀𝑒. P(⊥, 𝑒) = ⊥
(7) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(8) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)
(9) C(𝑝) = (head(𝑝) = 𝑠)
(10) There is no cycle that contains 𝑠 .

Form Def. 6, we have
S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)

Proof by induction on 𝑘 :
Base Case:

𝑘 = 1
We should show that
S1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<1}F (𝑝)

that is
S1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩∧ C(𝑝) }F (𝑝)

We consider two cases:
Case:

(11) C(⟨𝑣, 𝑣⟩)
We should show that
S1
push− (𝑣) = R { ⟨𝑣,𝑣⟩ }F (𝑝)

that is
S1
push− (𝑣) = F (⟨𝑣, 𝑣⟩)

that is straightforward from Def. 4, [4] and [11].
Case:

(12) ¬C(⟨𝑣, 𝑣⟩)
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We should show that
S1
push− (𝑣) = R∅ F (𝑝)

that is
S1
push− (𝑣) = ⊥

that is straightforward from Def. 4, [5] and [12].

Inductive Case:
(13) 𝑘 > 1
The induction hypothesis is:

(14) S𝑘′
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘′ }F (𝑝) for all 𝑣 and 𝑘 ′ ≤ 𝑘

We should show that
S𝑘+1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

We consider two cases:
Case:

(15) 𝑣 = 𝑠

By Lemma 14 on [9] and [4], [5] and [10],
(16) S𝑘+1

push− (𝑠) = I(𝑠)
By [4] and [9],

(17) I(𝑠) = F (⟨𝑠, 𝑠⟩)
From [16] and [17],

(18) S𝑘+1
push− (𝑠) = F (⟨𝑠, 𝑠⟩)

From [9] and [10],
(19) R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑠) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝) =

R𝑝 ∈ {𝑝 | 𝑝∈Paths ∧ tail(𝑝)=𝑠 ∧ head(𝑝)=𝑠 ∧ length(𝑝)<𝑘+1}F (𝑝) =
R𝑝 ∈ {⟨𝑠,𝑠 ⟩ }F (𝑝) =
F (⟨𝑠, 𝑠⟩)

From [18] and [19],
S𝑘+1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

Case:
(20) 𝑣 ≠ 𝑠

From Def. 4, [1], [2], and [3], we have
(21) S𝑘+1

push− (𝑣) = R𝑢∈preds(𝑣) P
(
S𝑘
push− (𝑢), ⟨𝑢, 𝑣⟩

)
From [21] and [14]

(22) S𝑘+1
push− (𝑣) = R𝑢∈preds(𝑣)

[
P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

) ]
In the case that the size of the set of paths is more than one, from [7], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [8], and
in the case that the set of paths is empty, from R∅ = ⊥ and [6],
we have

(23) P
(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
After substituting [23] in [22]

(24) S𝑘+1
push− (𝑣) = R𝑢∈preds(𝑣)

[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

]
that is

(25) S𝑘+1
push− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

From [25] and Lemma 9
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(26) S𝑘+1
push− (𝑣) = R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

that is
(27) S𝑘+1

push− (𝑣) = R𝑝′ ∈ {𝑝′ | 𝑝′∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′)
From [27] and [20]
S𝑘+1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),

Lemma 13.
For all R, F , C, I, P, 𝑘 ≥ 1 and 𝑠 , 𝑣 , where
(1) C(𝑝) = (head(𝑝) = 𝑠),
(2) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(3) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
if S𝑘

push− (𝑣) ≠ S
𝑘−1
push− (𝑣),

then 𝑣 is reachable from 𝑠 .

Proof.
Immediate from induction on 𝑘 for Def. 4.
The base case is from [1], [2] and [3].

Lemma 14.
For all R, F , C, I, P, 𝑘 ≥ 1 and 𝑠 , 𝑣 , where
(1) C(𝑝) = (head(𝑝) = 𝑠),
(2) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(3) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
there is no cycle that contains 𝑠 ,
then S𝑘

push− (𝑠) = I(𝑠).

Proof.
Immediate from induction on 𝑘 for Def. 4.
The inductive case is refuted by Lemma 13 and the assumption of acyclicity for 𝑠 .
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We now consider the second variant. The second variant of push, non-idempotent was defined
in Def. 7.

Theorem 26 (Correctness of Push (non-idempotent reduction) II).
For all R, F , C, I, P, and 𝑘 ≥ 1, if the conditions C1 - C8 and C11 hold,
S𝑘
push− (𝑣) = S𝑝𝑒𝑐

𝑘 (𝑣)

We assume that
(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑣 ∈ V. C(⟨𝑣, 𝑣⟩) → I(𝑣) = F (⟨𝑣, 𝑣⟩)
(5) ∀𝑣 ∈ V. ¬C(⟨𝑣, 𝑣⟩) → I(𝑣) = ⊥
(6) ∀𝑒. P(⊥, 𝑒) = ⊥
(7) ∀𝑝1, 𝑝2 ∈ P, 𝑣 ∈ V.

tail(𝑝1) = tail(𝑝2) →
let 𝑢 B tail(𝑝1) in
P [R(F (𝑝1), F (𝑝2)), ⟨𝑢, 𝑣⟩] =
R [F (𝑝1 · ⟨𝑢, 𝑣⟩), F (𝑝2 · ⟨𝑢, 𝑣⟩)]

(8) ∀𝑝, 𝑒. P(F (𝑝), 𝑒) = F (𝑝 · 𝑒)
(9) ∀𝑛, 𝑛′. R(𝑛,R(P(𝑛′, ⟨𝑢, 𝑣⟩),

B (𝑛′, ⟨𝑢, 𝑣⟩))) = 𝑛

Form Def. 6, we have
S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)

Proof by induction on 𝑘 :
Base Case:

𝑘 = 1
We should show that
S1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<1}F (𝑝)

that is
S1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝=⟨𝑣,𝑣⟩∧ C(𝑝) }F (𝑝)

We consider two cases:
Case:

(10) C(⟨𝑣, 𝑣⟩)
We should show that
S1
push− (𝑣) = R { ⟨𝑣,𝑣⟩ }F (𝑝)

that is
S1
push− (𝑣) = F (⟨𝑣, 𝑣⟩)

that is straightforward from Def. 4, [4] and [10].
Case:

(11) ¬C(⟨𝑣, 𝑣⟩)
We should show that
S1
push− (𝑣) = R∅ F (𝑝)

that is
S1
push− (𝑣) = ⊥

that is straightforward from Def. 4, [5] and [11].
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Inductive Case:
(12) 𝑘 > 1
The induction hypothesis is:

(13) S𝑘′
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘′ }F (𝑝) for all 𝑣 and 𝑘 ′ ≤ 𝑘

We should show that
S𝑘+1
push− (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝)

By Lemma 15 on [1], [2], [3], [6] and [9], we have
(14) S𝑘+1

push− (𝑣) = R
[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S𝑘

push− (𝑢), ⟨𝑢, 𝑣⟩)
] ]

From [14] and [13]
(15) S𝑘+1

push− (𝑣) = R[
I(𝑣),
R𝑢∈preds(𝑣)

[
P

(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

) ]
]

In the case that the size of the set of paths is more than one, from [7], and
in the case that the set of paths is singleton, from R {𝑣 } = 𝑣 and [8], and
in the case that the set of paths is empty, from R∅ = ⊥ and [6],
we have

(16) P
(
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝), ⟨𝑢, 𝑣⟩

)
=

R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)
After substituting [16] in [15]

(17) S𝑘+1
push− (𝑣) = R[
I(𝑣),
R𝑢∈preds(𝑣)

[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑢) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)

]
]

that is
(18) S𝑘+1

push− (𝑣) = R[
I(𝑣),
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)]

From [18] and Lemma 9
(19) S𝑘+1

push− (𝑣) = R[
I(𝑣),
R𝑝 ∈ {𝑝 | ∃𝑢. 𝑝∈Paths(𝑢) ∧ 𝑢∈preds(𝑣) ∧ C(𝑝 · ⟨𝑢,𝑣⟩) ∧ length(𝑝)<𝑘 }F (𝑝 · ⟨𝑢, 𝑣⟩)]

that is
(20) S𝑘+1

push− (𝑣) = R[
I(𝑣),
R𝑝′ ∈ {𝑝′ | 𝑝′∈Paths(𝑣) ∧ C(𝑝′) ∧ 0<length(𝑝′)<𝑘+1}F (𝑝 ′)]

From [4] and [5],
(21) R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)=0}F (𝑝) = I(𝑣)

From [20] and [10],
(22) S𝑘+1

push+ (𝑣) = R[
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)=0}F (𝑝),
R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ 0<length(𝑝)<𝑘+1}F (𝑝)]

that is
S𝑘+1
push+ (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘+1}F (𝑝),
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Lemma 15.
For all R, F , C, I, P, 𝑘 ≥ 1 if the conditions C1 - C9 hold,
S𝑘
push− (𝑣) = R

[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
] ]

Proof.
We assume that

(1) ∀𝑛. R(𝑛,⊥) = 𝑛

(2) ∀𝑛, 𝑛′. R(𝑛, 𝑛′) = R(𝑛′, 𝑛)
(3) ∀𝑛, 𝑛′, 𝑛′′. R(R(𝑛, 𝑛′), 𝑛′′) = R(𝑛,R(𝑛′, 𝑛′′))
(4) ∀𝑒. P(⊥, 𝑒) = ⊥
(5) ∀𝑛, 𝑛′. R(𝑛,R(P(𝑛′, ⟨𝑢, 𝑣⟩),

B (𝑛′, ⟨𝑢, 𝑣⟩))) = 𝑛

Proof by induction on 𝑘 :
Base Case:

(6) 𝑘 = 1
By Def. 4,

(7) ∀𝑢. S0
push− (𝑢) = ⊥

(8) ∀𝑢. S1
push− (𝑢) = I(𝑢)

From [7], [4] and [1],
(9) R

[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S0

push− (𝑢), ⟨𝑢, 𝑣⟩)
] ]

= I(𝑣)
From [9] and [8],
S1
push− (𝑢) = R

[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S0

push− (𝑢), ⟨𝑢, 𝑣⟩)
] ]

Inductive Case:
The induction hypothesis is

(10) S𝑘
push− (𝑣) = R

[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
] ]

forall 𝑘 ′ ≤ 𝑘

We show that
S𝑘+1
push− (𝑣) = R(I(𝑣),R𝑢∈preds(𝑣)

[
P(S𝑘

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
)

From Def. 4, we have that
(11) S𝑘+1

push− (𝑣) B 𝑆𝑛

(12) {𝑢1, .., 𝑢𝑛} = 𝑢 ∈
{
𝑢 | 𝑢 ∈ preds(𝑣) ∧ S𝑘

push− (𝑢) ≠ S
𝑘−1
push− (𝑢)

}
(13) 𝑆0 B S𝑘

push− (𝑣)
(14) 𝑆𝑖+1 B R(R(𝑆𝑖 ,

B
(
S𝑘−1
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

)
)

P
(
S𝑘
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

)
From [11]-[14], and [2] and [3], we have

(15) S𝑘+1
push+ (𝑣) = R(S

𝑘
push− (𝑣),
R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘

push− (𝑢)≠S
𝑘−1
push− (𝑢) }

R(

B
[
S𝑘−1
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

]
P
[
S𝑘
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

]
)

From [15] and [10], we have
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(16) S𝑘+1
push+ (𝑣) = R(R

[
I(𝑣), R𝑢∈preds(𝑣)

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
] ]

,

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)≠S

𝑘−1
push− (𝑢) }

R(

B
[
S𝑘−1
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

]
P
[
S𝑘
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

]
)

that is
(17) S𝑘+1

push+ (𝑣) = R(R(I(𝑣),R(

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)=S

𝑘−1
push− (𝑢) }

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
,

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)≠S

𝑘−1
push− (𝑢) }

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
))

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)≠S

𝑘−1
push− (𝑢) }

R(

B
[
S𝑘−1
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

]
P
[
S𝑘
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

]
)

that by [5] is
(18) S𝑘+1

push+ (𝑣) = R(I(𝑣),R(

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)=S

𝑘−1
push− (𝑢) }

[
P(S𝑘−1

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
,

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)≠S

𝑘−1
push− (𝑢) }

P
[
S𝑘
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

]
))

that is
(19) S𝑘+1

push+ (𝑣) = R(I(𝑣),R(

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)=S

𝑘−1
push− (𝑢) }

[
P(S𝑘

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
,

R𝑢 ∈ {𝑢 | 𝑢∈preds(𝑣) ∧ S𝑘
push− (𝑢)≠S

𝑘−1
push− (𝑢) }

P
[
S𝑘
push− (𝑢𝑖 ), ⟨𝑢𝑖 , 𝑣⟩

]
))

that is
(20) S𝑘+1

push+ (𝑣) = R(I(𝑣),

R𝑢∈preds(𝑣)
[
P(S𝑘

push− (𝑢), ⟨𝑢, 𝑣⟩)
]
)
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4.4.5 Termination

Theorem 27 (Termination).
For all R, F , and C,
if the graph is acyclic or the condition C10 holds, then there exists 𝑘 such that for every 𝑘 ′ ≥ 𝑘

S𝑝𝑒𝑐𝑘′ (𝑣) = S𝑝𝑒𝑐 (𝑣).

Proof.
We assume that

(1) S𝑝𝑒𝑐 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) } F (𝑝)
(2) S𝑝𝑒𝑐𝑘 (𝑣) = R𝑝 ∈ {𝑝 | 𝑝∈Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝)<𝑘 } F (𝑝)
(3) The graph is acyclic or
C10 : R(F (𝑝), F (simple(𝑝))) = F (simple(𝑝))

Let
(4) 𝑙 be the longest simple path to 𝑣 (that satisfies C).

Let
(5) 𝑃𝑙+1 = {𝑝 | 𝑝 ∈ Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝) < 𝑙 + 1}
(6) 𝑃𝑙+𝑖 = {𝑝 | 𝑝 ∈ Paths(𝑣) ∧ C(𝑝) ∧ length(𝑝) < 𝑙 + 𝑖}, 𝑖 > 1
(7) 𝑃 = {𝑝 | 𝑝 ∈ Paths(𝑣) ∧ C(𝑝)}

From [2], [5] and [6], we have
(8) S𝑝𝑒𝑐 (𝑣) = R𝑃 F (𝑝)
(9) S𝑝𝑒𝑐𝑙+1 (𝑣) = R𝑃𝑙+1 F (𝑝)
(10) S𝑝𝑒𝑐𝑙+𝑖 (𝑣) = R𝑃𝑙+𝑖 F (𝑝)

From [4], [7], and [5],
(11) No path in 𝑃 \ 𝑃𝑙+1 is simple.
(12) No path in 𝑃 \ 𝑃𝑙+𝑖 is simple.

From [3], we consider two cases:
Case:

(13) The graph is acyclic.
From [11], [12] and [13], we have

(14) 𝑃𝑙+1 = 𝑃𝑙+𝑖 = 𝑃

Thus, from [8], [9] and [10], for 𝑘 ′ = 𝑙 + 1, for all 𝑘 ′ ≥ 𝑘 , we have
S𝑝𝑒𝑐𝑘′ (𝑣) = S𝑝𝑒𝑐 (𝑣)

Case:
(15) ∀𝑝. R(F (𝑝), F (simple(𝑝))) = F (simple(𝑝))
From [11] and [4], we have

(16) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → length(simple(𝑝1)) < 𝑙 + 1
From [7], we have

(17) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → 𝑝 ∈ Paths(𝑣)
(18) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → C(𝑝)

From [17], we have
(19) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → simple(𝑝) ∈ Paths(𝑣)

By Lemma 16 and [18],
(20) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → C(simple(𝑝))

From [19], [20], [16] and [5]
(21) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → simple(𝑝) ∈ 𝑃𝑙+1
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From [15],
(22) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → R(F (𝑝), F (simple(𝑝))) = F (simple(𝑝))

From [21] and [22],
(23) ∀𝑝. 𝑝 ∈ 𝑃 \ 𝑃𝑙+1 → R(F (𝑝),R𝑃𝑙+1 F (𝑝)) = R𝑃𝑙+1 F (𝑝)

therefore
(24) R(R𝑃\𝑃𝑙+1 F (𝑝),R𝑃𝑙+1 F (𝑝)) = R𝑃𝑙+1 F (𝑝)

that is
(25) R𝑃 F (𝑝) = R𝑃𝑙+1 F (𝑝)

From [25], [8] and [9], we have
(26) S𝑝𝑒𝑐 (𝑣) = S𝑝𝑒𝑐𝑙+1 (𝑣)

Similarly, for every 𝑘 > 𝑙 + 1, we can prove that
(27) S𝑝𝑒𝑐𝑘 (𝑣) = S𝑝𝑒𝑐𝑙+1 (𝑣)

From [26] and [27], we have that for 𝑘 ′ ≥ 𝑙 + 1,
S𝑝𝑒𝑐𝑘′ (𝑣) = S𝑝𝑒𝑐 (𝑣)

Lemma 16.
∀𝑝. C(𝑝) ↔ C(simple(𝑝))

Proof.
We consider the two cases:
Case:

(1) C(𝑝) = (ℎ𝑒𝑎𝑑 (𝑝) = 𝑠)
Simplification removes cycles but does not change the source vertex, therefore,

ℎ𝑒𝑎𝑑 (𝑝) = 𝑠 ↔ ℎ𝑒𝑎𝑑 (𝑝 · ⟨𝑢, 𝑣⟩) = 𝑠

(2) C(𝑝) = True

Straightforward by
True↔ True
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5 Implementation
5.1 Mapping Iteration-Map-Reduce to Graph Frameworks
In this section, we map our synthesized functions to graph computations on different graph
processing frameworks. We first present the runtime for each framework to understand how
different user-defined functions get invoked in these frameworks, and then show how init_vertex,
reduce and propagate get utilized for path computations on these frameworks. We select four
different graph processing frameworks: PowerGraph [1] and Gemini [4] are distributed graph
processing systems, Ligra [2] is a shared-memory graph processing system while GridGraph [5] is
a disk-based out-of-core graph processing system. Since these frameworks are highly parallel, we
will also discuss how transaction semantics get maintained by our reduce.

We note that Gemini, GridGraph and PowerGraph do not inherently support non-idempotent
functions. However, all these frameworks can be used to calculate non-idempotent reductions by
converting them into idempotent reductions. For example, for the NSP use-case, the non-idempotent
sum function can be expressed as a “differential sum” which aggregates only the change in the
value instead of the entire new value.



3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

67

class Engine<graph, gather_reducer,

message_reducer> {

void run() {

active: Set of signaled vertices

next_active = ∅;

while(active != ∅) {

par_for(v ∈ signalled) {

init(v, msg);

dir_type gd = gather_edges(v);

par_for(e ∈ edges(v, gd))

gv = gather(v, e);

apply(v, gv);

dir_type sd = scatter_edges(v);

par_for(e ∈ edges(v, sd))

scatter(v, e);

} }

active = next_active;

next_active = ∅;

} };

int main() {

Graph<vertex_type, edge_type> g;

g.load();

g.transform_vertices(initialize);

g.transform_edges(init_edge);

Engine engine = new Engine<g,

gather_reducer,

message_reducer>

engine.map_reduce_edges(signal_vertices);

// engine.signal_all();

engine.run();

// T aggregated_value =

// engine.map_reduce_vertices<T>(transform);

}

Fig. 22. PowerGraph Runtime

5.2 PowerGraph
PowerGraph is a distributed graph processing system that provides a shared-memory programming
abstraction. It efficiently processes power-law graphs by incorporating a vertex-cut strategy for
balanced workload distribution, and by parallelizing vertex computations across edges. It achieves
this by splitting vertex-computations across three steps: gather, apply, and scatter. Figure 22
shows PowerGraph’s iterative processing model. The run() method processes a set of vertices in
each iteration by invoking five functions (marked in blue). The gather() function iterates through
edges of a vertex (incoming, outgoing, both or none, as defined by gather_edges()) to aggregate
the values from its neighbors. The apply() function computes a new value of the vertex based on
the aggregated value from the gather step. Finally, the scatter() function iterates through edges
of a vertex (incoming, outgoing, both or none, as defined by scatter_edges()) to propagate its
new value to its neighbors.
In each iteration, the set of vertices to be processed are identified via explicit vertex-signaling

mechanism. Typically, if a vertex’s value changes, it ‘signals’ its neighbors in the scatter()
function so that they get processed in the subsequent iteration. For the first iteration, the set of
vertices to be processed are signalled before invoking the run() method (as shown in main()).

Apart from iterative processing, PowerGraph also provides capabilities for transforming and
reducing vertex (and edge) values. The map_reduce_vertices() function shown in main() can
be used to perform vertex-based reductions.

Mapping Synthesized Functions.
PowerGraph allows expressing graph computations in pull mode (Figure 23) and in push mode
(Figure 24). In pull mode, the propagation of values across edges occurs in the gather step, and the
values propagated to a vertex (or ‘pulled by a vertex’) in this step are passed through an aggregator
as defined in struct reducer. In push mode, value propagation occurs in the scatter step and
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struct reducer {

VValueType value;

reducer& operator+=(reducer& other) {

value = reduce(value, other.value);

return *this;

} }

bool changed = false;

void init(vertex_type& v, empty_type& m) { }

dir_type gather_edges(vertex_type& v) {

return in_edges; }

reducer gather(vertex_type& v, edge_type& e) {

if (e.source().data() != none) {

return propagate(e.source(), e);

} else {

return none;

} }

void apply(vertex_type& v, reducer& red_gv) {

changed = false;

if(reduce(red_gv.value, v.data()) !=

v.data()) {

v.data() = red_gv.value;

changed = true;

}

}

dir_type scatter_edges(vertex_type& v) {

return changed ? out_edges : no_edges;

}

void scatter(vertex_type& v,

edge_type& e) {

signal(e.target());

}

Fig. 23. PowerGraph Pull

struct reducer {

VValueType value;

reducer& operator+=(reducer& other) {

value = reduce(value, other.value);

return *this;

} }

bool changed = false;

reducer msg;

void init(vertex_type& v,

empty_type& m) {

msg = m;

}

dir_type gather_edges(vertex_type& v) {

return no_edges;

}

reducer gather(vertex_type& v,

edge_type& e) { }

void apply(vertex_type& v,

reducer& red_gv) {

changed = false;

if(reduce(msg.value, v.data()) !=

v.data()) {

v.data() = msg.value;

changed = true;

} }

dir_type scatter_edges(vertex_type& v) {

return changed ? out_edges : no_edges;

}

void scatter(vertex_type& v,

edge_type& e) {

VValueType new_val = propagate(v, e);

if(reduce(new_val, e.target().data()) !=

e.target().data()) {

signal(e.target(), new_val);

} }

Fig. 24. PowerGraph Push

the values propagated to a vertex (or ‘pushed to a vertex’) in this step are passed through the
aggregator.
In both the modes, the aggregated value is again passed to reduce() operation along with the

vertex’s current value to identify whether the aggregated value is useful. Due to monotonic nature
of reduce(), the usefulness of the value is directly determined by != operator. It is interesting
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to note that push mode can eliminate unnecessary value propagations by invoking reduce() on
the neighboring vertex during scatter to check usefulness of the value before propagating. Also,
since PowerGraph’s semantics ensure that the entire vertex program (gather-apply-scatter) gets
executed atomically, we synthesize reduce() using simple (non-atomic) operators.

Finally, vertex initializations are achieved via amap operation on vertices (by transform_vertices()
operation in main() function). Furthermore, vertex-based reduction is achieved by passing two
functions to map_reduce_vertices(): an aggregation function that performs reduction, and a
transformation function that updates vertex values before aggregation.
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5.3 Ligra
Ligra is a single machine shared memory graph processing system that parallelizes computations
across edges and vertices. Since our path-based computations wholly operate on edges, we show
Ligra’s edgeMap() operation in Figure 25. Given a subset of vertices U and an edge function f(),
the edgeMap applies f() on all the outgoing edges of vertices in U. It is interesting to note that edge
function f() must maintain atomicity.

Mapping Synthesized Functions.
Since edgeMap operates on outgoing edges, we compute our path algorithms in push mode. As
shown in Figure 25, our compute() method iteratively invokes edgeMap() on frontier vertices,
i.e., those whose values have been updated. The initial vertex frontier can be defined as the source
vertex for computations relying on the source, or as the entire vertex set when source is not
available (e.g., for connected components algorithm).

Figure 25 shows the structure of our edge function. It propagates value from source to destination
and immediately reduces the propagated value with the destination’s current value. The reduction
operation writes the new value for destination vertex if the propagated value is better than des-
tination’s current value. It is important to note that Ligra invokes edge operations concurrently
without atomicity guarantees like PowerGraph. To maintain atomicity in our edgeFunction(),
our reduce() operation writes the final value using CAS operation.
While Ligra does not natively provide aggregation over vertices, we implemented a parallel

vertex aggregator that maps over vertices and aggregates their values to perform vertex-based
reductions.
vertexSubset edgeMap(graph g,

vertexSubset U, func f, func c) {

vertexSubset out = ∅;

par_for(v ∈ U)

par_for(ngh ∈ out_neighbors(v))

if(c(ngh) && f(v, ngh, w(ngh)))

out = out.insert(ngh);

return out;

}

void compute(graph g) {

VValueType* values =

new VValueType[g.n];

par_for(VIdType i=0;i<n;i++)

values[i] = initialize(i);

vertexSubset frontier(n,src);

// vertexSubset frontier(n, n,

// [1, 1, .., 1]);

while(!frontier.isEmpty()) {

next_frontier = edgeMap(g,

frontier, edgeFunction,

condFunction);

frontier.del();

frontier = next_frontier;

}

frontier.del();

}

bool edgeFunction(VIdType s, VIdType d,

EWeightType w) {

return reduce(&values[d],

propagate(s, EdgeType(s, d, w)));

}

bool condFunction(VIdType d)

{ return true; }

Fig. 25. Ligra Runtime & Push
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5.4 Graphit
Graphit is a single machine shared memory graph processing DSL and framework that parallelizes
computations across edges and vertices Graphit utilizes different scheduling models. Grafs has
adopted the push scheduling model shown in the 26. Given a frontier U and an struct type containing
the edge function f(), the edgeMap applies f() on all the outgoing edges of vertices in U. It is
interesting to note that edge function f() must maintain atomicity.

Mapping Synthesized Functions.
As shown in Figure 26, the main()method iteratively invokes edgeMap() on frontier vertices, i.e.,
those whose values have been updated. The initial vertex frontier can be defined as the source vertex
for computations relying on the source, or as the entire vertex set when source is not available
(e.g., for connected components algorithm).

Figure 26 edgeMap() shows the structure of our edge function. It propagates value from source to
destination and immediately reduces the propagated value with the destination’s current value. The
reduction operation writes the new value for destination vertex if the propagated value is better than
destination’s current value. It is important to note that Graphit invokes edge operations concurrently
without atomicity guarantees like PowerGraph. To maintain atomicity in the edgeMap(), the
reduce() operation writes the final value using CAS operation. To support map and reduce over
the vertices, we have adopted parallel for structure in Graphit framework.

template<typename EDGE_MAP>

vertexSubset edgeset_apply(WGraph g,

vertexSubset U, EDGE_MAP f) {

vertexSubset out = ∅;

par_for(v ∈ U)

par_for(ngh ∈ out_neighbors(v))

if(f(v, ngh, w(ngh)))

out = out.insert(ngh);

return out;

}

struct edgeMap {

bool operator(NodeID s, NodeID d, int w) {

return reduce(&values[d],

propagate(s, EdgeType(s, d, w)));

}

}

int main() {

WGraph g;

g.load();

VValueType* values =

new VValueType[g.n];

par_for(VIdType i=0;i<n;i++)

values[i] = initialize(i);

vertexSubset frontier(n,src);

//vertexSubset frontier(n,n);

addVertex(frontier, src) ;

while(!frontier.isEmpty()) {

next_frontier =

edgeset_apply(edges, frontier, edgeMap());

frontier.del();

frontier = next_frontier;

}

frontier.del();

}

Fig. 26. Graphit Runtime & Push
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5.5 Gemini
Gemini is a NUMA-aware, distributed, high-performance graph processing system. It extracts
parallelism across multicores by partitioning threads across NUMA nodes, and uses MPI for
coordination across machines. It incorporates a hybrid push-pull processing model that dynamically
switches between pull mode and push mode depending on the number of active vertices. The pull
mode is performed when number of active vertices is large (based on a threshold), and it effectively
iterates over all the incoming edges of a vertex to compute its next value. On the other hand, the
push mode is performed when number of active vertices is small and it iterates over all the outgoing
edges of a vertex to compute their next value.
Similar to Ligra, we show process_edges() in Figure 27 since our path-based computations

operate on edges only. As we can see, process_edges() accepts four user-defined callbacks along
with a bitmask indicating the set of active vertices. The bitmask is first checked to determine sparsity
of the iteration, based on which, either the first two callbacks are invoked (if sparse), or the other two
call backs are invoked (if dense). The sparse_signal and dense_signal callbacks determine the
value to be propagated from/to a vertex to/from its outgoing and incoming neighbors respectively.
These values are maintained in form of messages, that are shuffled and sorted across NUMA nodes
and machines. Then, the sparse_slot and dense_slot callbacks compute the new vertex value
based on the propagated values (or messages) from sparse_signal and dense_signal respectively,
and also activate neighboring vertices to be processed in the next iteration. It is interesting to note
that iterating over the incoming and outgoing edges is performed by the user-defined callbacks, as
opposed to the runtime as achieved in PowerGraph and Ligra.

Mapping Synthesized Functions.
We leverage Gemini’s hybrid push-pull processing model by expressing our path-based computa-
tions in both, push mode and pull mode. The main() method in Figure 27 first activates the source
vertex by setting its bit value, and then iteratively calls process_edges() (setting all bits activates
all vertices, as required by algorithms like connected components).
In push mode (sparse_signal and sparse_slot), the source vertex emits its value which is

propagated to the outgoing neighbors. Similarly, in the pull mode (dense_signal and dense_slot),
the destination propagates in the values from its incoming neighbors using which it computes the
best value for itself. To ensure atomicity, similar to that for Ligra, CAS operation is used to write
the final value in reduce(). Vertex-based reductions are also achieved in same manner as in Ligra.
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VertexId process_edges(func sparse_signal,

func sparse_slot, func dense_signal,

func dense_slot, Bitmap* active) {

sparse = compute_sparsity(active);

if(sparse) {

par_for(VertexId v ∈ active)

sparse_signal(v);

exchange_messages();

par_for(msg ∈ messages) {

VertexId source = message.vertex;

sparse_slot(source, message.msg_data, outAdjList[v]);

}

} else {

par_for(VertexId v ∈ V)

dense_signal(v, inAdjList[v]);

exchange_messages();

par_for(msg ∈ messages) {

VertexId target = message.vertex;

dense_slot(target, message.msg_data);

}

}

}

int main() {

Graph g;

g.load();

values = g->alloc_vertex_array<VValueType>();

VertexSubset* active_in = g->alloc_vertex_subset();

VertexSubset* active_out = g->alloc_vertex_subset();

for(VertexId i=0; i<g->vertices; ++i)

values[i] = initialize(i);

active_in->clear();

active_in->set_bit(src);

VertexId num_active_vertices = 1;

// active_in->fill();

// VertexId num_active_vertices = graph->vertices;

while(num_active_vertices > 0) {

active_out->clear();

num_active_vertices = g->process_edges(

[&](VertexId src){

g->emit(src, values[src]);

},

[&](VertexId src, VValueType msg, AdjList out_nbrs) {

VertexId activated = 0;

for (AdjUnit* ptr ∈ out_nbrs) {

VertexId dst = ptr->neighbour;

if(reduce(&values[dst], propagate(msg,

EdgeType(src, dst, ptr->edge_data)))) {

active_out->set_bit(dst);

activated += 1;

}

}

return activated;

},

[&](VertexId dst, AdjList in_nbrs) {

VValueType msg = none;

for (AdjUnit* ptr ∈ in_nbrs) {

VertexId src = ptr->neighbour;

reduce(&msg, propagate(values[src],

EdgeType(src, dst, ptr->edge_data)));

}

if (msg != none) g->emit(dst, msg);

},

[&](VertexId dst, VValueType msg) {

if(reduce(&values[dst], msg)) {

active_out->set_bit(dst);

return 1;

}

return 0;

},

active_in

);

swap(active_in, active_out);

}

}

Fig. 27. Gemini Hybrid Push-Pull Runtime
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5.6 GridGraph
GridGraph is an out-of-core disk-based graph processing system. It maintains the graph in a
2D grid layout that resides on disk, and uses a streaming partition based processing model to
sequentially accesses disk partitions. Figure 28 shows stream_edges and stream_vertices that
are used to process the graph. The stream_edges function processes active set of edges by reading
the corresponding partitions from disk one-by-one and invoking the user-defined process function
on the edge. The stream_vertices function invokes a user-defined function on active vertices
(similar to map operation). It is interesting to note that both these methods take care of disk
operations so that the user-defined functions can focus solely on edge and vertex computations.

Mapping Synthesized Functions.
Similar to Ligra, we express our path computations on GridGraph in push mode. The main func-
tion first initializes the vertex values using stream_vertices, after which it iteratively calls
stream_edges on outgoing edges of active vertices. For each edge, the computation propagates
the source’s value to the destination in parallel (CAS operation used in reduce() for atomicity).

void stream_edges(func process, Bitmap* active) {

for(partition p ∈ partitions) {

if(p ∉ active)

continue;

for(Edge e ∈ p)

if(e.source ∈ active)

process(e);

}

}

void stream_vertices(func process, Bitmap* active) {

par_for(VertexId v ∈ V) {

if(v ∈ active)

process(v);

}

}

int main() {

Graph g(load_path);

Bitmap* active_in = g.alloc_bitmap();

Bitmap* active_out = g.alloc_bitmap();

vertex_values.init(vertex_path, g.vertices);

g.stream_vertices<VertexId>([&](VertexId i) {

vertex_values[i] = initialize(i);

return 0;

});

active_out->clear();

active_out->set_bit(src);

VertexId num_active_vertices = 1;

// active_out->fill();

// VertexId num_active_vertices = g.vertices;

while (num_active_vertices > 0) {

swap(active_in, active_out);

active_out->clear();

active_vertices = g.stream_edges<VertexId>([&]

(Edge& e) {

if (reduce(&vertex_values[e.target],

propagate(

e.source,

EdgeType(e.source, e.target, e.w))

)) {

active_out->set_bit(e.target);

return 1;

}

return 0;

}, active_in);

} }

Fig. 28. GridGraph Runtime
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5.7 Path-based Reduction Synthesis

//NWR usecase

struct VValueType{

uint32_t first;

uint32_t second;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first < c.first) {

w.first = b.first;

} else {

if (b.first > c.first) {

w.first = c.first;

}

}if (b.second > c.second) {

w.second = b.second;

} else {

if (b.second < c.second) {

w.second = c.second;

}

}

} while(((b.second > c.second ||

b.first < c.first) &&

!(r=cas(a,c,w))));

return r;

}

//Radius usecase

struct VValueType{

uint32_t first;

uint32_t second;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first < c.first) {

w.first = b.first;

} else {

if (b.first > c.first) {

w.first = c.first;

}

}if (b.second < c.second) {

w.second = b.second;

} else {

if (b.second > c.second) {

w.second = c.second;

}

}

} while(((b.second < c.second ||

b.first < c.first) &&

!(r=cas(a,c,w))));

return r;

}

Fig. 29. Generated atomic reduce functions for more elaborate use-cases. The rule FMPair is used to generate

atomic reduce functions for NWR and Radius use-cases, respectively.
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//BFS usecase

struct VValueType{

uint32_t first;

uint32_t second;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first < c.first) {

w.first = b.first;

w.second = b.second;

} else {

if (b.first > c.first) {

w.first = c.first;

w.second = c.second;

}

}

} while((b.first < c.first &&

!(r=cas(a,c,w)))); return r;

}

//CC usecase

struct VValueType{

uint32_t first;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first > c.first) {

w.first = b.first;

} else {

if (b.first < c.first) {

w.first = c.first;

}

}

} while((b.first > c.first &&

!(r=cas(a,c,w)))); return r;

}

//SP usecase

struct VValueType{

uint32_t first;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first < c.first) {

w.first = b.first;

} else {

if (b.first > c.first) {

w.first = c.first;

}

}

} while((b.first < c.first &&

!(r=cas(a,c,w)))); return r;

}

//WP usecase

struct VValueType{

uint32_t first;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first > c.first) {

w.first = b.first;

} else {

if (b.first < c.first) {

w.first = c.first;

}

}

} while((b.first > c.first &&

!(r=cas(a,c,w)))); return r;

}

Fig. 30. Generated atomic reduce functions for simple use-cases.
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//WSP usecase

struct VValueType{

uint32_t first;

uint32_t second;

};

VValueType reduce(const VValueType a,

const VValueType b) {

bool r = 0;

VValueType c;

VValueType w;

do {

c = a;

w = c;

if (b.first < c.first) {

w.first = b.first;

w.second = b.second;

} else {

if (b.first > c.first) {

w.first = c.first;

w.second = c.second;

}

}if (c.first == b.first) {

w.first = c.first;

w.second = std::max(b.second, c.second);

}

} while(((b.first < c.first ||

(c.first == b.first &&

b.second > c.second)) &&

!(r=cas(a,c,w))));

return r;

}

Fig. 31. Generated atomic reduce function for WSP

usecase. The rule FPNest is used to generate atomic

reduce functions for WSP usecase.
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6 Experimental Results
We presented the core of our experimental results in the main body of the paper. We present the
rest of the experimental results in this section.
• In § 6.1, we study the scalability of fusion. We measure the speedup as the number of fusions
increase.
• In § 6.2 we report the weighted graphs execution times for the unweighted graph execution
times reported in the main body of the paper § 7, Fig. 15.
• In § 6.3, we report the execution times for the normalized execution times reported in the
main body of the paper § 7, Fig. 16.
• In § 6.4, we compare the performance of the push, pull and the hybrid models.
• In § 6.5, we compare the synthesized and handwritten programs for streaming graphs.
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6.1 Fusion Scalability
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Fig. 32. Fusion scalability of Grafs on the Radius use-case. The graph is unweighted LiveJournal. The backend

is PowerGraph. (a) Normalized execution time with respect to the execution time of one path-based reduction

and (b) Normalized number of edge operations with respect to the number of edge operations for one

path-based reduction.

In this section, we study the scalability of the fusion transformations. We show that the performance
of the synthesized code scales with the number of fusions.

We compare the fused and unfused implementations of the Radius use-case over several sample
sizes. We increase the size of the sample source set from 1 to 7. Thus, the number of path-based
reductions is increased from 1 to 7. Accordingly, the number of possible fusions is increased from 1
to 7 as well. We run the experiment on the unweighted LiveJournal graph in PowerGraph (push
model) framework. Fig. 32 presents the results that are normalized with respect to the Radius
instance with sample size of one i.e. one path-based reduction.
Fig. 32a shows the execution time of both fused and unfused implementations of the code,

normalized with respect to the execution time of one path-based reduction. Fig. 32b shows the
number of processed edges in both fused and unfused implementations, normalized with respect to
number of edges processed by one path-based reduction. With the increase in the sample size, we
observe a linear increase in the execution time and processed edges for the unfused implementation.
The reason for the linear increase is that the unfused implementation performs the iterative
computations for the sources separately. However, the fused implementation benefits from the
overlapping computations in each iteration and performs them together. Hence, it results in a faster
execution time and a fewer number of edge operations. Thus, it exhibits more scalability than the
unfused implementation.

We note that fusion might be beneficial up to a limit on the number of fused operations. Fusing
many values into a tuple may lead to memory overheads and affect performance due to lack of
locality. A cost model can automatically determine whether fusion can improve performance, and
the granularity of fusion. The cost model can be developed by profiling the dynamic behavior of
the queries on the input graphs.
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6.2 The Effect of Fusion

Table 3. Execution times (in seconds). H: Handwritten, S: Synthesized, R: the ratio
𝐻
𝑆
.

Prog. Input Ligra GridGraph Gemini PowerGraph (Push) PowerGraph (Pull) GraphIt (Push)
S H R S H R S H R S H R S H R S H R

DRR

LJ 1.2 2.7 2.3 3.7 16.3 4.3 0.5 1.4 2.8 9.4 31.7 3.3 16.5 60 3.6 0.75 2.2 2.9

TW - - - 82 215 2.6 7 16 2.2 61 184 3 107 392 3.6 12 41 3.3

TM - - - 130 325 2.5 33 110 3.3 94 313 3.3 223 760 3.4 202 345 1.7

FR - - - 223 464 2 27 68 2.5 202 520 2.5 297 1093 3.6 - - -

Trust

LJ 1.1 2.6 2.3 6.2 16 2.5 0.7 1.32 1.8 - - - 19.7 54 2.7 1 2.2 2.1

TW - - - 2413 2433 1 11.9 16 1.3 - - - 151 392 2.6 23 48 2.1

TM - - - 3215 5312 1.6 24 18 0.75 - - - 214 636 3 940 370 0.4

FR - - - 540 620 1.1 7965 11105 1.4 364 419 1.1 367 1003 2.7 - - -

LTrust

LJ 1.7 2.2 1.4 6.7 10 1.5 0.8 1.2 1.4 23 33 1.4 - - - 1.3 2.2 1.7

TW - - - 86 168 1.9 10 15.3 1.5 150 193 1.2 - - - 25 41 1.6

TM - - - 142 186 1.3 12 16.2 1.3 281 324 1.1 - - - 324 679 2.1

FR - - - 584 1048 1.8 5300 7315 1.3 389 442 1.2 - - - - - -
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Fig. 33. Edge-work Ratio: Normalized # of edges processed by the fused over the unfused version. Missing

bars are due time-out after 24 hours.

Here we present the results for the effect of fusion on more elaborated use-cases. Similar to
Fig. 15 and Table 1 in section § 7, we report The edge-work ratio and absolute execution times for
weighted graphs in Fig. 33 and Table 3 respectively. We can observe that like unweighted graphs,
fusing results in overal 2.1× speedup across different frameworks and input graphs.
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6.3 Fusion Types

Use-case Input Ligra GridGraph Gemini PowerGraph (Push) PowerGraph (Pull)
H S R H S R H S R H S R H S R

WSP
LJ 1 0.7 1.4 5.3 3.2 1.65 0.54 0.4 1.35 7 3.2 2.1 18.3 8.9 2
TW 37.4 19.6 1.9 10 6.5 1.5 47.2 27 1.74 130.9 69.6 1.9
TM 71 37.4 1.9 14.3 9.3 1.5 78.7 45.3 1.7 199.2 92.5 2.1
FR 142.6 81 1.7 15.7 9.9 1.5 116.1 59.6 1.9 237.5 116.8 2

Radius
LJ 1.3 0.9 1.4 7.3 3.2 2.2 1.6 1.18 1.45 7.1 4.1 1.73 19 11.7 1.6
TW 40.8 21 1.9 38.6 24.6 1.6 55 45.7 1.2 156 80.6 1.9
TM 70.2 35.6 1.9 66.6 39.6 1.6 84.3 67.7 1.2 237 130.6 1.8
FR 151.4 89.4 1.7 218.2 104.2 2 115 75.9 1.5 234 126 1.8

NWR
LJ 0.9 1.2 1.3 4 2.9 1.4 0.6 0.4 1.4 7.8 3.6 2.1 17.7 8 2.2
TW 37.8 20.8 1.8 14.4 6.7 2.1 52.7 23.4 2.2 132.7 63 2.1
TM 62 41 1.5 22 11 2 76 38.1 2 200 97.1 2
FR 134.4 72.4 1.8 22.6 10.5 2.1 116.2 63.6 1.8 226.9 115.1 1.9

Table 2. Execution times in seconds of the fused and unfused implementations. (H: Handwritten, F: Synthe-

sized, R=
𝐻
𝑆
). Missing cells are due to out of memory executions.

In order to study the performance benefits of the different fusion types that the fusion rules
represent, in § 7, we studied the three use-cases WSP, NWR and Radius (from Fig. 6). In § 7,
Fig. 16, we compared the number of edges processed by the synthesized fused programs with
that by the unfused versions for unweighted graphs. Here, we compare the execution time of the
synthesized programs with that of the unfused versions for weighted graphs. Table 2 presents the
execution times of both synthesized and handwritten implementations along with the speedup of
the synthesized implementations over the handwritten implementations that is the execution time
of the later divided by the former. In spite of variances across different input graphs and different
frameworks, as expected, synthesized implementations benefiting from fusion rules can execute
faster than the handwritten versions. Fusion results in an overall speedup of 1.4-2.1×.



4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

82 Anon.

6.4 Gemini Framework Analysis
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Fig. 34. Normalized number of edge operations in Gemini framework

We compared the performance of the push, pull and hybrid models on the Gemini framework.
Fig. 34 presents the number of edge operations that each of the WSP, NWR and Radius use-cases
process for each of the input graphs separately for each of the push, pull and hybrid models. The
number of processed edges for each use-case and input graph is normalized with respect to the
number of edges that the use-case processes on that input graph in the unfused implementation
with the pull model. We observe that overall, the push model is more efficient than the hybrid
model and the hybrid model is more efficient than the pull model. Similar to Fig. 16 in the main
body § 7, we also observe again that the fused versions process about 50% less edges than the
unfused versions.
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6.5 Streaming Evaluation
In this section we present the evaluation of dynamic graphs with edge mutations. Fig. 35 shows the
normalized execution time of the handwritten implementation in KickStarter framework [3] with
respect to the synthesized code for the same framework on the Grafs for SSSP and CC use-cases.
We also report the absolute execution times in Table 3. The experiments show that Grafs can
effectively synthesize streaming use-cases that run on dynamic graphs and match the performance
of the handwritten implementations in the KickStarter framework.
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Fig. 35. Normalized execution time of the handwritten implementation in KickStarter framework with respect

to the synthesized version in the Grafs for a) SSSP and b) CC use-cases on dynamic input graphs with 1k,

10k and 100k edge mutations.

# Edge Mutations Use-case LJ TW TM FR
H S H S H S H S

1𝑘
SSSP

0.0056 0.0054 0.0186 0.016 0.0182 0.0179 0.0311 0.031
10𝑘 0.0095 0.0093 0.0223 0.0229 0.0270 0.0265 0.0401 0.0383
100𝑘 0.0253 0.0263 0.032 0.0312 0.036 0.0339 0.0716 0.0792
1𝑘

CC
0.004 0.0036 0.0123 0.0123 0.0148 0.0174 0.0216 0.0229

10𝑘 0.006 0.006 0.0185 0.018 0.0224 0.0228 0.0348 0.0387
100𝑘 0.0156 0.0166 0.0244 0.0258 0.0282 0.0338 0.0493 0.0549

Table 3. Execution times in seconds of the synthesized and handwritten implementations. (H: Handwritten, S:

Synthesized)



4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

84 Anon.

PageRank (PR)
I B 𝜆𝑣. 1 / |𝑉 |
P B 𝜆𝑛, 𝑒. 𝑛 / outdeg(src(𝑒))
R B 𝜆𝑣, 𝑣 ′. 𝑣 + 𝑣 ′
E B 𝜆𝑛. 𝛾 ∗ 𝑛 + (1 − 𝛾) / |𝑉 |
B B 𝜆𝑛, 𝑒. − E-1 (𝑛) / outdeg(src(𝑒))

Fig. 36. Optimized PageRank Use-case using Def. 7. E-1 (𝑛) denotes the inverse of the E function. Note that

the back propagation (B) is calculated starting from the second iteration.
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