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Abstract—Fault-tolerant replicated database systems consume
significantly less energy than the compute-intensive proof-of-
work blockchain. Thus, they are promising technologies for the
building blocks that assemble global financial infrastructure.
To facilitate global scaling, clustered replication protocols are
essential in orchestrating nodes into clusters based on proximity.
However, existing approaches often assume a homogeneous and
fixed model in which the number of nodes across clusters is
the same and fixed, and often limited to a fail-stop fault model.
This paper presents heterogeneous and reconfigurable clustered
replication for the general environment with arbitrary failures. In
particular, we present HAMAVA, a fault-tolerant reconfigurable
geo-replication that allows dynamic membership: replicas are
allowed to join and leave clusters. We formally state and prove the
safety and liveness properties of the protocol. Furthermore, our
replication protocol is consensus-agnostic, meaning each cluster
can utilize any local replication mechanism. In our comprehensive
evaluation, we instantiate our replication with both HotStuff
and BFT-SMaRt. Experiments on geo-distributed deployments
on Google Cloud demonstrates that members of clusters can be
reconfigured without significantly affecting transaction process-
ing, and that heterogeneity of clusters may significantly improve
throughput.

I. INTRODUCTION

Blockchains such as Bitcoin [1] and Ethereum [2] main-
tain a global replicated ledger on untrusted hosts. However,
they suffer from a few drawbacks, including high energy
consumption, partitions [3], [4], [5], and stake and vote
centralization [6]. Byzantine replicated systems such as PBFT
[7] and its numerous following variants [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18] can maintain consis-
tent replications in the presence of malicious nodes. More
interestingly, these techniques avoid energy-intensive proof-
of-work hashing. Therefore, they are an appealing technology
to serve as the global financial infrastructure. Thus, several
projects, such as Hyperledger [11], Solida [19], Tendermint
[20], Casper [21], Algorand [22], OmniLedger [23] Rapid-
Chain [24], and [25] deployed Byzantine replication protocols
to manage blockchains.

However, Byzantine replication protocols need to be im-
proved on two fronts: scale and dynamic membership. They
often require rounds of message-passing between nodes; there-
fore, they tend not to scale to many or distant nodes. Fur-
ther, their membership is often fixed. In fact, the resulting
blockchains are called permissioned since the nodes are fixed
and initially known.

To scale Byzantine replication across the globe, projects
such as Steward [26] and ResilientDB [27], [28] and Nar-
whal [29] try to use global communication judiciously, and
decrease global in favor of local communication. They allow
neighboring nodes to form clusters. This enables each cluster

to order transactions locally while reducing the need for inter-
cluster communication to reach an agreement on the global
order. Since the communication among members of a cluster
is local, clusters can maintain high throughput and low latency.
Further, coordination is divided between clusters, and they can
order transactions in parallel.

However, existing clustered replication protocols are ho-
mogeneous and fixed. The number of nodes is the same
across clusters. Further, nodes cannot join or leave clusters. A
global financial system needs to be heterogeneous: different
regions might have different numbers of active nodes. More
importantly, decentralization promised dynamic membership:
active nodes should be able to churn. This is the property that
proof-of-work blockchains, such as Bitcoin, observe, allowing
any incentivized nodes to join and keep the system running.
Reconfiguration has been studied for non-clustered replication
[30], [31], [32], [33], [34], [35] but it remains an open
problem for clustered replication. Can we have the best of
both worlds? Can we have the energy efficiency, equity, and
scalability of clustered Byzantine replication, and the dynamic
membership of proof-of-work? Can we have reconfigurable
clustered replication?

Reconfiguring a clustered replication system without com-
promising security is a challenging task. If the reconfigurations
are not propagated uniformly to all clusters, correct replicas
(i.e., processes) might accept invalid messages or miss valid
ones. Inconsistent views of membership may lead to violation
of both safety and liveness. Byzantine replicated systems can
often tolerate one-third of replicas to be Byzantine. Thus, if
a message is received from more than one-third of replicas,
at least one correct replica must have sent it; therefore, the
message can be trusted. Consider a cluster Cold that is not
informed of new additions to another cluster Cnew. The cluster
Cold’s record of one-third is less than the actual one-third for
Cnew. Therefore, the Byzantine replicas in Cnew can form
a group that is larger than the old one-third, and can make
Cold accept a invalid message. On the flip side, Cnew might
miss messages from Cold. Since Cold thinks that Cnew is
smaller, in order to communicate a message, Cold might send
a message to an insufficient number of replicas in Cnew.
Thus, the Byzantine replicas in Cnew can censor the message
for other replicas in that cluster, hindering liveness. Uniform
propagation of reconfigurations is particularly challenging
when the leader simultaneously changes.

In this paper, we present HAMAVA, a reconfigurable clus-
tered replication that can tolerate arbitrary faults. It allows
replicas to be divided into multiple heterogeneous clusters,



and further allows dynamic membership for clusters: replicas
can join and leave a cluster. This clustered design further
reduces the cost of inter-cluster communication by allowing
each cluster to independently reach an agreement on its
membership and order transactions locally and only propagate
the local decisions globally. Reconfigurations are processed
efficiently in parallel to transactions. Since the reconfigurations
received in a round r take effect for the next round r + 1,
they do not need to be ordered in round r. Thus, instead of
processing them in sequence through the consensus that orders
transactions, they are aggregated into a set, and processed
together. We present the reconfiguration protocol and formally
state and prove its safety and liveness.

Reconfiguration of heterogenous clusters introduces nu-
ances that affect ordering and executing transactions. In
particular, the inter-cluster communication primitive and the
remote leader fault detection mechanism must have up-to-date
knowledge of the size of the local and remote clusters in order
to ensure safety and liveness.

HAMAVA is a meta-protocol that is agnostic to the local
replication protocol. We implement HAMAVA for HotStuff
[9] in C++, and for BFT-SMaRt [36] in Java. We deployed
our systems on geo-distributed clusters in multiple regions
of Google Cloud. The experimental results show that het-
erogeneous geo-distributed deployments significantly improve
throughput, can be reconfigured without affecting transaction
processing, and can gracefully tolerate Byzantine failures.

In short, this paper makes the following contributions:
• We present HAMAVA, a reconfigurable clustered replica-

tion protocol that allows replicas to dynamically join and
leave clusters safely and efficiently.

• HAMAVA entails Heterogeneous clustered replication to
support clusters with varying sizes. Thus, HAMAVA in-
cludes a novel inter-cluster communication primitive and
remote leader replacement mechanism.

• Formal specification and proof of safety and liveness
properties of HAMAVA including dynamic reconfigura-
tion in Byzantine heterogeneous environments.

• Implementation and experimental results that demonstrate
that HAMAVA is agnostic to the the local consensus
(e.g., HotStuff and BFT-SMaRt). Thorough experiments
with the resulting systems (AVA-HOTSTUFF and AVA-
BFTSMART) show that HAMAVA supports efficient and
fault-tolerant global replication and reconfiguration, and
that heterogeneity improves performance.

II. OVERVIEW

We describe the system and threat model, and illustrate the
protocol with diagrams and representative executions.

System and Threat Model. A replicated system con-
sists of a set P of replicas that are partitioned into clusters
C = {N1, .., CN}. Clients can send requests to any replica
to execute operations of two different types: transactions and
reconfigurations. The state is replicated at each replica. A
replica can be correct or Byzantine. A Byzantine replica
can fail arbitrarily including but not limited to crash fail-
ures, sending conflicting messages, dropping messages, and
impersonating other Byzantine replicas. We assume that at

any time in each cluster, at most one-third of replicas can
be Byzantine, i.e., at most f out of 3f + 1 replicas can be
Byzantine. (This paper does not consider problems orthogonal
to Byzantine fault tolerance such as access control or sybil
resistance [37], [38], [39].) We further assume that each replica
can be identified by its public key, and that replicas are com-
putationally bound, and cannot subvert standard cryptographic
primitives. Thus, replicas can communicate with authenticated
links. We consider a partially synchronous network [40]: after
an unknown global stabilization time, messages between any
pair of correct replicas will be eventually delivered within
a bounded delay. Replicas communicate with authenticated
perfect links apl , and authenticated best-effort broadcast abeb
which simply abstracts apl to send a message to all replicas.
Each message mσ delivered from an authenticated link comes
with a signature σ of the sender.

Overview. The protocol proceeds in consecutive rounds
r. In order to avoid global communication in favor of local
communication, replicas are divided into clusters. Each round
has three stages. In the first stage, clusters process requests in
parallel; the replicas of each cluster agree on the transactions
and their order, and further the set of reconfigurations for that
round. In the second stage, clusters communicate these oper-
ations with each other. Finally in the third stage, they execute
all the operations in the decided orders. Each cluster has a
leader that coordinates the replication of both transactions and
reconfigurations. Each replica knows the leader of its cluster
and its associated timestamp ts . (Leaders of each cluster are
elected together with a monotonically increasing timestamp
which replicas use to decide which leader is more recent.) A
leader might continue to serve for multiple rounds. Several
leaders might change until a correct leader properly replicates
transactions and reconfigurations of the round.

Stages. The HAMAVA protocol has three stages. Fig. 1a
shows an overview of the stages and sub-protocols in a round.
The replicas are split into clusters. The figure shows two
clusters C1 and C2 that make progress from left to right
through the stages.

State 1: Intra-cluster Replication. The first stage is intra-
cluster replication where each cluster coordinates replication
locally and independently of other clusters. The first stage has
two parts that are executed in parallel: local ordering, and
reconfiguration. The local ordering protocol orders a batch
of transactions uniformly across the replicas of the cluster.
The protocol is agnostic to the local ordering sub-protocol;
any consensus protocol can be used. The second part, the
reconfiguration protocol, collects and uniformly disseminates
the reconfiguration requests across the cluster, even if the
leader is Byzantine or changes simultaneously.

State 2: Inter-cluster Communication. After the first stage
finishes intra-cluster replication, the second stage performs
inter-cluster communication: the leader of each cluster broad-
casts to other clusters the transactions and reconfigurations
that it has locally replicated. Each cluster waits to receive
these messages from every other cluster. If a remote leader
is Byzantine, it may refrain from sending these messages.
Therefore, to ensure progress, if the replicas of a cluster don’t
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Fig. 1: HAMAVA Reconfigurable Clustered Replication Protocol

receive the message from a remote cluster, they trigger the
remote leader change protocol to eventually change the leader
of that remote cluster.

Stage 3: Execution. Finally, in the third stage, each replica
orders the transactions and reconfigurations that it has received
from all clusters by a predefined order for the clusters, executes
them in order, and issues responses. This predefined order
yields a total-order for operations across replicas. replicas
converge to the same state at the end of the round.

A. Overview of HAMAVA Inter-cluster Communication
Let us consider the inter-cluster communication stage (i.e.,

stage 2). Fig. 1 shows example executions of this stage for
two heterogeneous clusters C1 and C2 with 4 and 7 replicas
respectively. In Fig. 1b, the leaders of C1 and C2 are the green
replicas p2 and p4 respectively. The Byzantine replicas of C2

and C2 are the red replicas {p3} and {p1, p2} respectively. We
note that in both clusters, the number of Byzantine replicas is
less than one-third of the size of the cluster: f < |C|/3 that
is f1 = 1 < 4/3 and f2 = 2 < 7/3.

Inter-cluster Broadcast. Fig. 1b shows an execution of
the inter-cluster broadcast protocol. Each cluster has already
locally replicated operations (including transactions and recon-
figuration requests); each operation is paired with a certificate
of consensus which is approval signatures from a quorum of
replicas in that cluster. The leader of each cluster sends its
operations together with their certificates to other clusters as
inter-cluster messages Inter . To ensure that at least one correct
replica in the remote cluster receives the message, the leader
sends the message to f + 1 replicas in the remote cluster. In
our heterogeneous clusters example, the leader p2 of C1 sends
the message to 2 + 1 = 3 replicas in C2, and the leader p4
of C2 sends the message to 1 + 1 = 2 replicas in C1. In
the remote cluster, the correct replica that receives the Inter
message then broadcasts the operations as Local messages to
replicas in its own cluster. Thus, if the leaders are correct, all
correct replicas eventually receive operations from all clusters.

Clustering reduces the number of rounds and message
complexity for global communication. We just considered the
inter-cluster broadcast of stage 2 above. Let us compare the
complexity of classical (i.e., not clustered) replication such
as PBFT with clustered replication. Consider n1 = |C1|,

Protocol D
Communication

DC
Local Global

Ava-HotStuff z O(8zn) O(fz2) ✓
Ava-BftSmart z O(2zn2) O(fz2) ✓

GeoBFT z O(4n2) O(fz2) ✓
Steward 1 O(2zn2) O(z2) ×
PBFT 1 O(2(zn)2) ×

ZYZZYVA 1 O(zn) ×

Table I: Best-case complexity of the protocols, where D is
decisions, z is the # of clusters, n is the maximum # of nodes
per cluster, and f is the # of faulty nodes in a cluster for the
given n, and DC is Decentralized.

n2 = |C2|, and the total number n = n1 + n2 replicas.
To process a single transaction, replication requires 2 global
rounds with message complexity O((n1 + n2)

2). To process
2 transactions in parallel in C1 and C2, clustered replication
executes stage 1 with 2 local rounds with message complexity
O(n2

1+n2
2), and then stage 2 with 1 global round with message

complexity (f1+1)+(f2+1) = O(n1+n2), and finally, 1 local
round with message complexity (f1+1)×n1+(f2+1)×n2 =
O(n2

1 + n2
2). Therefore, global communication is reduced

from 2 rounds of complexity O((n1 + n2)
2) to 1 round of

complexity O(n1 + n2).
We present a comparison of the complexity of AVA and

previous works in Table I.
Remote Leader Change. A Byzantine leader may behave

properly in the local cluster, but skip sending Inter messages
to other clusters. Let us now consider how the replicas of
a cluster can instigate the change of the leader of a remote
cluster if they don’t receive the expected message from it.
Fig. 1c shows an execution of the remote leader change
protocol. The current leader p2 of the cluster C1 is Byzantine,
and will be changed to the correct replica p3. In cluster C2, the
replicas p3, p4 and p5 have not received the operations of C1,
and their timers expire; thus, they broadcast a local complaint
LComplaint in C2 about C1. The replicas p6 and p7 in C2

have not already complained, but receive f2+1 = 3 complaints
from the three replicas above. Since at least 1 out of 3 is from
a correct replica, they amplify the complaint by broadcasting
an LComplaint message locally. A replica accepts the local
complain only when it receive it from 2×f2+1 = 5 replicas.
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It can be shown that this prevents a coalition of Byzantine
replicas from forcing a leader change, and ensures that all
local correct replicas eventually deliver the complaint. When
the first f2 + 1 = 3 replicas accept the local complaint, they
send a remote complaint RComplaint . To make sure that the
message is sent to the remote cluster, it is sent by f2 + 1
replicas which contain at least one correct replica. In the first
three replicas, p3 is correct and sends the remote complaint.
The complaint should reach at least one correct replica in C1;
thus, p3 sends it to f1 + 1 = 2 replicas in C1. The replica p1
in C1 is correct, and receives the remote complaint. It accepts
the complain if it carries 2 × f2 + 1 signatures from C2. It
then broadcasts a Complaint message locally in C1. When the
correct replicas receive the local complaint (at green circles),
they move to the next leader p3. The protocol should deal with
complaint replay attacks, and multiple simultaneous change
requests, that we will describe in the next section.

B. Overview of HAMAVA Reconfiguration
Let’s now consider reconfiguration. Reconfiguration not

only allows replicas to join and leave but also supports
rebalancing the system to maintain the proximity of replicas
in a cluster, and similarity of performance across clusters.

Attacks. The reconfiguration requests should be uniformly
propagated across clusters, i.e., the configurations that every
pair of correct replicas (possibly from different clusters) exe-
cute in a round should be the same. When they are not, the
following Byzantine attacks may arise. Consider two clusters
C1 and C2 with 4 and 7 replicas, and the failure thresholds
f1 = 1 and f2 = 2 respectively. Assume that 3 new replicas
join C1 and one of them is Byzantine. The updated C1 now
has 7 replicas, and the failure threshold is f ′

1 = 2. However,
assume that the correct replicas in C2 are unaware of the newly
joined replicas in C1; they keep the stale failure threshold
f1 = 1, and will accept any operations with 2 × f1 + 1 = 3
signatures. If C1 has a Byzantine leader, it can forge a
certificate for a set of operations ops1: it can get a signature
from only one correct replica for ops1. Then, it can also have
signatures from itself and the other Byzantine replica, to have
a total of 3 signatures. It can then make the replicas in C2

accept ops1 with the forged certificate. However, it can lead
the correct replicas in C1 to eventually replicate a different set
of operations. Thus, the correct replicas in C1 and C2 diverge.

Let us now consider another attack in the same setting. Since
the correct leader of C2 has a stale failure threshold f1 =
1, it sends f1 + 1 = 2 inter-cluster broadcast messages to
C1. The receiver replicas in C1 can be both Byzantine, and
may drop the message. Then, the timers of the correct replicas
in C1 will eventually trigger, and they complain about the
leader of C2. The remote leader change eventually replaces
the correct leader in C2. Unfortunately, the Byzantine replicas
in C1 can repeat changing the leader until a Byzantine replica
is in control in C2.

Let’s consider the reconfiguration protocol. Replicas can
request join and leave reconfigurations in stage 1 (Intra-cluster
replication). Clusters communicate only in stage 2 (Inter-
cluster communication). Clusters communicate only in stage
2 (Inter-cluster communication). Thus, if the reconfigurations

requested in a cluster in stage 1 are processed as they are
requested, remote clusters will have an inconsistent view of
membership for the local cluster. We explained above that
these inconsistencies are unsafe. Therefore, the reconfigura-
tions requested in a round are locally collected and dissemi-
nated in stage 1, are remotely communicated in stage 2, and
applied in stage 3 to uniformly update membership for the next
round. Thus, in each round, they can be collected as a set, and
the order that they are processed in is immaterial. Therefore,
collecting them can be taken off the critical path that orders
transactions. Thus, as Fig. 1a shows, reconfigurations are
collected and disseminated as a separate workflow in parallel
to transaction processing. Fig. 2 shows example executions
for both parts of the reconfiguration protocol, collection and
dissemination, which we will describe next.

Collection. In Fig. 2a, two replicas pnew and p′new request
to join the cluster. Each broadcasts a RequestJoin message.
When a correct replica delivers a RequestJoin message, it
adds the join request to its set of reconfiguration requests,
and responds back by a Ack message. A joining replica
periodically keeps sending RequestJoin messages until it
receives the Ack message with the same configuration from a
quorum of 2 × f + 1 = 3 replicas. It stops then as it learns
that Byzantine replicas cannot censor the request.

Dissemination. The same set of reconfigurations should
be uniformly disseminated to all correct replicas in the cluster.
Otherwise, as we discussed in the introduction, an inconsistent
view of members can lead to accepting fake, or discarding
genuine messages. We describe an execution where the leader
is Byzantine and is changed; nonetheless, the same set of
reconfigurations are uniformly delivered to all correct replicas.

In Fig. 2b, each correct replica sends the set of reconfigu-
ration requests that it has collected as Recs messages to the
leader replica p2. When the leader p2 receives messages from a
quorum, it aggregates the received sets of reconfigurations, and
the accompanying signatures, and then starts disseminating
them. Since there is a correct replica in the intersection of
every pair of quorums, the leader does not miss the requests.
In Fig. 2, the quorum {p1, p2, p3} that p′new receives the state
from, and the quorum {p2, p3, p4} that the leader p2 receives
requests from intersect in the correct replica p3.

The leader broadcasts the aggregation of the reconfiguration
requests that it collected. Upon delivery from the leader, a
correct replica checks whether the received reconfigurations
are valid: they should be accompanied by at least a quorum
of signatures for Recs messages. As we saw in the collection
part, a requesting replica makes a quorum of replicas store
the reconfiguration request. Therefore, the leader cannot drop
requested reconfigurations: if the leader drops a request, and
hence, any signature from the quorum of replicas that stored it,
then the remaining replicas will be smaller than a quorum, and
the leader cannot collect a quorum of signatures. In Fig. 2b,
although the leader p2 is Byzantine, it has to send the complete
aggregated set. However, it only sends it to a subset of replicas
{p1, p4}. The correct replicas p1 and p4 that receive a message
from the leader echo it. The Byzantine replica p2 echos to
them but not p3. Thus, p1 and p4 receive a quorum of 3 Echo
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messages, and broadcast a Ready message. The Byzantine
replica p2 sends a Ready message to only p1. Thus, only
p1 receives a quorum of 3 Ready messages, and delivers the
reconfigurations (at the black circle).

The correct replicas p3 and p4 don’t receive enough Ready
messages, eventually complain about the leader p2, and change
the leader to the correct replica p3 (at the red circles). To
preserve uniformity, the new leader p3 should retrieve the
set of reconfigurations that p1 previously delivered. We will
describe later in § IV, how the leader retrieves that set, and
makes the remaining correct replicas p3 and p4 eventually
deliver the same set (at black circles).

We note that the classical Byzantine reliable broadcast
(BRB) and Byzantine consensus would be inadequate for
reconfiguration dissemination. Firstly, in contrast to BRB that
guarantees termination only when the sender is correct, the
reconfigurations are expected to be eventually delivered in
each round even if the initial leader is Byzantine. Thus,
to ensure termination, the leader might be changed during
dissemination. The challenge is to keep uniformity across
leaders. Further, in contrast to BRB where a message from one
designated sender is broadcast, and in contrast to consensus
where a proposal from one replica is decided, this protocol
should aggregate and broadcast a collection of reconfigurations
from a quorum of replicas.

In this section, we saw an overview of the stages (Fig. 1a
and the accompanying description). Next, we first consider
the two more important sub-protocols: inter-cluster communi-
cation (§ III), and reconfiguration (§ IV). (We detail the the
stages in the extended report [41].

III. INTER-CLUSTER COMMUNICATION

We will now present the inter-cluster broadcast protocol that
propagates operations between clusters, and the heterogeneous
remote leader change protocol that detects and changes Byzan-
tine leaders for remote clusters.

State. Each replica keeps the set of replicas Cj for each
cluster. (We use the index i only for the current cluster, and
the index j for clusters in general.) The set Ci keeps track
of membership within the current cluster i, and is used for
intra-cluster communication. The sets Cj that keep track of
the members of remote clusters j are used for inter-cluster
broadcast. Accordingly, a replica has the failure threshold
fj for each cluster Cj as one-third of the size of Cj . Each
replica also keeps the current round r. Further, it stores the
operations operationsj that it receives from each cluster Cj .
Each replica keeps a set of certificates certs for its local
operations operations i. A certificate for an operation contains
at least 2 × fi + 1 signatures, and is sent to other clusters

together with the operation. The protocol uses authenticated
perfect links apl , and authenticated best-effort broadcast abeb
(that were described in § II). Each message mσ delivered from
an authenticated link comes with a signature σ of the sender.
(We elide the signature when it is not needed in a context.)

Inter-cluster Broadcast. At the end of stage 1, the local
ordering stage, the leader calls the function inter -broadcast
(Alg. 1) to start the second stage. Each cluster broadcasts
its locally ordered operations to remote clusters. As Fig. 1b
shows, this function sends out the batch of operations ops
of the local cluster together with their certificates certs as
Inter messages to other clusters (at line 11-14). For each
remote cluster j, the Inter messages are sent to fj+1 distinct
replicas. Therefore, at least one correct replica at cluster Cj

eventually receives the Inter message (at line 15). It checks
that the certificates are valid: a certificate for an operation from
cluster Cj′ is valid if it contains at least 2×fj′ +1 signatures
from the cluster Cj′ . The receiving replica then broadcasts
the operations as Local messages to other replicas in its own
cluster (at line 16). Upon receiving a Local message containing
operations ops from a remote cluster j′ with valid certificates
(at line 17), the replica maps j′ to ops in its operations map.
It also stops a timer that watches the leader of cluster j. (We
will consider remote leader change in the next paragraph).
When operations from all clusters are received, the replica
calls the function execute to enter stage 3, the ordering and
execution stage (at line 21).

Heterogeneous Remote Leader Change. Each replica
waits until it receives operations from other clusters. Thus,
if the leader of a cluster is Byzantine, and avoids sending
operations to other clusters, it can stall progress. Consider a
system where cluster Cj has a Byzantine leader l. For example
in Fig. 1c, the leader p2 of C1 is Byzantine. It acts as a correct
leader internally in Cj for the local ordering stage. The correct
replicas in Cj cannot identify l as a Byzantine leader to replace
it. But l does not follow the protocol to send its operations to
a remote cluster Cj′ . Thus, replicas of the cluster Cj′ cannot
proceed to the ordering and execution stage.

Intuition. We describe how the local cluster can trigger
leader change in a remote cluster. Each replica keeps a timer
timer j for the leader of each cluster Cj . It resets the timers
for all clusters at the beginning of each round. When a local
replica does not receive the operations of a remote cluster,
and the timer expires, it broadcasts a complaint in its local
cluster. When enough local replicas complain, the complaint
is eventually accepted locally. A subset of local replicas that
accept a complaint send complaints to remote replicas which
in turn broadcast it in the remote cluster. Once remote replicas
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Algorithm 1: Inter-cluster Broadcast
1 vars:
2 Cj : Set[P ] ▷ Replicas of each cluster Cj
3 i ▷ The number of the current cluster
4 fj : N ▷ Failure threshold for Cj
5 r ▷ The current round
6 operationsj ← ∅ ▷ Operations from each cluster Cj

7 certs ▷ Certificates for operations i of Ci
8 uses:
9 apl : AuthenticatedPoint2PointLink

10 abeb : AuthenticatedBestEffortBroadcast in Ci
11 function inter -broadcast(r, ops, certs)
12 foreach Cj , j ̸= i
13 foreach p ∈ P where P ⊆ Cj ∧ |P | = fj + 1
14 apl request send(p, Inter(r, i, ops, certs))

15 upon apl response deliver(p, Inter(r′, j, ops,Σ)) where r′ = r
∧ Σ is valid (i.e., Σ has at least 2× fj + 1 signatures from Cj
for each op ∈ ops)

16 abeb request broadcast(Local(r, j, ops,Σ))

17 upon abeb response deliver(p,Local(r′, j, ops,Σ)) where r′ = r
∧ Σ is valid

18 operationsj ← ops
19 stop timerj
20 if |dom(operations)| = N ▷N is # of clusters then
21 call execute(operations)

receive the remote complaint, they change the remote leader.
A remote replica accepts a remote complaint only if it comes

with a quorum of signatures from the complaining cluster. This
prevents any coalition of Byzantine replicas in the complaining
cluster to force a remote leader change. But a Byzantine
replica in the remote cluster can keep a valid complaint and
its accompanying signatures, and launch a replay attack: it can
resend the valid complaint to repeatedly change the leader.
To prevent this attack, the complaining cluster maintains a
complaint number cnj for each remote cluster Cj , which is
incremented on every remote complaint sent to Cj . A remote
replica maintains the number of complaints received rcnj′

from each other cluster Cj′ , and only accepts a complaint
with the next expected number, then increments it. Thus, a
remote replica accepts each remote complaint only once.

Protocol. As Alg. 2 presents, if a local replica finds that
the timer timer j for a remote cluster Cj is expired (at line 7),
it broadcasts a local complaint LComplaint message about Cj

to replicas in its own local cluster (at line 8). In Fig. 1c, the
replicas {p3, p4, p5} in C2 send LComplaint messages. The
message includes the current complaint number cnj . Once a
local replica receives a local complaint for a remote cluster
Cj with the expected complaint number cnj , and it has not
received operations from that cluster (at line 10), it records the
accompanying signature σ in the set of complaint signatures
csj (at line 11). If the replica receives fi + 1 complaint
signatures, since at least one is from a correct replica, the
replica amplifies the complaint locally if it has not already
complained (at line 12-14). In Fig. 1c, the replicas {p6, p7} in
C2 amplify the LComplaint message.

Once a replica receives 2× fi + 1 complaint signatures (at
line 15), it accepts the local complaint. Since there is at least
one correct replica in the senders, Byzantine replicas cannot
force a leader change. Further, since the complaint is received
from 2 × fi + 1 replicas, it can be shown that all correct

Algorithm 2: Heterogeneous Remote Leader Change
1 vars:
2 self ▷ The current replica
3 timerj ← ∆ ▷ A timer for each cluster Cj
4 cnj ← rcnj ← 0 ▷ # of complaints sent to & received from Cj
5 csj ← ∅ ▷ Complaint signatures for each cluster Cj
6 complainedj ← false ▷ If complained about each cluster Cj

7 upon timerj for remote Cj expires
8 abeb request broadcast(LComplaint(j, cnj , r))
9 complainedj ← true

10 upon abeb response deliver(p, LComplaint(j, c, r′)σ) where
r′ = r ∧ c = cnj ∧ operationsj =⊥

11 csj ← csj ∪ {σ}
12 if |csj | ≥ fi + 1 ∧ ¬complainedj then
13 complainedj ← true
14 abeb request broadcast(LComplaint(j, c, r))
15 if |csj | ≥ 2× fi + 1 then
16 let S := first fi + 1 replicas of Ci in
17 if self ∈ S then
18 apl request send(p,RComplaint(cnj , i, csj , r)),

for each p ∈ S′ in a set S′ such that S′ ⊆ Cj ∧
|S′| = fj + 1

19 cnj ← cnj + 1
20 csj ← ∅; complainedj ← false; reset timerj

21 upon apl response deliver(p,RComplaint(c, j′, Σ, r)) where
r = r′ ∧ c = rcnj′ ∧ Σ contains 2× fj′ +1 signatures from Cj′

22 abeb request broadcast(Complaint(c, j′,Σ))

23 upon abeb response deliver(p,Complaint(c, j′, Σ)) where
c = rcnj′ ∧ Σ contains 2× fj′ + 1 signatures from Cj′

24 rcnj′ ← rcnj′ + 1
25 if ∆− timeri > ϵ then
26 le request next-leader

replicas in the local cluster eventually deliver the complaint.
The complaint should reach at least one correct replica in the
remote cluster Cj . Therefore, the remote complaint message
RComplaint should be sent to at least fj +1 remote replicas.
Further, at least one correct replica should send these mes-
sages. Therefore, at least fi + 1 replicas should send it. The
first fi +1 replicas of the local cluster (by a predefined order)
send the complaint (at line 16); we call them the sender set.
In Fig. 1c, the sender set is {p1, p2, p3}. The two replicas p1
and p2 are Byzantine but p3 is correct and sends the message.
If the current replica is in the sender set, it sends a remote
complaint RComplaint message to a subset of Cj of size
fj+1 (at line 17-18). The remote complaint message includes
the complaint number cnj and the collected signatures csj .
Finally, the local replica increments the complaint number,
and resets the state for the next complaint (at line 19-20).

Once a replica receives the remote complaint message (at
line 21), if the message has the next expected complaint
number rcnj′ , and it carries 2 × fj′ + 1 signatures from the
complaining cluster Cj′ , it broadcasts a Complaint message
in its own cluster (at line 22). When a replica receives
the complaint message from its local cluster (at line 23), it
performs similar checks to accept it. It then increments the
received complaint number rcnj′ for the complaining cluster
Cj′ , and unless the leader is recently changed, it requests the
local leader election module le to move to the next leader (at
line 24-26). (We will consider the local leader election module
le in § VIII.) If the leader is changed recently (i.e., only a small
amount of time ϵ is passed since the timer i is reset to ∆),
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Algorithm 3: Collection
1 request : join, leave
2 response : joined , left
3 vars:
4 recs ← ∅ ▷ Set of reconfigurations
5 client-timer ← ∆
6 upon request join
7 abeb request broadcast(RequestJoin(r))
8 upon request leave
9 abeb request broadcast(RequestLeave(r))

10 upon client-timer expires
11 if requested join then
12 abeb request broadcast(RequestJoin(r))
13 else if requested leave then
14 abeb request broadcast(RequestLeave(r))
15 reset client-timer to a longer period
16 upon abeb response deliver(p,RequestJoinσ(r′)) where r = r′

17 recs ← recs ∪ {join(p)σ}
18 apl request send(p,Ack(Ci, r))

19 upon abeb response deliver(p,RequestLeaveσ(r′)) where r = r′

20 recs ← recs ∪ {leave(p)σ}
21 apl request send(p,Ack(Ci, r))

22 upon apl response deliver(p,Ack(C′, r′)) where
|{p}| ≥ 2× fi + 1 where r = r′

23 stop client-timer

Algorithm 4: Dissemination
24 uses:
25 brd : ByzantineReliableDissemination in Ci

26 function send-recs
▷ Called by each replica before the end of stage 1.

27 brd request broadcast(Recs(r, recs))

28 upon brd response deliver(Recs(r′, recs),Σ)Σ
′

where r′ = r ∧
Σ and Σ′ are valid.

29 append Reconfig(∪ recs) to operations i
30 add Σ, Σ′ to certs

31 upon brd response complain(p)
32 call complain(p)

the protocol avoids requesting to change the leader again so
that the new leader is not disrupted. In particular, this happens
when multiple remote clusters complain about the same leader
at almost the same time.

IV. RECONFIGURATION

A replica p can issue a join or leave request to join or leave.
Later, it receives a joined or left response (when the reconfig-
uration is executed in stage 3). As we showed in Fig. 1a and
briefly described in the overview § II, reconfiguration requests
are collected, and then disseminated locally in stage 1. We now
consider these two steps.

Collection. As Alg. 3 presents, when a client process (or
replica) p receives a join request (at line 6), it broadcasts
RequestJoin messages in the local cluster (at line 7). In
Fig. 2a, two replicas pnew and p′new request to join. Similarly,
when a correct replica p receives a leave request, it sends out
RequestLeave messages. The client uses the client-timer to
track progress while it waits for a response. If the timer expires
(at line 10), it resends the messages, and resets the timer to a
larger period. When a correct replica delivers the RequestJoin
message from p (at line 16), it adds the reconfiguration request

join(p) to its set of collected reconfigurations recs , and sends
back an Ack message (at line 17-18). The steps are similar
for the RequestLeave. When the requesting replica receives
Ack messages with the same cluster members, and round from
a quorum (at line 22), it learns that the request cannot be
censored by Byzantine replicas; therefore, it stops the timer.
In Fig. 2a, the two joining replicas stop the timer when they
receive Ack from 3 replicas.

Dissemination. Before completing the first stage, a correct
replica calls send -recs (Alg. 4 at line 26) that sends a Recs
message containing the set of reconfiguration requests recs
that it has collected to the Byzantine Reliable Dissemination
(BRD) module (at line 27).

BRD collects messages and disseminates them. It eventually
issues a response with a set of collected reconfigurations recs
(at line 28). The delivery is accompanied by two certificates.
The certificate Σ attests that recs are collected from at least
a quorum of replicas. In the collection part, a reconfiguration
request was stored in at least a quorum of replicas. If Σ is
valid, then BRD has collected reconfigurations from at least
a quorum of replicas. Since there is a correct replica in the
intersection of two quorums, a Byzantine leader cannot censor
the reconfiguration request. The certificate Σ′ attests that a
quorum of replicas voted to deliver the set; therefore, correct
replicas will eventually deliver the same set. If the certificates
are valid, the receiving replica appends the union of recs to
operations i, and the certificates to certs (at line 28-30). The
BRD module may complain if the leader does not lead delivery
in a timely manner (at line 31-32). The complaint is forwarded
to the local leader election module le .

Byzantine Reliable Dissemination. In this section, we
present the Byzantine Reliable Dissemination (BRD) protocol
that we just used. We present it as a general reusable module,
that is of independent interest.

Module. BRD accepts a broadcast(m) request from each
replica. It then collects and disseminates messages m. It issues
a response deliver(M,Σ)Σ

′
where M is a set of messages,

and Σ and Σ′ are two sets of signatures. The certificate Σ
attests that M is a set of messages from a quorum of replicas,
and the certificate Σ′ attests that M is the only delivered
set, and every correct replica will eventually deliver it. In
our reconfiguration protocol, these certificate are sent to other
clusters as a proof of these properties for the dissemination
in the current cluster. Further, the component may issue a
complain(p) event to complain about the current leader p, and
accepts a new -leader(p, ts) request to set a new leader p with
a timestamp ts . Leaders are elected with monotonically in-
creasing timestamps. BRD guarantees the following properties.
Integrity: A correct replica may only deliver messages from
at least a quorum of replicas. No duplication: Every correct
replica delivers at most one set of messages. Uniformity:
No two correct replicas deliver different set of messages.
Termination: If all correct replicas broadcast messages, then
every correct replica eventually delivers a set of messages.
Totality: If a correct replica delivers a set of messages, then
all correct replicas deliver a set of messages. Validity: If a
correct replica delivers a set of messages containing m from
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Algorithm 5: BRD (1/2)
1 request : broadcast(m), new -leader(p, ts)
2 response : deliver({m},Σ), complain(p)
3 uses:
4 apl : AuthenticatedPoint2PointLink
5 abeb : AuthenticatedBestEffortBroadcast
6 vars:
7 (leader , ts)← (p0, 0)
8 my-m ← ⊥
9 echoed , readied , delivered ← false ▷ Tracking reliable delivery

10 valid , high-valid ← ⊥ ▷ Validated set of requests
11 q,M,Σ← ∅ ▷ Collected senders, messages, and signatures
12 timer ← ∆
13 upon request broadcast(m)
14 my-m ← m
15 apl request send(leader , ⟨m, ts⟩)
16 reset timer
17 upon apl response deliver(p, ⟨m, t⟩σ) where self = leader ∧

t = ts
18 q ← q ∪ {p}
19 M ←M ∪ {m}
20 Σ← Σ ∪ {σ}
21 upon |q| ≥ 2× f + 1 ∧ high-valid = ⊥
22 abeb request broadcast(Agg(M,Σ, ts))
23 upon abeb response deliver(p,Agg(M,Σ, t)) where p = leader
∧ t = ts ∧ ¬echoed ∧ Σ attests M (i.e., Σ has either at least
2× f + 1 signatures for M , at least 2× f + 1 Echo(M)
messages, or f + 1 Ready(M) messages)

24 echoed ← true
25 abeb request broadcast(Echo(M, ts))

26 upon abeb response deliver(p,Echo(M, t)σ) where
|{p}| ≥ 2× f + 1 ∧ t = ts ∧ ¬readied

27 readied ← true
28 abeb request broadcast(Ready(M, ts))
29 valid ← ⟨M,σ, ts⟩

a correct sender p, then m was broadcast by p.
Protocol. As Alg. 5 presents, when a replica broadcasts

a message (at line 13), it stores it and sends it to the leader
(at line 14-15). It also resets the timer to watch the leader
(at line 16). The leader adds messages and the accompanying
signatures that it receives (at line 17) to the set of messages
M and signatures Σ (at line 18-20). Once it collects messages
from a quorum (at line 21), it broadcasts an aggregation
message Agg containing M and Σ (at line 22). Massages
carry the timestamp ts of the current leader as well; any
message with a stale timestamp is ignored. Upon delivery of
the aggregation (at line 23), a correct replica accepts it if M
is attested by accompanying signatures Σ. The signatures Σ
attest M if they include at least a quorum of signatures for the
messages M . The signatures serve as a proof that the leader
has genuinely collected messages from at least a quorum.
Thus, the leader cannot drop the reconfiguration request of a
replica that has reached out to at least a quorum. For example
in Fig. 2, the quorum that p′new stored the request at, and
the quorum that the leader p2 receives requests from intersect
in the correct replica p3. Even if leader p2 is Byzantine, and
sends the aggregated set to only a subset of replicas {p1, p4},
it cannot drop reconfigurations from the aggregated set.

If the accepting replica hasn’t sent the Echo message, it
records (in the variable echoed ) that it is sending it, and
broadcasts the Echo message (at line 24-25). In Fig. 2b,
the correct replicas p1 and p4 that receive an attested set

Algorithm 6: BRD (2/2)
30 upon abeb response deliver(p,Ready(M, t)σ) where
|{p}| ≥ f + 1 ∧ t = ts ∧ ¬readied

31 readied ← true
32 abeb request broadcast(Ready(M, ts))
33 valid ← ⟨M,σ, ts⟩
34 upon abeb response deliver(p,Ready(M, t)σ) where
|{p}| ≥ 2× f + 1 ∧ t = ts ∧ ¬delivered

35 delivered ← true
36 response deliver(M,Σ)σ

37 stop timer

38 upon timer expires
39 response complain(leader)

40 upon request new -leader(p, t)
41 (leader , ts)← (p, t)
42 echoed , readied ← false
43 valid , high-valid ← ⊥
44 q,M,Σ← ∅
45 reset timer
46 if valid ̸= ⊥ then
47 apl request send(leader ,Valid(valid))
48 else
49 if my-m ̸= ⊥ then
50 apl request send(leader , ⟨my-m, ts⟩)
51 upon apl response deliver(p,Valid(M,Σ, t)) where self =

leader ∧ Σ attests M (i.e., Σ has at least 2× f + 1 Echo(M)
messages or f + 1 Ready(M) messages)

52 let ⟨ , , ht⟩ := high-valid in
53 if t > ht then high-valid ← ⟨M,Σ, t⟩
54 q ← q ∪ {p}
55 upon |q| ≥ 2× f + 1 ∧ high-valid ̸= ⊥
56 let ⟨M,Σ, ⟩ := high-valid in
57 abeb request broadcast(Agg(M,Σ, ts))

of messages from the leader echo it. Upon delivery of an
Echo message from a quorum, if the receiving replica has not
sent Ready messages (at line 26), it records (in the variable
readied ) that it is sending it, and then broadcasts a Ready
message (at line 27-28). In Fig. 2b, replicas p1 and p4 receive
a quorum of 3 Echo messages, and broadcast Ready .

If the leader changes during the broadcast, some correct
replica might have delivered the aggregated messages while
others may have not. Thus, to preserve the uniformity of
delivered messages across replicas, the new leader should
retrieve the previously delivered messages, and rebroadcast
them. Thus, when a replica accepts a sufficiently echoed set,
it stores it together with its accompanying signatures, as valid
(at line 29), and later forwards it to a new leader. In Fig. 2b,
p1 and p4 record a valid set at the end of the Echo step.

When a replica receives at least f + 1 Ready messages
(at line 30), at least one of them is correct and has received
at least a quorum of Echo messages. Therefore, the replica
trusts the Ready message and amplified it: it records that it is
sending it, and broadcasts a Ready message (at line 31-32).
It also records the received messages M and signatures of
the received Ready messages as valid (at line 33), and later
forwards it to a new leader.

Finally, when a replica receives a quorum of Ready mes-
sages, and it has not delivered the aggregated messages yet
(at line 34), it records (in the variable delivered ) that it is
delivering, delivers the aggregated messages M , and stops
the timer (at line 35-37). If a replica does not deliver the
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aggregated messages before the timer times out, it complains
about the current leader (at line 38-39). In Fig. 2b, the correct
replica p1 receives a quorum of 3 Ready messages, and
delivers the reconfigurations (at the black circle). However, the
other correct replicas don’t receive enough Ready messages,
complain about the leader, and eventually change the leader
to the correct replica p3 (at the red circles).

To preserve uniformity, the new leader should retrieve the
set of reconfigurations that have been previously delivered.
When a replica is informed of a new leader (at line 40), it
records the new leader and timestamp, resets the state and the
timer (at line 41-45), and then sends a message to the new
leader to inform him about the current state of dissemination.
If a valid set of messages is recorded during the execution
with the previous leaders, the replica sends it to the new
leader (at line 47). Otherwise, it sends the message that it
originally broadcast (line 13-15) to the current leader (at
line 50). In Fig. 2b, the two replicas p2 and p3 send to the
new leader the set of reconfigurations that they had collected
and sent to the previous leader. However, p4 has a valid set
of reconfigurations and sends them to the leader.

Let l be the latest leader with the timestamp ts that has
guided the system to delivery of a set M at a correct replica.
Consider the next leader l′ with the timestamp ts ′. To preserve
uniformity, l′ should adopt M . In order to find M , l′ waits to
receive messages from a quorum of replicas, and then picks the
valid set with the largest timestamp. Let us explain why. The
set M was delivered only after a quorum of Ready messages
was received. At least f + 1 of the senders are correct. A
correct replica sends a Ready message only after receiving
2× f +1 Echo messages, or f +1 Ready messages. In both
of those cases, the receiving replica stores M with ts as valid.
Thus, at least f + 1 correct replicas P have stored M with
ts as valid. Therefore, if l′ receives messages from a quorum
(2× f + 1) of replicas, and retrieves any valid sets, then M
with the largest timestamp ts is retrieved from at least one
replica in P . The leader l′ adopts and broadcasts M . Even if
it does not lead to any new delivery of M , any valid set that
is stored under his leadership will have the same set M with
now the larger timestamp ts ′.

When the leader receives a valid set (at line 51), it checks
that the accompanying signatures attest its validity: there are at
least 2×f+1 signatures of Echo messages, or f+1 signatures
of Ready messages. The leader keeps the valid set with the
highest timestamp as high-valid (at line 52-53). Finally, when
the leader has collected messages from a quorum, if it has
received a valid set (at line 55), it broadcasts high-valid (at
line 57). Otherwise, similar to the first leader (at line 21),
it broadcasts the aggregated messages. In Fig. 2b, the new
correct leader p3 waits for 3 messages, adopts the valid set
that p4 sends, goes through the Echo and Ready steps, and
makes the remaining correct replicas p3 and p4 deliver the
same set (at black circles).

Correctness. We now state the correctness properties of
the end-to-end protocol. All the proofs including the properties
of sub-protocols are available in the extended report [41] § IX.

Theorem 1 (Validity). Every operation that a correct process

ms US EU Asia
US 0 148 214
EU 148 0 134
Asia 214 134 0

Table II: Inter-region round-trip latency for three regions: US
(us-west1-b), EU (europe-west3-c), Asia (asia-south1-c).

requests is eventually executed by a correct process.

Theorem 2 (Agreement). If a correct process executes an
operation in a round then every correct process executes that
operation in the same round.

Theorem 3 (Total-order). For every pair of operations o and
o′, if a correct process executes only o, or executes o before
o′, then every correct process executes o′ only after o.

V. EXPERIMENTAL RESULTS

Implementation. The clustered replication protocol is
parametric with respect to the local replication protocol. We
instantiated it for both HotStuff [9] and BFTSmart [36] as the
local replication protocol to implement replicated systems that
we call HAMAVA (and AVA for short). We refer to the two as
AVA-HOTSTUFF (A.H) and AVA-BFTSMART (A.B). We will
release all the code and workloads as open source software.

Questions. We perform experiments to answer the following
questions: (E0-E2): How does clustered replication impact per-
formance? (E3) What is the impact of introducing heterogene-
ity in the clusters on the performance of clustered replication?
(E4) What is the impact of failures on performance? We are
especially interested in leader failures. (E5) What is the impact
of reconfiguration requests on performance?

Platform. We used Google cloud compute to deploy
instances acting as servers and clients in our system. Each
instance runs Ubuntu Server 22.04 LTS, and has a 2 core pro-
cessor with 16GB of main memory. We deploy our framework
globally on nodes across 3 Google compute regions, namely
US (us-west1-b), Asia (asia-south1-c) and Europe (europe-
west3-b). The inter-region network latency is presented in table
II. For both AVA-HOTSTUFF and AVA-BFTSMART, we choose
the YCSB benchmark with a 85% read and 15% write ratio.
We deployed one client per cluster with multiple threads that
issued its requests with the Zipfian distribution one after the
other without any delays. We batched transactions (to batches
of size 100) in each round. We issued operations of size 1KB.
All experiments were run for 3 minutes and the results were
taken from the last minute.

E0. Multi-cluster Single-region. We investigate the
impact of multi-cluster deployment in one Google region on
throughput and latency. We keep the total number of nodes
constant (96), and divide them to different number of clusters
(2, 3, 4, 6, 8, 10, 12). Fig. 3 reports the effect of the number
of clusters on throughput and latency. (In the throughput
plot, the left y-axis is for AVA-BFTSMART and the right
y-axis is for AVA-HOTSTUFF). Assessment. We observe
that as the number of clusters increases, the throughput of
both AVA-HOTSTUFF and AVA-BFTSMART increases. AVA-
HOTSTUFF exhibits higher throughput than AVA-BFTSMART.
We observe that as the number of clusters increase, the latency
decreases for both AVA-HOTSTUFF and AVA-BFTSMART.
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Fig. 3: Throughput and latency as a function of number of clusters (with 96 nodes) E0. in the same region (two left plots)
and E1. across regions (two right plots). (In the throughput plot, the left y-axis is for AVA-BFTSMART and the right y-axis is
for AVA-HOTSTUFF).
AVA-BFTSMART exhibits lower latency than AVA-HOTSTUFF.
As the number of clusters increase, each cluster has fewer
nodes, and local replication is more efficient, and further,
clusters execute the divided workload in parallel. Thus, the
throughput and latency of local replication is improved that in
turn improves the end-to-end throughput and latency. The two
HAMAVA implementations outperform non-clustered replica-
tion for both throughput and latency.

E1. Multi-cluster Multi-region. We study the impact
of deploying clusters in multiple Google regions on the
throughput and latency in Fig. 3. We equally split 96 nodes
into different number of clusters (2, 3, 4, 6, 8, 12), and host
them on 3 regions. A cluster is completely hosted on a single
region. For example, for the 4 clusters setup, we divide the
96 nodes into 4 clusters of 24 nodes where the first region
hosts two clusters, and the second and third regions host one
cluster each. Assessment. Similar to the previous experiment,
as the number of clusters increase, the throughput increases
and the latency decreases for both systems. Similarly, since
the number of nodes per cluster decreases, and the workload
is divided between clusters, the throughput and latency are
improved. However, overall performance is lower than the
previous experiment since inter-cluster communication across
regions is slower than within one region. We observe that
with multiple regions, AVA-HOTSTUFF and AVA-BFTSMART
clustered replication still outperform non-clustered replication
for both throughput and latency.

E2. Latency Breakdown. In Fig. 4a, we show the latency
breakdown for processing transactions. We report the average
latency for read and write transactions. Read transaction have
lower latency than writer transactions since the former can be
immediately processed but the latter go through three stages.
We experiment with 3 clusters each containing 4 nodes in
three setups where clusters span one (Asia), two (EU and
Asia), and three (EU, Asia, US) regions. With one region,
the bottleneck is the local ordering as it involves 4 rounds of
messages. On the other hand, the inter-cluster broadcast that
involves one round of messages is relatively a smaller part.
With two regions, the latency is dominated by the inter-cluster
broadcast when messages have to travel across regions. With
three regions, the inter-cluster broadcast is still the dominating
part, and is further increased. As shown in Table II, the round-
trip time for EU and Asia is about 134, but when US is added,
it is about 214. Thus, it is crucial to minimize cross-region
messaging as our clustered protocol does.

E3. Heterogeneity in Clusters. We investigate the
impact of heterogeneity on throughput and latency for AVA-
HOTSTUFF in Fig. 4b and 4c, and for AVA-BFTSMART in 4d
and 4e. Consider 9 nodes in Asia (ap-south-1) and 5 nodes

in EU (eu-central-1) regions. We consider a scale factor s of
these numbers varying from 1 to 5. For example, with scale
factor 2, we have 2× 9 = 18 nodes in Asia, and 2× 5 = 10
nodes in EU. For each scale, we consider 3 setups: (1) Equal
sized clusters. C1: 7 in Asia. C2: 2 in Asia and 5 in EU.
(2) Partition based on region. C1: 9 in Asia. C2: 5 in EU. (3)
Partition based on region, and within region. C1: 5 in Asia. C2:
4 in Asia. C3: 5 in EU. In contrast to previous works, HAMAVA
supports the heterogeneous setups 2 and 3. Assessment. For
both AVA-HOTSTUFF and AVA-BFTSMART, setup 2 exhibits
higher throughput and lower latency than setup 1 especially
at higher scales. The setup 2 exploits heterogeneity to host
all members of each cluster in the same region. Therefore, it
deceases the the cost of local replication. Similarly, setup 3
exhibits higher throughput and lower latency than setup 2 at
higher scales. The setup 3 splits a cluster into two smaller
clusters in the same region. Therefore, it further deceases the
the cost of local replication. Further, the general trend is that
throughput and latency are better at lower scale factors, since
they have lower cost of local replication.

E4. Failures. We investigate the impact of failures by
measuring the performance for 2 clusters with 10 nodes per
cluster (f1 = f2 = 3) under three failure scenarios:

(1) Up to f non-leader failures. In Fig. 4f, we test the
resiliency of both HAMAVA systems by failing up to f non-
leader nodes in each cluster. The vertical lines show the failure
time. The system tolerates the failures, and remains functional.
After the recovery, the throughput can slightly increase since
local replication is more efficient with fewer number of nodes.

(2) Leader Failure. In Fig. 4g, we fail the leader of a cluster.
After a short window, the leader is properly changed, and the
throughput is recovered to the same level. The timeout for
leader change can be adjusted according to the local network
latency. This experiment set it to 20 second; thus, the window
to complete the leader change is slightly more than 20 seconds.

(3) Byzantine Leader and Remote Leader Change. We
inject Byzantine behavior into leaders to trigger remote leader
change. We make the leader replica complete the first stage
within its cluster as a correct leader, but avoid sending inter-
cluster broadcast messages. As we can see in Fig. 4h, after a
short period, the leader is properly changed, and the through-
put comes back up. The 20 seconds period is the adjustable
timeout for multi-cluster message-passing.

E5. Reconfiguration Requests. We investigate the impact
of reconfiguration on the performance in two experiments.
(1) In a system of two clusters with 7 nodes each, we issue
three join and three leave requests to each cluster at the
vertical lines. The requesting nodes can properly join and
leave the clusters. Fig. 5a presents the throughput of the
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Fig. 5: E5. 1. The impact of multiple reconfigurations on
throughput in (a). 2. The impact of the parallel workflows on
on throughput in (b). (The left y-axis is for AVA-HOTSTUFF
and the right y-axis is for AVA-BFTSMART.)

whole system during the reconfigurations. We observe that the
throughput slightly decreases as nodes have to communicate
with the requesting node in addition to processing transactions.
Further, for joins, the throughput has a slightly decreasing
trend since the local ordering stage is less efficient in larger
clusters. However, for leaves, the throughput stays steady. (2)
As we described in § II, the protocol takes reconfigurations
off the critical path that orders transactions, and processes
them in a parallel workflow. In this experiment, we compare
the parallel workflows with a single workflow that processes
reconfigurations in the same sequence as transactions. We
setup connections between replicas of two clusters with 10
and 8 nodes, respectively, and 3 clients: one client for each
cluster that issues write-only transactions, one dedicated client
that issues join and leave requests. A node is repeatedly made
to join and leave the system. Fig. 5b shows the throughput of
both AVA-HOTSTUFF and AVA-BFTSMART and their single
workflow versions. The configuration starts for BftSmart and
Hotstuff at 60 sec and 115 sec respectively. We find that the
parallel workflows outperform the single workflow in both
systems. In a single workflow, the reconfigurations take slots
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Fig. 6: E7. AVA-HOTSTUFF vs GeoBFT. 1. Clusters located
in the same region: (a) throughput and latency. 2. Clusters
located in multiple regions: (b) throughput and latency.

from transactions and are processed in sequence. In contrast,
HAMAVA processes them in parallel with transactions, and
collects them as a set rather than ordering them individually.

E6. Comparison with GeoBFT. Fig. 6 compares the
throughput and latency of AVA-HOTSTUFF with GeoBFT [42].
We experiment with both (1) clusters in the same region
(Fig. 6a), and (2) clusters in multiple regions (Fig. 6b). The
number of replicas (48) and clients (24) are fixed across all
data points. In this experiment, similar to AVA-HOTSTUFF,
we run GeoBFT on 2-core machines. Compared to AVA-
HOTSTUFF, GeoBFT has lower latency in fewer clusters and
similar latency in more clusters. Its throughput surpasses AVA-
HOTSTUFF in fewer clusters, while AVA-HOTSTUFF slightly
outperforms when increasing the number of clusters. Similar
results are observed for the case where the clusters are located
in multiple regions, as seen in figures 6b. But what is important
to highlight is that, unlike GeoBFT, AVA-HOTSTUFF is able
to support cluster reconfiguration.

E7. Impact of Reconfiguration Frequency on System
Performance. Fig. 7, we illustrate the effect of the frequency
of reconfigurations on the throughput and latency of AVA-
HOTSTUFF and AVA-BFTSMART. We experiment on a system
with two clusters, where each has 10 replicas, and each has
a client that issues transaction requests and another client
that issues an increased number of reconfiguration requests.
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(a) E7.1 Throughput (b) E7.2 Latency

(c) E7.3 Throughput (d) E7.4 Latency

Fig. 7: E7. Impact of reconfiguration frequency on (a,c)
throughput, and (b,d) latency.

Reconfigurations begin at 80 seconds. We experiment with two
frequencies: (1) once every 20 seconds, and (2) continuously,
without any delay between reconfiguration requests. With
AVA-HOTSTUFF, as expected, increasing the reconfiguration
frequency does impact the performance, but in the worst
case, the system stabilizes with a throughput drop of at most
12% and a latency increase of up to 15%. While with AVA-
BFTSMART, we observe a lower impact of reconfiguration
frequency, resulting in a throughput drop of less than 10
percent and a latency increase of approximately 12 percent.

E8. Impact of network latency on performance during
reconfiguration. Fig. 8 shows the impact of network
latency on the throughput and latency of AVA-HOTSTUFF and
AVA-BFTSMART during reconfiguration. We experiment on a
system with two clusters where each has 10 replicas, and each
has a client that issues reconfiguration requests. We fixed one
cluster at us-west1-b, and experimented with several locations
for the second cluster: us-east5-c, asia-northeast1-b, europe-
west3-c, and asia-south1-c, with latencies of 52ms, 91ms,
142ms, and 219ms to the first cluster, respectively. As the
network latency increases, the inter-cluster communication (in
phase 2) dominates the performance, and the impact of recon-
figurations (in phase 1) diminishes. For AVA-HOTSTUFF, in
the steady state with continuous reconfigurations, we observe
that when we increase the network latency by more than 4
times from 52 to 219 ms, the throughput decreases by up to
30%, and the latency increases by up to 40%. While with
AVA-BFTSMART, we observe a throughput decrease of around
65% and a latency increase of over 200% as network latency
increases from 52 to 219ms.

VI. RELATED WORK

Clustered Replication. Compared to non-clustered repli-
cation, clustered replication has fewer number of replicas in
each cluster; therefore, it exhibits improved performance and
scalability. Steward [26] implements a replication protocol
where replicas are partitioned into multiple sites. A leader site
is responsible for driving an inter-site coordination protocol
similar to Paxos [43], which may become the bottleneck. The
inspiring work GeoBFT [27] alleviates the need for a leader

(a) E8.1 Throughput (b) E8.2 Latency

(c) E8.3 Throughput (d) E8.4 Latency

Fig. 8: E8. The impact of network latency on (a,c) throughput
and (b,d) latency during reconfiguration.

site, and enables higher throughput by letting clusters process
their own transactions, and then propagate them. However,
it does not support reconfiguration. Our clustered replication
protocol supports heterogeneity and reconfiguration across
clusters which allows more flexible and efficient setups.

Another line of work is sharding-based consensus [44],
[45], [46]. Elastico [47] presents a sharding-based consensus
protocol for permissionless blockchains. OmniLedger [23] and
RapidChain [24] support reconfiguration for sharding-based
consensus. OmniLedger and RapidChain are linearly scalable;
but, they suffer from replay attacks in cross-shard commit pro-
tocols [48]. In contrast, our protocol provides full replication
and avoids complications of cross-shard synchronization.

Group and Open Membership. A group membership
service maintains the set of active replicas by installing new
views. Since accurate membership is as strong as consensus
[49], [50], classical [51], [33], [34], [35], [52], [53], [54],
[55] group membership and reconfiguration protocols use
consensus to reach an agreement on membership and adjust
quorums accordingly. SmartMerge [31] provides replication,
and uses a commutative, associative and idempotent merge
function on reconfiguration requests to avoid consensus. It
ensures that all replicas eventually perform the merge of all the
reconfiguration requests. Dyno [30] provides replication and
group membership in the primary partition model. Similar to
[56], it uses an instance of consensus to order reconfiguration
requests. In contrast to SmartMerge and Dyno, HAMAVA
presents reconfiguration for clustered replication systems with-
out relying on a single instance of consensus to safely apply
reconfiguration request, a bottleneck that is further amplified
in a wide area network. Furthermore, SmartMerge reliance on
weaker eventual consistency is insufficient.

VII. CONCLUSION

We presented heterogeneous and reconfigurable clustered
replication that adapts to different cluster sizes and supports
dynamic membership efficiently. We formalized and proved
the safety and liveness properties of our reconfiguration pro-
tocol, while empirically demonstrating its effectiveness.
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APPENDIX

VIII. PROTOCOL STAGES

In the overview § II and Fig. 1a, we explained the structure
and the three stages of the protocol. We presented two sub-
protocols in § III and § IV. In this section, we elaborate the
other sub-protocols.

Stage 1: Stage 1 has two parallel parts. We saw the
reconfiguration part in § IV. We now consider local ordering
and leader change.

Local ordering. We consider local replication for transac-
tions.

In order to process a transaction t, clients can issue a request
process(t) at any process of any cluster (at line 15), and will
later receive a return(t, v) response. Each cluster uses a total-
order broadcast instance tob to propagate transactions to its
processes in a uniform order. In addition to broadcast requests
and deliver responses, the total-order broadcast abstraction
can accept new -leader(p, ts) requests to install the new leader
p with the timestamp ts, and can issue complain(p) responses
to complain about the leader p. The protocol is parametric for
the total-order broadcast. The total-order broadcast abstracts
the classical non-clustered Byzantine replication protocols. If
a complaint is received from tob, (at line 25), it is forwarded
to the leader election module le (in Alg. 8).

Upon receiving a process(t) request (at line 15), the process
uses the tob to broadcast the transaction in its own cluster (at
line 16). Each process stores the operations operationsj that it
receives from each cluster Cj . Upon delivery of a transaction t
from the tob (at line 17), the process appends t to operations i
received from this cluster Ci (at line 18). Each process keeps
the number i of the current cluster Ci that it is a member of.
(We use the index i only for the current cluster, and the index
j for other clusters.) The tob delivers a transaction t with a
commit certificate σ that is the set of signatures of the quorum
that committed t. Each process keeps the set of certificates
certs for the transactions committed in its local cluster (at
line 19). In the next stage, the leader sends the transactions
together with their certificates to other clusters. The certificates
prevent Byzantine leaders from sending forged transactions.

In parallel to receiving process(t) requests and ordering
transactions t, processes can receive and propagate join and
leave reconfiguration requests. We will describe the reconfig-
uration protocol in the next subsection. In each round, the
processes of each cluster should agree on the reconfigurations
before the end of the intra-cluster replication stage (phase
1). The reconfigurations are then propagated to other clusters
in the inter-cluster broadcast stage (phase 2). In stage 1, a
process collects the set of reconfiguration requests recs . It
then calls the function send -recs (at line 21) to send the set of
reconfigurations it has collected to the leader who aggregates
and uniformly replicates them. In § IV, we presented the
Byzantine Reliable Dissemination component that collects
and sends reconfigurations to the leader. A process calls this
function towards the end of stage 1, i.e., when a large fraction
α of the transaction batch is already ordered (at line 20).
This leaves ample time in the beginning of stage 1 to accept
reconfiguration requests, and also leaves enough time at the

end of stage 1 to reach agreement for the reconfigurations.
Finally, at the end of stage 1, when operations i contains both
the batch of transactions and the reconfigurations (line 22), if
the current process (denoted as self ) is the leader (line 23),
it calls the function inter -broadcast (at line 24) to start the
inter-cluster broadcast stage (phase 2).

Algorithm 7: Local Ordering
1 request : process(t)
2 response : return(t, v)
3 uses:
4 tob : TotalOrderBroadcast
5 request : broadcast(t), new -leader(p, ts)
6 response : deliver(p, t), complain(p)
7 vars:
8 r ▷ The current round
9 i ▷ The number of the current cluster

10 self ▷ The current process
11 leader : P ← pi

0 ▷ The leader of current cluster Ci
12 ts← 0 ▷ Timestamp for leader
13 operationsj ← ∅ ▷ Operations from each cluster Cj

14 certs ▷ Certificates for operations i of Ci

15 upon request process(t)
16 tob request broadcast(t)
17 upon tob response deliver(p, tσ)
18 append Trans(p, t) to operations i
19 add σ to certs
20 if |operations i| = batch-size × α then
21 call send -recs()
22 else if |operations i| = batch-size + 1 then

▷ batch-size transactions + 1 reconfiguration set
23 if self = leader then
24 inter -broadcast(r, operations i, certs)

25 upon tob response complain(p)
26 call complain(p)

Leader Change. A leader orchestrates both the ordering
of transactions in the total-order broadcast, and the delivery
of the reconfigurations. However, a leader may be Byzantine,
and may not properly lead the cluster. Therefore, as presented
in Alg. 8, the protocol monitors and changes leaders. As we
described, the total-order broadcast tob (Alg. 7 at line 26) and
the Byzantine reliable dissemination brd (Alg. 3 at line 32)
complain when the delivery of transactions or reconfigurations
is not timely. The complains are sent to the leader election
module le (at line 7-8).

The protocol uses the classical leader election module le .
The implementation of this module is presented in Alg. 9.
Once a quorum of processes send complain requests to le , it
eventually issues a response new -leader(p, ts) at all correct
processes to elect a new leader p with the timestamp ts.
Further, if the current process sends a next-leader request to
the module, it issues a response new -leader at the current
process. This module guarantees that the leader for each
timestamp is uniform across processes, the timestamps are
monotonically increasing, and eventually a correct leader is
elected.

When a process receives a new -leader(p, ts) response (at
line 9), it records the new leader and timestamp (at line 10),
and forwards the new leader event to the total-order broadcast
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tob and Byzantine reliable dissemination brd modules as
well (at line 11-12). Further, the previous leader might have
failed to communicate the operations of the previous round to
other clusters. As we will describe next, clusters wait for the
operations of each other in each round; therefore, a remote
cluster can fall behind by at most one round. Thus, the new
leader sends operations of the previous in addition to the
current round (at line 14-18).

Algorithm 8: Leader Change
1 uses:
2 le : LeaderElection
3 request : complain(p), next-leader
4 response : new -leader(p, ts)
5 vars:
6 p-ops , p-certs ▷ ops and certs of the previous round
7 function complain(p)
8 le request complain(p)

9 upon le response new -leader(p, ts ′)
10 ⟨leader , ts⟩ ← ⟨p, ts ′⟩
11 tob request new -leader(leader , ts)
12 brd request new -leader(leader , ts)
13 reset timer i
14 if leader = self then
15 if |operations i| = batch-size then
16 call inter -broadcast(r, operations i, certs)
17 if r > 1 then
18 call inter -broadcast(r − 1, p-ops, p-certs)

Stage 2: We already considered this stage in § III.
Stage 3: Execution. At the end of the inter-cluster

communication stage, a process receives the batches of op-
erations from each other cluster. It then calls the execute
function (Alg. 1 at line 21) that performs the last stage:
execution (at Alg. 10). Processes uniformly order the batches
of operations: first, they process the transactions, and then
the reconfigurations, and further, use a predefined order of
clusters to order transactions (at line 4). Then, they process
each operation: they apply each transaction and reconfiguration
(at line 6-13). If a transaction has been issued by the current
process, a return response is issued (at line 9). Finally, in
order to prepare for the next round, the timers and variables
are reset and the round number is incremented (at line 15-20).

Application of Reconfigurations. The function reconfigure
is called for each set of reconfigurations rc from a cluster
j (at line 21). First, the process adds joining processes, and
removes leaving processes from the set of processes Cj of
cluster j (at line 25 and 27). Then the function kickstart
is called on the reconfigurations of the local cluster irc (at
line 14). The function kickstart (at line 21) processes all the
joins before the leave reconfigurations. We keep this specific
order since leaving processes may still need to send additional
messages for the new processes. If they leave first, then the
new processes will not be able to collect enough states to
start the execution. If the leave is for the current process,
it issues a left response (at line 35). To kick-start a new
process p, the members of its local cluster send a CurrState
message to p (at line 33). The message contains the local
state , the current round number r, and the cluster members C.

Algorithm 9: Leader Election
1 Implements: Leader Election
2 request : complain(p)
3 response : new -leader(p, ts)
4 request : next-leader
5 uses:
6 abeb : AuthenticatedBestEffortBroadcast
7 vars:
8 ts ← 1
9 C ← ∅ ▷ Set of complaining processes

10 c← false ▷ Complained
11 upon request complain(p)
12 if ¬c then
13 call send -complain()
14 function send -complain()
15 c← true
16 abeb request broadcast(Complaint(ts))
17 upon abeb response deliver(p,Complaint(ts ′)) where

ts = ts ′

18 C ← C ∪ {p}
19 if |C| ≥ f + 1 ∧ ¬c then
20 call send -complain()
21 if |C| ≥ 2× f(i) + 1 then
22 call change()
23 function change()
24 ts ← ts + 1
25 C ← ∅
26 c← false
27 response new -leader(pts mod N , ts)

▷ Choose leaders in a round robin order.
▷ N is the number of processes.

28 upon request next-leader
29 call change()

Further, the process resets its echoed , readied , delivered , and
valid variables. When a correct process receives CurrState
messages with the same state s′, cluster members C ′, and
round r′ from a quorum (at line 39), the process sets its state ,
cluster C, and round r to the received values. It then issues a
joined response (at line 41). After an addition or a removal, the
process further updates the failure threshold fj for the cluster
j to less than one-third of the new cluster size (at line 28).

IX. CORRECTNESS

We now state the correctness properties of the sub-protocols
and then the end-to-end protocol. The proofs are available in
the extended report [41].
Remote Leader Change.
Lemma 1 (Eventual Succession). Let ops be the locally
replicated operations of a cluster C in a round. Either ops
are eventually delivered to all correct processes of every other
cluster in that round, or correct processes in C eventually
adopt a new leader.

Lemma 2 (Eventual Agreement). All correct processes in the
same cluster eventually adopt the same leader.

Lemma 3 (Overthrow Resistance). A correct process does
not adopt a new leader unless at least one correct process
complains about the previous leader.

Inter-cluster Broadcast.
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Algorithm 10: Stage 3: Execution
1 vars:
2 state ▷ Process state
3 function execute(operations)
4 foreach operationsj ∈ order(operations)
5 foreach o ∈ operationsj
6 match o
7 case Trans(p, t) ⇒
8 ⟨state, v⟩ ← t(state)
9 if p = self then response return(t, v)

10 case Reconfig(rc) ⇒
11 call reconfigure(j, rc)
12 if j = i then
13 irc ← rc

14 call kickstart(irc)
15 p-ops ← operationsj ; p-certs ← certs
16 foreach cluster Cj

17 reset timer j
18 operationsj ← ∅; certs ← ∅
19 cnj ← rcnj ← 0
20 r ← r + 1
21 function reconfigure(j, rc)

▷ Function reconfigure is called in Stage 3.
22 foreach o ∈ rc
23 match o
24 case join(p) ⇒
25 Cj ← Cj ∪ {p}
26 case leave(p) ⇒
27 Cj ← Cj \ {p}
28 fj = ⌊(|Cj | − 1)/3⌋
29 function kickstart(rc)
30 foreach o ∈ rc ▷ First joins and then leaves.
31 match o
32 case join(p) ⇒
33 apl request send(p,CurrState(state, C, r))

34 case leave(p) ⇒
35 if p = self then response left

36 recs ← recs \ {rc}
37 echoed ← readied ← delivered ← false
38 valid ← ⊥
39 upon apl response deliver(p,CurrState(s′, C′, r′)) where
|{p}| ≥ 2× fi + 1

40 state ← s′; r ← r′; C ← C′

41 response joined

Lemma 4 (Termination). In every round, every correct process
eventually receives operations from each other cluster.

Lemma 5 (Agreement). In every round, the operations that
every pair of correct processes receive from a cluster are the
same.

Byzantine Reliable Dissemination.
Lemma 6 (Integrity). Every delivered set contains at least a
quorum of messages from distinct processes.

Lemma 7 (Termination). If all correct processes broadcast
messages then every correct process eventually delivers a set
of messages.

Lemma 8 (Uniformity). No correct pair of processes deliver
different sets of messages.

Lemma 9 (No duplication). Every correct process delivers at
most one set of messages.

Lemma 10 (Validity). If a correct process delivers a set of
messages containing m from a correct sender p, then m was
broadcast by p.

Reconfiguration.
Lemma 11 (Completeness). If a correct process p requests
to join (or leave) cluster i, then every correct process will
eventually have a configuration C such that p ∈ C (or p /∈ C).

Lemma 12 (Accuracy). Consider a correct process p that has
a configuration C in a round, and then another configuration
C ′ in a later round. If a correct process p ∈ C ′

i \ Ci, then p
requested to join the cluster i. Similarly, if a correct process
p ∈ Ci \ C ′

i, then p requested to leave the cluster i.

Lemma 13 (Uniformity). In every round, the configurations
that every pair of correct processes execute are the same.

Reconfigurable Clustered Replication.
Theorem 1 (Validity). Every operation that a correct process
requests is eventually executed by a correct process.
Theorem 2 (Agreement). If a correct process executes an
operation in a round then every correct process executes that
operation in the same round.
Theorem 3 (Total order). For every pair of operations o and
o′, if a correct process executes only o, or executes o before
o′, then every correct process executes o′ only after o.

X. PROOFS

A. Remote Leader Change

Lemma 1 (Eventual Succession). Let ops be the locally
replicated operations of a cluster C in a round. Either ops
are eventually delivered to all correct processes of every other
cluster in that round, or correct processes in C eventually
adopt a new leader.

Proof. Let C2 be any other cluster in the system except C.
There are two cases regarding the delivery of m in cluster C2.

In the first case, at least one correct process p in C2 delivers
m. Then, it uses rb to broadcasts m to all members of the local
cluster at Alg. 1, line 16. By validity of reliable broadcast, all
the correct processes in C2 deliver m.

In the second case, none of the correct processes in C2

delivers m. We prove that processes in C2 will invoke a
remote leader change for C and finally correct processes in
C adopt a new leader. If none of the correct processes of
C2 delivers m, then their timers will eventually be triggered
at Alg. 2, line 7 and all of the correct processes broadcast
LComplaint at line 8. Thus, the signatures of all of them
are stored in cs1 variable at line 11. Since there are at least
2 × f2 + 1 correct processes in cluster C2, all the correct
processes eventually receive enough LComplaint messages,
and cs1 will be large enough. Thus, f2 + 1 processes in C2

send RComplaint messages, and each send it to f+1 distinct
processes in C at line 18. Thus, at least one correct process
in C eventually delivers the RComplaint message at line 21
and verifies the validity of the accompanying signatures Σ.
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Then, it broadcasts the Complaint message locally at line 22.
By validity of abeb, all the correct processes in C deliver the
complain at line 23, and request the leader election module to
move to the next leader at line 26. Thus, the leader election
module will eventually choose a new leader. Thus, all the
correct processes in C will eventually adopt a new leader at
Alg. 8 line 9-10.

Lemma 14 (Local Complaint Synchronization). If a correct
process in cluster Ci installs cnj = k, then all the correct
processes in Ci eventually install cnj = k.

Proof. We prove this lemma by induction.
For cnj = 0, all the correct processes assign cnj to be the

same value 0 at initialization.
The induction hypothesis is that if a correct process installs

cnj = k, then all the correct processes eventually install cnj =
k.

We prove that if a correct process in cluster Ci installs
cnj = k + 1, then all the correct processes in Ci eventually
install cnj = k + 1

A correct process p increments cnj to k+1 at line 19 after
verifying 2fi + 1 LComplaint messages has been delivered
for the same cnj = k at line 15. Thus at least fi + 1
correct processes have broadcast LComplaint messages for
cnj = k. By the validity of abeb, all the correct processes
eventually delivers at least fi + 1 consistent LComplaint
messages at line 12 and verify the complaint counter: by
induction hypothesis and p installed cnj = k, all the correct
processes eventually install cnj = k. Then correct processes
amplify the complain by broadcasting LComplaint messages
for cnj = k at line 14. There are at least 2fi + 1 correct
processes in cluster Ci. By the validity of abeb, eventually at
least 2fi+1 LComplaint messages are delivered to all correct
processes at line 15 and they increment cnj to k+1 at line 19.
Therefore, all the correct processes install cnj = k + 1.

We conclude the induction proof: for k ≥ 0, if a correct
process install cnj = k, then all the correct processes install
cnj = k.

Lemma 15 (Remote Complaint Synchronization). If a correct
process in cluster Ci installs rcnj = k, then all the correct
processes in Ci eventually install rcnj = k.

Proof. We prove this lemma by induction.
For rcnj = 0, all the correct processes assign rcnj to be

the same value 0 at initialization.
The induction hypothesis is that if a correct process in

cluster Ci installs rcnj = k, then all the correct processes
eventually install rcnj = k.

We prove that if a correct process p in cluster Ci installs
rcnj = k + 1, then all the correct processes in Ci eventually
install rcnj = k + 1

A correct process p increments rcnj to k + 1 at line 24
after verifying 2fj + 1 LComplaint messages was in Σ for
the same rcnj = k at line 15. Thus by Lemma 14 and Σ
verifies that a correct process in Cj installed cnj = k+1, all
the correct processes in Cj eventually install cnj = k + 1 at

line 19. There are at most fj Byzantine processes in cluster
Cj and S contains fj + 1 processes, therefore at least one
correct process in S sends RComplaint(k, j,Σ, r) messages
to fi + 1 processes in Ci. By the validity of apl , at least
one correct process in Ci receives the RComplaint message
at line 21 and broadcasts Complaint(k, j,Σ) message at
line 22. By the validity of abeb, all the correct processes in
Ci eventually delivers Complaint messages at line 23 and
verify the complaint counter: by induction hypothesis and p
installed rcnj = k, all the correct processes eventually install
rcnj = k. They increment the remote complaint counter rcnj

to k + 1 line 24. Therefore, all the correct processes install
rcnj = k + 1.

We conclude the induction proof: for k ≥ 0, if a correct
process install rcnj = k, then all the correct processes install
rcnj = k.

Lemma 2 (Eventual Agreement). All correct processes in
the same cluster eventually adopt the same leader.

Proof. We prove this lemma in three steps. Firstly, we prove
if a correct process in Ci issue response new -leader for
ts , then eventually all correct process in Ci issue response
new -leader for ts . Secondly, we prove that eventually all the
correct process stop changing leader and stay in the same
timestamp. Finally, since the leader is deterministically chosen
according to the timestamp and cluster membership, we prove
that eventually all the correct process eventually adopt the
same leader.

For the first statement, le issue response for two type of
requests: complain and next-leader . For complain request,
we directly use the eventual agreement property of underlying
module. For next-leader request, a correct process p in cluster
Ci requests a next-leader at line 26. Let us assume that p
installs rcnj = n before the next-leader request at line 24.
By Lemma 15, all the correct processes in Ci eventually install
rcnj = n. By assumption, this request is apart from the
previous remote leader change events and ∆ − timer i > ϵ.
Then all the correct process request the next-leader for the
same Complaint message. Therefore the ts at all correct
processes are eventually the same.

For the second statement, correct processes eventually wait
long enough for a correct leader to complete inter-broadcast
stage: the timer for remote leader change increases exponen-
tially and eventually, all the messages are delivered within a
bounded delay after GST. When all Complaint messages have
been received, all the correct processes in the same cluster
don’t issue new complains and by Lemma 3, they stay in the
same ts .

For the third statement, by Lemma 13, all the correct
processes in the same cluster maintain a consistent group
membership for each round. Then all of them deterministically
choose the same process as leader based on group member and
timestamp.

Lemma 3 (Overthrow resistance). A correct process does
not adopt a new leader unless at least one correct process
complains about the previous leader.
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Proof. The correct process requests the leader election module
to adopt the next leader at Alg. 2, line 26. This request is after
receiving a Complaint message at line 23 with the following
checks: (1) the expected next complaint counter rcnj is equal
to the received complain number c, and (2) the signatures Σ
include at least 2× fj +1 signatures from Cj . The first check
prevents replay attacks; thus, no complaints about previous
leaders can be reused. Therefore, all the signatures in Σ are
complaints for the current leader. The second one implies that
a correct process in Cj sent the RComplaint message after
receiving 2×fj+1 LComplaint messages at line 15. Thus, at
least fj + 1 correct processes sent LComplaint messages. A
correct process sends a LComplaint message at two places:
(1) the timer triggers at line 7; (2) the process amplifies the
received complaints at line 12. The first case reached the
conclusion. In the second case, a correct process only amplifies
after receiving fj + 1 LComplaint messages. Thus, at least
one correct process sent a LComplaint message with the same
two cases as above. This second case is the inductive case, and
the first case is the base case. Since the number of processes
is finite, by induction, this case is reduced to the first case in
a finite number of steps.

B. Inter-cluster Broadcast

Lemma 4 (Inter Broadcast Termination). In every round,
every correct process eventually receives operations from each
other cluster.

Proof. We prove the termination property for inter-cluster
broadcast with the help of Lemma 1. A leader of cluster i
should send Inter message to fj + 1 processes in cluster j
for all i ̸= j at line 14. By the validity of remote leader
change, either this Inter message was delivered to all correct
processes in cluster j or all the correct processes in cluster i
change a leader. In the first case we conclude the proof. In the
second case, eventually the correct processes in cluster i adopt
a correct leader. The correct leader sends Inter messages to
fj + 1 processes in cluster j. By the validity of apl , at least
one correct process p in cluster j delivers the Inter message
at line 15. Then p broadcasts the received content in Local
message at line 16. By the validity of abeb, all the correct
processes in cluster j eventually deliver the Local message at
line 17. We generalize the same reasoning for all the other
cluster and conclude the proof.

Lemma 5 (Inter Broadcast Agreement). In every round, the
operations that every pair of correct processes receive from a
cluster are the same.

Proof. Let process p receives Local(r, j, ops,Σ) and p′ re-
ceives Local(r, j, ops′,Σ′). Correct processes only delivery
valid Local messages, which means Σ attests ops and Σ′

attests ops ′. Then Σ and Σ′ both contains 2f + 1 commit
signatures for each operation in ops and ops ′. By the agree-
ment property of TOB in the first stage and |ops| = |ops ′|,
ops and ops ′ contains the same set of operations. By the total
order property of the TOB, operations in ops and ops ′ have
the same order. Thus, ops = ops ′.

C. Byzantine Reliable Dissemination

Lemma 16 (Integrity). The delivered set contains at least a
quorum of messages from distinct processes.

Proof. A set of messages is delivered at line 36 which is after
the delivery of 2fi+1 of Ready messages (at line 34). At least
fi + 1 correct processes sent Ready messages since there are
only fi Byzantine processes in a cluster i. A correct process
only sends Ready message when it receives 2fi + 1 Echo
messages or fi+1 Ready messages. Then by induction, at least
2fi + 1 Echo messages were received by a correct process.
Then at least fi +1 correct processes sent Echo messages. A
correct process only sends Echo messages when it verifies M
is valid (at line 23). A M is valid if and only if Σ includes
2fi + 1 distinct signatures and M is the union of all the m
sets in those messages; Or M is adopted from the valid and Σ
contains 2fi + 1 Echo or fi + 1 Ready messages. In the first
case, the delivered M contains at least a quorum of m. In the
second case, by induction M was in 2fi+1 of Echo messages
and the correct processes who sent the Echo message verify
that M originally was a union of 2fi + 1 m.

Lemma 17 (Termination). If all correct processes broadcast
messages then every correct process eventually delivers a set
of messages.

Proof. We consider two cases based on whether there is a
correct process delivered a set of messages.

Case 1: If there is a correct process that delivers, then
eventually all the correct processes deliver. A correct process
delivers M after receiving 2fi +1 Ready message at line 34.
Then at least fi + 1 correct processes broadcast the Ready
message at line 28. By the validity of abeb, eventually all the
correct processes deliver fi + 1 Ready message at line 30
and broadcast the same message at line 32. Eventually, all the
correct processes deliver 2fi + 1 Ready messages and issue
delivery response (at line 36).

Otherwise, Case 2: if no correct process delivers, then each
correct process complains about the current leader. Then by the
eventual agreement property of the Byzantine leader election,
all the correct processes eventually adopt the same correct
leader. Upon the last leader election delivered at line 40, all
the correct processes send Valid or my-m to the correct leader
at line 47 or line 50. Since the set of correct processes is a
quorum, then the correct leader either delivers a quorum of
my-m messages at line 21 or a Valid message at line 51.
Then we have two cases, either there is a valid valid or not.
In the first case, the correct leader adopts M from valid .
In the second case, the correct leader composes a new set
of reconfiguration requests. Both cases can be verified and
accepted by correct processes at line 23. Then all the correct
processes send Echo message at line 25 and eventually 2fi+1
Echo messages are delivered to all the correct processes.
Then all the correct processes send Ready message at line 28
and eventually 2fi + 1 Ready message are delivered to all
correct processes. Then all the correct processes issue delivery
response at line 36 and we conclude the proof.
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Lemma 18 (Uniformity). No correct processes deliver differ-
ent set of messages

Proof. There are two cases regarding the delivery of messages
for p1 and p2: either they deliver messages with the same ts
or different ts .

In the first case, since any pair of quorums has a correct
process in the intersection, if p1 delivers M1 and p2 delivers
M2, M1 = M2. Otherwise, the correct process sends different
Ready messages for the same round and ts , which is not
permitted by the protocol (at line 28, line 32).

In the second case, let us assume that p1 delivers first with
timestamp ts1 and then p2 delivers with another timestamp
ts2. Without losing generality, let us assume that ts1 < ts2.
If p1 delivers M1 with ts1, then p1 receives at least a quorum
of Ready messages. A correct process set its valid before
sending Ready messages (at line 29, line 33). Therefore, at
least fi + 1 correct processes set their valid variable with
M1. For the next timestamp ts1 < tsi ≤ ts2, it collects a
quorum of my-m messages or at least one Valid message.
By assumption, cluster i has 3fi + 1 members in total, then
at most 2fi processes have not set valid and can send my-m
message, which is not a quorum. Therefore, the leader for
tsi waits for the Valid message and adopts its value. Valid
valid requires either 2fi +1 Echo messages or fi +1 Ready
messages for the same ts . By induction, since there are only fi
Byzantine processes, a correct process receives 2fi + 1 Echo
messages before sending out Ready messages and triggering
the amplification. Since any pair of quorums has a correct
process in the intersection, there is only one M that can be
echoed by a quorum of processes and appears in valid . The
leader for tsi can only propose M1 that will be accepted by
correct processes at line 23. From tsi to ts2, the valid can
only be updated to the same M1. Then when p2 delivers M2

in ts2, M2 = M1.

Lemma 19 (No duplication). Every correct process delivers
at most one set of messages

Proof. This lemma follows directly from the condition (at
line 34) before the delivery response is issued at line 36.

Lemma 20 (Validity). If a correct process delivers a set of
messages containing m from a correct sender p, then m was
broadcast by p

Proof. If a correct process delivers a set of messages, then
it receives a quorum of Ready messages. A ready message
is send by a correct process if it receives a quorum of Echo
messages or f + 1 ready messages. Since there are only f
Byzantine processes, then by induction, the first ready message
sent by a correct process is because of receiving a quorum of
echo messages. A correct process only send echo message if
delivers the Agg from the leader with valid certificate. A valid
Agg message states that M is either collected from a quorum
of distinct processes through apl or adopted from the previous
leader. For the first case, by the validity of apl , if the sender
of m is correct, then it sends m to the leader. For the second
case, M can be adopted only if it carries a certificate with a
quorum of Echo messages for M or f + 1 Ready messages

for m. By the same induction, the messages contained in M
is broadcast by its sender p if p is correct.

D. Reconfiguration

Lemma 11 (Completeness). If a correct process p requests
to join (or leave) cluster i, then every correct process will
eventually have a configuration C such that p ∈ C (or p /∈ C).

Proof. We prove the completeness in two steps: first we prove
that all the reconfiguration requests will be in a prepared state
which we will formally define later; then we prove that all the
prepared reconfiguration requests will be delivered within one
round.

We define that a new process prepares a join request when
it receives at least a quorum of replies from the existing
replicas. Our protocol guarantees that a new process officially
joins the system in the round it is prepared. Similarly, we
define a leaving process that prepares a leave request when
its RequestLeave message has been delivered to a quorum
of existing replicas. Our protocol guarantees that a leaving
process officially leaves the system in the round it is prepared.

For the first statement, when a correct process p requests
to join (or leave) the cluster Ci, it sends out RequestJoin
(or RequestLeave) messages to all the existing processes at
line 7 (or at line 9). If p’s request is not installed in a long
time line 10, it resends the RequestJoin (or RequestLeave)
message and doubles the timer at line 12 (or line 14). There-
fore RequestJoin (or RequestLeave) messages sent out by
p at line 7 will be delivered at all the correct processes in
Ci in the first stage at line 16 after GST. Upon receiving
the RequestJoin and RequestLeave message at line 17 and
line 20, correct processes in the system add the reconfigu-
ration request into their recs variable. Since all the correct
processes in a cluster is a quorum, p’s reconfiguration request
is eventually prepared.

We prove the second statement in two steps. First, we prove
that any set of installed reconfiguration requests at round r
includes p’s reconfiguration request. Second, we prove that
eventually, all correct processes install a set of reconfiguration
requests in round r.

For the first step, at the end of the local ordering stage of
each round at line 27, correct processes use Byzantine reliable
dissemination module to deliver the reconfiguration requests
recs that they have collected. Assume that p’s reconfiguration
request is prepared in round r. By the integrity of BRD, the
delivered set contains a quorum of messages send by distinct
processes. Since every pair of quorums have at least one
correct process in their intersection, at round r, there is always
a correct process which sends p’s reconfiguration request in
the BRD message and the message is included in the delivered
set.

For the second step, we consider the delivery of reconfigu-
ration requests for both local and remote clusters.

For the remote clusters, by Lemma 4 all the correct pro-
cesses in the remote cluster deliver Local message, which is
verified to contain reconfiguration requests at line 17. Correct
processes eventually receives all the Local message at line 20
and install reconfiguration at line 21.
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For the local cluster, by the termination property of BRD,
all the correct nodes in the local cluster eventually deliver a
set of reconfiguration requests through BRD at line 28. They
insert the reconfiguration requests at line 29. By Lemma 4,
all the correct processes receive enough Local message and
install the reconfiguration requests at line 21.

In conclusion, a set of reconfiguration requests is eventually
installed at all the correct processes and we conclude the
second step.

Lemma 13 (Uniformity). In every round, the configurations
that every pair of correct processes execute are the same.

Proof. Let us assume that two correct processes p1 and p2
installed new configurations. The correct process installs new
group membership at line 21, which is at the order and
execution stage. We prove agreement for correct processes in
both local and remote clusters.

For the local cluster, a correct process installs a reconfig-
uration request from operationsi at line 11. operationsi is
updated at line 29, which is after the delivery of an instance
of BRD at line 28. By the uniformity property of BRD, all
the correct processes deliver the same set of messages. Since
the installation of new membership is deterministic and only
dependent on the set of reconfiguration requests, we have
C = C ′.

For remote cluster reconfiguration, a correct process in
cluster i installs the reconfiguration requests for cluster j at the
order and execution stage at line 21. operationsj is updated
after verifying the σ at line 17. σ is valid if and only if
for each reconfiguration request in T , it contains a quorum
of signatures from cluster j in round r. By Lemma 5, the
reconfiguration requests installed at cluster j are the same.
Therefore, we conclude C = C ′.

Lemma 12 (Accuracy). Consider a correct process p that
has a configuration C in a round, and then another configura-
tion C ′ in a later round. If a correct process p ∈ C ′

i \Ci, then
p requested to join the cluster i. Similarly, if a correct process
p ∈ Ci \ C ′

i, then p requested to leave the cluster i.

Proof. Since we have pn ∈ C2 \ C1 ∧ r2 > r1, pn is not
originally a member of this cluster. The cluster membership is
updated at line 25, which is after verifying each reconfigura-
tion request is valid: each reconfiguration request is delivered
after a quorum of Ready messages. At line 23, every correct
process checks the validity of rc, including its signatures from
pn. By the authenticity of apl , if pn is correct, then it is the
sender of the RequestJoin messages and thus requested to
join. The same reasoning applies to leave requests.

E. Replication System
By Lemma 13, at the beginning of each round, all the

correct processes have the same configuration. Thus during the
execution of each round, all the correct processes maintain a
static membership and we prove termination and total order
properties for each round. We prove validity for eventual
progress.

Theorem 1 (Validity). Every operation that a correct
process requests is eventually executed by a correct process.

Proof. Based on the validity of the underlying TOB protocol
in the first stage, if a valid operation o is submitted to a cluster
i (at line 15), then o is eventually delivered at a correct process
p in Ci at line 17 and included in operationsi (at line 18).
By the Lemma 4, each correct process receives Local message
from each other cluster and call execute function (at line 3).
Since o was included in operationsi, it is executed at line 8
and we conclude the proof.

Theorem 2 (Agreement). If a correct process executes an
operation in a round then every correct process executes that
operation in the same round.

Proof. A correct process deliver a operation in the execution
stage (at Alg. 10), which is stored in operations . operations
are updated in the inter-cluster stage (at Alg. 1) for remote
clusters and in the local ordering stage (at line 18) for the
local cluster. Based on whether o is an operation from the
local cluster, we prove the termination in two cases.

Case 1: o is from the local cluster. Then we prove that o
will be delivered locally and remotely in round r. For the local
cluster, we can directly use the termination property provided
by the underlying TOB protocol: all the correct processes
eventually deliver o. Since correct processes in the local cluster
are waiting for a fixed number of operations to be delivered in
a batch for each round, they will not move to the next round
before they deliver o in round r. Then we proved that o will
be delivered locally in round r.

For the remote delivery of o, by the total order and termina-
tion property of underlying TOB protocol, o will be delivered
at the leader and included in the Local message. Then by
the Lemma 4, all the other remote clusters will receive a
Local message for each cluster, including the current one.
Thus, o will be delivered in the Local message and inserted to
operations . Finally, after all the Local messages are delivered,
o will be executed in the execution stage.

Case 2: o is from a remote cluster. Then we prove that o
will be delivered at all the other clusters.

If o is from a remote cluster, then operations is only
updated if Σ is valid and the deliver is for the same round.
Σ is valid if it contains a quorum of commit certificate for
each operation in ops: a quorum of commit messages certify
the delivery in the local order protocol. operations is updated
when receiving a valid Local message. Then by the Lemma 5
and Lemma 4, o will be delivered at all the other clusters
through the same Local message.

Theorem 3 (Total order). For every pair of operations o and
o′, if a correct process executes only o, or executes o before
o′, then every correct process executes o′ only after o.

Proof. We prove the total order property in two steps.
First we prove that if a pair of processes p1 and p2 both

execute o and o′, then they execute o and o′ in the same order.
Without loss of generality, let us assume that o is executed in
p1 before o′ By Theorem 2, all the correct processes deliver

21



the same operations for each cluster. Then they combine
the operations in the predefined order based on the cluster
identifier. Within each cluster, ops have been ordered across
all the correct processes by the total order property of the
underlying TOB protocol. Thus the combined operations keeps
a total order across all the operations from all the clusters
for round r: o is executed before o′ at all correct processes
including p2.

In the second step, we prove by contradiction. Assume
that process p′ executed operation o′ before operation o. The
process p executed only o, or executed o before o′. In the case
that it has executed only o and not o′, then, by the Theorem 2,
it will eventually execute o′ after o. Thus, we will reach a state
where p and p′ have a different order for the two operations
o and o′, which contradicts the first statement.
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