
CONTENTS

I Introduction 1

II Cross-chain Transactions 2

III Sequence Transformation 3

IV Transaction Protocol 4

V Implementation 7

VI Related Works 8

VII Conclusion 8

References 9

VIII Appendix 11
VIII-A Proof 11

IX Use-cases 12
IX-A Use-case 1 12
IX-B Use-case 2 13
IX-C Use-case 3 14
IX-D Use-case 4 15
IX-E Use-case 5 16
IX-F Use-case 6 17
IX-G Use-case 7 18
IX-H Extensions 19

VIII. APPENDIX

A. Proof

Lemma 2 (Uniformity): If the representative source vertices
are conforming, 3PP is uniform.

PROOF. Uniformity is the conjunction of three conditions.
We prove them in turn.

(1) If all parties follow 3PP, then the transaction is commit-
ted. We prove the following sequence of facts.

(a) All the contracts are eventually created. We prove that
every party eventually creates its outgoing contracts. This fact
is proved by induction on the maximum of the distances of the
party from the leaders. In the base case, the leaders themselves
create their outgoing contracts with no condition (lines P2-
P3). In the inductive case, every follower eventually receives
her last incoming contract from her predecessor that is on the
path from the leader with the longest distance. In response, she
creates her outgoing contracts (lines P8-P11). We note that as
the parties are assumed to follow the protocol, the contracts
that they create are valid. Thus, parties do not stop because of
invalid contracts.

(b) Leaders do not wait indefinitely. By [a], leaders even-
tually observe their incoming contracts and in response, stop
waiting for incoming contracts (line P4). Further, from [a], the
representative sinks receive their incoming contracts and send
messages to representative sources (lines P12-P13). Therefore,
the representative sources receive messages from all the rep-
resentative sinks and stop waiting (lines P6-P7).

(c) Every secret eventually reaches a representative source.
By [b], the feedback vertex set eventually start the second
phase and release their secrets on their incoming edges (lines
P15-P16). Parties propagate secrets backwards (lines P17-P18).
Consider a leader vl in the feedback vertex set. Consider its
super-vertex wl in the condensation graph. The vertices in
wl are an SCC; thus, they are reachable from each other.
Therefore, the secret of vl propagates to every party in wl.
Further, every super-vertex is reachable from at least one
super-source. Therefore, the secret of vl eventually propagates
back to at least one super-source ws. The vertices in ws are
an SCC and the clearing service has chosen one of them as
the representative source. Therefore, the secret of the leader vl
eventually propagates to that representative source. In addition
to the feedback vertex set, the representative sources are lead-
ers themselves. Their secrets are trivially at the representative
sources.

(d) All vertices eventually receive all secrets. The repre-
sentative sources relay their secrets to the pseudo-sinks (lines
P20-P21). Thus, by [c], every pseudo-sink eventually receives
all secrets. In the condensation graph, every super-vertex is
reachable to at least one super-sink. Further, vertices of a
super-vertex are an SCC and reachable from each other. Parties
other than the representative sources propagate secrets back-
wards (lines P23-P24). Therefore, the secrets are eventually
propagated from the pseudo-sinks back to all vertices.

(e) The transaction is eventually committed. First, from
[a], all contracts are eventually created. Second, from [d],

all vertices eventually receive all secrets. Parties apply the
secrets that they receive to their incoming contracts (lines P23-
P24). Therefore, every contract is eventually triggered i.e. the
transaction is committed.

(2) If any set of parties deviate from 3PP, no conforming
party finishes with an UnderWater state. A party ends up in
an UnderWater state when some of her outgoing contracts are
triggered, but all her incoming contracts are not triggered. It
is trivial that a source party cannot end up in an UnderWater
state as it does not have any incoming contracts. If the party
is a conforming leader, she releases her secret only after she
receives her incoming contracts (lines P4-P5). Therefore, her
outgoing contracts can be triggered only after her incoming
contracts are already created because all of her outgoing
contracts are locked by her own secret. Thus, if any of her
outgoing contracts are triggered, she can learn the secrets
and subsequently trigger her incoming contracts. Conforming
followers create outgoing contracts only after they receive their
incoming contracts (lines P8-P11). Therefore, if an outgoing
contract is triggered, they can learn the secrets and trigger
their incoming contracts. Thus, if an outgoing contract of a
conforming party is triggered, she can trigger all her incoming
contracts. Thus, she cannot end up in an UnderWater state.

(3) P is end-to-end. Assuming that the transaction is source-
paid, we show that it is sink-paying. Since the transaction is
source-paid, a contract is triggered in the transaction. Every
contract is hashlocked with the secret of all leaders. The
representative sources are in the set of leaders. Therefore,
the secrets of the representative sources should be known.
Therefore, the third phase must have started. Similar to 1.(c),
we can show that by the end of the second phase, all the
secrets reach the representative sources. At the beginning of
the third phase, the representative sources send secrets to
pseudo-sinks. These secrets include representative sources’
own secrets and the secrets of the feedback vertex set that they
have received in the second phase. Every complying vertex
applies the secrets that it receives to its incoming contracts.
Therefore, the complying pseudo-sinks apply the secrets to the
incoming contracts and trigger them. Thus, the transaction is
sink-paying. �

IX. USE-CASES

A. Use-case 1

A B
10

20

Fig. 8. First Use-Case

Leaders Synthesis Time Gas Consumption
(ms) Deploy Initiate Redeem Claim Total

A 294 1220926 77772 47366 54074 1400138
1221334 77794 47322 54074 1400524
TABLE II

EXECUTION OF FIRST USE-CASE

B. Use-case 2

A B
20

20
C

30

10Z
(a) Transaction with 3 nodes

A B

20

20
C

10

10Z
(b) Equivalent transformation of the transaction (a)

Fig. 9. Second Use-case

Leaders Synthesis Time Gas Consumption
(ms) Deploy Initiate Redeem Claim Total

B 375 1263228 78350 47300 55644 1444522
1367090 78328 47366 55622 1548406
1263160 78350 47300 55644 1444454
1263368 78350 47300 55644 1444662
TABLE III

EXECUTION OF SECOND USE-CASE

C. Use-case 3

A B
10

10
C

10

20

D

3010

(a) Transaction with 4 nodes

A B C

10

20

D

10
10

(b) Equivalent transformation of the transaction (a)

A B C

10

D

10
10

10

(c) Equivalent transformation of the transaction (b)

Fig. 10. Equivalent transformation of the transaction (b)

Fig. 11. Third Use-case

Leaders Synthesis Time Gas Consumption
(ms) Deploy Initiate Redeem Claim Total

A 330 1721271 78902 47342 57188 1904703
1617422 78902 47342 57188 1800854
1513707 78946 47254 57232 1697139
1304858 78906 47258 57170 1488192
TABLE IV

EXECUTION OF THIRD USE-CASE

D. Use-case 4

A B C

10

D
10

10

30

E

30

30

(a) Transaction with 5 nodes

A B C
10

D
10

10

10

E

30

(b) Equivalent transformation of the transaction (a)

Fig. 12. Fourth Use-case

Leaders Synthesis Time Gas Consumption
(ms) Deploy Initiate Redeem Claim Total

A 310 1347499 79462 47306 58740 1533007
1347499 79462 47306 58740 1533007
1347499 79462 47306 58740 1533007
1347435 79462 23874 21693 1472464
1347631 79462 47306 58740 1533139
TABLE V

EXECUTION OF FORTH USE-CASE

E. Use-case 5

A

B

C

20

D

30

50

30

E

50

F
60

20

(a) Transaction with 6 nodes

A

B

C

10

D

30

20

E

50

F
60

20

(b) Equivalent transformation of the transaction (a)

Fig. 13. Fifth Use-case

Leaders Synthesis Time Gas Consumption
(ms) Deploy Initiate Redeem Claim Total

A, D 318 1494188 80018 79636 59664 1713506
1494252 80018 79636 59664 1713570
1494056 80018 79636 59664 1713374
1494252 80018 79636 59664 1713570
1494252 80018 79636 59664 1713570
1494252 80018 79636 59664 1713570
TABLE VI

EXECUTION OF FIFTH USE-CASE

F. Use-case 6

A

B
C

E

35

35

F

50

G

6030

D

30

48

40

30

D40
D40

Z

Z

Z

(a) Transaction with 7 nodes

A

B
C

E

35

F

50

G

1030

D

30

8

40

30

D40

Z

Z

Z

(b) Equivalent transformation of the transaction (a)

Fig. 14. Sixth Use-case

Leaders Synthesis Time Gas Consumption
(ms) Deploy Initiate Redeem Claim Total

A, F 343 1534206 80552 79754 61190 1755702
1534214 80574 79688 61212 1755688
1534818 80574 79694 61212 1756298
1534282 80596 79644 61212 1755734
1535886 80574 79700 61212 1757372
1534882 80574 79694 61212 1756362
1534882 80574 79694 61212 1756362
1535954 80574 79700 61212 1757440
1535086 80574 79694 61212 1756566
TABLE VII

EXECUTION OF SIXTH USE-CASE

G. Use-case 7

A
B

C

10

F

G

10

20

D

10

10

10

D30

D20

D10

E

Z

Z

H10

20

10Z

Fig. 15. Seventh Use-Case

Leaders Synthesis Time Gas Consumption
(ms) Deploy Initiate Redeem Claim Total

A, B, E, F 351 1788818 81192 144424 61574 2076008
1994975 81192 144566 61530 2282263
1995371 81214 144478 61596 2282659
1994975 81192 144544 61530 2282241
1995371 81236 144478 61618 2282703
1788550 81192 144424 61574 2075740
1995375 81236 144478 61618 2282707
1995375 81214 144434 61596 2282619
1788546 81192 144424 61574 2075736
1788278 81192 144360 61574 2075404
1788814 81192 144424 61574 2076004
1789490 81170 144496 61552 2076708

TABLE VIII
EXECUTION OF SEVENTH USE-CASE

H. Extensions

Sample of Smart Contract

1 pragma solidity ˆ0.4.15;
2
3 contract AtomicSwap {
4
5 address private counterParty;
6 bytes20[] private hashedSecret;
7 uint private delta;
8 uint graphDiam;
9 bool[] unlocked;

10 bool[] leaders;
11
12 uint initTimestamp;
13 bytes32 secret;
14 address party;
15 uint256 value;
16 bool emptied;
17 uint amount;
18
19 event Initiated(
20 uint _initTimestamp,
21 uint _delta,
22 bytes20[] _hashedSecret,
23 address _counterParty,
24 address _party,
25 uint256 _funds
26);
27
28 function AtomicSwap(){
29 hashedSecret = new bytes20[](8);
30 unlocked = new bool[](8);
31 leaders = new bool[](8);
32 counterParty = 0

x14723a09acff6d2a60dcdf7aa4aff308fddc160c;
33 party = 0xca35b7d915458ef540ade6068dfe2f44e8fa733c;
34 amount = 30 ether;
35 hashedSecret[1] = 0

x1c301c2b29511c607b02d7be6391e168f460a44a;
36 hashedSecret[2] = 0

x55f47027d4a971ca4505ed0df51030f3d5e81a96;
37 hashedSecret[3] = 0

x508afa12d5bb90c39df2e2cb7d7b6219c1100edb;
38 hashedSecret[4] = 0

xdad9d738012b6669a58a51227fd7f1367b2d39a2;
39 hashedSecret[5] = 0

x219568abcb139fd0f226b7734c7abe86d2121a25;
40 hashedSecret[6] = 0

xf1716c9b82cfcf38dd3ab19d782161d37741587e;
41 hashedSecret[7] = 0

x932e1f2851e4f3696402de839c6e8f2de83b4b94;
42 leaders[0] = false;
43 leaders[1] = true;
44 leaders[2] = false;
45 leaders[3] = false;
46 leaders[4] = false;
47 leaders[5] = false;
48 leaders[6] = true;
49 leaders[7] = false;
50 delta = 7200;
51 graphDiam = 4;
52 }

Fig. 16. Smart Contract for an edge in Solidity (Part 1).

1 modifier isRefundable() {
2 require(emptied == false);
3 _;
4 }
5
6 modifier isInitiator(uint _i) {
7 require(msg.sender == party);
8 _;
9 }

10
11 modifier isCorrectValue(){
12 require(msg.value == amount);
13 _;
14 }
15
16 function initiate () isCorrectValue public payable {
17 initTimestamp = block.timestamp;
18 party = msg.sender;
19 value = msg.value;
20 emptied = false;
21 Initiated(
22 initTimestamp,
23 delta,
24 hashedSecret,
25 counterParty,
26 msg.sender,
27 msg.value
28);
29 }
30
31 function redeem2_3_1(bytes32 _secret, bytes _sig) public {
32 if(msg.sender == counterParty){
33 if(Verify("2-3-1", _sig) &&
34 ripemd160(_secret) == hashedSecret[1] &&
35 block.timestamp < initTimestamp + (graphDiam + 3) *

delta)
36 {
37 unlocked[1] = true;
38 }
39 }
40 }
41 function redeem2_4_7_6(bytes32 _secret, bytes _sig) public {
42 if(msg.sender == counterParty){
43 if(Verify("2-4-7-6", _sig) &&
44 ripemd160(_secret) == hashedSecret[6] &&
45 block.timestamp < initTimestamp + (graphDiam + 4) *

delta)
46 {
47 unlocked[6] = true;
48 }
49 }
50 }

Fig. 17. Smart Contract for an edge in Solidity (Part 2)..

1 function claim() public{
2 bool lock = false;
3 if(msg.sender == counterParty){
4 for(uint i=0; i<unlocked.length; i++){
5 if(unlocked[i] == false && leaders[i] == true){
6 lock = true;
7 break;
8 }
9 }

10 if(lock == false){
11 counterParty.transfer(value);
12 emptied = true;
13 }
14 }
15 }
16
17 function refund() public isRefundable() {
18 bool lock = false;
19 if(msg.sender == party){
20 for(uint i=0; i<unlocked.length; i++){
21 if(unlocked[i] == false && leaders[i]==true){
22 lock = true;
23 break;
24 }
25 }
26 if(lock && block.timestamp > initTimestamp + (

graphDiam + 1 + 3) * delta){
27 party.transfer(value);
28 emptied = true;
29 }
30 }
31 }
32 }

Fig. 18. Smart Contract for an edge in Solidity (Part 3).

