
Qualifier Type Inference

We present the full qualifier inference system in this section.
Our system extends the flow-sensitive analysis of Foster et al.
[1]. In particular, we consider pair types (and more generally
records) and present their corresponding type inference rules.
Providing separate qualifiers for the elements of pairs is
important in our problem domain, as records (C structs)
are used extensively in the Linux kernel. More importantly,
pointers to records are often passed between functions and
whether a field of a record is or is not initialized is independent
of the other fields of the record. We present a type qualifier
inference system to infer a qualifier (either init or uninit) for
each expression of the program.

A. Syntax

Our qualifier inference is performed after alias analysis. The
alias analysis results are used to decorate aliased references with
the same abstract locations ρ. This can be the line number of
an object allocation statement. In the input programs, reference
creation expressions are decorated with abstract locations and
functions are decorated with effects (i.e., the set of abstract
locations that they access). The abstract syntax is defined as
follows:

e := x | n | λL x: t. e | e1 e2 | refρ e | !e
| e1 := e2 | 〈e1, e2〉 | fst(e) | snd(e)
| fst(e1) := e2 | snd(e1) := e2 |
| assert(e,Q) | check(e,Q)

t := α | int | ref (ρ) | t→L t′ | 〈t1, t2〉
L := {ρ, .., ρ}

An expression e can be a variable x, a constant integer n, a
function λL x: t. e with argument x of type t, effect set L and
body e. The effect set L is the set of abstract locations ρ that
the function accesses. A type t is either a type variable α, an
integer type int , a reference ref (ρ) (to the abstract location
ρ), a function type t→L t′ (that is decorated with its effects
L) or a pair type 〈t1, t2〉. The analysis will involve a store
C that maps abstract locations ρ to types. The expression
e1 e2 is the application of function e1 to argument e2. The
reference creation expression refρ e (decorated with the abstract
location ρ) allocates memory with the value e. The expression
!e dereferences the reference e. The expression e1 := e2
assigns the value of e2 to the location e1 points to. The
expression 〈e1, e2〉 is the pair of e1 and e2. The expressions
fst(e) and snd(e) are the first and second elements of the pair e
respectively. The expressions fst(e1) := e2 and snd(e1) := e2
assign the value of e2 to the first element and second elements
of the location e1 points to respectively.

We use explicit qualifiers to both annotate and check the
initialization status of expressions. The expression assert(e,Q)

annotates the expression e with the qualifier Q. The expression
check(e,Q) requires the top-level qualifier of e to be at most Q.
We automatically insert the check expressions through a simple
program transformation. Specifically, we consider two types of
use as security critical: pointer dereferences and conditional
branches. To detect UBI, we insert a check(e, init) statement
before every statement where e is dereferenced or is used as
the predicate of a conditional branch.

B. Types and Type Stores

We now define the qualified types.

τ := Q σ
Q := κ | init | uninit
σ := int | ref (ρ) | (C, τ)→ (C ′, τ ′) | 〈τ1, τ2〉
C := ε | Alloc(C, ρ) | Assign(C, ρ: τ)
| Merge(C,C ′, L) | Filter(C,L)

η := 0 | 1 | ω

The qualified types τ can have qualifiers at different levels.
Q can be a qualifier variable κ or a constant qualifier init
or uninit. The flow-sensitive analysis associates a ground
store C to each program point that is a vector that associates
abstract locations to qualified types. Thus, function types are
now extended to (C, τ)→ (C ′, τ ′) where C is the store that
the function is invoked in and C ′ is the store when the function
returns.

Each location in a store C also has an associated linearity
η that can take three values: 0 for unallocated locations,
1 for linear locations, and ω for non-linear locations. An
abstract location is linear if the type system can prove that it
corresponds to a single concrete location in every execution. An
update that changes the qualifier of a location is called a strong
update; otherwise, it is called a weak update. Strong updates
can be applied to only linear locations. The three linearities
form a lattice 0 < 1 < ω. Addition on linearities is as follows:
0 + x = x, 1 + 1 = ω, and ω + x = ω. The type inference
system tracks the linearity of locations to allow strong updates
for only the linear locations.

Since a store C maps from each abstract location ρi to a
type τi and a linearity ηi, we write C(ρ) as the type of ρ
in C and Clin(ρ) as the linearity of ρ in C. Store variables
are denoted as ε. We use the following store constructors to
represent the store after an expression as a function of the store
before it. Alloc(C, ρ) returns the same store as C except for
the location ρ. Allocating ρ does not affect the types in the
store; however, as ρ is allocated once more, the linearity of ρ
is increased by one. Merge(C,C ′, L) returns the combination
of stores C and C ′; for a location ρ, if ρ ∈ L, then its type and
linearity are taken from C, otherwise from C ′. Filter(C,L)

Alloc(C, ρ′)(ρ) =C(ρ)

Alloc(C, ρ′)lin(ρ) =

{
1 + Clin(ρ) if ρ = ρ′

C(ρ) otherwise

Merge(C,C′, L)(ρ) =

{
C(ρ) if ρ ∈ L
C(ρ′) otherwise

Merge(C,C′, L)lin(ρ) =

{
Clin(ρ) if ρ ∈ L
C′

lin(ρ) otherwise
Filter(C,L)(ρ) =C(ρ) ρ ∈ L

Filter(C,L)lin(ρ) =

{
Clin(ρ) if ρ ∈ L
0 otherwise

Assign(C, ρ′: τ)(ρ) =

{
τ ′ where τ � τ ′ if ρ = ρ′ ∧ Clin(ρ) 6= ω
τ t C(ρ) if ρ = ρ′ ∧ Clin(ρ) = ω
C(ρ) otherwise

Assign(C, ρ′ : τ)lin(ρ)=Clin(ρ)

restricts the domain of C to L. Assign(C, ρ: τ) overrides C
by mapping ρ to a type τ ′ such that τ � τ ′. The condition
τ � τ ′ allows assigning a subtype τ of resulting type τ ′ to ρ.
If ρ is linear then its type in Assign(C, ρ : τ) is τ ′; otherwise
its type is conservatively the least-upper bound of τ and its
previous type C(ρ).

The type inference system generates subtyping constraints
between stores. We define store subtyping in Figure 1.

INT�
Q � Q′

Q int � Q′ int

REF�
Q � Q′

Q ref (ρ) � Q′ ref (ρ)
FUN�
Q � Q′ τ2 � τ1 τ ′1 � τ ′2 C2 � C1 C′1 � C′2

Q (C1, τ1)→L (C′1, τ
′
1) � Q′ (C2, τ2)→L (C′2, τ

′
2)

STORE�
τi � τ ′i ηi � η′i i = 1..n

{ρη11 : τ1, ..., ρ
ηn
n : τ1} � {ρ

η′1
1 : τ ′1, ..., ρ

η′n
1 : τ ′n}

PAIR�
Q � Q′ τ1 � τ ′1 τ1 � τ ′2

Q 〈τ1, τ2〉 � Q′ 〈τ ′1, τ ′2〉
Fig. 1: Store subtyping.

Constraints between stores yield constraints between lineari-
ties and types, which in turn yield constraints between qualifiers
and linearities. The rule INT� requires a corresponding
subtyping relation for the qualifiers of the type int . The rule
REF� requires the same subtyping relation between qualifiers
and further, the equality of the two locations. The rule FUN�
requires the subtyping relation between the top-level qualifiers,
and contra-variance for the argument and input store and co-
variance for the return value and output store. The rule STORE�
requires both subtyping and stronger linearity for corresponding
locations. The rule PAIR� requires subtyping between the top-
level qualifiers, and also subtyping for corresponding elements
of the two pair type.

C. Type Inference System

We present the complete rules of the type inference system
in Figure 2. The judgments are of the form Γ, C ` e: τ, C ′
that is read as in type environment Γ and store C, evaluating
e yields a result of type τ and a new store C ′. The rules VAR
and INT are standard. The rule REF creates a location and
adds it to the store. The type τ of the expression e that is
stored in the new location is constrained to be a subtype of the

type of ρ in the post-store. The qualifier of the new location
is initialized. The rule DEREF checks that the dereferenced
expression is of a reference type ref (ρ) and retrieves the type
of the value stored at the location ρ from the store. Qualifiers
are checked by the single check expression described before
(and not when references are dereferenced). The rule ASSIGN
checks that the left-hand side expression is of a reference type
and checks that the type of the right-hand side is a subtype of
the type of the value that the reference stores. It also checks
that the right-hand side can be assigned to the left-hand side
considering the linearity and type of the left-hand side reference
and the type of the right-hand side expression (as described in
the definition of Assign above). The rule LAM type-checks the
function body e in a fresh initial store ε and with the parameter
bound to a type with fresh qualifier variables. The resulting
post-store of the function body C ′ should be a subtype of
the post-store of the function ε′. This step essentially creates
a function summary, which has been explained in the paper
section 4.3. We use the function sp(t) to decorate a standard
type t with fresh qualifier and store variables:

sp(α) = κ α κ fresh
sp(int) = κ int κ fresh

sp(ref (ρ)) = κ ref (ρ) κ fresh
sp(t→L t′) = κ (ε, sp(t))→L (ε′, sp(t′)) κ, ε, ε′ fresh
sp(〈t, t′〉) = κ 〈sp(t), sp(t′)〉 κ fresh

The rule APP checks that the type of e2 is a subtype
of the parameter type of e1, Further, with the condition
Filter(C,L) � ε, it checks that state of the locations that
e1 uses (captured by its effect set L) in the post-store C ′′ of e2
are compatible with the store ε that the function e1 expects. The
resulting store Merge(ε′, C ′′, L) joins the store C ′′ before the
function call with the result store ε′ of the function. Filtering
and merging according to the effect set provides polymorphism
as functions do not affect the locations they do not use. The
rule ASSERT adds a qualifier annotation to the program, and
the rule CHECK checks that the top-level qualifier Q′ of e is
more specific or equal to the the expected qualifier Q.

The rule PAIR type-checks the expressions e1 and e2 in
order and results in an initialized pair type. The rule FST
checks that the expression e is of a pair type and types fst(e)
as the first element of the pair type. The qualifier Q of the pair
type is unconstrained; qualifiers are only checked by the check
expressions presented above. The rule FSTASSIGN checks that
the expression e1 is of a reference type ref (ρ), the post-store
C ′′ (after checking e1 and e2) maps the reference ρ to a
supertype of a pair type κ 〈α1, α2〉, and the type τ1 of e2 is a
subtype of α1. The resulting store remaps ρ to a new pair type
where the first element is the type of τ1 and the second element
is unchanged. More precisely, as described in the definition of
Assign above, the Assign store updates ρ to the new pair type
if ρ is linear; otherwise updates ρ to the least upper bound
of the old and new pair types. We elide the rules for snd that
are similar to the rules for fst. The constraints generated by
the new rules PAIR, FST and FSTASSIGN are type and store
subtyping constraints that the previous rules generated too.

VAR
x ∈ dom(Γ)

Γ, C ` x : Γ(x), C

INT
κ fresh

Γ, C ` n : κ int, C

REF
Γ, C ` e: τ, C′ τ � C′(ρ)

Γ, C ` refρe:κ ref (ρ), Alloc(C′, ρ)

DEREF
Γ, C ` e : Q ref (ρ), C′

Γ, C ` !e : C′(ρ), C′

ASSIGN
Γ, C ` e1:Q ref (ρ), C′ Γ, C′ ` e2: τ, C′′ τ � C′′(ρ)

Γ, C ` e1 := e2: τ, Assign(C′′, ρ: τ)

LAM
τ = sp(t) ε, ε′, κ fresh Γ[x 7→ τ], ε ` e : τ ′, C′ C′ � ε′

Γ, C ` λLx : t.e : κ(ε, τ)→L (ε′, τ ′), C

APP
Γ, C ` e1 : Q(ε, τ)→L (ε′, τ ′), C′ Γ, C′ ` e2 : τ2, C

′′ τ2 � τ F ilter(C′′, L) � ε
Γ, C ` e1 e2 : τ ′, Merge(ε′, C′′, L)

ASSERT
Γ, C ` e : Q′ σ,C′ Q′ � Q
Γ, C ` assert(e,Q) : Q σ,C′

CHECK
Γ, C ` e : Q′ σ,C′ Q′ � Q
Γ, C ` check(e,Q) : Q′ σ,C′

PAIR
Γ, C ` e1: τ1, C

′ Γ, C′ ` e2: τ2, C
′′

Γ, C ` 〈e1, e2〉:κ 〈τ1, τ2〉, C′′

FST
Γ, C ` e:Q 〈τ1, τ2〉, C′

Γ, C ` fst(e): τ1, C
′

FSTASSIGN
Γ, C ` e1:Q ref (ρ), C′ Γ, C′ ` e2: τ1, C

′′ κ 〈α1, α2〉 � C′′(ρ) τ1 � α1 κ, α1, α2 fresh
Γ, C ` fst(e1) := e2: τ1, Assign(C′′, ρ: 〈τ1, snd(C′′(ρ))〉)

Fig. 2: Type inference system.

Further, by the rule PAIR�, the subtyping constraints between
pair types are decomposed into subtyping constraints between
qualifier and simpler types that are inductively decomposed
into constraints between qualifiers and linearities. Thus, the
added inference rules do not increase the complexity of the
generated constraints.

D. Soundness

The type inference has the following soundness property.
Consider a given expression e. Consider the set of conditions C
generated during type inference for e in the empty environment
and empty store i.e., the constraints generated to derive the
judgment ∅, ∅ ` e: τ, C ′ for some type τ and store C ′. A
solution S for the constraints C is a mapping from store
variables ε to concrete stores, from qualifier variables κ to
concrete qualifiers, and from type variables α to concrete

types such that S satisfies the constraints C. In other words,
substituting each variable in the constraints C with its mapping
in S results in valid constraints. If there is a solution S for the
constraints C then the evaluation of e cannot get stuck. The
evaluation of an expression can get stuck if a non-reference
value is dereferenced, a value is assigned to a non-reference
value, a value of a mismatching type is assigned to a reference
to a location of a specific type, the parameter of a function
is instantiated with an argument of a mismatched type, and
more importantly a qualifier check or assertion fails, i.e., the
qualifier of a value is not a subtype of the expected qualifier.

REFERENCES

[1] Foster, J.S., Terauchi, T. and Aiken, A., 2002, May. Flow-sensitive type
qualifiers. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation (pp. 1-12).

	Syntax
	Types and Type Stores
	Type Inference System
	Soundness
	References

