
UNIVERSITY OF CALIFORNIA
Los Angeles

On the Correctness of Transactional Memory Algorithms

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Mohsen Lesani

2014

R© Copyright by
Mohsen Lesani

2014

ABSTRACT OF THE DISSERTATION

On the Correctness of Transactional Memory Algorithms

by

Mohsen Lesani
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2014

Professor Jens Palsberg, Chair

Transactional Memory (TM) provides programmers with a high-level and composable concurrency
control abstraction. The correct execution of client programs using TM is directly dependent on the
correctness of the TM algorithms. In return for the simpler programming model, designing a correct
TM algorithm is an art. This dissertation contributes to the specification, safety criterion, testing
and verification of TM algorithms. In particular, it presents techniques to prove the correctness or
incorrectness of TM algorithms.

We introduce a language for architecture-independent specification of synchronization algorithms.
An algorithm specification captures two abstract properties of the algorithm namely the type of the
used synchronization objects and the pairs of method calls that should preserve their program order
in the relaxed execution.

Decomposition of the correctness condition supports modular and scalable verification. We in-
troduce the markability correctness condition as the conjunction of three intuitive invariants: write-
observation, read-preservation and real-time-preservation. We prove the equivalence of markability
and opacity correctness conditions.

We identify two pitfalls that lead to violation of opacity: the write-skew and write-exposure
anomalies. We present a constraint-based testing technique and an automatic tool called Samand
that finds traces of such bug patterns. Using Samand, we show that the DSTM and McRT algorithms
suffer from the write-skew and write-exposure anomalies.

We present a sound program logic called synchronization object logic (SOL) that supports rea-
soning about the execution order and linearization order. It provides inference rules that axiomatize
the properties and the interdependence of these orders and also the properties of common synchro-
nization object types. We show that derivation of markability in SOL is a sound syntactic proof
technique for opacity. We use SOL to prove the markability and hence opacity of the TL2 algorithm
in PVS.

ii

The dissertation of Mohsen Lesani is approved.

Todd Millstein
Glenn Reinman

Hans Boehm
Edward Effros

Jens Palsberg, Committee Chair

University of California, Los Angeles
2014

iii

To Niloufar, Shahnaz and Mehdi

iv

Contents

List of Figures vii

1 Introduction 1

2 Synchronization Object Language 4
2.1 Introduction . 4
2.2 Syntax . 6

2.2.1 Specification . 6
2.2.2 TM Algorithm Specification . 9
2.2.3 Extended Syntax . 10
2.2.4 Example Specifications . 13

2.3 Semantics . 29
2.3.1 Execution History . 29
2.3.2 Synchronization Object Types . 31
2.3.3 History Semantics . 44

3 TM Correctness 48
3.1 Introduction . 48
3.2 Opacity . 49
3.3 Markability . 51

3.3.1 Write-observation and Read-preservation . 51
3.3.2 Marking TL2 . 53
3.3.3 The Marking Theorem . 54

4 Testing TM Algorithms 58
4.1 Introduction . 58
4.2 Opacity Bug Patterns . 59
4.3 Automatic Bug Finding . 60
4.4 Experiments . 65

5 Synchronization Object Program Logic 67
5.1 Introduction . 67
5.2 Simple Example . 68

5.2.1 Algorithm Specification . 68
5.2.2 Program Logic . 69

v

5.2.3 Deduction . 72
5.3 Assertion Language . 76
5.4 Assertion Semantics . 77
5.5 Inference Rules . 78

5.5.1 Classical First-order Logic Inference Rules . 78
5.5.2 Structure Inference Rules . 81
5.5.3 Basic Inference Rules . 83
5.5.4 Synchronization Object Inference Rules . 85

5.6 Soundness . 96
5.7 Dekker Mutual Exclusion . 97

6 Syntactic TM Correctness 102
6.1 Client Transactions . 103
6.2 Markability . 104

7 Verification of TM Algorithms 106
7.1 Marking TL2 . 106
7.2 Marking DSTM (visible reads) . 107
7.3 Marking NORec . 109

8 Related Works 110
8.1 Verification of Transactional Memory . 110
8.2 Concurrent Program Logics . 113

9 Conclusions and Future Works 116

10 Appendix 117
10.1 Synchronization Object Language . 117

10.1.1 Specification . 117
10.1.2 Semantics . 118

10.2 TM Correctness . 123
10.2.1 The Marking Theorem . 123
10.2.2 Marking TL2 . 138

10.3 Testing TM Algorithms . 157
10.3.1 Example: Dekker Mutual Exclusion . 157
10.3.2 Language . 159
10.3.3 TM Algorithms in Samand . 161

10.4 Synchronization Object Program Logic . 170
10.4.1 Soundness . 170
10.4.2 Derived Rules . 186

10.5 Syntactic TM Correctness . 188
10.5.1 Transactions . 188
10.5.2 Markability . 190

10.6 Related Works . 192

11 Bibliography 193

vi

List of Figures

2.1 πDekker Dekker Algorithm Specification . 13
2.2 πTL2 TL2 Algorithm Specification . 15
2.3 πTL2V ariant TL2 Variant Algorithm Specification . 17
2.4 πDSTM DSTM Algorithm Specification . 19
2.5 πDSTMV is DSTM (visible reads) Algorithm Specification 21
2.6 πMcRT McRT Algorithm Specification . 23
2.7 NORec NORec Algorithm Specification . 24
2.8 TLRW Algorithm (objects) . 25
2.9 TLRW Algorithm (read) . 26
2.10 TLRW Algorithm (write) . 27
2.11 TLRW Algorithm (abort and commit) . 28
2.12 History Semantics H(π) of a specification π = (T ,D,P) 45

3.1 F inalStateOpaque . 50
3.2 Illustrations of Write-observation and Read-preservation 51
3.3 TL2 Read-Preservation Example . 53
3.4 The set of local and global reads and writes . 55
3.5 F inalStateMarkable . 56

4.1 Counterexamples . 66

5.1 Example Specification π . 68
5.2 Structure Inference Rules. 69
5.3 Basic inference rules. 70
5.4 Synchronization Object Inference Rules. 71
5.5 Classical Inference Rules . 79
5.6 Derived Classical Inference Rules . 79
5.7 Equivalence and Arithmetic Rules . 80
5.8 Derived Equivalence and Arithmetic Rules . 80
5.9 Structure Inference Rules. All of the rules have the side condition π = (T ,D,P) . . . 82
5.10 Derived Structure Inference Rules . 83
5.11 Basic Inference Rules . 84
5.12 Derived Basic Inference Rules . 84
5.13 Register Inference Rules. 86
5.14 Derived Register Inference Rules . 87

vii

5.15 CAS Register Inference Rules. 89
5.16 Derived CAS Register Inference Rules . 89
5.17 Preliminary definitions for Lock and TryLock Inference Rules. 90
5.18 Lock and TryLock Inference Rules. 91
5.19 SCounter Rules . 92
5.20 Derived SCounter Rules . 92
5.21 Set and Map Inference Rules . 94
5.22 Derived Set and Map Inference Rules . 95

6.1 Reads and Writes . 104
6.2 isMarking Assertions . 105

7.1 DSTM (visible reads) Preserving Reads . 109

10.1 Case T ∈ Aborted(H) ∧ R < T ′ < T . 139
10.2 Case T ∈ Aborted(H) ∧ T < T ′ < R . 141
10.3 Case T ∈ Committed(H) ∧ R < T ′ < T . 143
10.4 Case T ∈ Committed(H) ∧ T < T ′ < R . 145
10.5 Updating Version Registers . 147
10.6 R04 is race-free . 150
10.7 reg[i] is sequentially-written . 151
10.8 Effect-order of pre-accessors . 153
10.9 Dekker Algorithm Specification . 157
10.10Bug Trace for Incorrect If Condition . 158
10.11Bug Trace for Removed Program Order . 159
10.12Dekker Random Execution . 159
10.13Specification of DSTM . 192
10.14Specification of TL2 . 192

viii

List of Theorems

Theorem 1, Page 57 (Marking): Opacity is equivalent to Markability.

Theorem 2, Page 59 (Bug Patterns): Write-skew and write-exposure anomalies violate opacity.

Theorem 3, Page 96 (SOL Soundness): The synchronization object program logic derives valid con-
clusions from valid premises.

Theorem 4, Page 97 (Dekker Mutual exclusion): The Dekker algorithm provides mutual exclusion.

Theorem 5, Page 104 (Markability Soundness): A TM algorithm is opaque if the markability assertion
is derivable for its specification.

Theorem 6, Page 107 (Opacity of TL2): The TL2 algorithm is opaque.

ix

Publications during the PhD studies:
• Automatic Atomicity Verification for Clients of Concurrent Data Structures

Mohsen Lesani, Todd Millstein, Jens Palsberg
CAV’14 (Computer Aided Verification Conference 2014)
• Semantics-preserving Sharing Actors

Mohsen Lesani, Antonio Lain
AGERE’13 (Actors, Agents, and Decentralized Control Workshop 2013)
• Specifying Transactional Memories with Nontransactional Operations

Mohsen Lesani, Victor Luchangco, Mark Moir
WTTM’13 (Theory of Transactional Memory Workshop 2013)
• Write-observation and Read-preservation TM Correctness Invariants

Mohsen Lesani, Jens Palsberg
WTTM’13 (Theory of Transactional Memory Workshop 2013)
• MrCrypt: Static Analysis for Secure Cloud Computations

Sai Deep Tetali, Mohsen Lesani, Rupak Majumdar, Todd Millstein
OOPSLA’13 (Object-Oriented Programming, Systems, Languages & Applications Conference
2013)
• Proving Non-opacity

Mohsen Lesani, Jens Palsberg
DISC’13 (DIStributed Computing Conference 2013 - LNCS 8205, Transact’13 (Transactional
Computing 2013)
• A Framework for Formally Verifying Software Transactional Memory Algorithms

Mohsen Lesani, Victor Luchangco, Mark Moir
CONCUR’12 (Concurrency Theory Conference 2013)
• Putting Opacity in its Place

Mohsen Lesani, Victor Luchangco and Mark Moir
WTTM’12 (Theory of Transactional Memory Workshop 2012)
• Communicating Memory Transactions

Mohsen Lesani, Jens Palsberg
PPoPP11 (Principles and Practice of Parallel Programming Conference 2011)

x

Chapter 1

Introduction

Transactional Memory (TM) [41, 70] provides programmers with a high level concurrency control
abstraction. Programmers can simply declare certain blocks of code as transactions and the TM
runtime guarantees that transactions execute in isolation. The use of TM provides atomicity, deadlock
freedom, and composability [35], and increases programmer productivity compared to use of locks [64,
67]. Researchers have developed formal semantics [1, 57, 47] and a wide variety of implementations of
the TM interface in software [39, 38, 18, 68, 19], hardware [32, 3], and software/hardware hybrids [5,
55, 15]. Recently, industry is adopting TM. IBM supports TM in its Blue Gene/Q processor [33], and
Intel supports transactional synchronization primitives in its new processor microarchitecture Haswell
[14]. The C++ transactional memory study group (SG5) is introducing transactional constructs to
the C++ language.

The TM runtime takes the responsibility of managing the consistency of the shared state. There-
fore, the correct execution of client programs using the TM interface is dependent on the correctness
of TM algorithms. In return for the simpler programming model, designing a correct TM algorithm
is an art. Algorithm designers employ different techniques to provide the TM interface efficiently.
They interleave transactions as much as possible, while guaranteeing non-interleaving semantics.
Thus, subtle but fast algorithms are favored over simpler ones. The subtlety of the algorithms
makes them prone to intricate bugs. Thus, the correctness of TM algorithms is both a central and a
formidable problem. This dissertation presents techniques to prove the correctness or incorrectness
of TM algorithms. In particular, it contributes to the specification, safety condition, testing and
verification of TM algorithms.

Specification. Precise specification of algorithms is the first step towards testing and verification
of them. The current literature on synchronization and particularly TM algorithms usually presents
algorithms in prose or architecture-dependent code. The effect can be unfortunate: under- and over-
specification of the algorithm and therefore misunderstanding, irreproducibility and unportability.

We introduce a language for architecture-independent specification of synchronization algorithms.
An algorithm specification captures two abstract properties of the algorithm namely the type of the
used synchronization objects and the required program orders. The language supports the following
common synchronization object types: basic register, atomic register, atomic cas register, lock, try-
lock, strong counter, basic set and basic map. Each method definition involves the declaration of the
pairs of method calls whose order in the program should be preserved in the relaxed execution. The
specifications can be studied, and verified once and for all, independently of the implementation of
the synchronization objects and the memory models of the compiler and the architecture. Compilers

1

can optimize implementations of the synchronization object types and also the number, type and
position of memory fences. We specify several well-known TM algorithms in the language.

We define the semantics of specifications as a set of execution histories. We define the denotational
semantics of a specification as a set of constraints that enforce both the structure of the program and
the safety of the used objects. The semantics is compositional, models true concurrency and allows
relaxed execution.

Safety. A TM algorithm should guarantee that every concurrent execution of an arbitrary set of
client transactions is indistinguishable from a sequential execution of them. Safety conditions for TM
such as opacity [28], VWC [44], TMS1 and TMS2 [22] define the indistinguishably criterion and the
set of correct histories. Lesani et al. [51] proved that opacity is stronger than TMS1 and weaker than
TMS2. Verification of TM algorithms is a formidable problem in part because the target correctness
criterion is a monolithic complicated condition. Is there an intuitive decomposition of TM correctness
conditions? What are the separate invariants that the TM designers should maintain? Decomposition
of the correctness condition informs designers by showcasing different aspects of correctness and helps
them concentrate on maintaining one aspect at a time. In addition, separation has obvious benefits of
modularity and scalability for verification. In an early work, Tasiran [73] presented a decomposition
of the correctness condition for a specific class of algorithms.

We present intuitive invariants for the correctness of TM algorithms. We say that a history
is markable if there is a specific ordering relation called marking such that certain invariants are
satisfied. We prove the equivalence of markability and opacity. At a high level, the first invariant
called write-observation requires that each read operation returns the most current value and the
second invariant called read-preservation requires that the location which is read is not overwritten
in a certain interval.

Testing. Algorithm design is an iterative process of trying alternatives, fixing issues and improv-
ing the performance. A testing tool can assist algorithm designers during both the design and the
maintenance of the algorithm. Manovit et al. [53] and Lourenco et al. [52] applied random testing to
TM algorithms.

We identify the write-skew and write-exposure anomalies as two pitfalls that lead to non-opacity.
We present a tool called Samand that automatically finds traces of such bug patterns. The tool inputs
a TM algorithm, a program and a test assertion. The test assertion can be a partial correctness
condition such as negation of a bug pattern. If there is an execution of the test program that violates
the test assertion, Samand outputs the trace of a violating execution. Samand translates concurrent
execution to constraints and employs Z3 SMT solver [17] to solve the constraints. Using Samand,
we show that DSTM [39] suffers from the write-skew anomaly and McRT [68] suffers from the write-
exposure anomaly. These results may be surprising because previous work [31, 30, 24] considered
abstract version of DSTM and McRT and proved their correctness.

Verification. Verification of TM algorithms has been a topic of recent attention. Researchers
have employed model checking, automatic invariant generation and theorem proving to verify the
correctness of TM algorithms. Model checkers from Cohen et al. [11, 12], and Guerraoui et al.
[29, 31, 30] were the pioneering approach to verification of TM. Subsequently, the same approach was
taken by O’Leary et al. [61] and Baek et al. [4]. Model checking can automate the verification process
but is either based on assumed properties about the TM algorithm or only scalable to a finite number
of threads and locations or simplified algorithms. Later, Emmi et al. [24] tried to automatically infer
invariants that are strong enough to entail the correctness criterion. Compliance of the algorithms
with the specification can be easily checked if the proper invariants can be automatically generated.

2

On the other hand, this work reported resorting to simplified algorithms due to scalability issues.
Later, Lesani et al. [50] presented a machine checked theorem proving framework based on I/O-
automata and proved the correctness of NORec TM algorithm [16]. The framework can be employed
to verify realistic algorithms but requires translation of the algorithm to a transition system and
more importantly, the process involves coming up with non-trivial invariants.

Aside from modeling simplified algorithms and limited scalability, all previous works on verifica-
tion of TM algorithms work with semantic models. We believe that studying TM algorithms can
benefit from focusing on the syntactic specification of an algorithm, syntactic description of correct
algorithm, and a deduction mechanism to reason about algorithm correctness using the structure of
the algorithm and the properties of used synchronization objects.

As we review in the related works chapter, the previous works on concurrent program logics
support several forms of local reasoning but do not support assertions for the execution order or
the linearization order of method calls across threads. These assertions are particularly essential for
reasoning about TM algorithms. A concurrent execution of a set of transactions is correct if there is
an indistinguishable sequential order of the transactions. The sequential order is determined by the
execution order or the linearization order of certain method calls in the transactions. We present a
program logic called synchronization object logic (SOL) that supports reasoning about the execution
overlap, execution order and linearization orders of method calls. It provides inference rules that
axiomatize the properties and the interdependence of these orders and also axiomatize the properties
of common synchronization object types. We prove the soundness of the logic. SOL derives valid
conclusions from valid premises.

We define the markability assertions in SOL and prove that a TM algorithm is opaque if mark-
ability can be derived for its specification. Therefore, deriving the markability is a sound syntactic
proof technique for opacity of TM algorithm specifications.

We formalize SOL in PVS [63] and use it to machine-check the markability of the well-known TM
algorithm TL2 [18]. SOL is applicable beyond TM, particularly to algorithms for mutual exclusion.
As evidence, we prove the mutual exclusion property of the Dekker algorithm.

In the following chapters, we first define the specification language. Then, we consider safety
conditions and introduce markability. Then, we present our testing approach based on bug patterns.
Finally, we introduce our logic, present the markability proof technique and use the logic to prove
the markability of TM algorithms.

3

Chapter 2

Synchronization Object Language

2.1 Introduction

Precise specification of algorithms is an important prerequisite to understanding, testing and verifica-
tion of them. The current literature on synchronization algorithms and particularly TM algorithms
usually presents algorithms in architecture-dependent code or prose. The effect can be unfortunate:
under- and over-specification of the algorithm and therefore misunderstanding, irreproducibility and
unportability. We present some instances at the end of this subsection. Separation of specifica-
tion and implementation is a classical design principle. In this chapter, we introduce a language
for architecture-independent specification of synchronization algorithms. The language supports the
common synchronization object types, and allows relaxed execution. We present the syntax and then
the semantic of the language.

Syntax. We introduce a language for the specification of synchronization algorithms. A speci-
fication is comprised of three sections: the typing section, the definitions section, and the program
section. The typing section is the type declarations of the synchronization objects that the algorithm
uses. The definitions section is the definitions of the methods of the algorithm. Each method defini-
tion involves the declaration of pair of method calls whose order in the program should be preserved
in the relaxed execution. The program section defines the parallel program or programs that call the
defined methods.

In particular, the specification captures two abstract properties of the algorithm namely the
type of the base objects and the required orders. A synchronization object type such as atomic
register declares the safety and liveness properties that the objects of the type guarantee. Our
language supports the following synchronization object types: basic register, atomic register, atomic
cas register, lock, try-lock, strong counter, basic set and basic map. The type and its properties are
abstract from the implementations of the type. Similarly, the required program order is abstract
from the memory model or the fences needed to satisfy it. The specifications can be studied, and
verified once and for all, independently of the implementation of the base objects and the memory
models of the compiler and the architecture. Compilers can benefit from optimized implementations
of synchronization object types and optimize the memory layout of the base objects. They can also
optimize the number, type and position of fences to satisfy the program order.

A TM algorithm specification should define the four methods of the TM interface: init, read, write
and commit that initialize the transaction, read from a location, write to a location and attempt to

4

commit the transaction. We consider an arbitrary set of transactions as the client parallel program.
We specify several well-known TM algorithms in the language.

Semantics. We adopt the notion of execution history [40, 28] as the representation of a concurrent
execution. First, we remind execution histories and their operations and relations.

Then, we define synchronization object types. We present the semantics of linearizable and basic
objects as sets of execution histories. We define abstract object types and concrete synchronization
objects. We present the interface and the sequential specification of each abstract object type. For
each synchronization object type, we present lemmas that characterize the properties of its execution
histories.

Based on the above definitions, we define the semantics of specifications as a set of execution
histories. We define the denotational semantics of a specification as a set of constraints that enforce
both the structure of the program and the guarantees of the base objects. The semantics is compo-
sitional i.e. it is abstract from and can be modularly augmented with new object types. It models
true concurrency i.e. it considers a pair of invocation and response events for each method call. It
allows relaxed execution i.e. it supports out-of-order execution of method calls that are not specified
to be ordered.

TM Algorithm Specification Pitfalls. Now, we present some instance of pitfalls in the
specification of TM algorithms that we have encountered in the literature.

The algorithms that are tailored for specific architectures and memory models [18, 68, 19] can
under- and over-specify the algorithm. Some orders of execution that are implicitly provided by one
memory model may need explicit fences in other memory models. Thus, some important orders may
be left unspecified. For example a subtle required order is unspecified in TL2 [18] as noted later [31].
Therefore, porting algorithms can introduce bugs. Similarly, some orders that needed fences in one
memory model may be implicitly provided by another. Extra fences hinder performance.

Striving for efficiency, several objects are packed to or share the same memory location. To avoid
false sharing phenomenon, objects are explicitly padded. The details of object layout can obfuscate
the algorithm intents. As observed by previous work, in the original TL2 paper,“the authors maintain
the version number and the lock bit of every variable in the same memory word” [31], thus, the order
of checking the lock and the version of read locations is ambiguous in the commit procedure. In our
specification, we treat the lock and the version as separate registers and make the orders explicit.

Imprecise specifications lead to irreproducibility. TL2 algorithm [18] and DSTM algorithm [39]
are explained in prose. Therefore, rewritten specifications of it in the literature are inaccurate or
incorrect. For example, there are no visible reads in the DSTM algorithm but the specifications in [31]
and [24] abort the visible readers during the validate command. In [30], DSTM is specified with no
dynamic object allocation while the original algorithm [39] is fundamentally based on the indirection
that is obtained from dynamic creation of locator objects. In addition, there is no distinction between
read and write operations in the specification. The read operation simply calls the write operation,
thus a read acquires the location similar to a write. This is while readers do not acquire the location
in the original algorithm. In the specification, the commit operation writes to every location that is
written to during the transaction. This is while commitment is done by a single compare-and-swap
in the original algorithm. As another example, TL2 algorithm [18] is based on version numbers while
the specifications of TL2 in [31] and [24] replace the version number concept with the unprecedented
notion of modified sets. Furthermore, there has been a typo of writing os instead of ls in the TL2
transition system in [31]. The follow up work [24] that rewrites this specification, incorrectly fixed os
to ws and thus verified a different algorithm. In [30], the check that the version of the read location

5

is less than the read version is replaced with an equality check. This restricts the concurrency of the
algorithm. A local array lver is introduced that is written during the read operations and checked
during the commit procedure. This local array does not exist in the original algorithm.

2.2 Syntax

Now, we introduce the syntax of the language. We define the structure of a specification and then
define a TM algorithm specification as a specific specification. To have more concise specifications,
we extend the syntax with syntactic sugar. We present the specifications of Dekker mutual exclusion
algorithm and TL2, TL2 variant, DSTM, DSTM (visible reads), and McRT TM algorithms.

2.2.1 Specification

A specification π is a triple (T ,D,P) where T is the typing of base objects, D is the method
definitions, and P is the parallel program calling the defined methods. Let Π denote the set of
specifications. We will define each of the components in turn.

Typing. We define the set of object types, as follows. An object type is either a scalar or an
array type. In an array type st[], st is the scalar type of elements. A scalar type is either a basic,
sequentially-consistent or linearizable type.

ot ∈ OT ::= st | st[] Object Type
st ∈ ST ::= bt | lt Scalar Type
bt ∈ BT ::= {BasicRegister,BasicSet,BasicMap} Basic Type

ct ∈ SCT ::= {SCRegister} Sequentially Consistent Type
lt ∈ LT ::= {AtomicRegister,AtomicCASRegister, Linearizable Type

Lock,TryLock,SCounter,SeqLock}

Let Φ denote the set of base object names φ.

φ ∈ Φ ::= {lock, reg, . . .} Base Object Name

The typing T is a mapping from base object names to object types. A comma-separated list of
elements e is denoted as e∗.

T ::= (φ : ot)∗ Typing

A thread-local object is an array that is indexed by the current thread identifier. A thread-local
type is of the form ThreadLocal st and is a syntactic sugar for st[].

Definitions and Program. We define the set of definitions D and programs P . Let us define
the set of values and variables first.

6

i, v ∈ Val ::= {1, 2, . . .} ∪ {true, false} Value
x ∈ ProgVar ::= {i, r, . . .} Variable

u ∈ U ::= x | v Variable or Value
T ∈ Thread ::= {1, 2, . . .} Thread Value

t ∈ ThreadVar ::= {t1, t2, . . .} Thread Variable
τ ::= t | T Thread Variable or Value

n ∈ N ::= {read, unlock, . . .} Method Name

The set of objects are defined as follows.

o ∈ O ::= φ | φ[u] Shared Object
θ ∈ Θ ::= o | this Object

φ[u] denotes uth element of array φ.
Let Label denote the set of labels c.

c ∈ Label ::= {doRead, doUnlock, . . .} Label

The set of definitions and programs are defined as follows:

D ∈ Defs ::= d∗ Definitions
d ∈ Def ::= def nt(x

∗) s, r Method Definition
s ∈ Stmt ::= s, s | if b s else s | q | x = u+ u Statement

b ∈ BCond ::= u = u | u = u+ u | u < u | ¬b | b ∧ b Condition
q ∈ Call ::= c . x = o.nτ (u

∗) | c . return u Call
r ∈ Order ::= ‘{’ (c→ c)∗ ‘}’ Order
P ∈ Prog ::= p0, (p1‖p2‖...‖pn) Parallel Program
p ∈ TProg ::= p; p | if b p else p | c . x = nτ (u

∗) Sequential Program

The definition sectionD is a sequence of method definitions d. The method definition def nt(x
∗) s, r

defines a method named n with parameters t and x∗ with the body s and the declared order r. The
parameter t is the current thread identifier. It is written as a subscript as it is sometimes elided
when it is not needed or is evident from the context. A statement s is either a sequence, a condi-
tional, a base object method call, a return statement or a math operation. The statements s1, s2 and
if b s else s are sequencing and conditional statements. A condition b is a boolean expression on
variables and values. In a method call c . x = o.nτ (u

∗), c is the label, n is the method name, o is the
receiving object, τ the thread argument, u∗ are the data arguments and x is the return variable. In a
return statement c. return u, c is the label and u is the returned value or variable. The semantics of
the language will allow out-of-order execution of method calls. Any two labels that are left unordered
by the specification may be reordered in the execution. Data and control dependencies in s impose
execution order between statements. (Data and control dependencies are standard and defined more
precisely in section 10.1.1.) The programmer can explicitly require additional orders for the body s
of a defined method as the declared order r. The declared program order r is a binary relation on
the set of labels of s. The orders imposed by locks can be declared in r.

The program section P is of the form p0, (p1‖p2‖...‖pn) where p0 is the initialization program, and
p1, p2, . . . pn are the parallel programs. A sequential program p is either a sequence, a conditional or

7

a method call. In a method call c . x = nτ (u
∗), c is the label, n is the method name (that is defined

in the method definitions), τ is the current thread argument, u∗ are the data arguments and x is
the return variable. The object this is the object of the current specification, is the default receiver
object and so is elided.

Well-formedness. Consider a specification π = (T ,D,P) whereD = d∗ and P = p0, (p1‖p2‖...‖pn).
The specification satisfies the following well-formedness conditions that can be statically enforced.
(0) The base name of every object o in P is typed in T . (1) Every object is initialized in the execu-
tion of p0. (2) Every branch of every method definition ends in a return statement. (3) The thread
argument of each method call is the identifier of the thread in which it is called. (4) The array access
index of every thread-local object is the current thread identifier. (5) Labels are unique. The names
of the defined methods are unique. (6) Every variable is (statically) bound only once in the program.
(7) For each method definition, the transitive closure of its data and control dependencies and the
declared orders is acyclic.

Derived Specification. We define the function basetype : OT 7→ ST that maps a type to its base
scalar type as follows: basetype(st) = st, and basetype(st[]) = st. We define the function base name
basename : Θ 7→ Φ that maps an object name to its base name as follows: basename(this) = this,
basename(φ) = φ, basename(φ[u]) = φ. Similarly, we define the function index index : Θ 7→ U that
maps an object name to its index as follows: index(this) = 0, index(φ) = 0, index(φ[u]) = u.

Consider a specification π = (T ,D,P) where D = d∗ and P = p0, (p1‖p2‖...‖pn). We define the
function Tbase as follows: Tbase(o) = basetype(T (basename(o))). The names of methods defined in
a program are unique. Thus, we define par1π : N 7→ ProgVar that maps method names to their
first parameter. Similarly, param2π and tparπ are defined that map method names to their second
parameter and current thread parameter. As the labels of a program are unique, we define the
function objπ : Label 7→ Θ that maps the label of a method call to it receiver object. Similarly,
the functions indexπ, nameπ, threadπ, arg1π, arg2π and retvπ map the label of a method call to
the array index of the receiver object, the name of the method, the current thread argument, the
first and second argument and the return variable of the method call. Let the execution condition
of a statement be the conjunction of all of its enclosing if or else conditions. Let the function
condπ : Label 7→ BCond map the label of method calls to their execution condition. For conciseness,
we treat return statements with the same notation as method calls. For a return statement, we
let nameπ and arg1π map to return and the argument of the return statement respectively. For
example, consider the following method definition.

def nt(i, x)

if (i > 1)

if (x < 2)

c1 . y = r[i].writet(x),

c2 . return 1

An if-then statement is a syntactic sugar for an if-then-else statement where the else branch is a
call on a dummy object. For example above, we have tparπ(n) = t, par1π(n) = i, param2π(n) = x,
objπ(c1) = r[i], indexπ(c1) = i, nameπ(c1) = write, threadπ(c1) = t, arg1π(c1) = x, retvπ(c1) = y,
condπ(c1) = (i > 1) ∧ (x < 2), nameπ(c2) = return and arg1π(c2) = 1.

8

Let Labels(s) denote the set of labels in s. Let Labelsπ(n) denote the set of labels in the body
of n. Let Returnsπ(n) denote the set of labels of return statements in the body of n. Let Labels(P)
denote the set of labels in P . Let Labels(π) denote the set of labels in π. Let Callsπ(φ, n) denote
the set of labels of call statements where the method name n is called on the base object name φ.
Let PreReturnsπ(c) denote the set of labels of the return statements before the statement labeled c
in π. (The sets Callsπ(φ, n) and PreReturnsπ(c) are more precisely defined in section 10.1.1.)

Let →n denote the irreflexive transitive closure of the data and control dependencies and the
declared order of n. Let the program order →π be the irreflexive partial order on Labels(π) defined
as the union of the following (1) the initialization order (that orders labels of p0 before labels of parallel
programs), (2) the sequential order of the sequential programs pi (3) For each method definition n,
the order →n.

2.2.2 TM Algorithm Specification

A transactional memory specification is π = (T ,D,P) where

D = def initt() s0, r0, (2.1)

def readt(i) s1, r1,

def writet(i, v) s2, r2,

def committ() s3, r3,

d∗

P = tran0, (tran1 ‖ tran2 ‖ ... ‖ trann) (2.2)

Transactional memory is an object that encapsulates a set of locations. Each location i stores a
value v. It has four methods initt(), readt(i), writet(i, v) and committ(). The method call initt()
initializes the transaction t. The method call readt(i) returns the value of location i or A (if the
transaction is aborted). The method writet(i, v) writes v to location i and returns ok (if the operation
is completed successfully) or returns A (if the transaction is aborted). The method committ() tries
to commit transaction t and returns C (if the transaction is successfully committed) or returns A (if
it is aborted). The three specific symbols C, A and ok are returned in specification of transactional
memory algorithms to denote commitment or abortion of the transaction and normal completion of
a write operation respectively. These values are set aside to represent how the operation is completed
and are not used as values of locations.

The initializing transaction trans0 that initializes every location to zero is defined as follows:

trans0 := IL0 . init0(); (2.3)

c00 . write0(0, 0);

c01 . write0(1, 0);

...

c0m . write0(m, 0);

CL0 . commit0()

9

Each transaction transj 1 ≤ j ≤ n is defined as follows:

transj := ILj . initj(); (2.4)

opj

opj := c . x = readj(v1, v2);

if (¬(x = A))

opj

| c . x = writej(v);

if (¬(x = A))

opj

| CLj . commitj()

Note that this dissertation does not consider non-transactional accesses and publication/privati-
zation safety.

Well-formedness. The init method returns ok. The read method does not return ok or C. The
write method does not return C. The commit method either returns C or A.
∀c ∈ Returnsπ(init) : arg1π(c) = ok
∀c ∈ Returnsπ(read) : arg1π(c) 6= ok ∧ arg1π(c) 6= C
∀c ∈ Returnsπ(write) : arg1π(c) 6= C
∀c ∈ Returnsπ(commit) : arg1π(c) = C ∨ arg1π(c) = A
In addition, it is assumed that in every execution of the transaction trans0, all the write method
calls return ok.

Let ΠTM denote the set of transactional memory specifications.
We define two functions initOf and commitOf that map a thread value to its initialization and

commitment labels.

initOf(T) = ILT (2.5)

commitOf(T) = CLT (2.6)

2.2.3 Extended Syntax

The core syntax can be used to define expressive syntactic sugar.
As defined above, A thread-local type ThreadLocal st is a syntactic sugar for st[].
The boolean expression u 6= u′ is a syntactic sugar for ¬(u = u′). The boolean expression b is

a syntactic sugar for b = true. The statement return (u = u′) is a syntactic sugar for if (u = u′)
return true else return false.

A return statement without the return argument is used as a syntactic sugar for a return state-
ment that returns a dummy value. An if-then statement is a syntactic sugar for an if-then-else
statement where the else branch is a call on a dummy object.

As a convenience, the definition of methods may non-recursively call other defined methods. Note
that these calls can always be inlined.

We now define foreach statement as a syntactic sugar. The foreach statement iterates over sets
and maps.

10

Consider a bounded set of type set. The following foreach statement executes the statement s
for each member i of set.

c . foreach (i ∈ set) (2.7)

s

Let b be a fresh variable name. We define sIter(s, i), the ith iteration, as follows:

sIter(s, i) = ci . bi = set.contains(i), (2.8)

if (bi)

sIndexed(s, i)

where sIndexed(s, i) denotes a transformation of s where every label c is replaced by ci and every
variable x that is assigned in s is replaced by xi. The foreach statement is a syntactic sugar for
sIters(s, 0) that is

sIter(s, 0), (2.9)

sIter(s, 1),

sIter(s, 2),

...

sIter(s,max)

(where max is the maximum value) with the following declared order

∀c ∈ Labels(sIter(s, i)), c′ ∈ Labels(sIter(s, i+ 1)) : c→ c′ (2.10)

Similarly, consider a bounded map of type map. The following foreach statement executes the
statement s for each mapping i to v in map.

c . foreach ((i, v) ∈ map) (2.11)

s

We define mIter(s, i), the ithe iteration, as follows:

mIter(s, i) = ci . vi = map.get(i), (2.12)

if (vi 6= ⊥)

mIndexed(s, i)

where mIndexed(s, i) denotes a transformation of s where every label c is replaced by ci, v is replaced
with vi, and every variable x that is assigned in s is replaced by xi. We define mIters(s, i), the
sequence of iterations starting from iteration i, as follows:

mIters(s, i) ::= mIter(s, i), (2.13)

mIters(s, i+ 1)

11

The foreach statement is a syntactic sugar for mIters(0) that is

mIter(s, 0), (2.14)

mIter(s, 1),

mIter(s, 2),

...

mIter(s,max)

(where max is the maximum value) with the following declared order

∀c ∈ Labels(mIter(s, i)), c′ ∈ Labels(mIter(s, i+ 1)) : c→ c′ (2.15)

Now, we extend the syntax with records. A record type definition rt is defined as follows:

rec ∈ Rec ::= {Node, Locator, ...} Record Type name
rt ∈ RT ::= rec ‘{’ (φi : oti)

∗ ‘}’ Record Type

The record type named rec is defined as a collection of fields φi of type oti. The set of statements is
extended with the new and clone statements.

s ::= ...
c . x = new rec ‘(’ ‘)’ New Statement
c . x = clone ‘(’x‘)’ Clone Statement

The new statement creates an instance of the record type and returns a reference to it. The clone
statement creates a clone of the record referenced by the argument and returns a reference to it. The
set of objects is extended as follows

o ∈ O ::= φ | φ[u] | Shared Object
x.φ | x.φ[u]

x.φ denotes the field named φ of the record that the variable x references.

12

2.2.4 Example Specifications

As example specifications, we present Dekker algorithm and TL2, a variant of TL2, visible and
invisible reads versions of DSTM and McRT TM algorithms.

Dekker Algorithm Specification.
Dekker algorithm specified in Figure 2.1 provides mutual exclusion for two threads. It uses two

atomic registers as flags. Using basic registers can lead to a race and violation of mutual exclusion.
Each thread first sets its own flag and then reads the flag of the other thread. The order of writing the
flag of the current thread and then reading the flag of the other thread is crucial to the correctness.
Reordering these two accesses can violate mutual exclusion. A thread enters its critical region only
if it finds the flag of the other thread unset. The type of the flags and the order of accesses to them
are explicitly captured in the specification.

T :
f1 : AtomicRegister
f2 : AtomicRegister

D :
def init() def tryLock1() def tryLock2()
W01 . f1.write(0), W1 . f1.write(1), W2 . f2.write(1),
W02 . f2.write(0), R2 . x2 = f2.read(), R1 . x1 = f1.read(),

if (x2 = 0), if (x1 = 0)
C1t . return true C2t . return true

else else
C1f . return false, C2f . return false,
W1 → R2, W2 → R1;

P =
L0 . init(),
L1 . l1 = tryLock1() ‖ L2 . l2 = tryLock2()

Figure 2.1: πDekker Dekker Algorithm Specification

13

TL2 Algorithm.
We specify TL2 algorithm [18] in Figure 2.2. Algorithm such as SwissTM [23] are optimizations

of TL2.
Synchronization objects. TL2 algorithm uses the following synchronization objects: Value

registers reg: an array of type basic register of size equal to the number of locations. Version
registers ver: an array of type atomic register of size equal to the number of locations with the
initial value 0. Locks lock: an array of type try-lock of size equal to the number of locations that are
initially released. Global version clock clock: a strong counter with the initial value 0. Read version
rver: a thread-local basic register. Read set rset: a thread-local basic set that is initially ∅. Write
set wset: a thread-local basic map that is initially ∅. Lock set lset: a thread-local basic set that is
initially ∅.

As observed by previous work, in the original paper, “the authors maintain the version number
and the lock bit of every variable in the same memory word” [31], thus, the order of reading the lock
and the version of read locations in the commit procedure is ambiguous. In our specification, we
treat the lock and the version as separate registers and make the orders explicit.

Algorithm. TL2 is a deferred-update TM algorithm. A value that a transaction t writes to a
location is buffered in the write set wset[t] at W01 and is written back to register reg[i] at C16 while
t is committing. TL2 records a version in the register ver[i] for the value stored in the register reg[i].
The version register ver[i] is updated to ascending numbers at C17 after a new value is written back
to reg[i] at C16. The try-lock lock[i] is used for exclusive access to location i. At commit, the lock
lock[i] of each location i in the write set wset[t] is acquired at C01 to C06. (If a lock cannot be
acquired, the previously acquired locks are released at C05 and the transaction is aborted.) Then, a
new snapshot is read from clock at C07. Then, for each location in the read set rset[t], first lock[i]
and then ver[i] are read at C10 and C11 and the read is validated. (If a read is not validated, the
acquired locks are released at C12 and the transaction is aborted.) Finally, the values buffered in
wset[t] are written back at C15 to C18. For each pair in the write set wset[t], the following three
operations execute in order. First, the buffered value is written back to reg[i], then ver[i] is updated,
and then lock[i] is released. In the init method, each transaction t reads the current snapshot version
from clock at I01 and writes it to the read version register rver[t] at I02. The read version is read
at R07 and C08 to validate the read values. To read a location i, a transaction reads ver[i], reg[i],
lock[i] and again ver[i] in order at R03 − R06 and then validates the read. (If the validation fails,
the transaction is aborted.) Finally, i is added to the read set rset[t] and the read value is returned.

Note that although reg[i] may be read and written by different transactions, it is declared as a
basic register. The objects lock[i] and ver[i] rule out racy accesses to reg[i]. The lock lock[i] prevents
concurrent writes to reg[i]. If a read from reg[i] executes concurrently with a write to it, reads from
ver[i] and the subsequent checks abort the read.

14

T :
reg : BasicRegister[], rver : ThreadLocal BasicRegister,
ver : AtomicRegister[], rset : ThreadLocal BasicSet,
lock : TryLock[], wset : ThreadLocal BasicMap,
clock : SCounter, lset : ThreadLocal BasicSet

D :
def initt() def committ()
I01 . snap = clock.read(), C01 . foreach (i ∈ wset[t])
I02 . rver[t].write(snap), C02 . locked = lock[i].trylock(),
I03 . return ok, if (¬locked)
def readt(i) C03 . lset.add(i)
R01 . pv = wset[t].get(i), else

if (pv 6= ⊥) C04 . foreach (i ∈ lset)
R02 . return pv, C05 . lock[i].unlock(),

C06 . return A,
R03 . s1 = ver[i].read(),
R04 . v = reg[i].read(), C07 . wver = clock.iaf(),
R05 . l = lock[i].read(),
R06 . s2 = ver[i].read(), C08 . sver = rver[t].read(),
R07 . sver = rver[t].read(), if (wver 6= sver + 1)

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver)) C09 . foreach (i ∈ rset[t])
R08 . return A, C10 . l = lock[i].read(),

C11 . s = ver[i].read(),
R09 . rver[t].add(i), if (¬(¬l ∧ s ≤ sver))
R10 . return v, C12 . foreach (i ∈ lset)
{R03→ R04, R04→ R05, R05→ R06}, C13 . lock[i].unlock(),
def writet(i, v) C14 . return A,
W01 . wset[t].put(i, v),
W02 . return ok, C15 . foreach ((i, v) ∈ wset[t])

C16 . reg[i].write(v),
C17 . ver[i].write(wver),
C18 . lock[i].unlock(),

C19 . return C,
{C01→ C07, C10→ C11, C09→ C15,
C16→ C17, C17→ C18},

Figure 2.2: πTL2 TL2 Algorithm Specification

15

TL2 Variant Algorithm.
Based on the insight we obtained from studying TL2, we could come up with a variant of TL2

that by swapping two instructions in the commit procedure, removes reading a version and a conjunct
from the validation check in the read method. The removal of some operations in our TL2 variant
raises the question of whether the TL2 variant can outperform TL2 which can be a thread of future
work.

TL2 variant algorithm is specified in Figure 2.3. Compared to the TL2 algorithm, the TL2
variant removes the first read of ver[i], moves reading lock[i] before reading reg[i], removes the
conjunct s1 = s2 from the validation in the read method and swaps the order of writes to reg[i] and
ver[i] in the commit method.

16

T :
reg : BasicRegister[], rver : ThreadLocal BasicRegister,
ver : AtomicRegister[], rset : ThreadLocal BasicSet,
lock : TryLock[], wset : ThreadLocal BasicMap,
clock : SCounter, lset : ThreadLocal BasicSet

D :
def initt() def committ()
I01 . snap = clock.read(), C01 . foreach (i ∈ wset[t])
I02 . rver[t].write(snap), C02 . locked = lock[i].trylock(),
I03 . return ok, if (¬locked)
def readt(i) C03 . lset.add(i)
R01 . pv = wset[t].get(i), else

if (pv 6= ⊥) C04 . foreach (i ∈ lset)
R02 . return pv, C05 . lock[i].unlock(),

C06 . return A,
R03 . l = lock[i].read(),
R04 . v = reg[i].read(), C07 . wver = clock.iaf(),
R05 . s = ver[i].read(),
R06 . sver = rver[t].read(), C08 . sver = rver[t].read(),

if (¬(¬l ∧ s ≤ sver)) if (wver 6= sver + 1)
R07 . return A, C09 . foreach (i ∈ rset[t])

C10 . l = lock[i].read(),
R08 . rver[t].add(i), C11 . s = ver[i].read(),
R09 . return v, if (¬(¬l ∧ s ≤ sver))
{R03→ R04, R04→ R05}, C12 . foreach (i ∈ lset)
def writet(i, v) C13 . lock[i].unlock(),
W01 . wset[t].put(i, v), C14 . return A,
W02 . return ok,

C15 . foreach ((i, v) ∈ wset[t])
C16 . ver[i].write(wver),
C17 . reg[i].write(v),
C18 . lock[i].unlock(),

C19 . return C,
{C01→ C07, C10→ C11, C09→ C15,
C16→ C17, C17→ C18},

Figure 2.3: πTL2V ariant TL2 Variant Algorithm Specification

17

DSTM Algorithm.
Figure 2.4 shows the DSTM algorithm [39].
Synchronization objects. DSTM algorithm uses the following shared objects. state is an

array of atomic cas registers of size equal to the number of threads. For each transaction t, state[t]
represents the state of t that is {R,A,C} (running, aborted or committed) with the default value R.
start is an array of atomic cas registers of size equal to the number of memory locations. For each
memory location i, start[i] stores a reference to an object of type Loc that represents the current
state of location i. Let Loc be the class of objects with three fields: writer, oldVal and newVal. The
field writer is a basic register that stores transaction identifiers. The two fields oldVal and newVal
are basic registers that store values. DSTM allows only one writer to a location at a time. Therefore,
two fields oldVal and newVal of Loc are sufficient to represent the values of a location. While the
current writer transaction is writing to newVal, oldVal stores the stable value. The default value is
a reference to a locator with writer set to T0. The read set rset is a thread-local (transaction-local)
basic set that stores pairs of index and value of read locations, and is ∅ initially.

Algorithm. DSTM is a deferred-update TM algorithm (The updates are delayed until the
transaction commits [34]). Each location is represented as a reference to a record that stores the last
and tentative states of the location. The current value of a location is decided according to the state
of the last writer transaction to the location. Thus, a committing transaction updates the value of
the locations that it has written to with a single cas on its own state.

Committing a transaction t takes effect by a cas on state[t]. During the commit, a transaction
does not update the oldVal of the locations it has written to. Whether oldVal or newVal is the
stable value is decided according to whether the state of the writer of the location is C or A. To
decide the stable value, if the state of the current writer is Active, it is cased to A. Then, if the
state of writer is C, newVal is the stable value; if it is A, oldVal is the stable value. A new writer
transaction of a location needs to set itself as the writer and also before overwriting newVal, if the
state of the previous writer is C, the new writer needs to copy newVal (that is the stable value) to
oldVal. As writer and oldVal may be concurrently read by readers of the location, the new writer
need to update them in isolation. Thus, the first write of a writer transaction instantiates a new Loc
object with the current transaction as the writer, the stable value of the location as OldV al and
the value that it wants to write as newVal. Then, the new Loc object is installed in isolation by a
cas on start[i]. On a global read, the pair of the read index and the read value is added to the read
set rset[t] that is validated before returning from a read or commit method call. Validation checks
the equality of the logged value in rset[t] to the last committed value of the location and that the
transaction is not aborted by others.

DSTM is obstruction-free. A TM algorithm is obstruction-free if every transaction that runs
without interleaving by other transactions makes progress. Obstruction-freedom precludes the use
of locks. It is noticeable how DSTM avoids using locks in the following two parts of the algorithm.
First, a committing transaction does not lock written locations. This is because a later read decides
the stable value of a location according to the state of its last writer; therefore, the committing
transaction does not need to lock the written locations to update their values but only updates its
own state. Second, to write a new value to a location, the writer and newVal of the location are
updated in isolation without acquiring locks. This is because DSTM employs a level of indirection.
The two fields are updated atomically with a single cas on a reference.

18

T :
Loc { state : AtomicCASRegister[],

writer : BasicRegister, start : AtomicCASRegister[],
oldV al : BasicRegister, rset : ThreadLocal BasicSet
newV al : BasicRegister

}
D :
def initt() def writet(i, v)
I01 . state[t].write(R), I01 . s = state[t].read(),
I02 . return ok, if (s = A)
def readt(i) I02 . return A,
R01 . s = state[t].read(), I03 . st = start[i].read(),

if (s = A) I04 . wr = st.writer.read(),
R02 . return A, if (wr = t)
R03 . st = start[i].read(), I05 . st.newVal.write(v),
R04 . v = stableValuet(st), I06 . return ok,
R05 . wr = st.writer.read(), I07 . v′ = stableValuet(st),

if (wr 6= t) I08 . st′ = new Loc(),
R06 . rset[t].add(i, v), I09 . st′.writer.write(t),
R07 . valid = validatet(), I10 . st′.oldV al.write(v′),

if (¬valid) I11 . st′.newV al.write(v),
R08 . return A, I12 . b = start[i].cas(st, st′),
R09 . return v, if (b)
{R03→ R07} I13 . return ok,
def committ() else
C01 . valid = validatet(), I14 . return A,

if (¬valid) def validatet()
C02 . return A, V 01 . foreach ((i, v) ∈ rset[t])
C03 . b = state[t].cas(R,C), V 02 . st = start[i].read(),

if (b) V 03 . t′ = st.writer.read(),
C04 . return C V 04 . s′ = state[t′].read(),

else if (s′ = C)
C05 . return A, V 05 . v′ = loc.newVal.read()
{C01→ C03} else
def stableValuet(st) V 06 . v′ = loc.oldVal.read(),
S01 . t′ = st.writer.read(), if (v 6= v′)
S02 . s′ = state[t′].read(), V 07 . return false,

if (t′ 6= t ∧ s′ = R) V 08 . s = state[t].read(),
S03 . state[t′].cas(R,A), V 09 . return (s = R)
S04 . s′′ = state[t′].read(),

if (s′′ = A)
S05 . v = loc.oldVal.read()

else
S06 . v = loc.newVal.read(),
S07 . return v,

Figure 2.4: πDSTM DSTM Algorithm Specification19

DSTM (visible reads) Algorithm.
Figure 2.5 presents DSTM (visible reads) algorithm [38].
Synchronization objects. DSTM (visible reads) algorithm uses the following shared objects.

state is an array of atomic cas registers of size equal to the number of threads. For each transaction
t, state[t] represents the state of t that is {R,A,C} (running, aborted or committed) with the default
value R. start is an array of atomic cas registers of size equal to the number of memory locations.
For each memory location i, start[i] stores a reference to an object of type Loc that represents the
current state of location i. Let Loc be the class of objects with four fields: writer, rset, oldVal and
newVal. The field writer is a basic register that stores transaction identifiers. The field rset is a
basic set that stores transaction identifiers. The two fields oldVal and newVal are basic registers that
store values.

Algorithm. For each location, in addition to the two values newV al and oldV al, the last writer
transaction and the set rset of transactions that have read the location are recorded in the locator
object. The read method reads the current locator, decides the stable value of the location according
to the state of the latest writer of the location, creates a clone of the locator object, adds the current
transaction to rset of the new locator and installs the new locator with a cas. The write method
reads the current locator. If the current transaction is the current writer of the location, the new
value is written to the newV al field of the locator. Otherwise, a new locator object is created with
the current value of the location as oldV al, the new value as newV al and the current transaction as
the writer and then the new locator is installed by a cas. Committing a transaction is done by as
cas on its state.

The reader set of a location may be concurrently written by the readers of the location and
read by the writers of the location. Therefore, readers and writers need to access the reader set in
isolation. A reader-writer lock could be employed but would forfeit the obstruction-freedom property
of the algorithm. The original algorithm, as specified here, uses the indirection mechanism. It stores
the reader set in the locator object and achieves isolation by a cas on the reference. RSTM [54],
an optimization to DSTM, proposes a more efficient implementation for the reader set by a clever
double-check in the reader transactions.

20

T :
Loc {

writer : BasicRegister,
rset : BasicSet,
oldV al : BasicRegister,
newV al : BasicRegister,

}
state : AtomicCASRegister[],
start : AtomicCASRegister[]

D :
def initt() def writet(i, v)
I01 . state[t].write(R), W01 . r = start[i].read(),
I02 . return ok, W02 . w = r.writer.read(),
def readt(i) if (w = t)
R01 . r = start[i].read(), W03 . r.newV al.write(v),
R02 . v = currentV aluet(r), W04 . return ok,
R03 . r′ = clone(r),
R04 . r′.rset.add(t), W05 . v′ = currentV aluet(r),
R05 . b = start[i].cas(r, r′), W06 . foreach (t′ ∈ r.rset)
R06 . s = state[t].read(), W07 . state[t′].cas(R,A),

if (¬b ∨ (s = A))
R07 . return A W08 . r′ = new Loc(),

else W09 . r′.writer.write(t),
R08 . return v, W10 . r′.oldV al.write(v′),
{R05→ R06} W11 . r′.newV al.write(v),
def committ() W12 . b = start[i].cas(r, r′),
C01 . b = state[t].cas(R,C), if (b)

if (b) W13 . return ok,
C02 . return C else

else W14 . return A
C03 . return A, {W06→ W12}
def currentV aluet(r)
V 01 . t′ = r.writer.read(),

if (¬(t′ = t))
V 02 . state[t′].cas(R,A),
V 03 . s = state[t′].read(),

if (s = A)
V 04 . return r.oldV al

else
V 05 . return r.newV al,

Figure 2.5: πDSTMV is DSTM (visible reads) Algorithm Specification

21

McRT Algorithm.
Figure 2.6 shows the Core McRT algorithm.
Synchronization Objects. McRT uses the following synchronization objects. Value registers

r: an array of basic registers of size equal to the number of memory locations. For each location i,
r[i] stores the value of location i. Version registers ver: an array of atomic registers of size equal to
the number of memory locations. For each location i, ver[i] stores the version for location i that is
initially 0. Locks l: an array of try-locks of size equal to the number of memory locations. For each
location i, l[i] is initially released. The read set rset: a thread-local basic map from location indices
to versions which is ∅ initially, and the undo set uset a thread-local basic map from location indices
to overwritten values which is ∅ initially.

In the original implementation, ver[i] and l[i] are stored in a single word. In our specification,
we make the distinction explicit and specify the order of accesses to these registers. In addition,
the original implementation overwrites the version bits with the transaction descriptor during the
lock acquisition. Therefore, the versions had to be cached not only during the read method call but
also during the write method call. Our specification stores only versions in the version registers and
avoids caching of those registers during the write method call.

Algorithm. The first write to location i, tries to acquire l[i] at W02 before writing to r[i] at
W06. McRT is a direct-update algorithm. It directly writes to r[i] during the write method call
before the commit method is invoked. Therefore, the old value of r[i] is read and cached in the undo
set uset[t] at W04 −W05 and restored to r[i] while the transaction is aborting at A02 − A04. A
non-local read method call reads ver[i] and then l[i] at R02 − R03. If l[i] is locked, the transaction
is aborted at R04. The first non-local read method call from a location caches the version in the
read set rset[t] at R06 which is used during the validation at C01 − C04. For each read location i,
the validation checks that the lock l[i] is unlocked and the version ver[i] is unchanged since it is read
at R02. This ensures that r[i] is unchanged since it is read at R07. For each written location, the
version ver[i] is incremented at C08 and the lock l[i] is released at C09.

22

T :
r : BasicRegister[],
ver : AtomicRegister[],
l : TryLock[],
rset : ThreadLocal BasicMap,
uset : ThreadLocal BasicMap

D :
def initt() def committ()
I01 . return ok, C01 . foreach ((i, rver) ∈ rset[t])
def readt(i) C02 . locked = l[i].read(),
R01 . b = uset[t].contains(i), C03 . cver = ver[i].read(),

if (¬b) if (locked ∨ rver 6= cver)
R02 . rver = ver[i].read(), C04 . return abortt(),
R03 . locked = l[i].read(),

if (locked) C05 . foreach (i ∈ uset[t]))
R04 . return abortt(), C06 . cver = ver[i].read(),
R05 . pver = rset[t].get(i), C07 . cver′ = cver + 1,

if (pver = ⊥) C08 . ver[i].write(cver′),
R06 . rset[t].put(i, rver), C09 . l[i].unlock(),
R07 . v = r[i].read(), C10 . return C
R08 . return v {C02→ C03, C08→ C09}
{R02→ R03} def abortt()
def writet(i, v) A01 . foreach ((i, v) ∈ uset[t])
W01 . pval = uset[t].get(i), A02 . r[i].write(v),

if (pval = ⊥) A03 . l[i].unlock(),
W02 . locked = l[i].tryLock(), A04 . return A

if (¬locked) {A02→ A03}
W03 . return abortt(),
W04 . v′ = r[i].read(),
W05 . uset[t].put(i, v′),
W06 . r[i].write(v),
W07 . return ok,

Figure 2.6: πMcRT McRT Algorithm Specification

23

NORec Algorithm.

T :
seqLock : SeqLock,
reg : BasicRegister[]
snap : ThreadLocal BasicRegister,
rset : ThreadLocal BasicMap,
wset : ThreadLocal BasicMap,

D :
def initt() def validatet()

do V 01 . while (true)
I01 . (s, l) = seqLock.read() do

while (l), V 02 . (s1, l1) = seqLock.read(),
I02 . snap[t] = s, while (l1)
def readt(i) foreach ((i, v) ∈ rset[t])
R01 . pv = wset[t].get(i), V 03i . v′ = reg[i].read(),

if (pv 6= ⊥) if (v 6= v′),
R02 . return pv, V 04i . return false,

do V 05 . (s2, l2) = seqLock.read(),
R03 . v = reg[i].read(), if (s2 = s1 ∧ ¬l2)
R04 . s1 = snap[t].read(), V 06 . snap[t].write(s1),
R05 . (s2, l2) = seqLock.read(), V 07 . return true,

if (s2 = s1 ∧ ¬l2) {V 02→ V 03i, V 03i → V 05},
R06 . break, def committ()
R07 . b = validatet(), C01 . e = wset[t].isEmpty(),

if (¬b) if (e)
R08 . return A, C02 . return C,

while (true), do
R09 . rset[t].put(i, v), C03 . s = snap[t].read(),
R10 . return v, C04 . d = seqLock.compareAndLock(s),
{R03→ R05}, if (d)
def writet(i, v) C05 . break,
W01 . wset[t].put(i, v), C06 . b = validatet(),
W02 . return ok, if (¬b)
def abortt() return A,
A01 . return A while (true),

foreach ((i, v) ∈ wset[t])
C07i . reg[i].write(v),
C08 . seqLock.incAndUnlock(),
C09 . return C
{C04→ C07i, C07i → C08},

Figure 2.7: NORec NORec Algorithm Specification

24

TLRW Algorithm. The TLRW algorithm [19] is represented in Figure 2.8.

Shared objects:
For each i ∈ I : owner[i] : AtomicReg[Trans], initially ⊥
For each t ∈ Trans, i ∈ I : rF lag[t, i] : AtomicReg[Bool], initially false
For each t ∈ Trans, i ∈ I : wFlag[t, i] : AtomicReg[Bool], initially false
For each i ∈ I : uwFlag[i] : AtomicReg[Bool], initially ⊥
For each i ∈ I : rcount[i] : AtomicReg[Int], initially 0

Thread-local objects:
For each t ∈ Trans : rset[t] : Set[I], initially ∅
For each t ∈ Trans : uset[t] : Map[I → V], initially ∅

Figure 2.8: TLRW Algorithm (objects)

25

R01 : def readt(i)
R02 : o = owner[i].read()
R03 : if (t ∈ S)
R04 : f = rF lag[t, i]
R05 : if ¬(o = t ∨ f)
R06 : while (true)
R07 : rF lag[t, i].write(true)
R08 : o = owner[i].read()
R09 : if (o = ⊥)
R10 : break
R11 : else
R12 : if (timeout)
R13 : abortt()
R14 : else
R15 : rF lag[t, i].write(false)
R16 : continue
R17 : else
R18 : if ¬(o = t ∨ i ∈ rset[t])
R19 : while (true)
R20 : while (true)
R21 : r = rcount[i].read()
R22 : b = rcount[i].CAS(r, r + 1)
R23 : if (b)
R24 : break
R25 : o = owner[i].read()
R26 : if (o = ⊥)
R27 : break
R28 : else
R29 : while (true)
R30 : r = rcount[i].read()
R31 : b = rcount[i].CAS(r, r − 1)
R32 : if (b)
R33 : break
R34 :
R35 : v = r[i].read()
R36 : return v
{R07→ R8, R22→ R25}

Figure 2.9: TLRW Algorithm (read)

26

W01 : def writet(i, v)
W02 : o = owner[i].read()
W03 : if (o 6= t)
W04 : if (t ∈ S)
W05 : while (true)
W06 : wFlag[t, i].write(true)
W07 : flag = uwFlag[i].read()
W08 : foreach (t′ ∈ S, t′ 6= t)
W09 : flag = flag ∨ wFlag[t′, i].read()
W10 : if (¬flag)
W11 : break
W12 : else
W13 : if (timeout)
W14 : abortt()
W15 : else
W16 : wFlag[t, i].write(false)
W17 : continue W05
W18 : else
W19 : while (true)
W20 : b = uwFlag[i].CAS(false, true)
W21 : if (b)
W22 : break
W23 : owner[i].write(t)
W24 :
W25 : if (rset 6= ∅)
W26 : if (t ∈ S)
W27 : rF lag[t, i].write(false)
W28 : else
W29 : while (true)
W30 : r = rcount[i].read()
W31 : b = rcount[i].CAS(r, r − 1)
W32 : if (b)
W33 : break
W34 : while (true)
W35 : r = rcount[i].read()
W36 : if (r = 0)
W37 : break
W38 : foreach (t′ ∈ S)
W39 : while (true)
W40 : flag = rF lag[t, i].read()
W41 : if (¬flag)
W42 : break
W43 :
W44 : if (i 6∈ uset[t])
W45 : v′ = r[i].read()
W46 : uset[t].put(i, v′)
W47 : r[i].write(v)
W48 : return ok,
{W06→ W07,W06→ W09,W23→ W35,W23→ W40}

Figure 2.10: TLRW Algorithm (write)

27

A01 : def abortt()
A02 : foreach (i 7→ v) ∈ uset[t])
A03 : r[i].write(v)
A04 : owner[i].write(⊥)
A05 : if (t ∈ S)
A06 : wFlag[t, i].write(false)
A07 : else
A08 : uwFlag[i].write(false)
A09 : foreach (i ∈ rset[t])
A10 : if (t ∈ S)
A11 : rF lag[t, i].write(false)
A12 : else
A13 : while (true)
A14 : r = rcount[i].read()
A15 : b = rcount[i].CAS(r, r − 1)
A16 : if (b)
A17 : break
A18 : return A
{A03→ A04, A04→ A06, A04→ A08}
C01 : def committ
C02 : foreach (i ∈ dom(uset[t]))
C03 : owner[i].write(⊥)
C04 : if (t ∈ S)
C05 : wFlag[t, i].write(false)
C06 : else
C07 : uwFlag[i].write(false)
C08 : foreach (i ∈ rset[t])
C09 : if (t ∈ S)
C10 : rF lag[t, i].write(false)
C11 : else
C12 : while (true)
C13 : r = rcount[i].read()
C14 : b = rcount[i].CAS(r, r − 1)
C15 : if (b)
C16 : break
C17 : return C
{C03→ C05, C03→ C07}

Figure 2.11: TLRW Algorithm (abort and commit)

28

2.3 Semantics

In this subsection, we define the semantics of specifications. We first define execution histories. Then,
we define the semantics of base objects. Finally, we define the semantics of specifications as a set of
execution histories.

2.3.1 Execution History

Now, we define execution histories and operations and relations on them.
Strings. We use ||s|| to denote the size of the string s. If s1 and s2 are strings, we write s1 b s2

iff s1 is a subsequence of s2. For example, bd b abcde. Let s be an isogram (i.e. contains no repeating
occurrence of the alphabet.) For any s1, s2 ∈ s, we write s1 �s s2 iff the last element of s1 occurs
before the first element of s2 in s. For example ab �abcde de. We use s(i) to denote the ith element
of s. We use s · s′ to denote the concatenation of s and s′. For a set of strings {s1 . . . sn}, let
Interleave(s1, . . . , sn) denote the set of merges of s1, . . ., sn.

Method calls and events. Let LabelConst denote the set of labels l. The set of invocation
events is Inv = {inv(l . o.nT (u)) | l ∈ LabelConst, o ∈ O, n ∈ N, T ∈ Thread, u ∈ U}. The set of
response events is Res = {ret(l . u) | l ∈ LabelConst, u ∈ U}. The set of events is Ev = Inv ∪Res.
We will use the term completed method call to denote a sequence of an invocation event followed by
the matching response event (with the same label). We use l . v′ = o.nT (v) to denote the completed
method call inv(l . o.nT (v)) · ret(l . v′).

Operations on event sequences. Let E and E ′ be event sequences. For a thread T , we use
E|T to denote the subsequence of all events of T in E. For an object o, we use E|o to denote the
subsequence of all events of o in E. Sequential is the set of sequences of completed method calls.1

Execution history. An execution history X is a sequence of events where each invocation event
has a unique label and every thread T is sequential (i.e. X|T ∈ Sequential). Let H istory denote
the set of execution histories. We say label l is in X and write l ∈ X if there is an invocation event
with label l in X. Let Labels(X) denote the set of labels in X. Let Threads(X) denote the set
of threads in X. As the labels are unique in a history, the following functions on Labels(X) are
defined. The functions objX , nameX , threadX , arg1X , arg2X , retvX map labels to the receiving
object, the method name, the thread identifier, the first and the second argument, and the return
value associated with the labels. Similary, iEv and rEv functions on Labels(X) map labels to the
invocation and the response events associated with the labels.

A historyX is equivalent to or indistinguishable from a historyX ′, X ≡ X ′, if one is a permutation
of the other one that is only the events are reordered but the components of the events (including
the argument and return values) are preserved.

Real-time relations. For an execution history X, we define the real-time relations ≺X , �X ,
∼X , -X on Labels(X) as follows: First, l1 ≺X l2 iff rEv(l1)�X iEv(l2). l1 �X l2 iff l1 ≺X l2 ∨ l1 = l2.
Second, l1 ∼X l2 iff l1 ⊀X l2 ∧ l2 ⊀X l1. Third, l1 -X l2 iff l1 ≺X l2 ∨ l1 ∼X l2.

From the definition of Sequential, we have that X ∈ Sequential iff ∀l, l′ ∈ X : l �X l′ ∨ l′ ≺X l.
For an execution history X, we define the thread real-time relations ≺≺X and ��X as follows. First,
T ≺≺X T ′ iff X|T �X X|T ′. Second, T ��X T ′ iff T ≺≺X T ′ ∨ T = T ′.

1Note that we consider complete histories.

29

Now, we present a set of basic lemmas about execution orders. Please see the appendix Sec-
tion 10.1.2.1 for proofs.

Lemma 1 (XASym). For every execution history X and method calls l and l′, if l ≺X l′ then
¬(l′ ≺X l) ∧ ¬(l′ ∼X l) ∧ ¬(l′ = l)

Lemma 2 (XTrans). For every execution history X and method calls l, l. and l′′, if l ≺X l′ and
l′ ≺ l′′ then l ≺X l′′

Lemma 3 (XXTrans). For every execution history X and method calls l1, l2, l3, and l4, if l1 ≺X l2,
l2 -X l3, and l3 ≺X l4 then l1 ≺X l4

Lemma 4 (XTotal). For every execution history X and method calls l and l′, if l ∈ X, and l′ ∈ X,
then (l ≺X l′) ∨ (l′ ≺X l) ∨ (l ∼X l′) ∨ (l = l′)

Lemma 5 (X2X). For every execution history X and method calls l and l′, if l ≺X l′ then l ∈ X,
and l′ ∈ X.

Lemma 6 (XI2X). For every execution history X and method calls l, l′, and l′′ if l ≺X l′ and
inv(l′)�X inv(l′′) then l ≺X l′′.

Lemma 7 (RX2X). For every execution history X and method calls l, l′, and l′′ if ret(l)�X ret(l
′)

and l′ ≺X l′′ then l ≺X l′′.

30

2.3.2 Synchronization Object Types

In this subsection, we first define the semantics of basic and linearizable objects. Then, we define
the interface and the sequential specifications of the following abstract object types: register, lock,
try-lock, counter, set and map. For each abstract object type, we define concrete synchronization
object types. We define the following synchronization object types: basic register, atomic register,
atomic cas register, lock, try-lock, strong counter, basic set and basic map. For each synchronization
object type, we present lemmas that characterize the properties of its execution histories. Please see
Section 10.1.2.2 for notes on the proof of the lemmas that we present in this subsection.2

Basic, Sequentially-consistent and Linearizable Object Types
The abstract type of each object o specifies the sequential specification of o, denoted by SeqSpec(o),
that is the prefix-closed set of correct sequential histories of o. In the following subsections, we will
consider several synchronization object types and define their sequential specifications.

We consider three concurrent types: basic, sequentially-consistent and linearizable. Sequentially-
consistent and linearizable objects comply with their sequential specification in every concurrent
execution. Basic objects, on the other hand, comply with their sequential specification if they are
accessed sequentially.

Definition 1 (Basic Object Semantics). Every sequential execution on a basic object is an execution
in its sequential specification. The semantics of a basic object o, HB(o), is a set of histories that is
constrained as follows:

HB(o) ∩ Sequential ⊆ SeqSpec(o) (2.16)

Definition 2 (Sequentially-consistent Object Semantics). An execution history X is sequentially-
consistent for an object o iff there is an indistinguishable sequential history L that is in the sequential
specification of o. L is a sequentialization and ≺L is a sequentialization order of X. The semantics
of a sequentially-consistent object o, HL(o), is defined as the following set of execution and sequen-
tialization pairs.

HL(o) = {(X,L) | X ≡ L ∧ L ∈ SeqSpec(o) ∧ ∀T ∈ X : ≺X|T ⊆ ≺L} (2.17)

Note that the notion of sequential consistency defined above is for operations on a single object
in contrast to sequential consistency for operations on multiple objects. The notion defined above is
also called cache coherence.

Definition 3 (Linearizable Object Semantics). An execution history X is linearizable for an object
o iff there is an indistinguishable sequential history L that is in the sequential specification of o and
is real-time-preserving. L is a linearization and ≺L is a linearization order of X. The semantics of
a linearizable object o, HL(o), is defined as the following set of execution and linearization pairs.

HL(o) = {(X,L) | X ≡ L ∧ L ∈ SeqSpec(o) ∧ ≺X ⊆ ≺L} (2.18)

Note that sequentially-consistent objects preserve execution order of method calls in the justifying
sequential order only within threads while linearizable objects preserve it even across threads.

We now present lemmas for serialization and linearization orders.

2 In this subsection, we use ∀ and ∃ as a notational convenience. ∀l : p can be rewritten as
∧

(l∈Labels(X)) p(X) and

∃l : p can be rewritten as
∨

(l∈Labels(X)) p(X).

31

Lemma 8 (X2L). For every linearization L of an execution history X on object o and method calls
l and l′, if l ≺X l′ then l ≺L l′.

Lemma 9 (X2L’). For every linearization L of an execution history X on object o and method calls
l and l′, if l ≺L l′ then l -X l′.

Lemma 10 (LASym). For every sequentialization or linearization L of an execution history X on
object o and method calls l and l′, if l ≺L l′ then ¬(l′ ≺L l) ∧ ¬(l = l′)

Lemma 11 (LTrans). For every sequentialization or linearization L of an execution history X on
object o and method calls l, l′, and l′′, if l ≺L l′ and l′ ≺L l′′ then l ≺L l′′.

Lemma 12 (LTotal). For every sequentialization or linearization L of an execution history X on
object o and method calls l and l′, if l ∈ X and l′ ∈ X then (l ≺L l′) ∨ (l′ ≺L l) ∨ (l = l′)

Lemma 13 (L2X). For every sequentialization or linearization L of an execution history X on object
o and method calls l and l′, if (l ≺L l′) then l ∈ X, l′ ∈ X, and l and l′ are both on o.

Lemma 14 (XLTrans). For every linearization L of an execution history X on object o and method
calls l1, l2, l3, and l4, if l1 ≺X l2, l2 ≺L l3, l3 ≺X l4, then l1 ≺X l4

See section 10.1.2.2 for proofs.

2.3.2.1 Register

Register. A register reg is an object that encapsulates a value and supports read and write meth-
ods. The method call reg.read() returns the current encapsulated value of reg. The method call
reg.write(v) overwrites the encapsulated value of reg with v.

Definition 4. The sequential specification of register reg is the set of sequential histories of read
and write method calls on reg where every read returns the argument of the latest preceding write
(regardless of thread identifiers). (Note that it is assumed that a write method call initializes the
register before other methods are invoked.) The sequential specification of a register r, SeqSpec(r),
is defined as follows:

isXReadX,r(lR) = lR ∈ X ∧ objX(lR) = r ∧ nameX(lR) = read (2.19)

isXWriteX,r(lW) = lW ∈ X ∧ objX(lW) = r ∧ nameX(lW) = write (2.20)

NoWriteBetweenX,r(lW , lR) = ∀l′W : isXWriteX,r(l
′
W)⇒ (l′W �X lW ∨ lR ≺X l′W) (2.21)

isXWriterX,r(lW , lR) = isXWriteX,r(lW) ∧ (2.22)

lW ≺X lR ∧
NoWriteBetweenX,r(lW , lR)

Legal(r) = {S | ∀lR : isXReadS,r(lR)⇒ (2.23)

∃lW : isXWriterS,r(lW , lR) ∧
retvS(lR) = arg1S(lW)}

SeqSpec(r) = {S | S|r = S ∧ S ∈ Sequential ∩ Legal(r)} (2.24)

32

Basic Register. A basic register is a basic instance of the register type.
Let BasicRegister denote the type of basic registers.

Lemma 15. In every sequential execution on a basic register, every read reads the value that the
latest preceding write writes. Formally,

∀reg ∈ BasicRegister : ∀X ∈ HB(reg) : X ∈ Sequential⇒ (2.25)

∀lR : isXReadX,reg(lR)⇒
∃lW : isXWriterX,reg(lW , lR) ∧

retvX(lR) = arg1X(lW)

Two concurrent read method calls on a register do not conflict. Thus, basic registers can maintain
consistency even when the execution involves concurrent read method calls. Let us define

isXRaceFreeX,r(l) = ∀lw : isXWriteX,r(lw)⇒ lw �X l ∨ l ≺X lw (2.26)

isXSequentiallyWrittenr(X) = ∀l ∈ X : isXWriteX,r(l)⇒ isRaceFreeX,r(l) (2.27)

A method call is race-free if an only if there is no write method call that executes concurrent
to it. An execution is sequentially-written if and only if every pair of write method calls on it are
ordered in the execution order or in other words, every write method call on it is race-free.

Definition 5 (Basic Register Semantics). An execution history on a basic register is in the semantics
of the basic register if and only if it is not sequentially-written or it is sequentially-written and every
race-free read reads the value that the latest preceding write writes. The semantics of a basic register
r, HB(r), is defined as follows.

HB(r) = {X | X|o = X ∧ (2.28)

isXSequentiallyWrittenr(X)⇒
∀lr : isXReadX,r(lr) ∧ isXRaceFreeX,r(lr)⇒
∃lw : isXWriterX,r(lw, lr) ∧

retvX(lr) = arg1X(lw) }

Note that if an execution is not sequentially-written, reads may return arbitrary values. Similarly,
racy reads may return arbitrary values.

Note that this definition satisfies the constraint of Definition 1.
Note that basic register models Lamport’s notion of safe register [48].

Lemma 16 (BReg). In every sequentially-written execution on a basic register, every race-free read
reads the value that the latest preceding write writes. Formally,

∀reg ∈ BasicRegister : ∀X ∈ HB(reg) : isXSequentiallyWrittenr(X)⇒ (2.29)

∀lR : isXReadX,reg(lR) ∧ isXRaceFreeX,r(lR)⇒
∃lW : isXWriterX,reg(lW , lR) ∧

retvX(lR) = arg1X(lW)

33

Atomic Register. An atomic register is a linearizable instance of the register type.
Let AtomicRegister denote the type of atomic registers.
Let us define

LNoWriteBetweenX,L,r(lW , lR) = ∀l′W : isXWriteX,r(l
′
W)⇒ (l′W �L lW ∨ lR ≺L l′W)(2.30)

isLWriterX,L,r(lW , lR) = isXWriteX,r(lW) ∧ (2.31)

lW ≺L lR ∧
LNoWriteBetweenX,L,r(lW , lR)

Lemma 17 (AReg). In every execution on an atomic register, every read reads the value written
by the last write linearized before it. Formally,

∀r ∈ AtomicRegister : ∀(X,L) ∈ HL(r) : (2.32)

∀lR : isXReadX,r(lR)⇒
∃lW : isLWriterX,L,r(lW , lR) ∧

retvX(lR) = arg1X(lW)

Sequentially-consistent Register. A sequentially-consistent register is a sequentially-consistent in-
stance of the register type.

Let SCRegister denote the type of sequentially-consistent registers.

Consider the following four concurrent threads.

T1 T2 T3 T4
L11 . r1.write(1) ‖ L21 . r2.write(1) ‖ L31 . x1 = r1.read() ‖ L41 . y2 = r2.read()

L32 . y1 = r2.read() L42 . x2 = r1.read()
{L31 → L32} {L41 → L42}

If r1 and r2 are sequentially-consistent registers, there is an execution that results in the following
values for the variables:
x1 = 1, y1 = 0, y2 = 1 and x2 = 0.
These values can be justified by the sequentialization order
(1) Lr1 = L42 . x2 = r1.read() · L11 . r1.write(1) · L31 . x1 = r1.read()
for r1 and the sequentialization order
(2) Lr2 = L32 . y1 = r2.read() · L21 . r2.write(1) · L41 . y2 = r2.read()
for r2.
If r1 and r2 are atomic registers, there is no execution that results in the values above for the
variables. The real-time-preservation property precludes these executions. We assume that there
is such an execution and show a contradiction. To have the above values for the variables, the
linearization order of r1 and r2 should be as above in 1 and 2. By the program orders above, we have
(3) L31 ≺X L32 (4) L41 ≺X L42. By X2L’ on 2, we have (5) L32 -X L41. By XXTrans on 3, 5 and
4, we have (6) L31 ≺X L42. By X2L on 6, we have L31 ≺r1 L42 that contradicts 1.

2.3.2.2 CAS (Compare-And-Swap) Register

A CAS register is an object that encapsulates a value and supports the cas method in addition to
read and write methods. The method call r.cas(v1, v2) updates the value of the register to v2 and
returns true if the current value of the register is v1. It returns false otherwise.

34

A successful write is either a write method call or a successful cas method call. The written value
of a successful write is its first argument, if it is a write method call or is its second argument, if it
is a cas method call.

Definition 6. The sequential specification of cas register reg is the set of sequential histories of read,
write and cas method calls on reg with the following two conditions. Every read returns the written
value of the latest preceding successful write (regardless of thread identifiers). (Note that it is assumed
that a write method call initializes the register before other methods are invoked.) Every cas with the
first argument v1 returns true if the written value of the latest preceding successful write is v1 and
returns false otherwise.

Atomic CAS Register. An atomic CAS register is a linearizable instance of CAS register type.
Let AtomicCASRegister denote the type of Atomic CAS registers.
Let us define

isXCASX,r(lW) = lW ∈ X ∧ objX(lW) = r ∧ nameX(lW) = cas (2.33)

isXCWriteX,r(lW) = isXWrite(lW) ∨ (isXCAS(lW) ∧ retvX(lW) = true)(2.34)

writtenV alueX(lW) =

{
arg1X(lW) if nameX(lW) = write
arg2X(lW) if nameX(lW) = cas

(2.35)

LNoWriteBetweenX,L,r(lW , lR) = ∀l′W : isXCWriteX,r(l
′
W)⇒ (l′W �L lW ∨ lR ≺L l′W) (2.36)

isLCWriterX,L,r(lW , lR) = isXCWriteX,r(lW) ∧ (2.37)

lW ≺L lR ∧
LNoWriteBetweenX,L,r(lW , lR)

Lemma 18 (CASRegRead). In every execution on an atomic cas register, every read returns the
value the last successful write linearized before it writes. Formally,

∀r ∈ AtomicCASRegister : ∀(X,L) ∈ HL(r) : (2.38)

∀lR : isXReadX,r(lR)⇒
∃lW : isLCWriterX,L,r(lW , lR) ∧

retvX(lR) = arg1X(lW)

Lemma 19 (CASRegCAS). In every execution on an atomic cas register, every cas returns true if
its first argument is equal to the argument of the last successful write linearized before it and returns
false otherwise. Formally,

∀reg ∈ AtomicCASRegister : ∀(X,Reg) ∈ HL(reg) : (2.39)

∀lC , lW :

isXCASX,reg(lC) ∧
isLCWriterX,Reg,reg(lW , lR)

⇒
(writtenV alueX(lW) = arg1X(lC)⇒ retvX(lC) = true) ∧
(¬(writtenV alueX(lW) = arg1X(lC))⇒ retvX(lC) = false)

35

2.3.2.3 Lock

Abstract lock. An abstract lock l is an object that encapsulates a state, acquired A or released R,
and supports the following methods: lock: The method call l.lock() changes the state from R to A.
unlock: The method call l.unlock() changes the state from A to R. read: The method call l.read()
returns true if the state of lock is A and false otherwise. The method calls lock and unlock are
mutating method calls. The method call read is an accessor method call.

Definition 7. The sequential specification of a lock l is the set of sequential histories L of lock,
unlock, and read method calls on l where the sub-history of L for mutating methods is an alternating
sequence of lock and unlock methods and every read method call in L returns true if the last mutating
method call before it in L is a lock and returns false otherwise.

Lock. A lock is a linearizable instance of the abstract lock type.
Let Lock denote the type of locks.

Now, we present some preliminary definitions and then lemmas about locks.

isXLockX,lo(l) = (2.40)

l ∈ X ∧ objX(l) = lo ∧ nameX(l) = lock

isXUnlockX,lo(l) = (2.41)

l ∈ X ∧ objX(l) = lo ∧ nameX(l) = unlock

isXReadX,lo(l) = (2.42)

l ∈ X ∧ objX(l) = lo ∧ nameX(l) = read

The common usage protocol for locks is that a thread unlocks a lock only if it has already acquired
it. Many languages including Java enforce this property of programs by runtime checks. We capture
this property as follows.

Definition 8. A history is owner-respecting for a lock if every thread in the history releases the lock
only after it has already acquired it.

isXOwnerRespectinglo(X) = (2.43)

∀l : isXUnlockX,lo(l)⇒
∃l′ : isXLockX,lo(l′) ∧

threadX(l′) = threadX(l) ∧
l′ ≺X l ∧
∀l′′ : (isXUnLockX,lo(l

′′) ∧ threadX(l′′) = threadX(l))⇒ (l′′ ≺X l′ ∨ l �X l′′)

Lemma 20. If l is a lock, X is an owner-respecting history of l and L is the linearization of X, then
the sub-history of L for mutating method calls is a sequence of pairs of lock and unlock method calls
by the same thread (possibly followed by a lock method call).

Lemma 21 (Lock). In an owner-respecting execution for a lock l, if a lock method call by a thread
T1 is linearized before an unlock method call by a thread T2, then an unlock method call by T1 is

36

linearized before a lock method call by T2. Formally,

∀o ∈ Lock : ∀(X,L) ∈ HL(o) : ∀ll1, lu2 : (2.44)

(isXOwnerRespectingo(X) ∧
isXLockX,o(ll1) ∧
isXUnlockX,o(lu2) ∧
ll1 ≺L lu2)⇒

∃lu1, ll2 :

isXUnlockX,o(lu1) ∧ threadX(ll1) = threadX(lu1) ∧
isXLockX,o(ll2) ∧ threadX(ll2) = threadX(lu2) ∧
lu1 ≺L ll2

Lemma 22 (LockReadL). In an owner-respecting execution for a lock l, if a read method call that
returns false is linearized before an unlock method call by a thread T , then the read method call is
linearized before a lock method call by T . Formally,

∀o ∈ Lock : ∀(X,L) ∈ HL(o) : ∀lu1, lr2 : (2.45)

(isXOwnerRespectingo(X) ∧
isXReadX,o(lr2) ∧ retvX(lr2) = false

isXUnlockX,o(lu1) ∧
lr2 ≺L lu1)⇒

∃ll1 :

isXLockX,o(ll1) ∧ threadX(ll1) = threadX(lu1) ∧
lr2 ≺L ll1

Lemma 23 (LockReadR). In an owner-respecting execution for a lock l, if a lock method call by
a thread T is linearized before a read method call that returns false, then an unlock method call by
T is linearized before the read method call. Formally,

∀o ∈ Lock : ∀(X,L) ∈ HL(o) : ∀ll1, lr2 : (2.46)

(isXOwnerRespectingo(X) ∧
isXLockX,o(ll1) ∧
isXReadX,o(lr2) ∧ retvX(lr2) = false

ll1 ≺L lr2)⇒
∃lu1 :

isXUnlockX,o(lu1) ∧ threadX(ll1) = threadX(lu1) ∧
lu1 ≺L lr2

Lemma 24 (LockReadM). In an owner-respecting execution for a lock l, every read method call

37

that is linearized between a pair of matching lock and unlock method calls returns true. Formally,

∀o ∈ Lock : ∀(X,L) ∈ HL(o) : ∀ll1, lu1, lr2 : (2.47)

(isXOwnerRespectingo(X) ∧
isXLockX,o(ll1) ∧
isXUnlockX,o(lu1) ∧
threadX(ll1) = threadX(lu1) ∧
∀l′u1 : (isXUnlockX,o(l

′
u1) ∧ threadX(ll1) = threadX(l′u1))⇒ (l′u1 ≺X ll1 ∨ lu1 �X l′u1)

isXReadX,o(lr2) ∧
ll1 ≺L lr2 ∧ lr2 ≺L lu1)

⇒
retvX(lr2) = true

2.3.2.4 Try-lock

Abstract Try-lock. A try-lock l is an object that encapsulates an abstract state, acquired A or
released R, and in addition to lock, unlock and read methods, it supports the trylock method. If
the state of the lock is R, l.trylock() changes it to A and returns true. Otherwise, it returns false.

We call a lock method call or a successful tryLock method call, a successful lock method call. We
call a lock method call, successful tryLock method call or unlock method call, a mutating method
call.

Definition 9. The sequential specification of a try-lock l is the set of sequential histories L of lock,
unlock, read and tryLock method calls on l with the following conditions: The last mutating method
call before a successful lock method call is an unlock method call. Similarly, the last mutating method
call before an unlock method call is a successful lock method call. A tryLock method call returns true
if the latest preceding mutating method call is an unlock and returns false otherwise. Similarly, A
read method call returns true if the latest preceding mutating method call is a successful lock and
returns false otherwise.

Try-Lock. A try-lock is a linearizable instance of the abstract try-lock type.
Let TryLock denote the type of try-locks.

Similar to the Lock type, after some preliminary definitions, we define the owner-respecting
histories and state the TryLock type lemmas.

isXTryLockX,o(l) = (2.48)

l ∈ X ∧ objX(l) = o ∧ nameX(l) = tryLock

isXTLockX,o(l) = (2.49)

isXLockX,o(l) ∨ (isXTryLockX,o(l) ∧ retvX(l) = true)

The intuition for owner-respecting histories remains the same. A history is owner-respecting for
a try-lock if every thread in the history releases the lock only after it has already acquired it. The

38

minor difference from the prior definition for locks is that the acquisition of a try-lock is either by a
lock method call or a successful tryLock method call.

isXTOwnerRespectingo(X) = (2.50)

∀l : isXUnlockX,o(l)⇒
∃l′ : isXTLockX,o(l′) ∧

threadX(l′) = threadX(l) ∧
l′ ≺X l ∧
∀l′′ : (isXUnLockX,o(l

′′) ∧ threadX(l′′) = threadX(l))⇒ l′′ ≺X l′ ∨ l �X l′′

Lemma 25. If l is a try-lock, X is an owner-respecting history of l and L is the linearization of
X, then the sub-history of L for mutating method calls is a sequence of pairs of successful lock and
unlock method calls by the same thread (possibly followed by a successful lock method call).

Lemma 26 (TryLock). In an owner-respecting execution for a try-lock l, if a successful lock method
call by a thread T1 is linearized before an unlock method call by a thread T2, then an unlock method
call by T1 is linearized before a successful lock method call by T2. Formally,

∀o ∈ TryLock : ∀(X,L) ∈ HL(o) : ∀ll1, lu2 : (2.51)

(isXTOwnerRespectingo(X) ∧
isXTLockX,o(ll1) ∧
isXUnlockX,o(lu2) ∧
ll1 ≺L lu2)⇒

∃lu1, ll2 :

isXUnlockX,o(lu1) ∧ threadX(ll1) = threadX(lu1) ∧
isXTLockX,o(ll2) ∧ threadX(ll2) = threadX(lu2) ∧
lu1 ≺L ll2

Lemma 27 (TryLockReadL). In an owner-respecting execution for a try-lock l, a read method
call that returns false is linearized before if an unlock method call by a thread T then the read method
call is linearized before a successful lock method call by T . Formally,

∀o ∈ TryLock : ∀(X,L) ∈ HL(o) : ∀lu1, lr2 : (2.52)

(isXTOwnerRespectingo(X) ∧
isXReadX,o(lr2) ∧ retvX(lr2) = false

isXUnlockX,o(lu1) ∧
lr2 ≺L lu1)⇒

∃ll1 :

isXTLockX,o(ll1) ∧ threadX(ll1) = threadX(lu1) ∧
lr2 ≺L ll1

39

Lemma 28 (TryLockReadR). In an owner-respecting execution for a try-lock l, if a successful
lock method call by a thread T is linearized before a read method call that returns false, then an
unlock method call by T is linearized before the read method call. Formally,

∀o ∈ TryLock : ∀(X,L) ∈ HL(o) : ∀ll1, lr2 : (2.53)

(isXTOwnerRespectingo(X) ∧
isXTLockX,o(ll1) ∧
isXReadX,o(lr2) ∧ retvX(lr2) = false

ll1 ≺L lr2)⇒
∃lu1 :

isXUnlockX,o(lu1) ∧ threadX(ll1) = threadX(lu1) ∧
lu1 ≺L lr2

Lemma 29 (TryLockReadM). In an owner-respecting execution for a try-lock l, every read
method call that is linearized between a pair of matching successful and unlock method calls returns
true. Formally,

∀o ∈ TryLock : ∀(X,L) ∈ HL(o) : ∀ll1, lu1, lr2 : (2.54)

(isXOwnerRespectingo(X) ∧
isXTLockX,o(ll1) ∧
isXUnlockX,o(lu1) ∧
threadX(ll1) = threadX(lu1) ∧
∀l′u1 : (isXUnlockX,o(l

′
u1) ∧ threadX(ll1) = threadX(l′u1))⇒ (l′u1 ≺X ll1 ∨ lu1 �X l′u1)

isXReadX,o(lr2) ∧
ll1 ≺L lr2 ∧ lr2 ≺L lu1)

⇒
retvX(lr2) = true

2.3.2.5 Sequence-lock

Abstract seq-lock. A seq-lock l is an object that encapsulates a number and an abstract state,
acquired A or released R. It supports the read, compareAndLock and incAndUnlock methods. The
method call l.read() returns the pair of the encapsulated number and true if the state of lock is
A and false otherwise. The method call l.compareAndLock(n) compares the encapsulated number
with n and if they are equal, changes the state from R to A and returns true. Otherwise, it does not
change the state of the seq-lock and returns false. The method call l.incAndUnlock() increments
the encapsulated number and changes the state from A to R.

A successful compareAndLock and incAndUnlock are mutating method calls. The method call
read is an accessor method call.

Definition 10. The sequential specification of a seq-lock l is the set of sequential histories L of read,
compareAndLock, and incAndUnlock method calls on l with the following conditions:

40

Every read method call returns the pair of the number of incAndUnlock method calls before it and
true if the last mutating method call before it is a successful compareAndLock and false otherwise.

A compareAndLock method call returns true if the last mutating method call before it is an
incAndUnlock method call and the number of incAndUnlock method calls before it is equal to its
argument. It returns false otherwise.

The last mutating method call before an incAndUnlock method call is a successful compareAndLock
method call.

Seq-Lock. A seq-lock is a linearizable instance of the abstract seq-lock type.
Let SeqLock denote the type of seq-locks.

2.3.2.6 Counter

Abstract Counter: A counter c is an object that encapsulates a number and supports the following
two methods: The method call c.read() returns the current value of c. The method call c.iaf()
increments the value of c and returns the incremented value.

Definition 11. The sequential specification of a counter c is the set of sequential histories of read
and iaf method calls on c where every method call returns the number of iaf method calls before it
(including the method call itself). Note that it is assumed that the initial value of the counter is zero.

Strong Counter. A strong counter is a linearizable instance of abstract counter type.
Let SCounter denote the type of strong counters.

Lemma 30 (SCounter). The return value of every method call that is linearized before an iaf
method call is smaller than the return value of the iaf method call. Formally,

∀c ∈ SCounter : ∀(X,C) ∈ HL(c) : ∀l, l′ : (2.55)

l ∈ X ∧ l′ ∈ X ∧ nameX(l′) = iaf ∧ l ≺C l′

⇒
retvX(l) < retvX(l′)

2.3.2.7 Set

A set s is an object that represents a set of values and supports the following methods: add: The
method call s.add(v) adds value v to set s. contains: The method call s.containts(v) returns true if
v is a member of s and false otherwise.

Definition 12. The sequential specification of a set s is the set of sequential histories of add and
contains method calls on s where every contains method call returns true if there is a preceding add
method call with the same argument, and returns false otherwise. Note that it is assumed that the
set is initially empty.

Basic Set. A basic set is a basic instance of set type.

41

Let BasicSet denote the type of basic sets.
Let us define

isXContainsX,s(l) = (2.56)

l ∈ X ∧ objX(l) = s ∧ nameX(l) = contains

isXAddX,s(l) = (2.57)

l ∈ X ∧ objX(l) = s ∧ nameX(l) = add

Lemma 31 (BasicSetContains). In every sequential execution on a basic set, for every contains
method call that returns true, there is a preceding add method call with the same argument. Formally,

∀s ∈ BasicSet : ∀X ∈ HB(s) : X ∈ Sequential⇒ (2.58)

∀lc : isXContainsX,s(lc) ∧ retvX(lc) = true⇒
∃la : isXAddX,s(la) ∧

arg1(la) = arg1(lc) ∧ la ≺X lc

Lemma 32 (BasicSetAdd). In every sequential execution on a basic set, every contains method
call that succeeds an add method call with the same argument returns true. Formally,

∀s ∈ BasicSet : ∀X ∈ HB(s) : X ∈ Sequential⇒ (2.59)

∀lc, la :

isXContainsX,s(lc) ∧
isXAddX,s(la) ∧
arg1(la) = arg1(lc) ∧ la ≺X lc

⇒
retvX(lc) = true

2.3.2.8 Map

A map m is an object that represents a mapping from a set of keys to a set of values and supports
the following methods: put: The method call m.put(k, v) adds or updates the mapping of the key k
to the value v (v 6= ⊥) in the map m. get: The method call m.get(k) returns the value that the map
m associates with the key k. It returns ⊥ if m does not map k.

Definition 13. The sequential specification of a map m is the set of sequential histories of put and
get method calls on m where every get method call returns ⊥ if there is no preceding put method
call with the same key argument; otherwise it returns the second argument of the latest preceding put
method call with the same key argument. Note that it is assumed that the map is initially empty.

Basic Map. A basic set is a basic instance of map type.
Let BasicMap denote the type of basic maps.

42

Let us define

isXGetX,m(l) = (2.60)

l ∈ X ∧ objX(l) = m ∧ nameX(l) = get

isXPutX,m(l) = (2.61)

l ∈ X ∧ objX(l) = m ∧ nameX(l) = put

isXPutterX,m(lp, lg)⇔ (2.62)

isXPutX,m(lp) ∧ arg1X(lp) = arg1X(lg) ∧ lp ≺X lg ∧ (2.63)

∀l′p : isXPutX,m(l′p) ∧ arg1X(l′p) = arg1X(lg)⇒ (l′p �X lp ∨ lg ≺X l′p) (2.64)

Lemma 33 (BasicMapGet). In every sequential execution on a basic map, the return value of
every get method call that does not return ⊥ is equal to the value argument of the latest preceding
put method call with the same key argument. Formally,

∀m ∈ BasicMap : ∀X ∈ HB(m) : X ∈ Sequential⇒ (2.65)

∀lg : isXGetX,m(lg) ∧ ¬(retvX(lg) = ⊥)⇒
∃lp : isPutterX,m(lp, lg) ∧

arg2X(lp) = retvX(lg)

Lemma 34 (BasicMapPut). In every sequential execution on a basic map, for every get method
call g, if p is the latest preceding put method call with the same key argument then the return value
of g is equal to the value argument of p. Formally,

∀m ∈ BasicMap : ∀X ∈ HB(m) : X ∈ Sequential⇒ (2.66)

∀lg, lp :

isXGetX,m(lg) ∧
isPutterX,m(lp, lg) ∧

⇒
retvX(lg) = arg2X(lp)

43

2.3.3 History Semantics

In this subsection, we define the history semantics of specifications. It is a denotational semantics
that defines the set of histories of a specification with a set of constraints enforcing the structure
of the program and the guarantees of the base objects. Based on this denotational semantics, later
chapters present a technique that can find bugs by constraint solving. The history semantics has the
following three properties
• The semantics is compositional for base objects. It is defined abstractly from specific base object

types. The semantics can be modularly augmented with new object types. The semantics of
basic and linearizable objects are separately defined.
• The semantics models true concurrency. In contrast to interleaving semantics where method

calls are the elements of histories, true concurrency considers a pair of invocation and response
events for each method call. Therefore, concurrent execution of method calls is modeled.
• The semantics models relaxed execution. Methods that are not required to be ordered by the

specification are allowed to execute out of order.
First, we present some preliminary definitions. The prefixing operator ’ prefixes a program label

before another program label or a program variable. The identity element for the prefixing operator
is ε, thus c = ε’c; x = ε’x; t = ε’t. We define the set of labels as follows:

ς := c | ε Prelabel
l ∈ LabelConst ::= ς’c Constant Label

Each label l is of the form ς’c. ς is called the pre-label and c is called the leading label of l. A label
c1’c2 is a call string that denotes a method call labeled c2 in a this method called from a call site
labeled c1. On the other hand, the label c1 denotes a this method call labeled c1 in the concurrent
program part. We extend the grammar of variables with labeled variables as follows.

x ∈ ProgVar ::= {i, r, . . .} | ς’x Variable
t ∈ ThreadVar ::= {t1, t2, . . .} | ς’t Thread Variable

Labeled variables are used to denote local variables of this method calls. For example, c’x denotes
the local variable x insider a this method call labeled c. Similarly, the prefixing operator is lifted
to expressions such that every label and variable in the expression is prefixed. For example c’(x1 >
x2) = (c’x1 > c’x2).

Let σ denote a mapping from variables to concrete values. The history σ(X) is the history that
is obtained from the history X by substituting every variable x and t in X with σ(x) and σ(t)
respectively. Similarly, the condition σ(b) is the condition that is obtained by substituting every
variable x and t of b with σ(x) and σ(t) respectively. Similar is the definition of σ(o), σ(u) and σ(τ).

Consider a specification π = (T ,D,P). The history semantics of π, H(π), is defined in Figure 2.12.
We illustrate the definitions in the following paragraphs.

The semantics of a this method call is defined in Equation 2.67. Consider a method call

c . x′ = nτ (u)

Every execution history X of a this method call starts with the invocation of n and finishes with a
response from n. The enclosed history X ′ is an execution history of the body of n.

X = inv(c . nτ (u)) ·X ′ · ret(c . x′)

44

Let Labelsπ(n) = {ci}, Returnsπ(n) = {cr}.
[[c . x′ = nτ (u)]] = {(X, σ) | (2.67)

X = inv(c . nτ (u)) ·X ′ · ret(c . x′) ∧
X ′ ∈ Sequential ∧
σ(c’tparπ(n)) = σ(τ) ∧ σ(c’par1π(n)) = σ(u) ∧
Labels(X ′) ⊆ {c’ci} ∧
∀c’ci ∈ X ′ :

objX′(c’ci) = c’objπ(ci) ∧ threadX′(c’ci) = c’threadπ(ci) ∧
nameX′(c’ci) = nameπ(ci) ∧ arg1X′(c’ci) = c’arg1π(ci) ∧
retvX′(c’ci) = c’retvπ(ci) ∧

∀ci ∈ {ci} : c’ci ∈ X ′ ⇔
(σ(c’condπ(ci)) ∧ ∀cj ∈ PreReturnsπ(ci)⇒ ¬c’cj ∈ X ′) ∧

∀ci, cj ∈ {ci} : ((ci →n cj) ∧ c’ci ∈ X ′ ∧ c’cj ∈ X ′)⇒ c’ci �X′ c’cj ∧
∀cr ∈ {cr} : c’cr ∈ X ′ ⇒ σ(x′) = σ(c’arg1π(cr))}

[[p1; p2]] = {(X, σ) | ∃X1, X2 : (X1, σ) ∈ [[p1]] ∧ (X2, σ) ∈ [[p2]] ∧ X = X1 ·X2} (2.68)

[[if b p1 else p2]] = {(X, σ) | ((X, σ) ∈ [[p1]] ∧ σ(b)) ∨ ((X, σ) ∈ [[p2]] ∧ ¬σ(b))} (2.69)

Let P = p0, (p1‖p2‖...‖pn).

[[π]] = {(X, σ,L) | (2.70)

∀i ∈ {0..n} : ∃Xi : (Xi, σ) ∈ [[pi]] ∧ X ′ ∈ Interleave(X1, ..., Xn) ∧ X = X0 ·X ′ ∧
X ′′ = σ(X) ∧
∀o : Tbase(o) ∈ LT ∪ SCT ⇒ (X ′′|o,L(o)) ∈ HL(o) ∧
∀o : Tbase(o) ∈ BT ⇒ X ′′|o ∈ HB(o)}

H(π) = {X ′ | ∃(X, σ,L) ∈ [[π]] ∧ X ′ = σ(X)} (2.71)

Figure 2.12: History Semantics H(π) of a specification π = (T ,D,P)

45

Every thread is sequential. Thus, the execution history X ′ of the body of n is a sequential
execution history.

X ′ ∈ Sequential

A method can be called several time in the program. To have unique variable names, every
variable (including the parameters) of the method is prefixed by the caller label. For example, c’x
represents the variable x inside the method call labeled c. The function σ represents the mapping
from variables to values at the end of the execution.

As defined before, tparπ(n) and par1π(n) are the thread parameter and the first parameter of the
method n respectively. In the method call c defined above, τ and u are the thread argument and the
first argument respectively. In every method call, the parameters are equal to the arguments.

σ(c’tparπ(n)) = σ(τ) ∧ σ(c’par1π(n)) = σ(u)

Let the set of labels of method n, Labelsπ(n), be {ci}. Obviously, an execution of the body
involves only the labels that are in the body itself. Note that to have unique labels, the labels ci are
prefixed by the caller label c.

Labels(X ′) ⊆ {c’ci}

If a method call labeled ci is executed inside a this call labeled c, every variable in it is prefixed
by c in the execution history. For example, a method call

ci . y = φ[i].nt(x)

executed inside a this method call labeled c appears as follows in the execution history.

inv(c’ci . φ[c’i].nc’t(c’x)) · ret(c’ci . c’y)

Thus, the components of every executed label c’ci are the components of ci in the program prefixed
with c.

∀c’ci ∈ X ′ :
objX′(c’ci) = c’objπ(ci) ∧ threadX′(c’ci) = c’threadπ(ci) ∧
nameX′(c’ci) = nameπ(ci) ∧ arg1X′(c’ci) = c’arg1π(ci) ∧
retvX′(c’ci) = c’retvπ(ci) ∧

A labeled statement ci is executed if and only if its condition condπ(ci) is satisfied and no return
statement before it is already executed.

∀ci ∈ {ci} : c’ci ∈ X ′ ⇔
(σ(c’condπ(ci)) ∧ ∀cj ∈ PreReturnsπ(ci)⇒ ¬c’cj ∈ X ′)

The execution order preserves the program order. If two labels are required to be ordered by the
specification, they are ordered in the execution.

∀ci, cj ∈ {ci} : ((ci →n cj) ∧ c’ci ∈ X ′ ∧ c’cj ∈ X ′)⇒ c’ci �X′ c’cj

46

Every execution of the body executes a return statement and the argument of the return statement
is equal to the return value of the this method call. Let the set of return statements of the method
n, Returnsπ(n), be {cr}.

∃cr ∈ {cr} : c’cr ∈ X ′ ∧ σ(x′) = σ(c’arg1π(cr))

Equation 2.68 defines that an execution history X of the sequence of two sequential programs p1
and p2 is the concatenation of an execution history X1 of p1 and an execution history X2 of p2.

Equation 2.69 defines that the execution histories of the if-then-else statement are the execution
histories of the if statement when the condition is true and the execution histories of the else statement
when the condition is false.

The semantics of basic, sequentially-consistent and linearizable objects are already defined in the
previous subsection (Definitions 1, 3 and 2). The semantics of a basic object is the set of execution
histories that it allows. The semantics of a sequentially-consistent and linearizable object is the set
of pairs of execution and linearization histories that it allows.

Equations 2.70 and 2.71 define the execution histories of a specification. An execution history
of π = (P ,D, T) is a history that meets the semantics of the definitions D and the program P
and also the semantics of the base objects in T . An execution history of the parallel programs is an
interleaving of execution histories of the programs. The history of the initialization program precedes
the history of the parallel programs. The sub-history for each object complies with the semantics of
the object.

Consider an execution triple (X, σ,L) in [[π]]. X is a symbolic execution history of π where
variables are not yet substituted with their values. σ is the mapping from variables to values at the
end of the execution. Applying σ to X, σ(X), yields a concrete execution history of π. H(π) is the
set of concrete execution histories of π. L is the mapping from objects to their linearization in the
execution.

As the focus of the semantics is modeling the concurrency aspects of the specification, it does
not model index range of arrays and value range of base objects. These issues are orthogonal to the
focus of this semantics and can be studied independently.

47

Chapter 3

TM Correctness

3.1 Introduction

A transactional memory (TM) is a concurrent object with the four init, read, write and commit
methods. The clients of a TM are transactions, a sequence of init and then read and write invo-
cations that are possibly succeeded by a commit invocation. A transactional processing system is
the composition of a TM and as set of clients. The clients issue the invocation events and the TM
issues the response events. TM should guarantee that every concurrent execution of an arbitrary set
of client transactions is indistinguishable from a sequential execution of them. Correctness condi-
tions for TM such as opacity [28], VWC [44], and TMS1 and TMS2 [22] define the indistinguishably
criterion and the set of correct histories. In this chapter, we present a formal definition of opacity.

Design and verification of TM algorithms has been a topic of recent attention and has proved
to be formidable. TM algorithms are subtle and prone to bugs. Verification of TM algorithms
is a hard in part because the target correctness criterion is a monolithic complicated condition.
Can the correctness of TM be stated as a conjunction of simpler meaningful conditions? In other
words, is there an intuitive functional decomposition of TM correctness conditions? What are the
separate invariants that the TM designers should maintain? In an early work, Tasiran [73] presented
a decomposition of the correctness condition for a specific class of algorithms.

We present intuitive invariants for the correctness of TM algorithms. We say that a history is
markable if there is a specific ordering relation called marking such that three invariants are satisfied.
These invariants are not only sufficient but also required for opacity. We prove the equivalence of
markability and opacity. Roughly speaking, the first invariant called write-observation requires that
each read operation returns the most current value and the second invariant called read-preservation
requires that the location which is read is not overwritten in a certain interval and the third invariant
is the well-known real-time-preservation property.

Separation of concerns brings modularity in understanding, design and verification. Decompo-
sition of the correctness condition informs designers by showcasing different aspects of correctness
and helps them concentrate on maintaining one aspect at a time. It also allows studying the effect
of separate aspects of correctness on performance. In addition, separation has obvious benefits of
modularity and scalability for verification. The marking relation can be defined using the execution
order or the linearization order of method calls on the used synchronization objects. Thus, proofs
of markability can be aided by and mirror design intuitions. Markability can be proved using the

48

program logic that we will present in the following chapters.
In this section, we first formalize opacity. Then, we introduce the notion of markability and prove

the equivalence of opacity and markability.

3.2 Opacity

In this section, we present a formal definition of opacity. Opacity of a TM algorithm is defined in
two steps. First, it is defined what it means for a transaction history to be opaque which is called
final-state-opacity. Then, a TM algorithm is defined to be opaque if every transaction history of
every source program running on top of that TM algorithm is final-state-opaque.

A transaction history H is an execution history such that H|mem = HInit ·H ′ with the following
conditions. HInit is the following history that initializes every location to v0. HInit = l0i . initT0() ·
l00 . writeT0(1, v0):ok · . . . · l0m . writeT0(m, v0):ok · l0c . commitT0 :C. For every T ∈ H ′, the history
H ′|T is a prefix of e.e′. The event sequence e is the initialization method call l . initT () (for some l),
and then a sequence of reads l . readT (i):v and writes l .writeT (i, v) (for some l, i, and v). The event
sequence e′ is one of the following sequences (for some l, i, and v): (1) inv(l .readT (i)), ret(l .A), (2)
inv(l .writeT (i, v)), ret(l .A), (3) inv(l . commitT ()), ret(l .C), (4) inv(l . commitT ()), ret(l .A), or
(5) inv(l . abortT ()), ret(l .A). Let THistory denote the set of transaction histories. Let Trans(H)
denote the set of transactions of H. The projection of H on i, written H|i, denotes the subsequence
of history H that contains exactly the events on location i. For a TM algorithm specification π, let
H(π) denote the set of complete transaction histories that π results.

F inalStateOpaque is defined in Figure 3.1. First, we present some preliminary definitions. We
use T prefix before some of the terms for transactions to avoid confusion with the terms for concurrent
objects. We say that a transaction history is transaction sequential if it is a sequence of transactions.
A transaction T is committed or aborted in a transaction history H if there is respectively a commit
or abort response event for T in H. A completed transaction is either committed or aborted. A
live transaction is a transaction that is not completed. A transaction history is complete if all
its transactions are completed. A pending transaction has a pending event and a commit-pending
transaction has a commit pending event. An extension of a history is obtained by committing or
aborting its commit-pending transactions and aborting the other live transactions.

If H is a transaction history and p is a predicate on transaction identifiers, we define filter(H, p)
to be the subsequence of H that contains the events of transactions T for which p(T) is true. The
visible history for a transaction T in a sequential transaction history S, V isible(S, T), is the sequence
of committed transactions before T in S and T itself. The sequential specification of a location i,
SeqSpec(i), is the set of sequential histories of read and write method calls on location i where every
read returns the value given as the argument to the latest preceding write (regardless of transaction
identifiers). It is essentially the sequential specification of a register. Transactional sequential spec-
ification is the set of complete sequential transaction histories S that for every transaction T and
location i, V isible(S, T)|i is a member of the sequential specification of i. A transaction history H
is final-state-opaque if there is an equivalent sequential transaction history S for an extension of H
such that S is real-time-preserving and a member of transactional sequential specification. The se-
quential history S is called the justifying history. In other words, every correct concurrent execution
is indistinguishable from a correct sequential execution.

49

TReads(H) = {R | R ∈ H ∧ objH(R) = this ∧ (3.1)

nameH(R) = read ∧ retvH(R) 6= A}
TWrites(H) = {W | W ∈ H ∧ objH(W) = this ∧ (3.2)

nameH(W) = write ∧ retvH(W) 6= A}
C ommits(H) = {C | C ∈ H ∧ objH(C) = this ∧ nameH(C) = commit} (3.3)

Trans(H) = {T | ∃l ∈ H : threadH(l) = T} (3.4)

TSequential = {S ∈ THistory | ��S is a total order of T rans(S)} (3.5)

Committed(H) = {T | ∃l ∈ C ommits(H) ∧ retvH(l) = C} (3.6)

Aborted(H) = {T | ∃l ∈ H : objH(l) = this ∧ threadH(l) = T ∧ retvH(l) = A}(3.7)

Completed(H) = Committed(H) ∪ Aborted(H) (3.8)

Live(H) = Trans(H) \ Completed(H) (3.9)

TComplete = {H ∈ THistory | ∀T ∈ Trans(H) : T ∈ Completed(H)} (3.10)

CommitPending(H) = {T ∈ Live(H) | ∃l ∈ H : (3.11)

objH(l) = this ∧ threadH(l) = T ∧ nameH(l) = commit}
TExtension(H) = {H ′ ∈ THistory | ∃H ′′ : H ′ = H ·H ′′ (3.12)

Trans(H ′′) ⊆ Trans(H) ∧ ∀T : ||H ′′|T || ≤ 1 ∧
Live(H) \ CommitPending(H) ⊆ Aborted(H ′) ∧
CommitPending(H) ⊆ Completed(H ′)}

V isible(S, T) = filter (S, λT ′.(T ′ = T) ∨ ((T ′ ≺≺S T) ∧ T ′ ∈ C ommitted(S)))(3.13)

NoWriteBetweenS(W,R) = ∀W ′ ∈ TWrites(S) : W ′ �S W ∨ R ≺S W ′ (3.14)

SeqSpec(i) = {S ∈ Sequential | ∀R ∈ TReads(S) : ∃W ∈ TWrites(S) : (3.15)

W ≺S R ∧ NoWriteBetweenS(W,R) ∧
retvS(R) = arg2S(W)}

TSeqSpec = {S ∈ TSequential ∩ TComplete | ∀T ∈ S : ∀i ∈ I : (3.16)

(V isible(S, T) | i) ∈ SeqSpec(i)}
F inalStateOpaque = {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :(3.17)

H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ S ∈ TSeqSpec}

Figure 3.1: F inalStateOpaque

50

T
1

T
2

T
3

T
4

R

(a)

T
1

T
2

T
3

T
4

R

(b)

T
1

T
2

T
3

T
4

R

(c)

Figure 3.2: Illustrations of Write-observation and Read-preservation

Definition 14 (Opaque TM Algorithm). A TM algorithm is opaque if and only if every execution
history of it is final-state-opaque.
Opaque = {π | H(π) ⊆ F inalStateOpaque}

3.3 Markability

3.3.1 Write-observation and Read-preservation

In this section, we explain the main ideas behind markability by focusing on complete histories with
only global reads and writes. A history is complete if every transaction in it is either aborted or
committed. A read R by a transaction T is global if T has no write to the same location before R.
A write W by a transaction T is global if T has no write to the same location after W .

A transaction history is markable if and only if there exists a marking of it that is write-observant,
read-preserving, and real-time-preserving. We explain each term in turn.

A marking of a transaction history is a relation on the union of the transactions and the read
operations in the history. We can think of the marking as the union of a collection of orders:
• The effect order : The effect order is a total order of the transactions.
• The access orders : Consider an unaborted read operation R that reads from a location i. Let

writers of i be the committed transactions that have write operation(s) to location i. For each
such R, the access order is an antisymmetric relation that orders R and every writer of i.

The effect order represents the order in which the transactions appear to take effect. The access
order represents where the read operation’s access to the location has happened between the accesses
by the writers of that location.

Note that marking not only recognizes the points where transactions take effect but also the
points where reads take place. The effect point of a transaction captures the point where the whole
transaction takes effect. But a transaction is split into multiple operations. Particularly, read oper-
ations observe values before the commit is even invoked. Any value that the TM algorithm returns
in response to a read invocation should be justified at the point where the transaction takes effect.
There is a point where each writer transaction writes the new value to the shared objects. Every
read operation reads the value that it returns at a certain point between the write points of the
writer transactions. The access order makes this design decision explicit. The access order makes
it possible to decompose the consistency condition into two orthogonal invariants. Particularly, the
read-preservation invariant makes sure that the read value is not overwritten in the interval between
the point where a read happens and the point where the transaction takes effect. Next, we will
explain write-observation and read-preservation.

51

At a high level, write-observation means that each read operation should read the most current
value. Let us explain this idea in more detail. Consider an unaborted read operation R from the
location i. Let pre-accessors be the writers of i that come before R in the access order for R. We
can use the effect order to determine the last pre-accessor that is, the pre-accessor that is greatest
in the effect order. Write-observation requires that the value that R reads be the same as the value
written by the last pre-accessor.

Figure 3.2 illustrates the write-observation and read-preservation invariants. Each sub-figure
shows a marking relation v. In every sub-figure, the effect order is T1 v T2 v T3 v T4 and the
transaction T3 performs the read operation R. In Figure 3.2(a), T1 and T4 are writers of i and the
access order is {T1 v R,R v T4}. T1 is the last pre-accessor for R. Thus, by write-observation, R is
expected to return the value that T1 writes to i.

At a high level, read-preservation means that the location read by a read operation is not over-
written between the points that the read takes place and the transaction takes effect. Let us explain
this idea in more detail. Consider an unaborted read operation R by transaction T from the location
i. Intuitively, read-preservation requires that no writer of i comes between R and T in the marking
relation. More precisely, read-preservation requires that there is no writer T ′ of i that accesses i after
R and takes effect before T and there is no writer T ′ of i that takes effect after T and accesses i
before R. (Note that depending on whether a transaction takes effect earlier or later in its lifetime,
one of these two conditions is usually trivially true.) In other words, read-preservation requires the
writers to both access i and take effect on the same “side” of R and T . More precisely, if a writer
T ′ accesses i before R (T ′ is marked before R in the access order), then T ′ takes effect before T (T ′

is marked before T in the effect order) too. Similarly, read-preservation requires that if T ′ accesses i
after R, it takes effect after T too.

The marking relation in Figure 3.2(a) satisfies read-preservation as there is no writer between
R and T2. The transaction T1 accesses i before R and takes effect before T3 too. The transaction
T4 accesses i after R and takes effect after T3 too. Figures 3.2(b) and 3.2(c) show markings that
are not read-preserving. In Figure 3.2(b), T1, T2 and T4 are writers of i and the access order is
{T1 v R,R v T2, R v T4}. The transaction T2 is between R and T3. Therefore, the marking is not
read-preserving. In Figure 3.2(c), T1 and T4 are writers of i and the access order is {T1 v R, T4 v R}.
The transaction T4 is between T3 and R. Therefore, the marking is not read-preserving.

The real-time-preservation condition requires that if all the events of a transaction T happen
before all the events of another transaction T ′, then T is less than T ′ in the effect order.

Our marking theorem says that a history is opaque if and only if it is markable. So, to prove
opacity, we can focus on proving markability. The algorithm designer can usually define the marking
relation readily from the guarantees (such as linearization orders) of the used shared objects.

If a transaction history H is markable, we can show that H is opaque. We construct a justifying
history by ordering the transactions in the effect order. Consider an arbitrary read R from i by
T . We call the writers of i that take effect before T , pre-effectors. Let the last pre-effector be the
pre-effector that is the greatest in the effect order. We need to show that the value that R returns is
the value that the last pre-effector writes. We recall that we call the writers that access i before R,
pre-accessors. First, we argue that pre-accessors are exactly pre-effectors. If a writer accesses before
R, by read-preservation, it does not take effect after T . Thus, by totality of effect order, it takes effect
before T . If a writer takes effect before T , by read-preservation, it does not access after R. Thus, as
the access order orders R and every writer of i, T accesses before R. Second, from write-observation,
we have that R returns the value written by the last pre-accessor in the effect order. Thus from the

52

T T ′

I01 . snap = clock.read() C02i . lock[i].trylock()
I02 . rver[t].write(snap) ...

C07 . wver = clock.iaf()
... ...

C16i . reg[i].write(v)

R04 . v = reg[i].read() C17i . ver[i].write(wver)
R05 . l = lock[i].read() C18i . lock[i].unlock()
R06 . s2 = ver[i].read()
R07 . sver = rver[t].read()

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver))
return A

Figure 3.3: TL2 Read-Preservation Example

two above statements, we have that R returns the value written by the last pre-effector (in the effect
order). This is the essence of the condition needed to prove opacity.

3.3.2 Marking TL2

Let us look at marking of TL2 algorithm [18] as an example. TL2 is specified in Figure 2.2.
Let us describe the marking relation for TL2. The clock object numbers the snapshots. Every

transaction reads an initial snapshot number at I01. A committing transaction makes a new snapshot
at C07. The effect point of a TL2 transaction is I01, if it is live or aborted and, is C07, if it is
committed. The effect order of transactions is the linearization order of clock for their effect points.
The access point of a read operation is at R04 where reg[i] is read and the access point of a writer of
i is C16i where reg[i] is written. Consider a read R from i and a writers T ′ to i. If the access point
of T ′ is executed before the access point of R, then T ′ is ordered before R in the access order of R.
Otherwise, T ′ is ordered after R in the access order of R.

One of the two conjuncts of the read-preservation property requires that for every transaction
T with an unaborted read operation R from a location i, there is no writer T ′ of i such that T ′

takes effect after T and accesses i before R. Let us see how TL2 preserves this property. We assume
that there exists such a writer T ′ and show that the validation checks embodied in TL2 detect the
existence of T ′ and abort R. We consider a transaction T with a read operation R from a location i
and a writer T ′ of i. We assume that T ′ takes effect after T and T ′ accesses i before R. For brevity,
we consider only the case that T is a live or aborted (not a committed) transaction. Figure 3.3
depicts the two transactions. We use the binary operators ≺X to denote execution precedence, ∼X
to denote concurrent execution and -X to denote precedence or concurrent execution of method
calls. We use the binary operators ≺clock, ≺ver[i] and ≺lock[i] to denote the linearization order of clock,
ver[i] and lock[i] respectively.1 We remind that the real-time-preservation property of a linearizable

1 We have formally proved the markability of TL2 using a novel program logic [?] that facilitates reasoning about
execution and linearization orders. To keep the focus of this paper on markability, we present a simplified reasoning
instead of the formal presentation of the logic.

53

object o states that if a method call m1 on o is executed before another method call m2 on o, then
m1 is linearized before m2. Equivalently, if m1 is linearized before m2, then m1 is executed before
or concurrent to m2. By the marking relation defined above, from the premise that T ′ takes effect
after T , we have (1) I01 ≺clock C07 and from the premise that T ′ accesses i before R, we have (2)
C16i ≺reg[i] R04. The method calls R05 and C18i are on the object lock[i]. We consider two cases
for the linearization order of them and show that R returns A in both cases.
• Case 1: (3) R05 ≺lock[i] C18i. From the execution, we have (4) C02i ≺X C16i and (5) R04 ≺X
R05. By the real-time-preservation property for ver[i] on 2, we have (6) C16i -X R04. By
the transitivity of the execution order on 4, 6 and 5, we have C02i ≺X R05; thus, by the
real-time-preservation property for lock[i], we have (7) C02i ≺lock[i] R05. From 7 and 3, we
have that R05 is executed when lock[i] is acquired. Therefore, R05 returns true i.e. l = true.
Thus, the validation check fails and R returns A.
• Case 2: (8) C18i ≺lock[i] R05. By the real-time-preservation property for lock[i], from 8, we

have (9) C18i -X R05. From the execution, we have (10) C17i ≺X C18i and (11) R05 ≺X R06.
By the transitivity of the execution order on 10, 9 and 11, we have (12) C17i ≺X R06. By
the real-time-preservation property for ver[i], from 12, we have (13) C17i ≺ver[i] R06. It is
straightforward to separately prove that (14) The register ver[i] is updated only to ascending
numbers. From 14 and 13, we have that R06 reads a value that is greater than or equal to
the value that C17i writes i.e. (15) s2 ≥ wver. From 1, and that iaf returns the incremented
value, we have (16) snap < wver. The value of sver is read at R07 from rver. The thread-local
register rver is only assigned at I02 to snap. Thus, we have (17) snap = sver. From 15, 16
and 17, we have s2 > sver. Thus, the validation check fails and R returns A in this case too.

Please see section 10.2.2 for more details about the proof of markability of TL2.

3.3.3 The Marking Theorem

In this section, we define markability for general histories and present the marking theorem that
states the equivalence of opacity and markability.

First, we present some preliminary definitions in Figure 3.4. (We use the prefix T before some
of the terms for transactions to avoid confusion with similar terms that are usually used for general
concurrent objects.) A transaction T is committed or aborted in a transaction history H if there is
respectively a commit or abort response event for T inH. A completed transaction is either committed
or aborted. A live transaction is a transaction that is not completed. A pending transaction has
a pending event and a commit-pending transaction has a commit pending event. An extension of
a history is obtained by committing or aborting its commit-pending transactions and aborting the
other live transactions.

A local read is a read that is preceded by a write by the same transaction to the same location.
Intuitively, a local read should read a value that is previously written by the same transaction and
hence the name. A global read is a read that is not local. A local write is a write that precedes a write
by the same transaction to the same location. A local write is overwritten by the same transaction
and hence the name. A global write is a write that is not local. The writers of i are the committed
transactions that write to location i.

Markability is defined in Figure 3.5. A marking v of a transaction history is the union of the
following relations on the set of transactions and the global reads.

54

Committed(H) = {T | ∃l ∈ H : objH(l) = mem ∧ transH(l) = T ∧ retvH(l) = C}
Aborted(H) = {T | ∃l ∈ H : objH(l) = mem ∧ transH(l) = T ∧ retvH(l) = A}

Completed(H) = Committed(H) ∪ Aborted(H)

Live(H) = Trans(H) \ Completed(H)

CommitPending(H) = {T ∈ Live(H) | ∃l ∈ H :

objH(l) = this ∧ threadH(l) = T ∧ nameH(l) = commit}
TExtension(H) = {H ′ ∈ THistory | ∃H ′′ : H ′ = H ·H ′′

Trans(H ′′) ⊆ Trans(H) ∧ ∀T : ||H ′′|T || ≤ 1 ∧
Live(H) \ CommitPending(H) ⊆ Aborted(H ′) ∧
CommitPending(H) ⊆ Completed(H ′)}

TReads(H) = {R | R ∈ H ∧ objH(R) = mem ∧ nameH(R) = read ∧ retvH(R) 6= A}
TWrites(H) = {W | W ∈ H ∧ objH(W) = mem ∧ nameH(W) = write ∧ retvH(W) 6= A}

LocalTReads(H) = {R | R ∈ TReads(H) ∧ ∃W ∈ TWrites(H) :

transH(R) = transH(W) ∧ arg1H(R) = arg1H(W) ∧ W ≺H R}
G lobalTReads(H) = TReads(H) \ LocalTReads(H)

LocalTWrites(H) = {W | W ∈ TWrites(H) ∧ ∃W ′ ∈ TWrites(H) :

transH(W) = transH(W ′) ∧ arg1H(W) = arg1H(W ′) ∧ W ≺H W ′}
G lobalTWrites(H) = TWrites(H) \ LocalTWrites(H)

WritersH(i) = {T ∈ Trans(H) | ∃l ∈ TWrites(H) : arg1H(l) = i ∧
transH(l) = T ∧ T ∈ Committed(H)}

Figure 3.4: The set of local and global reads and writes

55

Marking(H) = {v |
∀T1, T2, T3 ∈ Trans(H) :

(T1 v T2 ∨ T2 v T1) ∧
(T1 v T2 ∧ T2 v T1)⇒ (T1 = T2) ∧
(T1 v T2) ∧ (T2 v T3)⇒ (T1 v T3) ∧

∀R, T : Let i = arg1H(R) : (R ∈ GlobalTRead(H) ∧ T ∈ WritersH(i))⇒
(R v T ∨ T v R) ∧
(R v T ⇒ ¬T v R) ∧ (T v R⇒ ¬R v T)}

NoWriteBetweenH(W,R)⇔
∀W ′ ∈ TWrites(H) : W ′ �H W ∨ R ≺H W ′

LocalWriteObs(H)⇔
∀R ∈ LocalTReads(H) : Let T = transH(R), i = arg1H(R), H ′ = H|T |i :
∃W ∈ TWrites(H ′) : W ≺H′ R ∧ NoWriteBetweenH′(W,R) ∧ retvH′(R) = arg2H′(W)

N oWriterBetweenH,i(x,v, x′)⇔
∀T ∈W ritersH(i) : T v x ∨ x′ v T

LastPreAccessorH,v(T ′, R)⇔ Let i = arg1H(R), T = transH(R) :

T ′ ∈ WritersH(i) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenH,i(T
′,v, R)

GlobalWriteObs(H,v)⇔
∀R ∈ G lobalTReads(H) : ∃W ∈ G lobalTWrites(H) : Let T ′ = transH(W) :

LastPreAccessorH,v(T ′, R) ∧ arg1H(R) = arg1H(W) ∧ retvH(R) = arg2H(W)

W riteObs(H,v)⇔
LocalWriteObs(H) ∧ GlobalWriteObs(H,v)

ReadPres(H,v)⇔
∀R ∈ G lobalTReads(H) : Let i = arg1H(R), T = transH(R) :

N oWriterBetweenH,i(R,v, T) ∧ N oWriterBetweenH,i(T,v, R)

RealT imePres(H,v)⇔
��H ⊆ v

F inalStateMarkable = {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈Marking(H ′) :

ReadPres(H ′,v) ∧ W riteObs(H ′,v) ∧ RealT imePres(H ′,v)}
Figure 3.5: F inalStateMarkable

56

• The effect order : The set of transactions is totally ordered by the marking relation v. In other
words, the marking relation v is total, antisymmetric and transitive on the set of transactions.
• The access orders : For each global read R from a location i, R and every writer of i are ordered

by the marking relation v. In other words, the marking relation v totally orders every global
read R from a location i with respect to writers of i and is antisymmetric.

The write-observation property is comprised of the two properties: local write-observation and
global write-observation. Local write-observation requires that every local read R from a location i
returns the value written by the last write to i that is executed before R by the same transaction. We
remind that pre-accessors of R are the writers of i that are ordered before R in the access order and
the last pre-accessor is the one that is greatest in the effect order. Global write-observation requires
that the value that every global read R from a location i returns is the value written by the global
write to i by the last pre-accessor transaction of R.

The Read-preservation property requires that for every global read R from location i by transac-
tion T , there is no writer transaction T ′ of i such that T ′ is marked between R and T (i.e. T ′ accesses
i after R and takes effect before T), or similarly, T ′ is marked between T and R (i.e. T ′ takes effect
after T and accesses i before R).

The real-time-preservation property requires that if T is before T ′ in the real-time order, then T
takes effect before T ′ as well.

A transaction history is final-state-markable if and only if there exists a marking for an extension
of it that is write-observant, read-preserving, and real-time-preserving.

The marking theorem states that a transaction history is final-state-opaque if and only if it is
final-state-markable.

Theorem 1. (Marking) F inalStateOpaque = F inalStateMarkable.

Please see the appendix section 10.2.1 for the proofs.

57

Chapter 4

Testing TM Algorithms

4.1 Introduction

Considering the correctness conditions of transactional memory, designing correct transactional mem-
ory algorithms is a formidable task. Algorithm design is an iterative process of trying alternatives,
fixing issues and improving the performance. An update to the algorithm makes the algorithm work
for a specific new scenario but should preserve the correctness of the algorithm on the existing sce-
narios as well. A tool that tests for specific scenarios can assist algorithm designers during both the
design and the maintenance of the algorithm. The tool can be used for regression testing of known
scenarios. In this chapter, we identify specific pitfalls that lead to non-opacity and show how a tool
can automatically find such pitfalls in the algorithms.

We identify two problems that lead to non-opacity: the write-skew anomaly and the write-
exposure anomaly. The write-skew anomaly is an incorrectness pattern that is known in the setting
of databases [6]. The write-exposure anomaly happens when a TM algorithm exposes written values
to other transactions before the transaction commits.

We present a tool called Samand that automatically finds such problems. The tool inputs a TM
algorithm, a program and a test assertion. The test assertion can be a partial correctness condition
such as negation of a bug pattern. If an execution of the test program can violate the test assertion,
Samand outputs a violating trace. Samand translates the specification into constraints and feeds
them to Z3 SMT solver [17]. If the constraints are satisfiable, the tool reconstructs and outputs a
violating program trace.

We show that the well-known TM algorithms DSTM and McRT don’t satisfy opacity. DSTM
suffers from the write-skew anomaly, while McRT suffers from the write-exposure anomaly. These
results may be surprising because previous work has proved that DSTM and McRT satisfy opacity
[31, 30]. However, there is no conflict and no mystery: the previous work focused on abstractions of
DSTM and McRT, while we work with specifications that are much closer to original formulations of
DSTM and McRT. Thus, we experience a common phenomenon: once we refine a specification, we
may lose some properties. We present fixes to both DSTM and McRT that we conjecture make the
fixed algorithms satisfy opacity.

In the following subsections, we first introduce bug patterns that violate opacity. Then, we
introduce our tool and the set of constraints that it generates. Finally, we present the result of
applying our tool to DSTM and McRT algorithms.

58

4.2 Opacity Bug Patterns

Consider the following transaction histories:

HWS = Init · readT1(1):v0 · readT2(1):v0 · readT1(2):v0 · readT2(2):v0 ·
writeT1(1,−v0) · writeT2(2,−v0) ·
invT1(commitT1) · invT2(commitT2) · retT1(C) · retT2(C)

HWE = Init · invT1(readT1(2)) · writeT2(2, v1) · retT1(v1) ·
invT2(readT2(1)) · writeT1(1, v1) · retT2(v1) ·
invT1(commitT1) · invT2(commitT2) · retT1(A) · retT2(A)

HWE2 = Init · invT1((writeT1(1, v1)) · readT2(1):v1 · retT1(ok) ·
writeT1(1, v2) · commitT1():C · commitT2():A

where Init is described below and H0 is a transaction history that does not contain a write operation
that writes value j.

In Appendix, we prove that none of the transaction histories HWS, HWE, HWE2 are opaque.

Theorem 2. {HWS, HWE, HWE2} ∩ F inalStateOpaque = ∅.

We say that HWS, HWE are bug patterns, because if a TM can produce any of them, then the TM
violates opacity. Let us now focus on HWS, HWE and later turn to HWE2.

Write-skew anomaly. The transaction history HWS is evidence of the write-skew anomaly. Let
us illustrate the write-skew anomaly with the following narrative.

Assume that a person has two bank accounts that are stored at locations i1 and i2 and that have
the initial balances v0 and v0, where v0 > 0. Assume also that the regulations of the bank require
the sum of a person’s accounts to be positive or zero. Thus, the bank will authorize a transaction
that withdraws the sum of the two accounts from one of them i.e. updates the value of one of the
accounts with the previous value of the account minus the sum of the two accounts.

Now we interpret the narrative in the context of HWS, which is a record of the execution of two
“bank-authorized” transactions. In HWS the transaction T1 reads the values of both accounts and
updates i1 with v0− (v0 + v0) = −v0. Similarly, the transaction T2 reads the values of both accounts
and updates i2 with −v0. But in HWS both transactions commit, which results in a state that violates
the regulations of the bank: −v0 is the balance of both accounts.

The problem with HWS stems from that the TM that produced HWS doesn’t guarantee noninter-
leaving semantics of the transactions. In a noninterleaving semantics, either T1 appears to execute
before T2, or T2 appears to execute before T1. However, if we order T1 before T2, then the values read
by T2 violate correctness; and if we order T2 before T1, then the values read by T1 violate correctness.

The reader may notice that since HWS is not opaque and all the transactions in HWS are com-
mitted, HWS is not even serializable. However, HWS does satisfy snapshot isolation, which is a
necessary, though not a sufficient, condition for serializability. A history satisfies snapshot isolation
if its reads observe a consistent snapshot. Snapshot isolation prevents observing some of the updates
of a committing transaction before the commit and some of the rest of the updates after the commit.
Algorithms that support only snapshot isolation are known to be prone to the write-skew anomaly,
as shown by Berenson et al. [6].

59

Write-exposure anomaly. The transaction history HWE is evidence of the write-exposure
anomaly. The two locations i1 and i2 each has initial value v0 and no committed transaction writes a
different value to them, and yet the two read operations return the value v1. Write-exposure happens
when a transaction that eventually fails to commit writes to a location i and exposes the written value
to other transactions that read from i. Thus, active or aborting transactions can read inconsistent
values. This violates opacity even if these transactions are eventually prevented from committing.

4.3 Automatic Bug Finding

We present a tool called Samand in which inputs a specification consisting of a TM algorithm, a user
program, and a test assertion. A input specification is correct if every execution of the user program
satisfies the test assertion. Our tool solves constraints to decide whether a input specification is
correct.

Our language. We present Samand via two examples. We will use a sugared notation, for
simplicity. We explain the actual language and code for both examples in the appendix 10.3. The
first example is

(πDSTM , PWS,¬WS)

where πDSTM (see Figure 2.4) is a core version of the TM algorithm DSTM, and the user program
and the test assertion are:

PWS = {r11 = readT1(1); r12 = readT1(2); writeT1(1, v1); c1 = commitT1()} ||
{r21 = readT2(1); r22 = readT2(2); writeT2(2, v1); c2 = commitT2()}

WS = (r11 = v0 ∧ r12 = v0 ∧ r21 = v0 ∧ r22 = v0 ∧ c1 = C ∧ c2 = C)

Note that the assertion WS specifies a set of buggy histories of the user program; the history HWS

is a member of that set.
The second example is

(πMcRT , PWE,¬WE)

where πMcRT (see Figure 2.6) is a core version of the TM algorithm McRT, and the user program
and the test assertion are:

PWE = {r1 = readT1(2); writeT1(1, v1); c1 = commitT1()} ||
{writeT2(2, v1); r2 = readT2(1); c2 = commitT2()}

WE = (r1 = v1 ∧ r2 = v1 ∧ c1 = A ∧ c2 = A)

Similar to the first example, the assertion WE specifies a set of buggy histories of the user program;
the history HWE is a member of that set.

Samand enables specification of loop-free user programs. Every user program has a finite number
of possible executions and those executions all terminate.

Constraints. Samand uses the following notion of constraints to decide whether the input
specification is correct. Let l, x, v range over finite sets of labels, variables, and values, respectively.

60

A constraint is an assertion about histories X and is generated by the following grammar:

a ::= objX(l) = o | nameX(l) = n | threadX(l) = T | Assertion
arg1X(l) = u | arg2X(l) = u | retvX(l) = x |
l ∈ X | l ≺X l | e1 �X e2
¬a | a ∧ a

e ::= iEv(l) | rEv(l) Event
u := v | x Variable or Value

The events iEv(l) and rEv(l) are the invocation and response events of l respectively. The assertions
objX(l) = o, nameX(l) = n, threadX(l) = T , arg1X(l) = u, arg2X(l) = u, and retvX(l) = x
respectively assert that the receiver object of l is o, the method name of l is n, the calling thread of
l is T , the first argument of l is u, the second argument of l is u, and the return value of l is x. The
assertion l ∈ X asserts that l is in the history X. The assertion l ≺X l′ asserts that l is executed
before l′. The assertion e1�X e2 asserts that the event e1 is before the event e2 in the history X. The
satisfiability problem is to decide, for a given constraint, whether there exists histories that satisfy
the constraint.

From programs to constraints. Samand maps the input specification to a set of constraints
such that the input specification is correct if and only if the constraints are unsatisfiable.

We defined run-time labels and labeled variables in section 2.3.3. A label c1’c2 denotes a method
call annotated with c2 that is executed inside the body of a this method call annotated with c1. On
the other hand, the label c1 denotes a this method call in the top-level statements of the program
annotated with c1. For each runtime label l, we consider the pair of invocation event iEv(l) and
response event rEv(l). The variable c’x denotes the local variable x insider a this method call labeled
c.

The relation �X is a total order on events. We assert that the �X is an anti-symmetric, transitive
and total relation on events. For each pair of events e1 and e2, we generate the following constraints.

e1 �X e2 ⇒ ¬(e2 �X e1) (4.1)

(e1 �X e2) ∧ (e2 �X e3)⇒ (e1 �X e3) (4.2)

(e1 �X e2) ∨ (e2 �X e1) (4.3)

The invocation event is before its response event. For every label l, we generate the following
constraint.

iEv(l)�X rEv(l) (4.4)

Every method call inside a this method call is before the invocation and after the response event of
the this method call. Consider a this method call labeled c that calls the method n. Let ci be the
set of labels of the body of n. For each ci, we generate the following constraint.

iEv(c)�X iEv(c’ci) ∧ rEv(c’ci)�X rEv(c) (4.5)

A method call is executed before another method call if the response event of the former is before
the invocation event of the latter.

l1 ≺X l2 ⇔ rEv(l1)�X iEv(l2) (4.6)

l1 �X l2 ⇔ (l1 ≺X l2 ∨ l1 = l2) (4.7)

61

For each method call, we generate constraints that assert the components of the method call. For
a this method call

c . x = nτ (u)

we generate the following constraints.

objX(c) = this ∧ threadX(c) = τ ∧ (4.8)

nameX(c) = n ∧ arg1X(c) = u ∧
retvX(c) = x

For every method call
ci . x = φ[i].nτ (u)

inside a this method call labeled c, we generate the following constraints.

objX(c’ci) = φ[c’i] ∧ threadX(c’ci) = c’τ ∧ (4.9)

nameX(c’ci) = n ∧ arg1X(c’ci) = c’u ∧
retvX(c’ci) = c’x

Thus, the components of c’ci are the components of ci in the program prefixed with c.
For each this method call, the arguments and the parameters are equal. For every method call

c . x = nτ (u)

we generate the following constraint. Let t and x be the thread parameter and the first parameter
of the method n respectively.

c’t = τ ∧ c’x = u (4.10)

If a return statement inside a this method call is executed, the argument of the return statement
is equal to the returned variable of the this method call. For every this method call labeled c that
calls the method n, we generate the following constraint. Let {cr} be the set of return statements of
the method n, Returnsπ(n). Let ur be the argument of cr, arg1π(cr).∧

cr∈{cr}
(c’cr ∈ X)⇒ (c’ur = x) (4.11)

In section 2.2.1, we defined the execution condition and the prior returns of a label in a specifi-
cation. The execution condition condπ(c) of a label c is the conjunction of all of the enclosing if or
else conditions of c in π. The prior returns PreReturnsπ(c) of a label c are the set of labels of the
return statements before c in π. A this method call is executed if and only if its execution condition
is satisfied and no prior return statement is executed. For every label c, we generate the following
constraint.

l ∈ X ⇔
(
condπ(c) ∧

∧
c∈PreReturnsπ(c)

¬(c′ ∈ X)

)
(4.12)

Consider a method call labeled c′ inside a this method call labeled c. The run-time label of the
method is c’c′. The method call c’c′ is executed if and only if the method call c is executed, its

62

execution condition is satisfied and no prior return statement is executed. For every label c’c′, we
generate the following constraint.

c’c′ ∈ X ⇔
(
c ∈ X ∧ c’condπ(c) ∧

∧
c′′∈PreReturnsπ(c′)

¬(c’c′′ ∈ X)

)
(4.13)

Note that the execution condition is prefixed with c.
In section 2.2.1, we defined the program order →π. The execution order preserves the program

order. For every pair of two this method calls labeled c1 and c2, if c1 →π c2, we generate the following
constraint.

(c1 ∈ X ∧ c2 ∈ X)⇒ c1 ≺X c2 (4.14)

For every this method call labeled c that calls the method n, for every pair of labels c1 and c2 in n,
if c1 →π c2, we generate the following constraint.

(c’c1 ∈ X ∧ c’c2 ∈ X)⇒ c’c1 ≺X c’c2 (4.15)

We generate constraints that assert the safety properties of the base objects. For example, for a
basic register r, we generate the following definitions according to the semantics of basic register in
Definition 5

isXReadX,r(lR) = lR ∈ X ∧ objX(lR) = r ∧ nameX(lR) = read (4.16)

isXWriteX,r(lW) = lW ∈ X ∧ objX(lW) = r ∧ nameX(lW) = write (4.17)

NoWriteBetweenX,r(lW , lR) = ∀l′W : isXWriteX,r(l
′
W)⇒ (l′W �X lW ∨ lR ≺X l′W) (4.18)

isXWriterX,r(lW , lR) = isXWriteX,r(lW) ∧ (4.19)

lW ≺X lR ∧
NoWriteBetweenX,r(lW , lR)

isXRaceFreeX,r(l) = ∀lW : isXWriteX,r(lW)⇒ lW �X l ∨ l ≺X lW (4.20)

isXSequentiallyWrittenr(X) = ∀l ∈ X : isXWriteX,r(l)⇒ isRaceFreeX,r(l) (4.21)

and we generate the following constraint

isXSequentiallyWrittenr(X)⇒ (4.22)

∀lR : isXReadX,r(lR) ∧ isXRaceFreeX,r(lR)⇒
∃lW : isXWriterX,r(lW , lR) ∧

retvX(lR) = arg1X(lW)

Note that as the set of labels is finite, ∀ and ∃ can be replaced with ∧ and ∨ over all labels.
For each linearizable object o, there should be a linearization L that is equivalent to the executed

method calls on o in X, is real-time-preserving and is a member of the sequential specification of
o. The linearization order ≺L is a total order. For every pair of labels l1 and l2, we generate the
following constraints that assert that ≺L is irreflexive, transitive and total.

l1 ≺L l2 ⇒ ¬(l2 ≺L l1) (4.23)

(l1 ≺L l2) ∧ (l2 ≺L l3)⇒ (l1 ≺L l3) (4.24)

(l1 ≺L l2) ∨ (l2 ≺L l1) (4.25)

63

The linearization L is equivalent to the executed method calls on o in X. A method call is in L if
and only if it is in X and is called on o. For every label l, we generate the following constraint.

l ∈ L⇔ (l ∈ X ∧ objX(l) = o) (4.26)

objL(l) = objX(l) ∧ threadL(l) = threadX(l) ∧ nameL(l) = nameX(l) ∧ (4.27)

arg1L(l) = arg1X(l) ∧ arg2L(l) = arg2X(l) ∧ retvL(l) = retvX(l) (4.28)

The linearization order ≺L is real-time-preserving. For every pair of labels l1 and l2, we generate the
following constraint.

l1 ≺X l2 ⇒ l1 ≺L l2 (4.29)

The linearization L is a member of the sequential specification of o. For an atomic register r, we
generate the following constraint according to the sequential specification of register (Definition 4).

∀lR : isXReadL,r(lR)⇒ (4.30)

∃lW : isXWriterL,r(lW , lR) ∧
retvL(lR) = arg1L(lW)

Similarly, we can generate constraints for atomic cas register, lock, try-lock and counter types ac-
cording to their sequential specifications (Definitions 6, 7, 9, 11).

Finally, we map the test assertion in the input specification to the negation of that assertion. As
a result, we can use a constraint solver to search for a history that violates the test assertion. If there
exists a solution for the constraints, we can construct a bug history as follows. The executed labels
is the set of labels l such that l ∈ X. The bug history is the sequence of events of executed labels
ordered by the relation �X .

In practice, we apply several optimizations to the constraints presented above. For example, we
do not consider invocation and response events for linearizable objects. Thus, we define the execution
order on the set of events of the basic objects and the labels of the linearizable objects. Furthermore,
we define the linearization history as a sub-history of the execution history. Thus, we restate the
constraints that involve the linearization order in terms of the execution order. We can simplify the
assertions for the safety of the basic register follows:

isXSequentiallyWrittenr(X)⇒ (4.31)

∀lR, lW : isXReadX,r(lR) ∧ isXRaceFreeX,r(lR) ∧ isXWriterX,r(lw, lr)⇒
retvX(lR) = arg1X(lW)

Similarly, we can simplify the assertions for the safety of the atomic register follows:

∀lR, lW : isXReadL,r(lR) ∧ isXWriterL,r(lW , lR)⇒ (4.32)

retvL(lR) = arg1L(lW)

Our tool. Samand analyzes the input specification and builds a skeleton execution graph. The
execution graph is an inlined representation of the concurrent program. Each method call on a
linearizable object or return statement is represented as a node in the graph. Each method call on a
basic object or on the this object is represented as two invocation and response nodes in the graph.

64

There is a node for every if and also every else statement. There is an edge to the if and else
nodes from the nodes that they are data-dependent on. There is an edge from if and else nodes to
any statement in their scope. The tool generates the above constraints in SMT2 format and then
uses the Z3 SMT solver [17] to solve the constraints. If the constraints are unsatisfiable, then the
specification is correct. If the constraints are satisfiable, then the specification is incorrect and the
constraint solver will find a model for transaction history that violates the test assertion. The model
represents the set of executed events and method calls and their execution order. This information
is extracted from the model and added to the execution graph. The resulting graph is topologically
sorted and the resulting trace is shown to the user in a graphical user interface. Our tool and some
examples are available at [49].

4.4 Experiments

We will now report on running our tool on the two example algorithm specifications. Our first
example concerns DSTM.

The context. We believe that DSTM matches the paper on DSTM [39]. While we prove that
DSTM doesn’t satisfy opacity, we have learned from personal communication with Victor Luchangco,
one of the DSTM authors, that the implementation of DSTM implements more than what was said
in the paper and most likely satisfies opacity.

The bug. DSTM provides snapshot isolation by validating the read set (at R07) before the read
method returns but fails to prevent write skew anomaly. When we run our tool on (DSTM,PWS,¬WS),
we get an execution trace that matches HWS. Figure 4.1(a) presents an illustration of the set of DSTM
executions that exhibit the bug. Note that this set is a subset of the set of executions that the bug
pattern describes. In Figure 4.1(a), each transaction executes from top to bottom and the horizontal
lines denote “barriers”, that is, the operations above the line are finished before the operations below
the line are started and otherwise the operations may arbitrarily interleave. For example, readT1(2):v0
should finish execution before writeT2(2,−v0) but readT1(1):v0 and readT2(1):v0 can arbitrarily in-
terleave. In Figure 4.1(a), T1 writes to location 1 after T2 reads from it so T2 does not abort T1. T1
invokes commit and finishes the validation phase (C01−C02) before T2 effectively commits (executes
the cas method call at C03). The situation is symmetric for transaction T2. During the validation,
the two transactions still see v0 as the stable value of the two locations; thus, both of them can pass
the validation phase. Finally, both of them succeed at cas. Note that the counterexample happens
when the two commit method calls interleave between C02 and C03.

The fix. We learned from Victor Luchangco that the implementation of DSTM aborts the writer
transactions of the locations in the read set rset[T] during validation of the commit method call. We
model this fix by adding the following lines before C01 in DSTM:

foreach (i ∈ dom(rset[t])) {
st := start[i].read();
t′ := st.writer.read();
if (t 6= t′)
state[t′].cas(R,A)

}

65

T1 T2

initT1() initT2()
readT1(1):v0 readT2(1):v0
readT1(2):v0 readT2(2):v0
writeT1(1,−v0) writeT2(2,−v0)
commitT1 .C01–C02 commitT2 .C01–C02
commitT1 .C03–C05 commitT2 .C03–C05

(a) DSTM counterexamples

T1 T2

initT1() initT2()
readT1(2).R01–R03

writeT2(2, v1)
readT1(2).R04–R08

readT2(1).R01–R03
writeT1(1, v1)

readT2(1).R04–R08
commitT1 .C01–C03 commitT2 .C01–C03
commitT1 .C04 commitT2 .C04

(b) McRT counterexamples

Figure 4.1: Counterexamples

Those lines prevent HWS because each transaction will abort the other transaction and thus both of
them abort.

Our second example concerns McRT.
The context. McRT [68] predates the definition of opacity [28] and wasn’t intended to satisfy

such a property, as far as we know. Rather, McRT is serializable by design. Still, we prove that
McRT doesn’t satisfy opacity.

The bug. When we run our tool on (McRT, PWE,¬WE), we get an execution trace that matches
HWE in about 20 minutes. Figure 4.1(b) presents an illustration of the set of executions that exhibit
the bug. Like above, this set is a subset of the set of executions that the bug pattern describes.
Figure 4.1(b) uses the same conventions as Figure 4.1(a). The execution interleaves writeT2(2, v1)
between statements readT1(2).R01 − R03 and readT1(2).R04 − R08 such that the old value of l[2]
(unlocked) and the new value of r[2] (the value v1) are read. Also, commitT2 .C01−C03 are executed
before commitT1 .C04 such that T2 finds l[1] locked and aborts. The situation is symmetric for
transaction T1.

The fix. The validation in the commit method ensures that only transactions that have read
consistent values can commit; this is the key to why McRT is serializable. Our fix to McRT is to let
the read method do validation, that is, to insert a copy of lines C02−C04 between line R07 and line
R08 in McRT.

Let us use Fixed McRT to denote McRT with the above fix. When we run our tool on
(FixedMcRT, PWE,¬WE), our tool determines that the algorithm satisfies the assertion, that is,
Fixed McRT doesn’t have the write-exposure anomaly. The run takes about 10 minutes.

Note though that in the fixed algorithm, a sequence of writer transactions can make a reader
transaction abort an arbitrary number of times. This observation motivated our study of progress
for direct-update TM algorithms such as McRT.

66

Chapter 5

Synchronization Object Program Logic

5.1 Introduction

As we review in section 8.2, the previous works on concurrent program logics support several forms
of local reasoning. The reasoning about a thread is done locally on the thread itself and is separate
from the reasoning on other threads. For example, the rely/guarantee technique supports local
reasoning on a thread when the interference from other threads is known. These logics do not
support assertions for the execution order or the linearization order of two method calls in two
different threads. These assertions are particularly essential for reasoning about TM algorithms. As
we presented in section 3, a concurrent execution of a set of transactions is correct if there is an
indistinguishable sequential order of the transactions. The sequential order is determined by the
execution order or the linearization order of certain method calls in the transactions. We present
a program logic called synchronization object logic (SOL) for reasoning about the behavior of an
algorithm based on its syntactic specification. The assertion language of SOL supports execution
overlap, execution order and linearization orders of method calls.

SOL provides inference rules that can be conceptually divided into four groups: (1) the standard
first-order logic rules, (2) the structure rules that axiomatize the relation of the program structure
and the execution, (3) the basic rules that axiomatize the properties of the execution and lineariza-
tion orders and their interdependence and (4) the synchronization object rules that axiomatize the
properties of common synchronization object types.

We define the semantics of the assertion language i.e. we define whether a history models an
assertion. Based on the semantics of specifications and the semantics of assertions, we prove the
soundness of the logic. SOL derives valid conclusions from valid premises.

In the following chapters, we prove the correctness of the well-known TM algorithm TL2 [18] using
SOL. SOL is applicable beyond TM, particularly to algorithms for mutual exclusion. As evidence,
we prove the mutual exclusion property of the Dekker algorithm in this chapter.

In the first section of this chapter, we showcase the logic with a simple example. We present a
simple specification, a simple lemma about the specification and simplified versions of the inference
rules. We illustrate the proof of the lemma using the inference rules. In the next subsections, we
consider the full logic. We define the assertion language and the semantics of assertions. Then, we
define the four groups of inference rules. Then, we formalize and prove the soundness of the logic.
Finally, we present the proof the correctness of the Dekker algorithm using the inference rules.

67

T :
lock : Lock
clock : SCounter
ver : BasicRegister

P :
L1. lock.lockT1() L2. lock.lockT2()
C1. v1 = clock.iafT1() ‖ C2. v2 = clock.iafT2()
R1. ver.writeT1(v1) R2. ver.writeT2(v2)
U1. lock.unlockT1() U2. lock.unlockT2()

Figure 5.1: Example Specification π

5.2 Simple Example

We introduce the program logic SOL via a simple example. In this section, we present, first, an
example specification in a subset of the specification language, then, the simplified program logic and
finally, the deduction of a lemma for the example specification.

5.2.1 Algorithm Specification

Figure 5.1 specifies a simple algorithm that updates a register to ascending version numbers. In
fact, it is a miniature version of the TL2 commit procedure. This specification has two sections: the
type declaration section at the top and the concurrent program section at the bottom. In general,
a specification can have a procedure definition section and call procedures that we postpone to the
next section.

The type declaration section declares the type of each synchronization object used by the con-
current program. Three object types are used in this program: lock Lock, strong counter SCounter
and basic register BasicRegister. Lock and strong counter are linearizable object types and basic
register is a basic object type. In the general sense, linearizable objects can maintain consistency
even if they are accessed concurrently while basic objects maintain consistency if they are not ac-
cessed concurrently. A register has two methods: write and read. For example, r.write(v) writes
the value v to r, while x = r.read() reads the value of r and binds x to that value. The language
enforces unique binding for variables. A lock has two methods lock and unlock that lock and unlock
it respectively. A strong counter has two methods: read and iaf (increment-and-fetch). For a strong
counter c, x = c.read() reads the value of c and binds x to that value and x = c.iaf() increments and
then reads the value of c and binds x to that value. The objects lock, clock and ver are declared of
Lock, SCounter, and BasicRegister types.

The second section is the concurrent program. It is the parallel composition of a set of sequential
programs. In this specification, there are two sequential programs where every statement is a method
call. A method call is of the form l . x = o.nτ (u) where l is the unique label of the method call.
We define the following functions on labels that are immediately derived from the specification. objπ
maps l to the receiving object o, nameπ maps l to the method name n, threadπ maps l to the calling
thread identifier τ , arg1π maps l to the first argument u (that is either a variable x or a value v),
and retvπ maps l to the return variable x. The function condπ maps l to the enclosing condition

68

Control

π,Γ ` exec(l)⇔ condπ(l)

Id
objπ(l) = o nameπ(l) = n

threadπ(l) = τ arg1π(l) = u retvπ(l) = x
π,Γ ` exec(l)

π,Γ ` obj(l) = o ∧ name(l) = n ∧
thread(l) = τ ∧ arg1(l) = u ∧ retv(l) = x

P2X
l1 →π l2 π,Γ ` exec(l1) π,Γ ` exec(l2)

π,Γ ` l1 ≺ l2

Src
π,Γ ` exec(l) π,Γ ` obj(l) = o π,Γ ` name(l) = n

Callsπ(o, n) = {li}
π,Γ `

∨
i=1..n

l = li

Each rule has the side condition π = (T ,D,P)

Figure 5.2: Structure Inference Rules.

of the method call labeled l. In this specification, we do not have if-then-else statements, therefore,
condπ(l) = true for every label l. Every specification π, defines a program order →π on the labels.
Intuitively, l1 →π l2 means that the specification requires that if both l1 and l2 are executed, then l1
must be executed before l2. In this specification, we assume sequential consistency. Therefore, the
program order →π simply represents the order of labels in the program. We postpone relaxed order
of method calls to next later section.

5.2.2 Program Logic

Consider the two method calls labeled R1 and R2 in the specification (Figure 5.1). We will prove
the following theorem that states that if the version that R1 writes is less than the version that R2

writes, then R1 is executed before R2. Although the statement of the lemma is simple, similar to
the TM correctness assertions, it involves execution order and its proof involves linearization order
of synchronization objects.

Lemma 35. π, · ` (arg1(R1) < arg1(R2))⇒ (R1 ≺ R2).

Let us have an informal proof of the lemma first. We use the following five rules. First, the
program-order-preservation property states that the program order is preserved in the execution
order. Second, the real-time-preservation property states that the execution order is preserved in

69

X2L
T (o) ∈ LT π,Γ ` obj(l) = obj(l′) = o π,Γ ` l ≺ l′

π,Γ ` l ≺o l′

XLTrans
π,Γ ` l1 ≺ l2 π,Γ ` l2 ≺o l3 π,Γ ` l3 ≺ l4

π,Γ ` l1 ≺ l4

Each rule has the side condition π = (T ,D,P)

Figure 5.3: Basic inference rules.

the linearization order. Third, the execution-linearization-transitivity property states that if l1 is
executed before l2, l2 is linearized before l3 and l3 is executed before l4, then l1 is executed before
l4. Forth, the lock-unlock-pair property states that if ownership of a lock l is respected and a lock
method call on l (by a thread T1) is linearized before an unlock method call on l (by a thread T2),
then an unlock method call on l by T1 is linearized before a lock method call on l by T2. Intuitively,
ownership for a lock l is respected, if and only if every thread unlocks l only if it has already locked
l and has not unlocked l since it has locked l. This specification π trivially respects ownership for its
lock object. Fifth, the count-sequence property states that for a strong counter o, if the return value
of an iaf method call on o is less than the return value of another method call on o, then the former
is linearized before the latter.

We assume that (1) The argument of R1 is less than the argument of R2 and show that R1 is
executed before R2. From the specification π, we have that (2) The argument of R1 is the return value
of C1 and (3) the argument of R2 is the return value of C2. Thus, from [1], [2] and [3], we have that
(4) the return value of C1 is less than the return value of C2. From π, we have that (5) C1 and C2 are
iaf method calls on clock that is a strong counter. Thus, by count-sequence property on [5] and [4],
we have that (6) C1 is linearized before C2. From π, we have (7) L1 is before C1 in the program and
(8) C1 is before U2 in the program. By program-order-preservation on [7] and [8], we have that (9)
L1 is executed before C1 and (10) C2 is executed before U2. By execution-linearization-transitivity
property on [9], [6] and [10], we can conclude that (11) L1 is executed before U2. From π, we have
(12) L1 and U2 are respectively lock and unlock method calls by threads T1 and T2 on the object
lock that is of the linearizable type Lock. By the real-time-preservation property on [11], we have
that (13) L1 is linearized before U2. By the lock-unlock-pair property on [12] and [13], we have that
(14) an unlock method call by T1 is linearized before a lock method call by T2. From π, we have
that (15) The unlock method call by T1 is U1 and (16) The lock method call by T2 is L2. Thus, from
[14], [15] and [16], we have that (17) U1 is linearized before L2. From π, we have (18) R1 is before
U1 in the program and (19) L1 is before R2 in the program. From the program-order-preservation
property on [18] and [19], we have that (20) R1 is executed before U1 and (21) L2 is executed before
R2. By the transitivity property on [20], [17] and [21], we have that R1 is executed before R2.

Now, let us introduce our synchronization object logic (SOL) and formalize the proof. The
judgments of SOL are of the form π,Γ ` A, where π is a specification, Γ is a list of assertions and A
is an assertion. We use · to denote the empty list of assertions. Intuitively, a judgment π,Γ ` A states

70

CountSeq

T (o) = SCounter
π,Γ ` exec(l1) ∧ obj(l1) = o ∧ name(l1) = iaf

π,Γ ` exec(l2) ∧ obj(l2) = o
π,Γ ` retv(l1) < retv(l2)

π,Γ ` l1 ≺o l2

LockUnlockPair
T (o) = Lock

π,Γ ` isOwnerRespect(o)
π,Γ ` isLocko(ll1) π,Γ ` isUnlocko(lu2)

π,Γ ` ll1 ≺o lu2
π,Γ ` ∃`u1 , `l2 :

isUnlocklo(`u1) ∧ thread(`u1) = thread(ll1) ∧
isLocklo(`l2) ∧ thread(`l2) = thread(lu2) ∧

`u1 ≺o `l2
isLocko(l)⇔

exec(l) ∧ obj(l) = o ∧ name(l) = lock

isUnlocko(l)⇔
exec(l) ∧ obj(l) = o ∧ name(l) = unlock

isOwnerRespect(o)⇔
∀` : isUnlocko(`)⇒ ∃`′ :

isLocko(`
′) ∧

thread(`′) = thread(`) ∧ `′ ≺ ` ∧
∀`′′ :

(isUnLocko(`
′′) ∧

thread(`′′) = thread(`))

⇒
`′′ ≺ `′ ∨ ` � `′′

Each rule has the side condition π = (T ,D,P)

Figure 5.4: Synchronization Object Inference Rules.

71

that in the context of the assertions Γ, the specification π has the property A. The assertions are
first-order logic assertions that involve the unary predicate exec, the binary predicates ≺ (execution
order) and ≺o (linearization order of linearizable object o) and functions obj, name, thread, arg1
and retv. The assertion exec(l) states that the method call labeled l is executed. The assertion l1 ≺ l2
states that l1 is executed before l2. Any concurrent execution on a linearizable object is equivalent to
a correct sequential execution. The total order of method calls in the equivalent sequential execution
is called the linearization order. For every linearizable object o, the assertion l1 ≺o l2 states that l1
is before l2 in the linearization order of o. As π declares lock and clock as instances of linearizable
types, the linearization orders of lock and clock are denoted by ≺lock and ≺clock. We also use the
equivalence relation on expressions and labels. The functions obj(l), name(l), thread(l), arg1(l),
and retv(l) map a label l to the receiving object, method name, calling thread identifier, the first
argument and the return value of the method call labeled l.

Lemma 35 expresses a property of every execution of π, yet the soundness of SOL makes us able to
prove it by reasoning about π alone. We consider an arbitrary execution of the specification. Given
some facts about an execution, the inference rules let us derive more facts about that execution.
SOL has four sets of inference rules: classical first-order logic inference rules, structure inference
rules that axiomatize the association of the specification and the assertions, basic inference rules that
axiomatize the properties of the execution and linearization orders and their interdependence and
synchronization object inference rules that axiomatize the properties of common synchronization
object types. We showcase a subset of structure inference rules in Figure 5.2, a subset of basic
inference rules in Figure 5.3, and a subset of synchronization object inference rules in Figure 5.4.

The rule Control states that a method call is executed if and only if its enclosing condition is
satisfied. The introduction rule Id states that the components (object, name, etc.) of a method call
in the execution originate from the components of the method call in the program. The rule P2X
states the program-order-preservation property. If a method call l1 is ordered before a method call
l2 in the program, and methods l1 and l2 are executed, then l1 is executed before l2. The rule Src
intuitively states that every executed method originates from a call site in the specification. Let
Callsπ(o, n) denote the set of labels of call sites where method name n is called on the object name
o in the specification π. If the object and the name of an executed method call labeled l are o and n
respectively, then l is equal to one of the labels in Callsπ(o, n). For presentation purposes, this small
example does not involve procedure calls and hence the rules Control, Id, and Src are simplified.

The rule X2L states the real-time-preservation property. The execution order of two method calls
on a linearizable object is preserved in the linearization order. LT denotes the set of linearizable
object types. The rule XLTrans states the execution-linearization-transitivity property defined
above. Similarly, the rule LockUnlockPair and the rule CountSeq state the lock-unlock-pair
and count-sequence properties defined above. The rule LockUnlockPair is derived from the fact
that if the ownership of a lock is respected, its linearization order is a sequence of pairs of lock and
unlock method calls by the same thread. The rule CountSeq is derived from the fact that the
return value of method calls in the linearization order of a strong counter is non-decreasing.

5.2.3 Deduction

Now, let us see how the above informal reasoning can be formalized using SOL inference rules. Let

Γ = arg1(R1) < arg1(R2) (5.1)

72

Based on the classical condition introduction rule, to prove Lemma 35, we need to show that

π,Γ ` R1 ≺ R2 (5.2)

From 5.1, we have
π,Γ ` arg1(R1) < arg1(R2) (5.3)

As mentioned before, there is no if-then-else in this specification; therefore, the enclosing condition
of every label is trivially true. Thus, by the rule Control, we have

π,Γ ` exec(L1) (5.4)

π,Γ ` exec(C1) (5.5)

π,Γ ` exec(R1) (5.6)

π,Γ ` exec(U1) (5.7)

π,Γ ` exec(L2) (5.8)

π,Γ ` exec(C2) (5.9)

π,Γ ` exec(R2) (5.10)

π,Γ ` exec(U2) (5.11)

From the rule Id on 5.6, 5.10, 5.5, 5.9, and the specification π, we have

π,Γ ` arg1(R1) = v1 (5.12)

π,Γ ` arg1(R2) = v2 (5.13)

π,Γ ` retv(C1) = v1 (5.14)

π,Γ ` retv(C2) = v2 (5.15)

From the symmetry and transitivity of equivalence on [5.12], [5.13], [5.14], [5.15], we have

π,Γ ` arg1(R1) = retv(C1) (5.16)

π,Γ ` arg1(R2) = retv(C2) (5.17)

By substitution of 5.16 and 5.17 on [5.3], we have

π,Γ ` retv(C1) < retv(C2) (5.18)

By the rule Id on 5.5, and the specification π, we have

π,Γ ` obj(C1) = clock (5.19)

π,Γ ` name(C1) = iaf (5.20)

By the rule Id on 5.9, and the specification π, we have

π,Γ ` obj(C2) = clock (5.21)

73

From rule CountSeq on 5.5, 5.19, 5.20, 5.9, 5.21, 5.18, we have

π,Γ ` C1 ≺clock C2 (5.22)

that is C1 is linearized before C2. The next step is to use rule P2X. From π, we have

L1 →π C1 (5.23)

C2 →π U2 (5.24)

By the rule P2X on 5.23, 5.4 and 5.5, we have

π,Γ ` L1 ≺ C1 (5.25)

Similarly, by the rule P2X on 5.24, 5.9 and 5.11, we have

π,Γ ` C2 ≺ U2 (5.26)

By the rule XLTrans on 5.25, 5.22 and 5.26, we have

π,Γ ` L1 ≺ U2 (5.27)

By the rule Id on 5.4, and the specification π, we have

π,Γ ` obj(L1) = lock (5.28)

π,Γ ` name(L1) = lock (5.29)

π,Γ ` thread(L1) = T1 (5.30)

Similarly, by the rule Id on 5.11, and the specification π, we have

π,Γ ` obj(U2) = lock (5.31)

π,Γ ` name(U2) = unlock (5.32)

π,Γ ` thread(U2) = T2 (5.33)

From rule X2L on 5.27, 5.28 and 5.31, we have

π,Γ ` L1 ≺lock U2 (5.34)

Now, we use the rule LockUnlockPair. The proof of ownership respect can be done using the
presented rules. For the sake of brevity, we skip the proof of ownership respect.

π,Γ ` isOwnerRespecting(lock) (5.35)

From the definition of isLock on 5.4, 5.28 and 5.29, we have

π,Γ ` isLocklock(L1) (5.36)

From the definition of isUnlock on 5.11, 5.31 and 5.32, we have

π,Γ ` isUnlocklock(U2) (5.37)

74

By the rule LockUnlockPair on 5.35, 5.36, 5.37, 5.34, and then substitution with 5.30 and 5.33,
we have

π,Γ ` ∃`u1 , `l2 : isUnlocklock(`u1) ∧ thread(`u1) = T1 ∧
isLocklock(`l2) ∧ thread(`l2) = T2 ∧
`u1 ≺lock `l2 (5.38)

After skolemization of `u1 and `l2 with lu1 and ll2 , we have

π,Γ ` isUnlocklock(lu1) (5.39)

π,Γ ` thread(lu1) = T1 (5.40)

π,Γ ` isLocklock(ll2) (5.41)

π,Γ ` thread(ll2) = T2 (5.42)

π,Γ ` lu1 ≺lock ll2 (5.43)

From the definition of isUnlock on 5.39, we have

π,Γ ` exec(lu1) (5.44)

π,Γ ` obj(lu1) = lock (5.45)

π,Γ ` name(lu1) = unlock (5.46)

From π, we have
Callsπ(lock, unlock) = {U1, U2} (5.47)

By the rule Src on 5.44, 5.45, 5.46, and 5.47, we have

π,Γ ` lu1 = U1 ∨ lu1 = U2 (5.48)

Using negation introduction, from 5.33 and 5.40, we have

π,Γ ` ¬(lu1 = U2) (5.49)

By disjunction syllogism on 5.48 and 5.49, we have

π,Γ ` lu1 = U1 (5.50)

Similarly, using the rule Src, we can show that

π,Γ ` ll2 = L2 (5.51)

By substitution of 5.50 and 5.51 to 5.43, we have

π,Γ ` U1 ≺lock L2 (5.52)

From π, we have
R1 →π U1 (5.53)

75

L2 →π R2 (5.54)

By the rule P2X on 5.53, 5.6 and 5.7, we have

π,Γ ` R1 ≺ U1 (5.55)

By the rule P2X on 5.54, 5.8 and 5.10, we have

π,Γ ` L2 ≺ R2 (5.56)

By the rule XLTrans on 5.55, 5.52, and 5.56, we have

π,Γ ` R1 ≺ R2 (5.57)

5.3 Assertion Language

Now, we define the assertion language of the logic. We first define label variables as follows:

` ∈ LabelV ar ::= {`1, `2, ...} Variable Label
-l ∈ Label := l | ` Label

Consider a specification π = (T ,D,P) where O = {o | Tbase(o) ∈ LT}.
We define the set of assertions A for the specification π as follows:

e ::= obj(-l) | name(-l) | thread(-l) | Element
arg1(-l) | arg2(-l) | retv(-l) |
initOf(τ) | commitOf(τ) |
o | n | ς’x | v | ς’t | T

R ::= e = e | e < e | Atomic Assertion
-l = -l′ | c = c |
exec(-l) |
-l ≺ -l′ | -l ∼ -l′ | -l ≺o -l′ where o ∈ O |
τ ≺≺ τ ′ |

A ::= ¬A | A ∧ A | Assertion
∀` : A |
∀t : A |
R

We consider the set of closed formulas.
The set of functions F and predicates Pr are as follows.

f ∈ F = {obj, name, thread, arg1, arg2, retv, initOf, commitOf}
pr ∈ Pr = {=, <, exec,≺,∼,≺o,≺≺} where o ∈ O

The functions obj, name, thread, arg1, arg2 and retv map a label to its object, method name,
first and second argument and return value. The function initOf maps each transaction to its init

76

method call. The function commitOf maps each committed transaction to its commit method call.
The assertion exec(-l) asserts that -l is executed. The assertion -l ≺ -l′ asserts that -l is executed before
-l′. The assertion -l ≺ -l′ asserts that -l is executed concurrent with -l′. The assertion -l ∼ -l′ asserts that
-l is executed concurrent to -l′. The assertion -l ≺o -l′ asserts that -l is linearized before -l′ on object o.
The assertion τ ≺≺ τ ′ asserts that (all the labels of) thread τ is executed before (all the labels of)
thread τ ′.

We define the following abbreviations:

A ∨ A′ = ¬((¬A) ∧ (¬A′))
∃` : A = ¬(∀` : (¬A))

e ≤ e′ = e ≤ e′ ∨ e = e′

-l � -l′ = -l ≺ -l′ ∨ -l = -l′

τ �� τ ′ = τ ≺≺ τ ′ ∨ τ = τ ′

5.4 Assertion Semantics

Now, we define the semantics of assertions. We define the models relation |= between execution
histories X and assertions A.
Let X = (X, σ,L) and X ′ = σ(X). We define the mapping function αX as follows:
αX = {

obj 7→ objX′ , name 7→ nameX′ , thread 7→ threadX′ ,
arg1 7→ arg1X′ , arg2 7→ arg2X′ , retv 7→ retvX′ ,
initOf 7→ initOf, commitOf 7→ commitOf,
= 7→ =, < 7→ <,
exec 7→ λx. x ∈ X ′, ≺ 7→ ≺X′ , ∼ 7→ ∼X′ , ≺o 7→ ≺L(σ(o)), ≺≺ 7→ ≺≺X′ ,
o 7→ σ(o), n 7→ n, u 7→ σ(u), τ 7→ σ(τ),
c 7→ c, l 7→ l

}
The mapping function αX maps functions and predicates in the assertion language to concrete func-
tions and predicates in the execution X . For example, the function obj is mapped to the function
objX′ . The mapping function αX also maps every variable to its value in the execution X . Thus,
x is mapped to σ(x). Note that as an object o can be an element of an array that is indexed by a
variable, o is mapped to σ(o). The function αX is lifted to closed atomic assertions R by applying
αX inductively to the structure of R.

Definition 15. The model relation |= is defined inductively as follows:
Base case:
X |= R iff (R is closed and αX (R))

Inductive case:
X |= (¬A) iff ¬(X |= A),
X |= (A1 ∧ A2) iff (X |= A1) ∧ (X |= A2),
X |= (∀` : A) iff

∧
l∈Labels(X′) (X |= A[` := l]),

X |= (∀t : A) iff
∧
T∈Threads(X′) (X |= A[t := T]).

If X |= A, we say that X models A.

77

5.5 Inference Rules

We now present the inference rules of SOL.
The judgments are of the form π,Γ ` A read assertion A is derived from the assumption assertions

Γ for the specification π. The context Γ is defined as follows:

Γ ::= · | Γ;A Context

We present the classical first-order logic rules, the structure inference rules, the basic inference
rules, and the synchronization object inference rules.

5.5.1 Classical First-order Logic Inference Rules

The classical inference rules are presented in Figure 5.5. The derived classical inference rules are
presented in Figure 5.6.

The equivalence and arithmetic Rules are presented in Figure 5.7. The derived equivalence and
arithmetic Rules are presented in Figure 5.8.

78

Premise

π,Γ;A; Γ′ ` A

ConjIntro
π,Γ ` A π,Γ ` A′

π,Γ ` A ∧ A′

ConjElimL
π,Γ ` A ∧ A′

π,Γ ` A

ConjElimR
π,Γ ` A ∧ A′

π,Γ ` A′

DisjIntroL
π,Γ ` A

π,Γ ` A ∨ A′

DisjIntroR
π,Γ ` A′

π,Γ ` A ∨ A′

DisjElim
π,Γ ` A ∨ A′
π,Γ;A ` A′′
π,Γ;A′ ` A′′

π,Γ ` A′′

CondIntro
π,Γ;A ` A′

π,Γ ` A ⇒ A′

CondElim
π,Γ ` A ⇒ A′

π,Γ ` A
π,Γ ` A′

NegIntro
π,Γ;A ` A′
π,Γ;A ` ¬A′

π,Γ ` ¬A

ExcMid

π,Γ ` A ∨ ¬A

NegElim
π,Γ ` A
π,Γ ` ¬A
π,Γ ` A′

UnivIntro
π,Γ ` A[` := l]

l 6∈ Γ

π,Γ ` ∀` : A

UnivElim
π,Γ ` ∀` : A
π,Γ ` A[` := l]

ExistIntro
π,Γ ` A[` := l]

π,Γ ` ∃` : A

ExistElim
π,Γ ` ∃` : A

l 6∈ Γ
π,Γ;A[` := l] ` A′

π,Γ ` A′

Figure 5.5: Classical Inference Rules

DisjSyllL
π,Γ ` A ∨ A′
π,Γ ` ¬A
π,Γ ` A′

DisjSyllR
π,Γ ` A ∨ A′
π,Γ ` ¬A′

π,Γ ` A

CondElim’
π,Γ ` A ⇒ A′
π,Γ ` ¬A′

π,Γ ` ¬A

Figure 5.6: Derived Classical Inference Rules

79

LRefl

π,Γ ` l = l

LSubs
π,Γ ` l = l′

π,Γ ` A
π,Γ ` A[l := l′]

ERefl

π,Γ ` e = e

LSubs
π,Γ ` e = e′

π,Γ ` A
π,Γ ` A[e := e′]

Zero

π,Γ ` ¬(1 = 0)

Figure 5.7: Equivalence and Arithmetic Rules

LSym
π,Γ ` l = l′

π,Γ ` l′ = l

LTrans
π,Γ ` l = l′

π,Γ ` l′ = l′′

π,Γ ` l = l′′

ESym
π,Γ ` e = e′

π,Γ ` e′ = e

ETrans
π,Γ ` e = e′

π,Γ ` e′ = e′′

π,Γ ` e = e′′

Figure 5.8: Derived Equivalence and Arithmetic Rules

80

5.5.2 Structure Inference Rules

The structure inference rules that axiomatize the relation of the program structure and the execution.
The structure inference rules are presented in Figures 5.9 The derived structure inference rules are
presented in Figure 5.10. The derived inference rules can be derived from the basic rules. Please see
Section 10.4.2 for notes on the derivation of the derived rules.

The rule Id states that components of method calls in the history originate from components of
method calls in the program. The object, arguments and other components of an executed method
call labeled ς’c can be derived from prefixing the object, arguments and other components of the
method call annotated with c in the program with the pre-label ς. Note that the pre-label ς is a
constant c′ when the method call c is executed inside the body of a this method call annotated with
c′. The pre-label ς is ε when c is the annotation of a this method call.

The rule Src states that every executed method originates from a call site in the program. If a
method n on an object with the base name φ is executed, it is from one of the call sites where n is
called on φ in the program.

The rule OControl states when a this method call is executed. A this method call is executed
if an only if its execution condition is satisfied.

The rule IControl states when a method call in a this method call is executed. A method call
(annotated with) c′ in a this method call (annotated with) c is executed if and only if c is executed,
the execution condition of c′ is satisfied and no return statement before c′ is executed.

The rule P2X states that the program order is preserved in the execution order. If a method call
annotated with c1 is ordered before a method call annotated with c2 in the program, and methods
labeled ς’c1 and ς’c2 are executed, then ς’c1 is executed before ς’c2.

The rule OX2IX states that the execution order of two this method calls implies the execution
order of method calls in their bodies. If a this method call c1 is executed before another this method
call c2, then every executed method call of the body of c1 is executed before every executed method
call of the body of c2.

The rule TSeq states that every thread is sequential. Every two this method calls by the same
thread are ordered in the execution order. Similarly, every two method calls on base objects by the
same thread are ordered in the execution order.

The rule Caller states that if a this method call is executed, its parameters and arguments are
equal and that one of the return statements in its body is executed and its return value is equal to
the value that the executed return statement returns.

The rule Callee states that if a method call in the body of a this method call is executed, then
the this method call is executed and the parameters and the arguments of the this method call are
equal.

The rule Ret states that if a return statement of the body of a this method call is executed, then
the this method call is executed and the parameters and the arguments of the this method call are
equal and the return value of the this method call is the value that the return statement returns.

The rule TLocal states that every two executed method calls on the same thread-local object
are from the same thread.

The rule TReal states that if a thread is ordered before another thread, then every method call
from the former is executed before every method call from the latter.

The rule IX2OX states that if two method calls in the body of two this method calls execute in
order by the same thread, then the two this method calls execute in the same order.

81

Id
objπ(c) = θ nameπ(c) = n

threadπ(c) = τ argπ(c) = u retvπ(c) = x
π,Γ ` exec(ς’c)

π,Γ ` obj(ς’c) = ς’θ ∧
name(ς’c) = n ∧ thread(ς’c) = ς’τ ∧
arg(ς’c) = ς’u ∧ retv(ς’c) = ς’x

Src
π,Γ ` exec(ς’c)

π,Γ ` obj(ς’c) = θ π,Γ ` name(ς’c) = n
Callsπ(basename(θ), n) = {ci}

π,Γ `
∨
i=1..n

c = ci

OControl
c ∈ Labels(P)

π,Γ ` exec(c)⇔ condπ(c)

IControl
Labels(nameπ(c)) = {ci}
PreReturnsπ(c′) = {cr}

π,Γ ` exec(c’c′)⇔ (exec(c) ∧∨
ci

c′ = ci ∧ c’condπ(c′) ∧
∧
cr

¬exec(c’cr))

P2X
c1 →π c2

π,Γ ` exec(ς’c1) π,Γ ` exec(ς’c2)
π,Γ ` ς’c1 ≺ ς’c2

OX2IX
π,Γ ` c1 ≺ c2

π,Γ ` exec(c1’c3) π,Γ ` exec(c2’c4)
π,Γ ` c1’c3 ≺ c2’c4

TSeq

π,Γ ` exec(l1) π,Γ ` exec(l2)
π,Γ ` thread(l1) = thread(l2)

π,Γ ` obj(l1) = obj(l2) = this ∨
(¬obj(l1) = this ∧ ¬obj(l2) = this)

π,Γ ` l1 ≺ l2 ∨ l2 ≺ l1 ∨ l1 = l2

Caller
tparπ(n) = t par1π(n) = x

Returnsπ(n) = {ci}
π,Γ ` exec(c)

π,Γ ` obj(c) = this ∧ name(c) = n

π,Γ ` c’t = thread(c) ∧ c’x = arg(c) ∧∨
i=1..n

exec(c’ci) ∧ arg1(c’ci) = retv(c)

Callee
tparπ(n) = t par1π(n) = x

c′ ∈ Labelsπ(n)
π,Γ ` exec(ς’c′)

π,Γ ` ¬(ς = ε) ∧ exec(ς) ∧
obj(ς) = this ∧ name(ς) = n
thread(ς) = ς’t ∧ arg(ς) = ς’x

Ret
tparπ(n) = t par1π(n) = x

c′ ∈ Returnsπ(n)
π,Γ ` exec(c’c′)
π,Γ ` exec(c) ∧

obj(c) = this ∧ name(c) = n ∧
thread(c) = c’t ∧ arg(c) = c’x ∧

retv(c) = arg1(c’c′)

TLocal
T (basename(o)) = ThreadLocal st

π,Γ ` exec(l1) ∧ exec(l2)
π,Γ ` obj(l1) = obj(l2) = o

π,Γ ` thread(l1) = thread(l2)

TReal
π,Γ ` τ ≺≺ τ ′

π,Γ ` exec(l) ∧ thread(l) = τ
π,Γ ` exec(l′) ∧ thread(l′) = τ ′

π,Γ ` l ≺ l′

Figure 5.9: Structure Inference Rules. All of the rules have the side condition π = (T ,D,P)

82

IX2OX
π,Γ ` c1’c3 ≺ c2’c4

π,Γ ` thread(c1’c3) = thread(c2’c4)

π,Γ ` c1 ≺ c2 ∨ c1 = c2

Figure 5.10: Derived Structure Inference Rules

5.5.3 Basic Inference Rules

The basic inference rules axiomatize the properties of the execution and linearization orders and their
interdependence. The basic inference rules state are presented in 5.11. The derived basic inference
rules are presented in Figure 5.12. We explain each rule in turn.

The rule XASym states the asymmetry property of the execution order. If a method call is
executed before another method call, then the latter is not executed before the former and they are
not executed concurrently.

The rule XTrans states the transitivity property of the precedence execution order. The
rule XXTrans states the transitivity of the sequence of precedence, concurrency and precedence
execution relations. If l1 is executed before l2, l2 is executed (before or) concurrent to l3 and l3 is
executed before l4, then l1 is executed before l4.

The rule XTotal states the totality property of the precedence and concurrency execution rela-
tions. Every two method calls either execute in order or concurrently.

The rule X2X states that if a method call is executed before another one, then obviously both
are executed.

The rule X2L states the real-time-preservation property of linearization orders. The execution
order of two method calls on a linearizable object is preserved in the linearization order.

The rule LASym states the asymmetry property of linearization orders. If a method call is
linearized before another one, then the latter is not linearized before the former.

The rule LTrans states the transitivity property of linearization orders.
The rule LTotal states the totality property of linearization orders.
The rule L2X states that if a method call is linearized before another one, then obviously both

are executed.
The rule P2L states that the program order of two method calls on a linearizable object is

preserved in the linearization order.
The rule XLTrans is a form of “transitivity” rule for judgments about the execution order ≺

and the linearization order ≺o for a linearizable object o. If l1 is executed before l2, l2 is linearized
before l3 and l3 is executed before l4, then l1 is executed before l4.

The rule X2L’ states the contra-positive of the rule X2L.

83

XASym
π,Γ ` l ≺ l′

π,Γ ` ¬(l′ ≺ l) ∧ ¬(l′ ∼ l) ∧ ¬(l′ = l)

XTrans
π,Γ ` l ≺ l′ π,Γ ` l′ ≺ l′′

π,Γ ` l ≺ l′′

XXTrans
π,Γ ` l1 ≺ l2 π,Γ ` l3 ≺ l4

π,Γ ` l2 ∼ l3

π,Γ ` l1 ≺ l4

XTotal
π,Γ ` exec(l) ∧ exec(l′)

π,Γ ` (l ≺ l′) ∨ (l′ ≺ l) ∨ (l ∼ l′) ∨ (l = l′)

X2X
π,Γ ` l ≺ l′

π,Γ ` exec(l) ∧ exec(l′)

X2L
Tbase(o) ∈ LT

π,Γ ` obj(l) = obj(l′) = o π,Γ ` l ≺ l′

π,Γ ` l ≺o l′

LASym
π,Γ ` l ≺o l′

π,Γ ` ¬(l′ ≺o l) ∧ ¬(l = l′)

LTrans
π,Γ ` l ≺o l′ π,Γ ` l′ ≺o l′′

π,Γ ` l ≺o l′′

LTotal
Tbase(o) ∈ LT ∪ SCT

π,Γ ` exec(l) ∧ exec(l′)
π,Γ ` obj(l) = obj(l′) = o

π,Γ ` (l ≺o l′) ∨ (l′ ≺o l) ∨ (l = l′)

L2X
Tbase(o) ∈ LT ∪ SCT

π,Γ ` l ≺o l′

π,Γ ` exec(l) ∧ exec(l′) ∧
obj(l) = obj(l′) = o

All of the rules have the side condition π = (T ,D,P)

Figure 5.11: Basic Inference Rules

P2L
c1 →π c2

π,Γ ` exec(ς’c1) π,Γ ` exec(ς’c2)
Tbase(o) ∈ LT π,Γ ` obj(ς’c1) = obj(ς’c2) = o

π,Γ ` ς’c1 ≺o ς’c2

XLTrans
Tbase(o) ∈ LT

π,Γ ` l1 ≺ l2 π,Γ ` l3 ≺ l4
π,Γ ` l2 ≺o l3
π,Γ ` l1 ≺ l4

X2L’
Tbase(o) ∈ LT
π,Γ ` l ≺o l′

π,Γ ` l - l′

Figure 5.12: Derived Basic Inference Rules

84

5.5.4 Synchronization Object Inference Rules

The synchronization object inference rules axiomatize the properties of common synchronization
object types. We consider each type in turn.

Basic and Atomic Register. The basic and atomic register inference rules are presented in
Figure 5.13.

The rule AReg states that for every read method call lR on an atomic register, there is a write
method call `W on it that writes the same value that lR returns and `W is the last write method call
that is linearized before lR.

A method call -l is race-free isRaceFreer(-l) if an only if there is no write method call that
executes concurrent to it. A register reg is sequentially-written isSequentiallyWritten(reg) if and
only if every pair of write method calls on it are ordered in the execution order or in other words,
every write method call on it is race-free.

The rule BReg states that if a basic register reg is sequentially-written, for every race-free read
method call lR on reg, there is a write method call `W on reg that writes the same value that
lR returns and `W is the last write method call that is executed before lR. Note that this models
Lamport’s notion of safe registers [48].

The derived register inference rules are presented in Figure 5.14.
The rule AReg’ states that for every read method call lR on an atomic register, if lW is the last

write method call that is linearized before lR, then lW writes the same value that lR returns.
An object o is accessed sequentially isSequential(o) if and only if every pair of method calls on

it are ordered in the execution order.
The rule BReg’ states that if a basic register reg is accessed sequentially, for every read method

call lR on reg, there is a write method call `W on reg that writes the same value that lR returns and
`W is the last write method call that is executed before lR.

The rule TReg states that for every read method call lR on a thread-local register reg, there is
a write method call `W on reg that writes the same value that lR returns and `W is the last write
method call that is executed before lR.

85

AReg
Tbase(reg) = AtomicRegister

π,Γ ` isReadreg(lR)

π,Γ ` ∃`W : isWriterreg(`W , lR) ∧
retv(lR) = arg1(`W)

BReg
Tbase(reg) = BasicRegister

π,Γ ` isSequentiallyWritten(reg)
π,Γ ` isReadreg(lR)

π,Γ ` isRaceFreereg(lR)

π,Γ ` ∃`W : isEWriterreg(`W , lR) ∧
retv(lR) = arg1(`W)

isReadr(-lR)⇔
exec(-lR) ∧ obj(-lR) = r ∧ name(-lR) = read

isWriter(-lW)⇔
exec(-lW) ∧ obj(-lW) = r ∧ name(-lW) = write

isWriterr(-lW , -lR)⇔
isWriter(-lW) ∧ -lW ≺r -lR ∧
∀`′W : isWriter(`

′
W)⇒ (`′W �r -lW ∨ -lR ≺r `′W)

isEWriterr(-lW , -lR)⇔
isWriter(-lW) ∧ -lW ≺ -lR ∧
∀`′W : isWriter(`

′
W)⇒ (`′W � -lW ∨ -lR ≺ `′W)

isSequential(o)⇔
∀`, `′ : (exec(`) ∧ exec(`′) ∧ obj(`) = o ∧ obj(`′) = o)⇒

(` � `′ ∨ `′ ≺ `)

isRaceFreer(-l)⇔
∀`W : isWriter(`W)⇒ (`W ≺ -l ∨ -l ≺ `W)

isSequentiallyWritten(r)⇔
∀`w : isWriter(`w)⇒ isRaceFreer(`w)

Figure 5.13: Register Inference Rules.

86

AReg’
Tbase(reg) = AtomicRegister

π,Γ ` isReadreg(lR)
π,Γ ` isWriterreg(lW , lR)

π,Γ ` arg1(lW) = retv(lR)

BReg’
Tbase(reg) = BasicRegister

π,Γ ` isReadreg(lR)
π,Γ ` isSequential(reg)

π,Γ ` ∃`W : isEWriterreg(`W , lR) ∧
retv(lR) = arg1(`W)

TReg
T (reg) = ThreadLocal BasicRegister

π,Γ ` isReadreg[τ](lR)

π,Γ ` ∃`W : isEWriterreg[τ](`W , lR) ∧
retv(lR) = arg1(`W) ∧

thread(`W) = τ

Figure 5.14: Derived Register Inference Rules

87

CAS Atomic Register. The cas register inference rules are presented in Figure 5.15.
A method call -lW on an atomic cas register r is a successful write isCWriter(-lW), if and only

if it is a write method call or a successful cas method call. The written value writtenV alue(-l) of a
successful write method call -l is its first argument if it is a write method call and its second argument
if it a successful cas method call.

The rule CASRegRead states that for every read method call lR on an atomic cas register, there
is a successful write `W that writes the same value that lR has returned and `W is the last successful
write that is linearized before lR.

The rule CASRegCAST and the rule CASRegCASF state that a cas method call lC on an
atomic cas register returns true if the written value of the last successful write linearized before lC
is equal to the first argument of lC , and returns false otherwise.

The derived cas register inference rules are presented in Figure 5.16.
The rule CASRegRead’ states that for every read method call lR on an atomic cas register, the

last successful write that is linearized before lR writes the same value that lR returns.

88

CASRegRead
Tbase(reg) = AtomicCASRegister

π,Γ ` isReadreg(lR)

π,Γ ` ∃`W : isCWriterreg(`W , lR) ∧
retv(lR) = writtenV alue(`W)

CASRegCAST
Tbase(reg) = AtomicCASRegister

π,Γ ` isCASreg(lC)
π,Γ ` isCWriterreg(lW , lR)

π,Γ ` arg1(lC) = writtenV alue(lW)

π,Γ ` retv(lC) = true

CASRegCASF
Tbase(reg) = AtomicCASRegister

π,Γ ` isCASreg(lC)
π,Γ ` isCWriterreg(lW , lR)

π,Γ ` ¬(arg1(lC) = writtenV alue(lW))

π,Γ ` retv(lC) = false

isReadr(-lR)⇔
exec(-lR) ∧ obj(-lR) = r ∧ name(-lR) = read

isWriter(-lR)⇔
exec(-lR) ∧ obj(-lR) = r ∧ name(-lR) = write

isCASr(-lR)⇔
exec(-lR) ∧ obj(-lR) = r ∧ name(-lR) = cas

isCWriter(-lW)⇔
isWriter(-lW) ∨ (isCASr(-lW) ∧ retv(-lW) = true)

isCWriterr(-lW , -lR)⇔
isCWriter(-lW) ∧ -lW ≺r -lR ∧
∀`′W : isCWriter(-l

′
W)⇒ (`′W �r -lW ∨ -lR ≺r `′W)

writtenV alue(-l) ={
arg1(-l) if obj(-l) = write
arg2(-l) if obj(-l) = cas

Figure 5.15: CAS Register Inference Rules.

CASRegRead’
Tbase(reg) = CASAtomicRegister

π,Γ ` isReadreg(lR)
π,Γ ` isCWriterreg(lW , lR)

π,Γ ` retv(lR) = writtenV alue(lW)

Figure 5.16: Derived CAS Register Inference Rules

89

Lock and Try-Lock. The preliminary definitions are presented in Figure 5.17 and the lock and
try-lock inference rules are presented in Figure 5.18.

Ownership for a lock l is respected, isOwnerRespecting(l) if and only if every thread unlocks l
only if it has already locked l and has not unlocked it since then.

The rule Lock states that if ownership is respected for a lock l and a lock method call on l (by
a thread t1) is linearized before an unlock method call on l (by a thread t2), then an unlock method
call on l by t1 is linearized before a lock method call on l by t2.

The rule LockReadL states that if ownership is respected for a lock l and an unlock method
call on l (by a thread t) is linearized after a read method call on l that returns false, then a lock
method call on l by t is linearized after the read method call.

The rule LockReadR states that if ownership is respected for a lock l and a lock method call
on l (by a thread t) is linearized before a read method call on l that returns false, then an unlock
method call on l by t is linearized before the read method call.

The rule LockReadM states that if ownership is respected for a lock l and a read method call
on l (by a thread t) is linearized between a pair of matching lock and unlock method call on l, then
the read method call returns true.

There are four similar rules for try-locks. Instead of lock method calls, these rules concern
successful lock method calls that are lock and successful tryLock method calls.

isLocko(-l)⇔
exec(-l) ∧ obj(-l) = o ∧ name(-l) = lock

isUnlocko(-l)⇔
exec(-l) ∧ obj(-l) = o ∧ name(-l) = unlock

isReado(-l)⇔
exec(-l) ∧ obj(-l) = o ∧ name(-l) = read

isTryLocko(-l)⇔
exec(-l) ∧ obj(-l) = o ∧ name(-l) = tryLock

isTLocko(-l)⇔
isLocko(-l) ∨ (isTryLocko(-l) ∧ retv(-l) = true)

noUnlockBetweeno(-ll, -lu)⇔
∀`′u :

(isXUnlockX,o(`
′
u) ∧

threadX(-ll) = threadX(`′u))⇒
(`′u ≺ -ll ∨ -lu � `′u)

isOwnerRespecting(o)⇔
∀` : isUnlocko(`)⇒
∃`′ : isTLocko(`′) ∧

thread(`′) = thread(`) ∧
`′ ≺ ` ∧
∀`′′ :

(isUnLocko(`
′′) ∧

thread(`′′) = thread(`))

⇒
`′′ ≺ `′ ∨ ` � `′′

Figure 5.17: Preliminary definitions for Lock and TryLock Inference Rules.

90

Lock
Tbase(o) = Lock

π,Γ ` isOwnerRespecting(o)
π,Γ ` isLocko(ll1) π,Γ ` isUnlocko(lu2)

π,Γ ` ll1 ≺o lu2
π,Γ ` ∃`u1 , `l2 :

isUnlocko(`u1) ∧ thread(`u1) = thread(ll1) ∧
isLocko(`l2) ∧ thread(`l2) = thread(lu2) ∧

`u1 ≺o `l2

LockReadL
Tbase(o) = Lock

π,Γ ` isOwnerRespecting(o)
π,Γ ` isUnlocko(lu1)

π,Γ ` isRead(lr2) ∧ retv(lr2) = false
π,Γ ` lr2 ≺o lu1
π,Γ ` ∃`l1 :

isLocko(`l1) ∧ thread(`l1) = thread(lu1) ∧
lr2 ≺o `l1

LockReadR
Tbase(o) = Lock

π,Γ ` isOwnerRespecting(o)
π,Γ ` isLocko(ll1)

π,Γ ` isRead(lr2) ∧ retv(lr2) = false
π,Γ ` ll1 ≺o lr2
π,Γ ` ∃`u1 :

isUnlocko(`u1) ∧ thread(`u1) = thread(ll1) ∧
`u1 ≺o lr2

LockReadM
Tbase(o) = Lock

π,Γ ` isOwnerRespecting(o)
π,Γ ` isLocko(ll1) π,Γ ` isUnlocko(lu1)

π,Γ ` thread(lu1) = thread(ll1)
π,Γ ` noUnlockBetweeno(ll1 , lu1)

π,Γ ` isRead(lr2)
π,Γ ` ll1 ≺o lr2 π,Γ ` lr2 ≺o lu1

π,Γ ` retv(lr2) = true

TryLock
Tbase(o) = TryLock

π,Γ ` isOwnerRespecting(o)
π,Γ ` isTLocko(ll1) π,Γ ` isUnlocko(lu2)

π,Γ ` ll1 ≺o lu2
π,Γ ` ∃`u1 , `l2 :

isUnlocko(`u1) ∧ thread(`u1) = thread(ll1) ∧
isTLocko(`l2) ∧ thread(`l2) = thread(lu2) ∧

`u1 ≺o `l2

TryLockReadL
Tbase(o) = TryLock

π,Γ ` isOwnerRespecting(o)
π,Γ ` isUnlocko(lu1)

π,Γ ` isRead(lr2) ∧ retv(lr2) = false
π,Γ ` lr2 ≺o lu1
π,Γ ` ∃`l1 :

isTLocko(`l1) ∧ thread(`l1) = thread(lu1) ∧
lr2 ≺o `l1

TryLockReadR
Tbase(o) = TryLock

π,Γ ` isOwnerRespecting(o)
π,Γ ` isTLocko(ll1)

π,Γ ` isRead(lr2) ∧ retv(lr2) = false
π,Γ ` ll1 ≺o lr2
π,Γ ` ∃`u1 :

isUnlocko(`u1) ∧ thread(`u1) = thread(ll1) ∧
`u1 ≺o lr2

TryLockReadM
Tbase(o) = TryLock

π,Γ ` isOwnerRespecting(o)
π,Γ ` isTLocko(ll1) π,Γ ` isUnlocko(lu1)

π,Γ ` thread(lu1) = thread(ll1)
π,Γ ` noUnlockBetweeno(ll1 , lu1)

π,Γ ` isRead(lr2)
π,Γ ` ll1 ≺o lr2 π,Γ ` lr2 ≺o lu1

π,Γ ` retv(lr2) = true

Figure 5.18: Lock and TryLock Inference Rules.

91

Strong Counter. The strong counter inference rules are presented in Figures 5.19 and 5.20.
The rule SCounter states that the return value of every method call that is linearized before

an iaf method call is smaller than the return value of the iaf method call.
The rule SCounter’ states that if the return value of a method call is greater than the return

value of an iaf method call, then it is linearized after the iaf method call.

SCounter
Tbase(o) = SCounter
π,Γ ` obj(l1) = o

π,Γ ` obj(l2) = o ∧ name(l2) = iaf
π,Γ ` l1 ≺o l2

π,Γ ` retv(l1) < retv(l2)

Figure 5.19: SCounter Rules

SCounter’
Tbase(o) = SCounter

π,Γ ` exec(l1) ∧ obj(l1) = o
π,Γ ` exec(l2) ∧ obj(l2) = o ∧ name(l2) = iaf

π,Γ ` retv(l1) > retv(l2)

π,Γ ` l2 ≺o l1

Figure 5.20: Derived SCounter Rules

92

Basic Set and Basic Map. The Set and Map inference rules are presented in Figure 5.21.
An object o is accessed sequentially isSequential(o) if and only if every pair of method calls on

it are ordered in the execution order.
The rule BasicSetContains states that if a basic set s is accessed sequentially, for every

contains method call on s that returns true, there is a preceding add method call on s with the
same argument.

The rule BasicSetAdd states that if a basic set s is accessed sequentially, every contains method
call on s that succeeds an add method call on s with the same argument returns true.

The rule BasicMapGet states that if a basic map m is accessed sequentially, for every get
method call lg on m that does not return ⊥, there exists a put method call `p on m with the same
key argument such that the value argument of p is equal to the return value of lg and `p is the latest
preceding put method call on m with the same key argument.

The rule BasicMapPut states that if a basic map m is accessed sequentially, for every get
method call lg on m, if lp is the latest preceding put method call on m with the same key argument
then the value argument of lp is equal to the return value of lg.

The derived Set and Map inference rules are presented in Figure 5.22.
The rule BasicMapGet’ states that if a basic map m is accessed sequentially, for every get

method call lg on m, if no put method call with the same key argument as lg precedes lg, then lg
returns ⊥.

The rule BasicMapPut’ states that if a basic map m is accessed sequentially and no put method
call puts ⊥ in m, every get method call that succeeds a put method call with the same key argument
does not return ⊥.

93

BasicSetContains
Tbase(s) = BasicSet
π,Γ ` isSequential(s)

π,Γ ` isContainss(lc) ∧ retv(lc) = true

π,Γ ` ∃`a : isAdds(`a) ∧
arg1(`a) = arg1(lc) ∧ `a ≺ lc

BasicSetAdd
Tbase(s) = BasicSet
π,Γ ` isSequential(s)
π,Γ ` isAdds(la)

π,Γ ` isContainss(lc)
π,Γ ` la ≺ lc ∧ arg1(la) = arg1(lc)

π,Γ ` retv(lc) = true

BasicMapGet
Tbase(m) = BasicMap
π,Γ ` isSequential(m)

π,Γ ` isGetm(lg) ∧ retv(lg) 6= ⊥
π,Γ ` ∃`p : isPutterm(`p, lg) ∧

arg2(`p) = retv(lg)

BasicMapPut
Tbase(m) = BasicMap
π,Γ ` isSequential(m)

π,Γ ` isGetm(lg)
π,Γ ` isPutterm(lp, lg)

π,Γ ` arg2(lp) = retv(lg)

isContainso(-l)⇔
exec(-l) ∧ obj(-l) = o ∧ name(-l) = contains

isAddo(-l)⇔
exec(-l) ∧ obj(-l) = o ∧ name(-l) = add

isPuto(-l)⇔
exec(-l) ∧ obj(-l) = o ∧ name(-l) = put

isGeto(-l)⇔
exec(-l) ∧ obj(-l) = o ∧ name(-l) = get

isPutterm(-lp, -lg)⇔
isPutm(-lp) ∧ arg1(-lp) = arg1(-lg) ∧ -lp ≺ -lg ∧
∀`′p : isPutm(`′p) ∧ arg1(`′p) = arg1(-lg)⇒ (`′p � -lp ∨ -lg ≺ `′p)

isSequential(o)⇔
∀`, `′ : (exec(`) ∧ exec(`′) ∧ obj(`) = o ∧ obj(`′) = o)⇒

(` � `′ ∨ `′ ≺ `)

Figure 5.21: Set and Map Inference Rules

94

BasicMapGet’
Tbase(m) = BasicMap
π,Γ ` isSequential(m)

π,Γ ` isGetm(lg)
π,Γ ` ¬∃`p : isPutm(`p) ∧

arg1(`p) = arg1(lg) ∧ `p ≺ lg

π,Γ ` retv(lg) = ⊥

BasicMapPut’
Tbase(m) = BasicMap
π,Γ ` isSequential(m)

π,Γ ` isGetm(lg)
π,Γ ` isPutm(lp)

π,Γ ` arg1(lp) = arg1(lg) ∧ lp ≺ lg
π,Γ ` ∀`p : isPutm(`p)⇒ arg2(`p) 6= ⊥

π,Γ ` retv(lg) 6= ⊥

Figure 5.22: Derived Set and Map Inference Rules

95

5.6 Soundness

In this section, we present the soundness, exchange, and weakening lemmas for SOL.

The semantics satisfies the classical exchange and weakening lemmas.

Lemma 36 (Exchange).
∀π,Γ,Γ′,A,A′,A′′ :
(π,Γ;A;A′; Γ′ ` A′′)⇒ (π,Γ;A′;A; Γ′ ` A′′)

Lemma 37 (Weakening).
∀π,Γ,A,A′ :
(π,Γ ` A)⇒ (π,Γ;A′ ` A)

To define the soundness, we first define the models relation between specifications and assertions.

Definition 16. A specification π models an assertion A if and only if every execution of π models
A.
π |= A iff ∀X ∈ [[π]] : X |= A

The logic is sound. The following theorem states that the logic derives valid conclusions from
valid premises.

Theorem 3 (Soundness).
∀π,A : ((π,Γ ` A) ∧ (π |= Γ))⇒ (π |= A).

See the appendix section 10.4 for the proof.

96

5.7 Dekker Mutual Exclusion

In this section, we prove the mutual exclusion guarantee of the Dekker algorithm using SOL. We
presented the Dekker algorithm, πDekker, in Figure 2.1.

Theorem 4 (Mutual Exclusion).
In every execution of the Dekker specification, at most one thread acquires the lock.
∀X ∈ H(πDekker) : (retvX(L2) = true)⇒ (retvX(L1) = false).

Proof.

We show that
(1) X ′ ∈ H(πDekker)

We show that
(2) (retvX′(L2) = true)⇒

(retvX′(L1) = false)

By Definition 2.71 on [1], we have that there ex-
ists X , X, σ,L such that

(3) X = (X, σ,L) ∈ [[π]]

(4) X ′ = σ(X)
By Lemma 38, we have

(5) πDekker, · ` (retv(L2) = true)⇒
(retv(L1) = false).

By the soundness theorem, Theorem 3, and Defi-
nition [16] on [5] and [3], we have

(6) X |= (retv(L2) = true)⇒
(retv(L1) = false)

By Definition [15] on [6], [3] and [4], we have
(7) (retvX′(L2) = true)⇒

(retvX′(L1) = false). 2

Lemma 38.
πDekker, · ` (retv(L2) = true)⇒ (retv(L1) = false).

Proof.

Let

π = πDekker
We show that

π, · ` (retv(L2) = true)⇒
(retv(L1) = false)

Let

(8) Γ = (retv(L2) = true)

By rule CondIntro, we have to show that

π,Γ ` retv(L1) = false

By rule Premise on [8], we have

(9) π,Γ ` retv(L2) = true

From π, we have

condπ(L2) = true

Thus,

(10) π,Γ ` condπ(L2) = true

By rule OControl on [10], we have

(11) π,Γ ` exec(L2)

From π, we have

(12) nameπ(L2) = tryLock2

(13) R1 ∈ Labels(tryLock2)

From π, we have

condπ(R1) = true

Thus,

(14) π,Γ ` L2’condπ(R1) = true

From π, we have

(15) PreReturnsπ(R1) = ∅
By rule IControl on [11]-[15], we have

(16) π,Γ ` exec(L2’R1)

By rule Id on [16], we have

(17) π,Γ ` obj(L2’R1) = f1
(18) π,Γ ` name(L2’R1) = read

(19) π,Γ ` retv(L2’R1) = L2’x1
Similarly, we have

(20) π,Γ ` exec(L2’W2)

(21) π,Γ ` obj(L2’W2) = f2
(22) π,Γ ` name(L2’W2) = write

(23) π,Γ ` arg1(L2’W2) = 1

From the definition of isRead on [16], [17] and
[18] and rule ConjIntro, we have

97

(24) π,Γ ` isReadf1(L2’R1)
From rule AReg on [24], we have

(25) π,Γ ` ∃`W :
isWriterf1(`W , L2’R1) ∧
retv(L2’R1) = arg1(`W)

Let
(26) Γ′ = Γ;

isWriterf1(lW , L2’R1) ∧
arg1(lW) = retv(L2’R1)
where lW is fresh.

By rule Premise on [26], we have
(27) π,Γ′ ` isWriterf1(lW , L2’R1)
(28) π,Γ′ ` arg1(lW) = retv(L2’R1)

By rule Id on [11], we have
(29) π,Γ ` obj(L2) = this
(30) π,Γ ` name(L2) = tryLock2

From π, we have
(31) Returnsπ(tryLock2) = {C2t, C2f}

By rule Caller on [31], [11], [30], [31], we have
(32) π,Γ `
(exec(L2’C2t) ∧ arg1(L2’C2t) = retv(L2)) ∨
(exec(L2’C2f) ∧ arg1(L2’C2f) = retv(L2))

We apply rule DisjElim to [32]:

Right:
Let
(33) Γ′ = Γ;

(exec(L2’C2f) ∧ arg1(L2’C2f) = retv(L2))
By rule Premise on [33], we have

(34) π,Γ′ ` exec(L2’C2f)
(35) π,Γ′ ` arg1(L2’C2f) = retv(L2)

From π, we have
(36) arg1(C2f) = false

By rule Id on [34], [36], we have
(37) π,Γ′ ` arg1(L2’C2f) = false

From rule ETrans and rule ESym on [35], and
[37], we have

(38) π,Γ′ ` retv(L2) = false
By weakening (Lemma 37) on [33] [9], we have

(39) π,Γ′ ` retv(L2) = true
By rule NegElim on [38] and [39], we have

(40) π,Γ′ ` retv(L1) = false

Left:
Let

(41) Γ′ = Γ;
(exec(L2’C2t) ∧ arg1(L2’C2t) = retv(L2))

By rule Premise on [41], we have
(42) π,Γ′ ` exec(L2’C2t)
(43) π,Γ′ ` arg1(L2’C2t) = retv(L2)

From π, we have
(44) condπ(C2t) = (x1 = 0)

By rule IControl on [42] and [44] we have
(45) π,Γ′ ` (L2’x1 = 0)

From [28], [19], [45], weakening (Lemma 37) and
rule ETrans, we have

(46) π,Γ′ ` arg1(lW) = 0
From the definition of isWriter on [27] and
rule ConjElimL and rule ConjElimR, we have

(47) π,Γ′ ` obj(lW) = f1
(48) π,Γ′ ` name(lW) = write
(49) π,Γ′ ` exec(lW)
(50) π,Γ′ ` lW ≺f1 L2’R1

(51) π,Γ′ ` ∀`W ′ : isWritef1(`W ′)⇒
`W ′ �f1 lW ∨ L2’R1 ≺f1 `W ′

From the definition of π, we have
(52) callsπ(f1, write) = {W1,W01}

From rule Src on [47], [48], [49] and [52], we have
that for some fresh ς

(53) π,Γ′ ` lW = ς’W1 ∨ lW = ς’W01

We apply rule DisjElim to [53]:

Left:
(54) Γ′′ = Γ′;

lW = ς’W1

From [49], [54], weakening (Lemma 37), we have
(55) π,Γ′′ ` exec(ς’W1)

From π, we have
(56) arg1π(W1) = 1

By rule Id on [54], [56], we have
(58) π,Γ′′ ` arg1(ς’W1) = 1

From [54], [58], we have
(58) π,Γ′′ ` arg1(lW) = 1

By weakening (Lemma 37) on [46], we have
(59) π,Γ′′ ` arg1(lW) = 0

By rule ETrans and rule ESym on [58], [59], we
have

(60) π,Γ′′ ` 0 = 1
By rule NegElim on rule Zero and [60], we have

(61) π,Γ′′ ` retv(L1) = false

98

Right:
(62) Γ′′ = Γ′;

lW = ς’W01

By rule Premise on [62], we have
(63) π,Γ′′ ` lW = ς’W01

From π, we have
(64) W01 ∈ Labelsπ(init)

By rule Callee on [63] and [64] we have
(65) π,Γ′′ ` ¬(ς = ε)
(66) π,Γ′′ ` exec(ς)
(67) π,Γ′′ ` obj(ς) = this
(68) π,Γ′′ ` name(ς) = init

From π, we have
(69) Callsπ(this, init) = {L0}

By rule Src on [65]-[69] we have
(70) π,Γ′′ ` ς = L0

From [63] and [70], we have
(71) π,Γ′′ ` lW = L0’W01

From π, we have
condπ(L1) = true

Thus,
(72) π,Γ′′ ` condπ(L1) = true

By rule OControl on [72], we have
(73) π,Γ′′ ` exec(L1)

From π, we have
(74) nameπ(L1) = tryLock1
(75) R2 ∈ Labels(tryLock1)

From π, we have
condπ(R2) = true

Thus,
(76) π,Γ′′ ` L1’condπ(R2) = true

From π, we have
(77) PreReturnsπ(R2) = ∅

By rule IControl on [73]-[77], we have
(78) π,Γ′′ ` exec(L1’R2)

From π we have
(79) objπ(R2) = f2
(80) nameπ(R2) = read
(81) retvπ(R2) = x2

By rule Id on [78] and [79]-[81], and then
rule ConjElimL and rule ConjElimR, we have

(82) π,Γ′′ ` obj(L1’R2) = f2
(83) π,Γ′′ ` name(L1’R2) = read
(84) π,Γ′′ ` retv(L1’R2) = L1’x2

From the definition of isRead on [78], [82], [83]
and rule ConjIntro, we have

(85) π,Γ′′ ` isReadf2(L1’R2)
Similarly, we have that

(86) π,Γ′′ ` exec(L1’W1)
(87) π,Γ′′ ` obj(L1’W1) = f1
(88) π,Γ′′ ` name(L1’W1) = write
(89) π,Γ′′ ` arg1(L1’W1) = 1
(90) π,Γ′′ ` isWritef1(L1’W1)

By rule UnivElim on [51], and [90], we have
(91) π,Γ′′ ` L1’W1 �f1 lW ∨ L2’R1 ≺f1

L1’W1

By rule LSubs on [91] and [71], we have
(92) π,Γ′′ `

L1’W1 �f1 L0’W01 ∨
L2’R1 ≺f1 L1’W1

From π, we have
(93) L0 →π L1

By rule LSubs on [66] and [70], we have
(94) π,Γ′′ ` exec(L0)

By rule P2X on [93], [94] and [73], we have
(95) π,Γ′′ ` L0 ≺ L1

By rule LSubs on [49] and [71], we have
(96) π,Γ′′exec(L0’W01)

By rule OX2IX on [95], and [96], and [86], we
have

(97) π,Γ′′ ` L0’W01 ≺ L1’W1

By rule Id on [96], we have
(98) π,Γ′′ ` obj(L0’W01) = f1

By rule X2L on [97], [98] and [87], we have
(99) π,Γ′′ ` L0’W01 ≺f1 L1’W1

By rule LASym on [99], and rule ConjElimL,
we have

(100) π,Γ′′ ` ¬(L1’W1 ≺f1 L0’W01)
By rule DisjSyllL on [92], [100], we have

(101) π,Γ′′ ` L2’R1 ≺f1 L1’W1

From π, we have
(102) W2 →π R1

From rule P2X on [102], [20], [16], and weakening
(Lemma 37), we have

(103) π,Γ′′ ` L2’W2 ≺ L2’R1

From π, we have
(104) W1 →π R2

From rule P2X on [104], [86] and [78], we have
(105) π,Γ′′ ` L1’W1 ≺ L1’R2

99

From rule XLTrans on [103], [101] and [105], we
have

(106) π,Γ′′ ` L2’W2 ≺ L1’R2

From rule X2L on [106], [21] and [82], we have
(107) π,Γ′′ ` L2’W2 ≺f2 L1’R2

We show that
(108) π,Γ′′ ` ∀`W :

isWritef2(`W)⇒
`W �f2 L2’W2 ∨ L1’R2 ≺f2 `W

Let
(109) Γ′′′ = Γ′′; isWritef2(l

′
W)

By rule UnivIntro and rule CondIntro,
we have to show that

π,Γ′′′ ` l′W �f2 L2’W2 ∨ L1’R2 ≺f2 l′W
By rule Premise on [109], we have

(110) π,Γ′′′ ` isWritef2(l
′
W)

From definition of isWrite on [110],
we have

(111) π,Γ′′′ `
obj(l′W) = f2 ∧
name(l′W) = write ∧
exec(l′W)

From the definition of π, we have
(112) callsπ(f2, write) = {W02,W2}

By rule Src on [111] and [112], we have that
for some fresh ς,

(113) π,Γ′′′ ` l′W = ς’W02 ∨ l′W = ς’W2

We apply rule DisjElim on [113]:

Left:
(114) Γ′′′′ = Γ′′′; (l′W = ς’W02)

By rule Premise on [114], we have
(115) π,Γ′′′′ ` l′W = ς’W02

By rule LSubs on [111], [115] and
weakening (Lemma 37), we have

(116) π,Γ′′′′ ` exec(ς’W02)
From π, we have

(117) W02 ∈ Labelsπ(init)
By rule Callee on [116] and [117], we have

(118) π,Γ′′′′ ` ¬(ς = ε)
(119) π,Γ′′′′ ` exec(ς)
(120) π,Γ′′′′ ` obj(ς) = this
(121) π,Γ′′′′ ` name(ς) = init

From π, we have
(122) callsπ(this, init) = {L0}

By rule Src on [118]-[122], we have
(123) π,Γ′′′′ ` ς = L0

By rule LSubs on [115], [123], we have
(124) π,Γ′′′′ ` l′W = L0’W02

By rule LSubs on [111], [124], we have
(125) π,Γ′′′ ` obj(L0’W02) = f2
(126) π,Γ′′′ ` exec(L0’W02)

From π, we have
(127) L0 →π L2

By rule P2X on [127], [94] and [11],
weakening (Lemma 37), we have

(128) π,Γ′′′′ ` L0 ≺ L2

By rule OX2IX on [128], and [126], and [20],
we have

(129) π,Γ′′′′ ` L0’W02 ≺ L2’W2

By rule X2L on [129], and [125], and [21],
we have

(130) π,Γ′′′′ ` L0’W02 ≺f2 L2’W2

By rule DisjIntroL on [130], we have
(131) π,Γ′′′ `

L0’W02 �f2 L2’W2 ∨
L1’R2 ≺f2 L0’W02

By rule LSubs on [131] and [124], we have
(132) π,Γ′′′ `

l′W �f2 L2’W2 ∨
L1’R2 ≺f2 l′W

Right:
(133) Γ′′′′ = Γ′′′; (l′W = ς’W2)

By rule Premise on [133], we have
(134) π,Γ′′′′ ` l′W = ς’W2

Similar to the previous part, we can show
that

(135) π,Γ′′′′ ` ς = L2

By rule LSubs on [134] and [135], we have
(136) π,Γ′′′′ ` l′W = L2’W2

By rule DisjIntroR on [136], we have
(137) π,Γ′′′ ` l′W �f2 L2’W2

Thus, by rule DisjIntroL on [137], we
have

π,Γ′′′ `
l′W �f2 L2’W2 ∨
L1’R2 ≺f2 l′W

100

By rule ConjIntro and the definition of isWrite
on [20]-[22] and weakening (Lemma 37), we have

(138) π,Γ′′ ` isWritef2(L2’W2)
By rule ConjIntro and the definition of
isWriter on [138], [107], and [108], we have

(139) π,Γ′′ ` isWriterf2(L2’W2, L1’R2)
By rule ConjIntro and the definition of isRead
on [78], [82] and [83], we have

(140) π,Γ′′ ` isReadf2(L1’R2)
From rule AReg’ on [140] and [139], we have

(141) π,Γ′′ ` retv(L1’R2) = arg1(L2’W2)
By rule ETrans and rule ESym on [141], [84]
and [23], we have

(142) π,Γ′′ ` L1’x2 = 1
By rule Zero and rule ESubs on [142], we have

(143) π,Γ′′ ` ¬(L1’x2 = 0)
From π, we have that

(144) condπ(C1f) = ¬(x2 = 0)
(145) nameπ(L1) = tryLock1
(146) C1f ∈ Labelsπ(tryLock1)

(147) PreReturnsπ(C1f) = ∅
From [144], we have

(148) L1’condπ(C1f) = ¬(L1’x2 = 0)

From [143] and [148], we have

(149) π,Γ′′ ` L1’condπ(C1f)

By rule IControl on [73], [146], [145], [149],
[147] we have

(150) π,Γ′′ ` exec(L1’C1f)

From π, we have that

(151) C1f ∈ Returnsπ(tryLock1)

(152) arg1π(C1f) = false

By rule Id on [150] and [152], we have

(153) π,Γ′′ ` arg1(L1’C1f) = false

By rule Ret on [150], [151], we have

(154) π,Γ′′ ` retv(L1) = arg1(L1’C1f)

By rule ETrans and rule ESym on [153], [154],
we have

π,Γ′′ ` retv(L1) = false

2

101

Chapter 6

Syntactic TM Correctness

We define the correctness of TM algorithms as a syntactic property of them. The syntactic statement
of the correctness condition in the program logic makes it possible to verify a TM algorithm specifi-
cation by syntactic deductions instead of model checking all execution histories of the specification.

In this chapter, we first axiomatize the properties of the client transactions and prove that they
are valid for every TM algorithm specification.

Then, we define the markability assertions as the correctness condition of TM algorithm spec-
ifications. The markability assertions are parametrized with the marking relation. The effect and
access orders of a TM algorithm specification should be captured as its marking relation. We say
that a TM algorithm specification is markable if there is a marking of it such that assuming the
client transaction axioms, the markability assertions can be derived. We prove that a TM algorithm
specification is opaque if it is markable. Therefore, defining the marking relation and then deriving
the markability assertions is a sound proof technique for opacity of TM algorithm specifications.

102

6.1 Client Transactions

In the subsection 2.2.2, we defined client transactions. In this subsection, we axiomatize the properties
of the client transactions as a set of assertions and prove their validity for every TM algorithm
specification. These properties are later assumed to prove markability.

Let us define

isInit(-l) = exec(-l) ∧ obj(-l) = this ∧ name(-l) = init (6.1)

isRead(-l) = exec(-l) ∧ obj(-l) = this ∧ name(-l) = read (6.2)

isWrite(-l) = exec(l) ∧ obj(-l) = this ∧ name(-l) = write (6.3)

isCommit(-l) = exec(-l) ∧ obj(-l) = this ∧ name(-l) = commit (6.4)

isCommitted(τ) = ∃` : isCommit(`) ∧ thread(`) = τ ∧ retv(`) = C (6.5)

isAborted(τ) = ∃` : exec(`) ∧ obj(`) = this ∧ thread(`) = τ ∧ retv(`) = A (6.6)

Transactions have the following set of properties. Γ1: Every transaction is initialized. Γ2: Every
transaction is initialized only once. Γ3: The initialization operation of each transaction is executed
before its other operations. Γ4: If a transaction is committed, it executed the commit operation.
Γ5: Every transaction executes the commit operation at most once. Γ6: The commit operation of
each transaction is executed after its other operations. Γ7: Each transaction is either aborted or
committed.

Γ0 = Γ1 ∧ Γ2 ∧ Γ3 ∧ Γ4 ∧ Γ5 ∧ Γ6 ∧ Γ7 (6.7)

Γ1 = ∀t : Let l = initOf(t) : isInit(l) ∧ thread(l) = t (6.8)

Γ2 = ∀`, `′ : (isInit(`) ∧ isInit(`′) ∧ thread(`) = thread(`′))⇒ ` = `′ (6.9)

Γ3 = ∀`, `′ : (isInit(`) ∧ exec(`′) ∧ obj(`′) = this ∧ thread(`) = thread(`′))⇒ ` � `′ (6.10)

Γ4 = ∀t : Let l = commitOf(t) : isCommitted(t)⇒ (isCommit(l) ∧ thread(l) = t) (6.11)

Γ5 = ∀`, `′ : (isCommit(`) ∧ isCommit(`′) ∧ thread(`) = thread(`′))⇒ ` = `′ (6.12)

Γ6 = ∀`, `′ : (exec(`) ∧ obj(`) = this ∧ isCommit(`′) ∧ thread(`) = thread(`′))⇒ ` � `′(6.13)

Γ7 = ∀t : (isCommitted(t) ∧ ¬isAborted(t)) ∨ (isAborted(t) ∧ ¬isCommitted(t)) (6.14)

The following lemma states that these properties of client transactions are valid for every TM
algorithm specification.

Lemma 39. ∀π ∈ ΠTM : π |= Γ0.

See the appendix section 10.5.1 for the proof.
The following lemma states that if an assertion A is derived for a TM specification π assuming

the properties of the client transactions, then A is valid for π.

Lemma 40. ∀π ∈ ΠTM ,∀A : (π,Γ0 ` A)⇒ (π |= A).

See the appendix section 10.5.1 for the proof.

103

isTRead(-lR)⇔ (6.15)

isRead(-lR) ∧ retv(-lR) 6= A
isLocalTRead(-lR)⇔ (6.16)

isTRead(-lR) ∧
∃`W : isTWrite(`W) ∧ arg1(-lR) = arg1(`W) ∧ thread(-lR) = thread(`W) ∧ `W ≺ -lR

isGlobalTRead(-lR) = (6.17)

isTRead(-lR) ∧ ¬isLocalTRead(-lR)

isTWrite(-lW) = (6.18)

isWrite(-lW) ∧ retv(-lW) 6= A
isLocalTWrite(-lW) = (6.19)

isTWrite(-lW) ∧
∃`′W : isTWrite(`′W) ∧ arg1(-lW) = arg1(`′W) ∧ thread(-lW) = thread(`′W) ∧ -lW ≺ `′W

isGlobalTWrite(-lW) = (6.20)

isTWrite(-lW) ∧ ¬isLocalTWrite(-lW)

isCommitted(τ) = (6.21)

∃` : exec(`) ∧ obj(`) = this ∧ thread(`) = τ ∧ retv(`) = C
isTWriteri(τ) = (6.22)

∃`W : isTWrite(`W) ∧ arg1(`W) = i ∧ thread(`W) = τ ∧ isCommitted(τ)

Figure 6.1: Reads and Writes

6.2 Markability

Some preliminary definitions are presented in Figure 6.1. The marking assertions are defined in
Figure 6.2. These program assertions mirror history assertions defined in Figure 3.4 and 3.5. We
illustrated the notion of markability in the subsection 3.3.

We define the set of Markable TM algorithm as follows:

Definition 17 (Markable TM Algorithm). A TM algorithm π is markable, if and only if there exists
a marking relation v such that assuming Γ0, isMarking(v) can be derived for π.
M arkable = {π | ∃ v : π,Γ0 ` isMarking(v)}.

To prove the markability of a TM algorithm specification, its access and effect orders should
be captured as the marking relation and assuming the client transaction axioms, the markability
assertions should be derived for the specification. Markability is a proof technique for opacity. The
following theorem states the soundness of this technique. A TM algorithm is opaque if the markability
assertion is derivable for its specification.

Theorem 5 (Markability Soundness). A TM algorithm is opaque if it is markable.
M arkable ⊆ Opaque.

See the appendix section 10.5.2 for the proof.

104

isMarkingRel(v)⇔ (6.23)

∀t1, t2, t3 :

(t1 v t2 ∨ t2 v t1) ∧
(t1 v t2 ∧ t2 v t1)⇒ (t1 = t2) ∧
(t1 v t2) ∧ (t2 v t3)⇒ (t1 v t3) ∧

∀`R, t : Let i = arg1(`R) :

(isGlobalTRead(`R) ∧ isTWritersi(t))⇒
(`R v t ∨ t v `R) ∧
(`R v t⇒ ¬t v `R) ∧ (t v `R ⇒ ¬`R v t)

NoWriteBetweent,i(-l, -l
′)⇔ (6.24)

∀` : (isTWrite(`) ∧ thread(`) = t ∧ arg1(`) = i)⇒ (` � -l ∨ -l′ � `)

N oWriterBetweeni(q1,v, q2)⇔ (6.25)

∀t : isTWriteri(t)⇒ t v q1 ∨ q2 v t

isLocalWriteObs⇔ (6.26)

∀`R : isLocalTRead(`R)⇒ Let t = thread(`R), i = arg1(`R) :

∃`W : isTWrite(`W) ∧ thread(`W) = t ∧ arg1(`W) = i ∧
`w ≺ `R ∧ NoWriteBetweent,i(`W , `R) ∧
retv(`R) = arg2(`W)

isLastPreAccessorv(t′, -lR)⇔ (6.27)

Let i = arg1(-lR), t = thread(-lR) :

isTWriteri(t
′) ∧

t′ v -lR ∧ t′ 6= t ∧
N oWriterBetweeni(t

′, -lR)

isGlobalWriteObs(v)⇔ (6.28)

∀`R : isGlobalTRead(`R)⇒ ∃`W : isGlobalTWrite(`W) ∧ Let t′ = thread(`W) :

isLastPreAccessorv(t′, `R) ∧
arg1(`R) = arg1(`W) ∧ retv(`R) = arg2(`W)

isWriteObs(v)⇔ (6.29)

isLocalWriteObs ∧ isGlobalWriteObs(v)

isReadPres(v)⇔ (6.30)

∀`R : isGlobalTRead(`R)⇒ Let i = arg1(`R), t = thread(`R) :

N oWriterBetweeni(`R,v, t) ∧ N oWriterBetweeni(t,v, `R)

isRealT imePres(v)⇔ (6.31)

∀t, t′ : t �� t′ ⇒ t v t′

isMarking(v)⇔ (6.32)

isMarkingRel(v) ∧ isWriteObs(v) ∧ isReadPres(v) ∧ isRealT imePres(v)

Figure 6.2: isMarking Assertions

105

Chapter 7

Verification of TM Algorithms

In the previous chapter, we presented markability as a proof technique for opacity of TM algorithm
specifications. In this chapter, we prove the markability of two TM algorithms.

Given a TM algorithm specification, the access and effect orders of the algorithm can be readily
captured as the execution and linearization order of specific method calls in the specification. The
markability assertions can, then, be proved using the inference rules of the logic. First, we look at
TL2 algorithm and then DSTM (visible reads) algorithm.

7.1 Marking TL2

Now, we define the marking relation for the TL2 algorithm specification that is presented in Fig-
ure 2.2.

Let us define

Eff(τ) =

{
initOf(τ)’I01 if isAborted(τ)

commitOf(τ)’C07 if isCommitted(τ)
(7.1)

readAcc(-lR) = -lR’R04 (7.2)

writeAcci(τ) = commitOf(τ)’C16i (7.3)

The marking v is the reflexive closure of < that is defined as follows:

∀t, t′ :
t < t′ ⇔ Eff(t) ≺clock Eff(t′)

∀`R, t : isTRead(`R) ∧ isTWriteri(t)⇒
Let i = arg1(`R) :
t < `R ⇔ writeAcci(t) - readAcc(`R)
`R < t⇔ readAcc(`R) ≺ writeAcci(t)

(7.4)

The effect order of transactions is the linearization order of their calls to the clock. The clock
object numbers the snapshots. Every transaction reads an initial snapshot number at I01. A com-
mitting transaction makes a new snapshot at C08. A TL2 transaction takes effect at I01 if it is
aborted and at C08 if it is committed.

106

The access order of read operations and writer transactions to location i is the execution order
of their access to the reg[i] register. The read method reads reg[i] at R04 and a writer transaction
writes to reg[i] at C16i.

The following lemma states that the relation v defined above is a marking relation for πTL2.

Lemma 41. πTL2,Γ0 ` isMarking(v).

This lemma is fully proved using the program logic formalized in PVS. The proof scripts are
available at [49].

TL2 maintains write-observation by acquiring locks for the written locations in the commit
method and also the orders R03 → R04, R05 → R06, C16 → C17 → C18 and checking that
the lock is released and that the two versions are equal in the read method.

TL2 maintains read-preservation by validations in both the read and the commit methods. The
read-preservation is maintained in the read method by the orders R04 → R05 → R06, C17 → C18
and checking that the lock is released and the read version is no larger than the initial snapshot in
the read method. The read-preservation is similarly maintained in the commit method by the orders
C7 → C10 → C11, C17 → C18 and checking that the lock is released and the read version is no
larger than the initial snapshot in the commit method. Checking that the lock is released forces
concurrent writers to write their new versions so that the version check finds the violation.

Now, we can have opacity of TL2.

Theorem 6 (Opacity of TL2). πTL2 ∈ Opaque

Proof. Immediate from Theorem 41, Definition 17, and Theorem 5. 2

7.2 Marking DSTM (visible reads)

We now conjecture a marking relation for the DSTM algorithm (visible reads) specification presented
in Figure 2.5.

Let us have the following preliminary definitions

isF irstTWriteτ (-lW) = isTWrite(-lW) ∧ thread(-lW) = τ ∧ (7.5)

∀`′W : (isTWrite(-lW) ∧ thread(`′W) = τ)⇒ -lW � `W

isLastTReadτ (-lR) = isTRead(-lR) ∧ thread(-lR) = τ ∧ (7.6)

∀`′R : (isTRead(-lR) ∧ thread(`′R) = τ)⇒ `R � -lR

isCommitτ (-lC) = isCommit(-lC) ∧ thread(`R) = τ (7.7)

hasTRead(τ) = ∃`R : isTRead(`R) ∧ thread(`R) = τ (7.8)

isEffOpτ (-l) = (isAborted(τ) ∧ ¬hasRead(τ) ∧ isInitτ (-l)) ∨ (7.9)

(isAborted(τ) ∧ hasRead(τ) ∧ isLastTReadτ (-l)) ∨
(isCommitted(τ) ∧ isCommitτ (-l))

The assertion isF irstTWriteτ (-lW) states that -lW is the first write method call of transaction τ .
The assertion isLastTReadτ (-lR) states that -lR is the last read method call of transaction τ . The
assertion isCommitτ (-lC) states that -lC is the commit method call of transaction τ . The assertion

107

hasTRead(τ) states that transaction τ has a read method call. The assertion isEffOpτ (-l) states
that the method call -l is the effect operation of transaction τ .

Let us define

Eff(-l) =


-l’C01 if isCommitted(τ)

-l’R05 if isAborted(τ) ∧ hasTRead(τ)

-l’I01 if isAborted(τ) ∧ ¬hasTRead(τ)

(7.10)

readAcc(-lR) = -lR’R05 (7.11)

writeAcc(-lW) = -lW ’W12 (7.12)

The marking v is the reflexive closure of < that is defined as follows:

∀t, t′ :
t < t′ ⇔
∀`, `′ : (isEffOpt(`) ∧ isEffOpt′(`

′))⇒
inv(Eff(`))� inv(Eff(`′))

∀`R, t : isTRead(`R) ∧ isTWriteri(t)⇒
t < `R ⇔
∀`W : isF irstTWritet(`W)⇒
writeAcc(`W) ≺start[i] readAcc(`R)

`R < t⇔
∀`W : isF irstTWritet(`W)⇒
readAcc(`R) ≺start[i] writeAcc(`W)

(7.13)

A committed transactions takes effect at C01 of its commit method call where its state is cased
from R to C. An aborted transaction that has a successful read operation takes effect at R05 of its
last successful read where the locator is updated. An aborted transaction that has no successful read
operation takes effect at I01 of its initialization operation.

The access order of read operations and writer transactions to location i is the linearization order
of their cas calls, R05 and W12, to the start[i] register.

The algorithm maintains write-observation by deciding the stable value of a location based on
the state of its last writer transaction.

As we illustrate with two examples in Figure 2.5 below, the algorithm maintains read-preservation
by aborting the reader set when the location is being written and aborting the last writer transaction
when the location is being read. Assume that the two locations i1 and i2 with the initial value v1 are
consistent if and only if they are equal. Transaction T1 reads and transaction T2 updates the values
of the two locations to v2.

While a location is being read, the algorithm aborts the last writer transaction of the location.
Consider the example in Figure 7.1(a). If T2 is allowed to commit after readT1(i1) then T1 can
read new value of i2. The old value of i1 (the value v1) and the new value of i2 (the value v2) are
inconsistent with each other. To prevent T1 from reading inconsistent data, either T1 or T2 should
be aborted. During readT1(i1), the algorithm aborts the last writer transaction that is T2.

While a location is being written, the algorithm aborts the reader set of the location. Consider the
example in Figure 7.1(b). Again, transaction T1 can read inconsistent values. During writeT2(i1, v2),
the algorithm aborts the readers set of location i1 that includes T1. Thus, T1 will not execute its

108

second read. (Note that aborting the reader set can be postponed until before committing the writer
transaction (T2). This allows the reader transactions to have the chance of committing before the
writer commits.)

T1 T2

writeT2(i1, v2)
writeT2(i2, v2)

readT1(i1):v1
commitT2()

readT1(i2):v2

(a) Aborting the Last Writer

T1 T2

readT1(i1):v1
writeT2(i1, v2)
writeT2(i2, v2)
commitT2()

readT1(i2):v2

(b) Aborting the Reader Set

Figure 7.1: DSTM (visible reads) Preserving Reads

7.3 Marking NORec

Now, we present an informal definition of the marking relation for the NoRec algorithm specification
of Figure 2.7.

Definition 18 (Marking NoRec). Consider an execution history H ∈ H(NORec). Let

REff(T) = The last execution of I01 or V 05

Eff(T) =

{
REff(T) if T ∈ Aborted(H) ∨ TWrites(H) = ∅
commitOf(T)’C04 if T ∈ Committed(H) ∧ TWrites(H) 6= ∅

readAcc(T, i) =

{
R’R03 if REff(T) ≺H R’R03

Let REff(T) = V ’V 05 in V ’V 03i if R’R03 ≺H REff(T)

writeAcc(T, i) = commitOf(T)’C07i

The marking v for H is the reflexive closure of < that is defined as follows:

{(T, T ′) | T, T ′ ∈ Trans(H) ∧ Eff(T) ≺seqLock Eff(T ′)} ∪
{(T,R) | ∃i : R ∈ TReads(H), i = arg1(R), T ∈ WritersH(i) ∧

writeAcc(T, i) ≺H readAcc(T, i)} ∪
{(R, T) | ∃i : R ∈ TReads(H), i = arg1(R), T ∈ WritersH(i) ∧

readAcc(T, i) ≺H writeAcc(T, i)}

An aborted transaction or a read-only transaction takes effect at the last execution of I01 or V 05.
This method call reads that most recent snapshot value that the transaction is still consistent for. A
committed transactions that has write method calls takes effect at C04.

The access point of a read method call is at R03 if the last recent snapshot is read before R03;
otherwise, it is at V 03i of the latest successful validate method call. The access point of a writer
transaction to location i is at C07i.

109

Chapter 8

Related Works

8.1 Verification of Transactional Memory

Researchers have proposed several correctness criteria for the correctness of TM algorithms such as
opacity [28], VWC [44], and TMS1 and TMS2 [22]. Lesani et al. [51] proved that opacity is stronger
than TMS1 and weaker than TMS2. Considering the promised safety properties, designing a correct
TM algorithm is a formidable task. Thus, verification of TM algorithms has been a topic of recent
attention.

Researchers have employed model checking, automatic invariant generation and theorem proving
to verify the correctness of TM algorithms. Model checkers from Cohen et al. [11, 12], and Guerraoui
et al. [29, 31, 30] are the pioneering approach to verification of TM. Subsequently, the same approach
was taken by O’Leary et al. [61] and Baek et al. [4]. Model checking can automate the verification
process but is either based on assumed properties about the TM algorithm or only scalable to a finite
number of threads and locations or simplified algorithms. Later, Emmi et al. [24] tried to automat-
ically infer invariants that are strong enough to entail the correctness criterion. Compliance of the
algorithms with the specification can be easily checked if the proper invariants can be automatically
generated. On the other hand, this work reported resorting to simplified algorithms due to scalability
issues. Later, Lesani et al. [50] presented a machine checked theorem proving framework and a full
proof of NORec TM algorithm [16]. The framework can be employed to verify realistic algorithms
but requires translation of the algorithm to a transition system and more importantly, the process is
manual and involves coming up with non-trivial invariants. Singh [72] developed a runtime verifica-
tion tool for TM algorithms. Although the tool is optimized with sound approximation techniques,
the runtime overhead is still not negligible. In contrast to the previous works, we presented a program
logic for static verification of TM algorithms. The logic is general and does not assume any specific
property of the algorithms. The reasoning is carried out on the algorithm specification itself rather
than its transition system. We applied the program logic to machine-checked verification of realistic
TM algorithms.

Testing can increase the reliability of a TM algorithm. Manovit et al. [53] applied random testing
to find bugs in the TCC TM system. Lourenco et al. [52] encountered several bugs during the porting
of TL2 algorithm and presented traces that exhibit these bugs. They presented test programs that
can produce the bug traces. Both of the above works arbitrarily execute a test program and check
that the execution instance does not exhibit a bug. On the other hand, given a TM algorithm and

110

a bug pattern, our testing approach constructs a trace of the algorithm in the bug pattern if the
algorithm is prone to the bug pattern.

Now, we consider each of the previous works in more detail.
Cohen et al. [11] verified small instances of some simple TM algorithms directly using a model

checker. Inspired by the notions of conflict by Scott [69], they defined admissible interchanges of
events in a history that can transform a concurrent history to a justifying sequential history. Later,
the method was extended [12] to support non-transactional accesses to memory. This approach is
limited to finite instances of the algorithms, especially for more complex algorithms.

Tasiran [73] presented a decomposition of serializability for a specific class of algorithms. Then,
he verified that a particular algorithm refines each condition separately. Similar to our notion of
marking, this approach decomposes the correctness condition but is limited to a particular class of
algorithms.

Guerraoui et al. [29, 31] specified both the TM algorithm and the correctness condition as transi-
tion systems. Verifying the correctness of the TM algorithm reduces to deciding language inclusion of
the former in the latter. Due to unbounded number of threads and locations, the transition systems
have infinite states. They tackled the problem with a small-world theorem that states that every TM
algorithm satisfying certain structural properties is correct if and only if it is correct for two threads
and two memory locations. This result has an immediate practical implication: Verification of a TM
transition system reduces to verification of small instances of it. To our knowledge, these structural
properties have not been formally verified for any TM algorithm.

In a follow up research, Emmi et al. [24] proposed a method that in contrast to [29, 31] did not
presume properties for TM algorithms. They rewrote the transition systems of the TM algorithms
and strict serializability that were presented by previous work [31] as transition systems parametrized
with the number of threads and locations. The product (or composition) of two parametrized systems
is defined as a transition system that on each command, essentially transitions for both systems.
Verification of the TM algorithm reduces to model-checking the following logical statement in the
product transition system of the TM and strict serializability: for every state, for every action, if
the guard of the TM transition system is satisfied then the guard of strict serializability is also
satisfied. This essentially means that at each state, the TM transition system allows an action
only if strict serializability allows it. To verify that a target statement is an invariant of a system,
ideas from verification by invisible invariants and template-based invariant generation are adapted.
The verification procedure tries to come up with inductive invariants of the system and check if
those invariants entail the target statement. To find an inductive invariant, candidate invariants
are generated from a template schema. Small instances of the parametrized system are thoroughly
generated and the candidate invariants that are not invariants of these instances are filtered. The
candidate inductive invariant is the conjunction of a subset of the remained candidate invariants
that is valid in the initial state and is preserved in the transitions. If the inductive invariant does
not entail the target statement, the procedure is repeated with a larger template scheme and larger
instances of the system.

The above two approaches need translation of the TM algorithm specification to a transition
system. Rewriting a TM algorithm to a transition system is a burden and prone to mistakes. In
addition, a rigorous verification needs the proof of equivalence of the TM algorithm specification and
its transition system. On the other hand, our program logic can reason on the algorithm specification
itself rather than the transition system. As examples of mistakes in the translation of the algorithm
specification to transition systems, the following can be noted. There is no visible reads in DSTM

111

algorithm [39] but the specifications of DSTM in [29, 31] and [24] abort the visible readers during
the execution of the validate command. As another example, TL2 algorithm [18] is based on version
numbers while the specifications of TL2 in [29, 31] and [24] replace the version numbers with the
unprecedented notion of modified sets. The definition and proof of equivalence of version numbers to
modified sets is missing. Furthermore, there has been a typo of writing os instead of ls in the TL2
transition system in [31]. The follow up work [24] rewrote this specification and incorrectly fixed os
to ws and thus verified a different algorithm.

Scalability forced the above two approaches to use abstract models that assume away subtle
interleavings of the practical TM algorithms. They modeled blocks of methods as state transitions.
Thus, they assumed that fragments of TM methods run atomically and there is no interleaving
during the execution of a fragment. The second work [24] assumed further atomicity by unifying
two consecutive commands that the first work [31] considered for the commit method of TL2. The
presumption that a fragment of a method executes atomically is barely valid in a TM algorithm. In
fact, it is the subtle interleavings that render a TM algorithm incorrect. It is also notable that in
their specifications of DSTM, aborting visible readers and committing the transaction are done in a
single transition and are thus executed atomically. Therefore, the interleavings that the validation
transition should prevent do not happen. Thus, the transition system is correct even without its
validation transition. We rewrite the transition systems of [31] and [24] to make them more readable
and present them in the appendix section 10.6. While the above two approaches worked on abstract
models of TM algorithms, we presented specifications of TM algorithms that are close to their
implementation.

Later, Guerraoui et al. [30, 71] considered the fact that fragments of methods cannot be assumed
to run atomically. They presented more fine-grained versions of the algorithms in relaxed memory
models. But to have the monotonicity property as one of the presumed structural properties, sim-
plified versions of the algorithms were considered and verified. For example, DSTM is specified with
no dynamic object allocation while DSTM is fundamentally based on dynamic creation of locator
objects. The specification of DSMT does not have any distinction between read and write operations
and the read operation simply calls the write operation. This means that similar to writes, reads ac-
quire the location. This is while readers do not acquire the location in DSTM. In their specification,
the commit operation writes to every location that is written to during the transaction. This is in
contrast to the original algorithm that commits a transaction by a single cas operation. There are
simplifications in TL2 as well. The check that the version of the read location is less than the read
version is replaced with an equality check. This restricts the concurrency of the algorithm. A local
array lver is introduced that is written during the read operations and checked during the commit
procedure. This local array does not exist in the original algorithm.

After Guerraoui et al. [31, 30] model-checked abstract version of Intel’s McRT STM algorithm,
O’Leary et al. [61] applied Spin to model-check a more realistic specification of McRT algorithm. They
verified serializability of McRT algorithm for two transactions each consisting of three read or write
operations. Baek et al. [4] noted the abstract representation of TM algorithms in the previous works
[31, 30]. Particularly, they noticed that the specification of TL2 in [31] does not model the version
control mechanism using timestamps. They emphasized that TM algorithms should be modeled close
to the implementation level so that potential bugs are not masked. They presented a model checker
to check more realistic specifications of algorithms. The model checker can check TM algorithms that
benefit from hardware components or support nested transactions. Using the model checker they
could check programs with a small number of transactions and locations. Although they modeled

112

more realistic algorithms, they left relaxed execution for future work. In addition, similar to other
works that apply model checking, scalability and state-state explosion is an issue. On the other hand,
the semantics of our specification language allows relaxed execution and our program logic can prove
the correctness of TM algorithms for arbitrary client programs.

Lesani et al. [50] presented a framework for verification of TM algorithms. Correctness condi-
tions and algorithms are both specified using I/O automata, enabling hierarchical proofs that the
algorithms implement the specifications. They used the framework to develop a machine-checked
verification of the NORec TM algorithm [16]. The framework is extensible and new proofs can lever-
age existing ones, eliminating significant work. The framework can be employed to verify realistic
algorithms but requires translation of the algorithm to a transition system and more importantly,
the process involves manual specification of non-trivial invariants.

Singh [72] developed a runtime verification tool for TM algorithms. He formalizes correctness
conditions as a set of conflicts on transactions. The tool builds the conflict graph at runtime and
checks that the graph is acyclic. Although it combines coarse and precise runtime analyses to increase
the performance of the checker, it leaves the scalability of the tool for future work. In contrast to
this work, our approach is full static verification of TM algorithms.

Manovit et al. [53] applied random testing to find bugs in the TCC TM system. They used
axiomatic formulation of TM semantics to check the correctness of test runs.

Lourenco et al. [52] ported TL2 from the Sun-pro C compiler, the Solaris operating system
and Sparc machines to the gcc compiler, the Linux operating system and Intel x86 32 and x86 64
architectures. They encountered several bugs during the port and presented traces that exhibit these
bugs. They presented test programs that can produce the bug traces. Re-executing the test programs
increases the probability that they trigger the bugs.

Both of the above testing works arbitrarily execute the test programs and check if that execution
instance exhibits a bug. On the other hand, given a TM algorithm and a bug pattern, our testing
approach constructs a trace of the algorithm in the bug pattern if the algorithm can produce a trace
in the bug pattern.

8.2 Concurrent Program Logics

Hoare [42] proposed the seminal deductive system to prove the (partial) correctness of sequential
imperative programs. Hoare logic presents axioms and deduction rules on triples of pre-condition,
statement and post-condition.

Since Hoare [42] proposed the seminal program logic to prove the (partial) correctness of sequen-
tial imperative programs, many extensions of it are proposed in attempts to reason about parallel
programs.

Owicki and Gries [62] extended Hoare deductive system to reason about parallel programs. Their
key idea is that the effect of executing a set of statements in parallel is the same as executing each
one by itself, if they do not interfere. A statement does not interfere with another statement if and
only if every intermediate assertion between atomic actions of the latter is preserved by every atomic
action of the former.

The Owicki-Gries definition of interference-freedom is not compositional and therefore the proof
technique is not modular. Aiming for a compositional proof technique, Jones [46] modeled interference
as a binary relation on states and proposed the rely/guarantee deductive system. In this system,

113

each assertion about a statement not only contains a pre-condition and a post-condition but also
a rely relation modeling the interference from other threads and a guarantee relation modeling the
interference of this statement for other threads. Nieto [58] and Coleman and Jones [13] proved
soundness of rely/guarantee reasoning. There are strongly related verification methods [56, 37, 2]
collectively known as assume/guarantee.

To reason about heap-manipulating programs, Reynolds and others [66, 45] developed separation
logic as an extension of Hoare logic. Heap-manipulating programs allocate, deallocate, read from
and write to heap locations. Separation logic introduces assertions to describe heaps particularly
the separating conjunction that asserts that the heap can be divided to two separate parts such that
each part satisfies its corresponding conjunct. Separation logic supports local reasoning through the
frame rule that states that the execution of a command does not change if the heap is extended with
a separate part.

To enable sharing read-only locations, Boyland [8] introduced fractional permissions and later,
Bornat and others [7] adapted separation logic to associate permissions with locations. A permission
is a value between zero and one. New locations are allocated with the full permission. Writing to
but not reading from a location needs its full permission. A location with a definite permission can
be split to the separating conjunction of the location with itself such that the permission is divided
between the two copies. Dually, permissions are summed when the separating conjunction of the
location with itself is merged to a single location.

Separation logic does not allow sharing locations among threads. O’Hearn [59] augmented sep-
aration logic with shared resources and introduced concurrent separation logic. A resource is a set
of variables and a resource invariant. Variables of a resource can be accessed only inside conditional
critical regions (CCR). CCRs on the same resource execute in mutual exclusion. A CCR can rely
on the resource invariant at the entry and should re-establish it at the end. A CCR can move the
ownership of locations (of the resource invariant) from the resource to the calling thread and vice
versa. Brooks [9], Hayman [36] and Vafeiadis [74] defined semantics for and proved the soundness of
concurrent separation logic.

Separation logic does not support modular verification of modules and their clients. O’Hearn and
others [60] extended separation logic to separately verify the implementations and the clients of a
module. The procedures of a module have interface specifications and share a resource invariant. The
resource invariant changes if the state representation of the module changes. The hypothetical frame
rule, a generalization of the classical frame rule, states that if a client of a module is verified using the
interface specifications of the module, then it is verified with every resource invariant for the module.
Later, Parkinson and Bierman [65] extended the idea with abstract predicates to represent interface
specifications. Abstract predicates can represent multiple instances of a class and can be extended
to reason about class hierarchies.

Concurrent separation logic can reason about locks but it can only model a bounded number of
pre-allocated and non-aliased locks and threads. To overcome these limitations, Gotsman and others
[27] extended separation logic with storable locks and threads. Storable locks can be dynamically
allocated, stored in the heap and deallocated. Each lock is allocated as an instance of a sort. Each
sort is associated with a definite invariant. A thread that acquires a lock gets the lock invariant and
should re-establish the invariant when it releases the lock. In other words, the ownership of the lock
invariant is transfered between the lock itself and accessing threads. In an independent work, Hobor
and others [43] extended concurrent separation logic with allocatable locks. A locks is allocated with
a definite invariant. Similar to Gotsman and others’ work, the ownership invariant is transfered to

114

the thread that locks the lock and is transfered back to the lock when it is unlocked. Later, Buisse
and others [10] elaborated the semantics and soundness of these logics.

Rely/guarantee can reason about interfering threads. Separation logic, on the other hand, can
separate parts of state and hence supports local reasoning. Vafeiadis and Parkinson [75] aggregated
the strengths of the two logics and presented RGSep logic. RGSep splits state into shared state that is
accessible by all threads and local state which is accessible by a single thread. It uses rely/guarantee
to reason about the shared state and separation logic to reason about the local state. The key
inference rule is for the critical region (atomic block). The intermediate states of a critical region
is not interfered by and does not interfere other threads. In an independent similar work, Feng and
others [26] presented SAGL as an integration of the two logics. Following these two efforts, Feng
[25] incorporated separation furthermore to the rely and guarantee conditions and introduced local
rely/guarantee (LRG) logic. LRG supports local reasoning about separate parts of the shared state.
Therefore, it supports modular reasoning not only for the local state but also the shared state. It
also allows local sharing of state among a subset of threads.

Rely/guarantee reasoning allows reasoning about the interference of parallel composition of threads.
On the other hand, threads are usually dynamically started by fork and collected by join commands.
Dodds and others [21] proposed deny/guarantee reasoning that allows interference to be dynamically
split to separate parts at the fork command and recombined at the join command. The idea of sep-
aration of interference is inspired by separation of state in separation logic. Interference is described
using deny and guarantee permissions: a deny permission specifies that the environment does not do
an action and a guarantee permission specifies that the current thread can do an action.

A data structure can be represented with a single abstract predicate [65]. However, multiple fine-
grained abstract predicates are often needed to refer to the same data structure. Dinsdale-Young and
others [20] presented concurrent abstract predicates that allow multiple abstractions in the presence
of sharing. The definition of a concurrent abstract predicate specifies both the permitted actions
and the state of the shared data structure. The definition of the predicates are used to verify the
implementation of the data structure. The predicates are used to separately verify clients.

115

Chapter 9

Conclusions and Future Works

We introduced an architecture-independent specification language for synchronization algorithms.
We presented the specification of several TM algorithms. We hope that other researchers repre-
sent algorithms in the language. The language can serve as a shared platform for development of
verification benchmark suites of synchronization algorithms. These suites can facilitate comparison
of verification techniques. Compilers can be developed that optimize the translation of algorithm
specifications to particular operating systems and architectures. Particularly, fence allocation is an
interesting future research direction.

We introduced the markability correctness condition as the conjunction of intuitive invariants:
write-observation and read-preservation. We proved the equivalence of markability and opacity cor-
rectness conditions. A future research direction is to study the inherent difficulty of each of the
invariants and the interplay between the invariants and the liveness properties of transactional mem-
ory.

We have identified two bug patterns that lead to non-opacity. Samand is flexible and can accom-
modate a variety of bug patterns such as HWE2 that was suggested by a DISC reviewer. Samand
outputs an execution trace of McRT that matches HWE2 in about 7 minutes. Our tool handles small
bug patterns efficiently; scalability is left for future work. We hope that our observations and tool
can help TM algorithm designers to avoid the write-skew, write-exposure, and other pitfalls. We
envision a methodology in which TM algorithm designers use Samand during the design to avoid
known pitfalls. Samand can be used also during maintenance of TM algorithms. For example, a
set of bug patterns can serve as a regression test suite. Additionally, our tool can be used to avoid
pitfalls in other synchronization algorithms.

We presented synchronization object logic (SOL) that supports reasoning about the execution
order and linearization orders of method calls. We proved the soundness of the logic. Future research
can study the completeness of the logic. We proved that the derivation of markability for an algorithm
specification is a syntactic proof of its opacity. We used SOL to prove the markability of the TL2
algorithm in PVS. Future work can prove the markability of other TM algorithms. Furthermore, the
applicability of the logic to prove the linearizability of concurrent data structures can be studied.
Variants of the logic can be applied to prove liveness properties as well.

116

Chapter 10

Appendix

10.1 Synchronization Object Language

10.1.1 Specification

Let us define data and control dependency of statements. The notion of dependence that is described
here is similar to the hardware notion of dependence. We define the context R as follows. [] denotes
a hole.

R ::= if b R else s | if b s else R | Context
R, s | s, R |
[]

A statement is data dependent to a method call if it accesses the return value of the method call. In
a statement s, the statement s′ is data-dependent on the method call labeled c if there exists x, o,
n, τ , u, R1, and R2, such that

s = R1[c1 . x = o.nτ (u)],R2[s
′]

and x appears in s′.
Every statement in the scope of an if statement is control-dependent on the if statement. The
statement s′ is control-dependent on the if statement s if there exists b, R and s′′ such that

s = if b R[s′] else s′′ or
s = if b s′′ else R[s′].

Every statement before a return statement in the program is control-dependent to it. In a statement
s, the statement s′ is control-dependent on the return statement labeled c if there exists u, R1, and
R2, such that

s = R1[s
′],R2[c . return u]

Let Callsπ(φ, n) denote the set of labels of call statements in π where the method name n is
called on the base object name φ.

Callsπ(φ, n) = {c | c ∈ Labels(π) ∧ basename(objπ(c)) = φ ∧ nameπ(c) = n} (10.1)

Consider a method definition n of a specification π.

def nt(x
∗) s, r

117

The set PreReturnsπ(c) is the set of labels of the return statements before c in the body of n.

PreReturnsπ(c) = {c′ | ∃R1,R2, u, q, x, o, n, τ, u
′ : (10.2)

s = R1[c
′ . return u],R2[q] ∧

q = (c . x = o.nτ (u
′)) ∨ q = (c . return u′)}

10.1.2 Semantics

10.1.2.1 Execution History

Lemma 1:
We Assume

(1) l ≺X l′

From [1] and definition of ∼X , we have
(2) ¬(l′ ∼X l)

From [1], we have
(3) rEv(l)�X iEv(l′)

As X is a valid history, we have
(4) iEv(l)�X rEv(l)
(5) iEv(l′)�X rEv(l′)

From [4], [3], and [5], we have
(6) iEv(l)�X rEv(l′)

From [6], we have
(7) ¬(rEv(l′)�X iEv(l))

From [7], and definition of ≺X , we have
(9) ¬(l′ ≺X l)

From [3] and [7], we have
(9) ¬(l′ = l)

Lemma 2:
Straightforward from the definition of ≺X .

Lemma 3:
We have

(1) l1 ≺X l2
(2) l3 ≺X l4
(3) l2 ∼X l3

From [1], we have
(4) rEv(l1)�X iEv(l2)

From [2], we have
(5) rEv(l3)�X iEv(l4)

From [3], we have
(6) ¬(l3 ≺X l2)

From [6], we have
(7) ¬(rEv(l3)�X iEv(l2))

118

From [7], we have
(8) iEv(l2)�X rEv(l3)

From [4], [8], and [5], we have
(9) rEv(l1)�X iEv(l4)

From [9], we have
l1 ≺X l4

Lemma 4:
Straightforward from the definition of ≺X and ∼X .

Lemma 5:
Straightforward from the definition of ≺X .

Lemma 6:
Straightforward from the definition of ≺X and �X .

Lemma 7:
Straightforward from the definition of ≺X and �X .

10.1.2.2 Synchronization Object Types

Lemma 8:
Straightforward from ≺X⊆≺L.

Lemma 9:
Straightforward from Lemmas 13, [4], 8, and 10.

Lemma 10:
We have

(1) l ≺L l′
From [1], we have

(2) rEv(l)�L iEv(l′)
From the well-formedness of the history O,
we have

(3) iEv(l)�L rEv(l)
(4) iEv(l′)�L rEv(l′)

From [3], [2] and [4], we have
(5) iEv(l)�L rEv(l′)

From [5], we have
(6) ¬(rEv(l′)�L iEv(l))

From [2] and [6], we have
(7) ¬(l′ = l)

From the definition of ≺X on [6], we have
(8) ¬(l′ ≺L l)

The conclusion is

119

[8] and [7]

Lemma 11:
Straightforward from the fact that L is a member of sequential specification and
a sequential specification is a set of sequential histories and
the execution order is total in sequential histories.

Lemma 12:
Straightforward from the fact that L is a member of sequential specification and
a sequential specification is a set of sequential histories and
the execution order is total in sequential histories.
We have

(1) l ∈ X
(2) l′ ∈ X
(3) X ≡ L
(4) L ∈ SeqSpec(o)

From [4], we have
(5) L ∈ Sequential

From [3], [1] and [2], we have
(6) l ∈ L
(7) l′ ∈ L

From [4], [6] and [7], we have
l ≺L l′ ∨ l′ ≺L l ∨ l = l′

Lemma 13:
Straightforward from the fact that L is equivalent to X.
We have

(1) X ≡ L
(2) L ∈ SeqSpec(o)
(3) l ≺L l′

From [3], we have
(4) l ∈ L
(5) l′ ∈ L

From [2] on [4] and [5], we have
(6) objL(l) = o
(7) objL(l′) = o

From [1] on [4] and [5], we have
l ∈ X
l′ ∈ X

From [1] on [6] and [7], we have
objX(l) = o
objX(l′) = o

Lemma 14:
Using L2X and XTotal, we have four cases:

120

Case: l ≺ l′

Straightforward from XTrans.
Case: l ∼ l′

Straightforward from XXTrans.
Case: l′ ≺ l

Straightforward from X2L and LASym.
Case: l′ = l

Straightforward from LASym.

Lemma 15:
Derived from the semantics of basic objects (Definition 1) and the sequential specification of register
(Definition 4).

Lemma 16:
Derived from the semantics of basic register (Definition 5).

Lemma 17:
This is a restatement of Theorem 3 from the original definition of linearizability []. Derivable from
the semantics of linearizable objects (Definition 3) and the sequential specification of register (Defi-
nition 4).

Lemma 18:
Derivable from the semantics of linearizable objects (Definition 3) and the sequential specification of
cas register (Definition 6).

Lemma 19:
Derivable from the semantics of linearizable objects (Definition 3) and the sequential specification of
cas register (Definition 6).

Lemma 20:
Derivable from the semantics of linearizable objects (Definition 3), the sequential specification of the
lock (Definition 7), the owner-respecting property (Definition 8), and that the sub-history for each
thread is sequential (from the definition of execution histories).

Lemma 21:
Derived from Lemma 20.

Lemma 22:
Derived from Lemma 20 and the sequential specification of lock (Definition 7).

Lemma 23:
Derived from Lemma 20 and the sequential specification of lock (Definition 7).

Lemma 24:
Derived from Lemma 20 and the sequential specification of lock (Definition 7).

121

Lemma 25:
Derivable from the semantics of linearizable objects (Definition 3), the sequential specification of the
lock (Definition 9), the owner-respecting property (Definition 25), and that the sub-history for each
thread is sequential (from the definition of execution histories).

Lemma 26:
Derived from Lemma 25.

Lemma 27:
Derived from Lemma 25 and the sequential specification of try-lock (Definition 9).

Lemma 28:
Derived from Lemma 25 and the sequential specification of try-lock (Definition 9).

Lemma 29:
Derived from Lemma 25 and the sequential specification of try-lock (Definition 9).

Lemma 30:
Derivable from the semantics of linearizable objects (Definition 3), the sequential specification of
counter (Definition 11).

Lemma 31:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Def-
inition 12).

Lemma 32:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Def-
inition 12).

Lemma 33:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Def-
inition 13).

Lemma 34:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Def-
inition 13).

122

10.2 TM Correctness

10.2.1 The Marking Theorem

For the sake of brevity, we use the shorthand notation
∃l = o.nT (v1):v2 ∈ X
for
∃l ∈ X : objX(l) = o ∧ nameX(l) = n ∧ threadX(l) = T ∧ arg1X(l) = v1 ∧ retvX(l) = v2
and similarly for universal quantification.

We also use W , R to denote labels.

Lemma 42. For all S ∈ TSequential, T ∈ S, S ′ = V isible(S, T), and T ′, T ′′ ∈ S ′, we have
T ′ ��S′ T ′′ ⇔ T ′ ��S T ′′.

Proof.

T ′ ��S′ T ′′

⇔ S ′|T ′ �S′ S ′|T ′′ ∨ T ′ = T ′′

⇔ S|T ′ �S′ S|T ′′ ∨ T ′ = T ′′

⇔ S|T ′ �S S|T ′′ ∨ T ′ = T ′′

⇔ T ′ ��S T ′′

In these four steps we apply:
1) the definition of ��S′ ,
2) that the definition of V isible(S, T) implies both S ′|T ′ = S|T ′ and S ′|T ′′ = S|T ′′,
3) S ′ b S, and
4) the definition of ��S. 2

123

Lemma 43. For all S ∈ TSequential, T ∈ S, i ∈ I, v, v′ ∈ V , R = readT (i):v ∈ G lobalTReads(S),
S ′ = V isible(S, T), T ′ ∈ S ′, and W ′ = writeT ′(i, v′) ∈ G lobalTWrites(S), we have

NoWriteBetween(S′|i)(W
′, R) ⇔ N oWriterBetweenS,i(T

′,��S, T)

Proof.

NoWriteBetween(S′|i)(W
′, R)

⇔ ∀W ′′ ∈ TWrites(S ′|i) : W ′′ �(S′|i) W
′ ∨R �(S′|i) W

′′

⇔ ∀T ′′ ∈ S ′|i : ∀i′ ∈ I : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i′, v′′) ∈ S ′|i : W ′′ �(S′|i) W
′ ∨R �(S′|i) W

′′

⇔ ∀T ′′ ∈ S ′|i : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S ′|i : W ′′ �(S′|i) W
′ ∨R �(S′|i) W

′′

⇔ ∀T ′′ ∈ S ′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S ′ : W ′′ �S′ W ′ ∨R �S′ W ′′

⇔ ∀T ′′ ∈ S ′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S ′ : T ′′ ��S′ T ′ ∨ T ��S′ T ′′

⇔ ∀T ′′ ∈ S ′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S ′ : T ′′ ��S T ′ ∨ T ��S T ′′

⇔ ∀T ′′ ∈ S ′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S ′ : T ′′ ≺≺S T ⇒ T ′′ ��S T ′

⇔ ∀T ′′ ∈ S : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S :

[[(T ′′ = T) ∨ (T ′′ ≺≺S T ∧ T ′′ ∈ Committed(S))] ∧ [T ′′ ≺≺S T]]⇒ T ′′ ��S T ′

⇔ ∀T ′′ ∈ S : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S :

(T ′′ ∈ Committed(S) ∧ T ′′ ≺≺S T)⇒ T ′′ ��S T ′

⇔ ∀T ′′ ∈ WritersS(i) : T ′′ ≺≺S T ⇒ T ′′ ��S T ′

⇔ ∀T ′′ ∈ WritersS(i) : T ′′ ��S T ′ ∨ T ��S T ′′

⇔ N oWriterBetweenS,i(T
′,��S, T)

In these twelve steps, we apply:
1) the definition of NoWriteBetween,
2) the definition of W rites,
3) the definition of projection S ′|i,
4) R, W ′ and W ′′ access location i,
5) S ′ ∈ TSequential and R ∈ G lobalTReads(S ′) and W ′ ∈ G lobalTWrites(S ′) (that are concluded
from S ∈ TSequential, R ∈ G lobalTReads(S), W ′ ∈ G lobalTWrites(S) and S ′ = V isible(S, T).),
6) Lemma 42,
7) Boolean logic and that ��S is total,
8) the definition of V isible,
9) logical simplification,
10) the definition of Writers,
11) Boolean logic and that ��S is total, and
12) the definition of NoWriterBetween. 2

124

Lemma 44. TSequential ⊂ Sequential

Proof. Straightforward from definitions of TSequential, THistory and Sequential. 2

Lemma 45. ∀i ∈ I : ∀v, v′ ∈ V : ∀T, T ′ ∈ Trans : if R = readT (i):v, W = writeT ′(i, v), W ′ =
writeT (i, v′), S ∈ TSequential, W ≺S R, NoWriteBetweenS(W,R) and W ′ ≺S R, then T = T ′.

Proof. Suppose (1) S ∈ TSequential, (2) W ≺S R, (3) NoWriteBetweenS(W,R) and (4) W ′ ≺S R.
From [1] and Lemma 44, we have (5) S ∈ Sequential. From [4] and [5], we have (6) ¬(R ≺S W ′).
From [3] we have (7) W ′ �S W ∨ R ≺S W ′. From [6] and [7], we have (8) W ′ �S W . From [2] and
[8], we have (9) W ′ �S W �S R. From [9], [1], and that W ′ and R are by T and W is by T ′, we have
T = T ′. 2

125

Lemma 46. Suppose S ∈ TSequential. We have:

∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇔ LocalWriteObs(S)

Proof. Suppose S ∈ TSequential. Thus, from Lemma 44, we have S ∈ Sequential. Let S ′ =
V isible(S, T). From S ∈ TSequential and Lemma 42, we have S ′ ∈ TSequential. Thus, from

126

Lemma 44, we have S ′ ∈ Sequential. From the definition of V isible, we have S ′|T = S|T .

∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃T ′ ∈ S ′ : ∃W = writeT ′(i, v) ∈ S ′ :
W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S : W ′ ≺S R ∧
∃T ′ ∈ S ′ : ∃W = writeT ′(i, v) ∈ S ′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S ′ : W ′ ≺S R ∧
∃T ′ ∈ S ′ : ∃W = writeT ′(i, v) ∈ S ′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S ′ : W ′ ≺S′ R ∧
∃T ′ ∈ S ′ : ∃W = writeT ′(i, v) ∈ S ′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S ′ : W ′ ≺(S′ | i) R ∧
∃T ′ ∈ S ′ : ∃W = writeT ′(i, v) ∈ S ′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S ′ : W ′ ≺(S′ | i) R ∧
∃W = writeT (i, v) ∈ S ′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S ′ :
W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

127

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S′ R ∧ NoWriteBetween(S′ | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ NoWriteBetween(S′ | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ∀W ′ ∈ TWrites(S ′ | i) : W ′ �(S′ | i) W ∨R ≺(S′ | i) W
′

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃W ′ ∈ TWrites(S ′ | i) : ¬(W ′ �(S′ | i) W) ∧ ¬(R ≺(S′ | i) W
′)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃W ′ ∈ TWrites(S ′ | i) : W ≺(S′ | i) W
′ ≺(S′ | i) R

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃v′ ∈ V : ∃W ′ = writeT (i, v′) : W ≺(S′ | i) W
′ ≺(S′ | i) R

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃v′ ∈ V : ∃W ′ = writeT (i, v′) : W ≺(S | i) W
′ ≺(S | i) R

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃W ′ ∈ TWrites(S | i) : W ≺(S | i) W
′ ≺(S | i) R

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ∀W ′ ∈ TWrites(S | i) : ¬(W ≺(S | i) W
′) ∨ ¬(W ′ ≺(S | i) R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S : W ≺S R ∧
∀W ′ ∈ TWrites(S | i) : W ′ �(S | i) W ∨ R ≺(S | i) W

′

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S|T |i : W ≺S|T |i R ∧
∀W ′ ∈ TWrites(S|T |i) : W ′ �(S|T |i) W ∨ R ≺(S|T |i) W

′

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃W = writeT (i, v) ∈ S|T |i :
W ≺S|T |i R ∧ NoWriteBetween(S|T |i)(W,R)

⇔ LocalWriteObs(S)

128

In these twenty steps, we apply: 1) the definition of LocalReads,
2) the definition of V isible,
3) S ′|T = S|T and that both W ′ and R are by T ,
4) that both W ′ and R are on i,
5) Lemma 45,
6) duplicate conjunction,
7) the definition of V isible,
8) that both R and W are on i,
9) S ′|T = S|T and that both R and W are by T ,
10) the definition of NoWriteBetween,
11) first-order logic,
12) (S ′ | i) ∈ Sequential,
13) from (S ′ | i) ∈ TSequential, R and W are by transaction T and W ′ is between them, we have
W ′ is by T ,
14) S ′|T = S|T ,
15) from (S | i) ∈ TSequential, R and W are by transaction T and W ′ is between them, we have
W ′ is by T .
16) first-order logic,
17) (S | i) ∈ Sequential,
18) (S | i) ∈ Sequential, threadH(R) = threadH(W) = T and arg1H(R) = arg1H(W) = i,
19) the definition of NoWriteBetween,
20) the definition of LocalWriteObs.

2

129

Lemma 47. Suppose S ∈ TSequential ∩ TComplete. We have:

S ∈ TSeqSpec
⇔ LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ C ommitted(S) : ∃W = writeT ′(i, v) ∈ G lobalTWrites(S) :

(T ′ ≺≺S T) ∧ N oWriterBetweenS,i(T
′,��S, T)

Proof. Suppose S ∈ TSequential ∩ TComplete. From S ∈ TSequential and Lemma 42, we have
V isible(S, T) ∈ TSequential.

S ∈ TSeqSpec
⇔ ∀T ∈ S : ∀i ∈ I : (V isible(S, T) | i) ∈ SeqSpec(i)
⇔ ∀T ∈ S : ∀i ∈ I :

∀T ′′ ∈ (V isible(S, T) | i) : ∀v ∈ V : ∀R = readT ′′(i):v ∈ (V isible(S, T) | i) :

∃T ′ ∈ (V isible(S, T) | i) : ∃W = writeT ′(i, v) ∈ (V isible(S, T) | i) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I :

∀T ′′ ∈ V isible(S, T) : ∀v ∈ V : ∀R = readT ′′(i):v ∈ V isible(S, T) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ S :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇔ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalTReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇔ LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

130

⇔ LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺V isible(S,T) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇔ LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

T ′ ≺≺V isible(S,T) T ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇔ LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

T ′ ≺≺S T ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇔ LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ G lobalTWrites(S) :

T ′ ≺≺S T ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇔ LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ G lobalTWrites(S) :

T ′ ≺≺S T ∧ N oWriterBetweenS,i(T
′,��S, T)

⇔ LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ G lobalTWrites(S) :

(T ′ ≺≺S T) ∧ T ′ ∈ C ommitted(S) ∧ N oWriterBetweenS,i(T
′,��S, T)

⇔ LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ Committed(S) : ∃W = writeT ′(i, v) ∈ G lobalTWrites(S) :

(T ′ ≺≺S T) ∧ N oWriterBetweenS,i(T
′,��S, T)

In these thirteen steps, we apply:
1) the definition of TSeqSpec and S ∈ TSequential ∩ TComplete,
2) the definition of SeqSpec(i),
3) R and W access location i,
4) that we can choose T ′′ = T ,
5) TReads(S) = LocalTReads(S) ∪G lobalTReads(S),
6) Lemma 46,
7) that R and W are both on location i
8) that R and W are by transactions T and T ′ respectively, V isible(S, T) ∈ TSequential, and
R ∈ G lobalTReads(V isible(S, T)) (because R ∈ G lobalTReads(R) and V isible(S, T)|T = S|T),
9) Lemma 42,

131

10) T ′ ≺≺S T and NoWriteBetween(V isible(S,T) | i)(W,R),
11) Lemma 43,
12) T ′ ∈ V isible(S, T) and (T ′ ≺≺S T), and
13) the definition of V isible(S, T). 2

132

Lemma 48. (Invariance) If H ≡ H ′, then for every marking relation v, M arking(H) = M arking(H ′)
and ReadPres(H,v)⇔ ReadPres(H ′,v) and W riteObs(H,v)⇔W riteObs(H ′,v).

Proof. Immediate from the definitions of M arking, ReadPres, and W riteObs. 2

Lemma 49. ∀H ∈ THistory : ∀ v ∈ M arking(H) : ∃S ∈ TSequential : H ≡ S ∧ ��H ⊆ ��S
∧ ��S ⊆ v.

Proof. Let H ∈ THistory and let v ∈ M arking(H). We have that v is a total order of T rans
so we can choose a permutation π on 1..n such that ∀i, j ∈ 1..n : (i < j) ⇔ (Tπ(i) < Tπ(j)). Define:
S = H|Tπ(1), . . . , H|Tπ(n). It is straightforward to prove that S ∈ TSequential ∧ H ≡ S ∧ ��H ⊆
��S ∧ ��S ⊆ v. 2

Lemma 50. Suppose v ∈ M arking(H) ∧ p2 6∈W ritersH(i).
If N oWriterBetweenH,i(T1,v, p2) and N oWriterBetweenH,i(p2,v, T3),
then N oWriterBetweenH,i(T1,v, T3).

Proof.

N oWriterBetweenH,i(T1,v, p2) ∧ N oWriterBetweenH,i(p2,v, T3)
⇔ ∀T ∈W ritersH(i) : (T v T1 ∨ p2 v T) ∧ (T v p2 ∨ T3 v T)

⇔ ∀T ∈W ritersH(i) : (T v T1 ∧ (T v p2 ∨ T3 v T)) ∨
(p2 v T ∧ T v p2) ∨ (p2 v T ∧ T3 v T)

=⇒ ∀T ∈W ritersH(i) : (T v T1) ∨ (T3 v T)

⇔ N oWriterBetweenH,i(T1,v, T3)

The first step uses the definition of N oWriterBetween. The second step uses ∧ distribution over
∨. The third step simplifies the first disjunct using conjunction elimination, eliminates the second
disjunct using p2 6∈W ritersH(i) and simplifies the third disjunct using conjunction elimination. The
fourth step uses the definition of N oWriterBetween. 2

133

Lemma 51. Suppose S ∈ TSequential ∩ TComplete. We have:

S ∈ TSeqSpec⇔ S ∈ F inalStateMarkable

Proof. Let S ∈ TSequential∩TComplete. From Lemma 47, the definition of F inalStateMarkable,
and S ∈ TComplete, we have that we must prove:

LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ C ommitted(S) : ∃W = writeT ′(i, v) ∈ G lobalTWrites(S) :

(T ′ ≺≺S T) ∧ N oWriterBetweenS,i(T
′,��S, T)

⇔ ∃ v ∈Marking(S) : ��S ⊆ v ∧ v ∈ ReadPres(S) ∧ v ∈ WriteObs(S)

From the definition of W riteObs, GlobalWriteObs and LastPreAccessor we have that:

W riteObs(S,v)

⇔ LocalWriteObs(S) ∧
∀T ∈ T rans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ Trans : ∃W = writeT ′(i, v) ∈ G lobalTWrites(S) :

T ′ ∈ WritersS(i) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenS,i(T
′,v, R)

⇔ LocalWriteObs(S) ∧
∀T ∈ T rans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ Trans : ∃W = writeT ′(i, v) ∈ G lobalTWrites(S) :

T ′ ∈ C ommitted(S) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenS,i(T
′,v, R)

We are now ready to prove the two directions of the equivalence.
⇒:
Assume that

LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ C ommitted(S) : ∃W = writeT ′(i, v) ∈ G lobalTWrites(S) :

(T ′ ≺≺S T) ∧ N oWriterBetweenS,i(T
′,��S, T)

Define:

p1 < p2 ⇔ (p1 ≺≺S p2) ∨
(threadS(p1) ��S p2) ∨
(p1 ��S threadS(p2))

p1 v p2 ⇔ p1 < ∨ p2p1 = p2

134

We show that

v ∈Marking(S) ∧
��S ⊆ v ∧ v ∈ ReadPres(S) ∧
LocalWriteObs(S) ∧
∀T ∈ T rans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ Trans : ∃W = writeT ′(i, v) ∈ G lobalTWrites(S) :

T ′ ∈ C ommitted(S) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenS,i(T
′,v, R)

It is straightforward to prove v ∈ M arking(S) and ��S ⊆ v, ReadPres(S,v). Additionally, the
first conjunct of W riteObs(S,v) (that is, LocalWriteObs(S)) is immediate from the assumption.
So, we still need to prove the second conjunct of W riteObs(S,v).

Let T ∈ T rans, i ∈ I, v ∈ V , R = readT (i):v ∈ G lobalTReads(S). From the assumption
(the left-hand side), we have that we can find (1) T ′ ∈ C ommitted(S) and (2) W = writeT ′(i, v) ∈
G lobalTWrites(S) such that (3) (T ′ ≺≺S T) and (4) N oWriterBetweenS,i(T

′,��S, T). Let us now
prove each conjunct of T ′ 6= T ∧ T ′ v R ∧ N oWriterBetweenS,i(T

′,v, R) in turn.
From [3] and that ��S is a total order of T rans(S), we have (5) T ′ 6= T . From [3] and the

definition of v, we have T ′ v R. From [4] and ��S ⊆ v, we have (6) N oWriterBetweenS,i(T
′,v, T).

From T ��S T and the definition of v, we have (7) R v T . From [6], [7] and the definition of v and
transitivity of ��S, we have N oWriterBetweenS,i(T

′,v, R).
⇐:
Assume the right-hand side and choose v ∈ M arking(S) such that:

��S ⊆ v ∧ v ∈ ReadPres(S) ∧
S ∈ TLocalSeqSpec ∧
∀T ∈ T rans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ C ommitted(S) : ∃ W = writeT ′(i, v) ∈ G lobalTWrites(S) :

T ′ 6= T ∧ T ′ v R ∧ N oWriterBetweenS,i(T
′,v, R)

We show that

LocalWriteObs(S) ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ G lobalTReads(S) :

∃T ′ ∈ C ommitted(S) : ∃W = writeT ′(i, v) ∈ G lobalTWrites(S) :

(T ′ ≺≺S T) ∧ N oWriterBetweenS,i(T
′,��S, T)

The first conjunct (of the left-hand side), LocalWriteObs(S), is immediate from the assumption.
From the assumption we have (1) ��S ⊆ v, (2) v ∈ ReadPres(S). Let T ∈ T rans, i ∈ I, v ∈ V ,
R = readT (i):v ∈ G lobalTReads(S). From the above property of v, we have that we can find (3)
T ′ ∈ C ommitted(S) and (4) W = writeT ′(i, v) ∈ G lobalTWrites(S) such that (5) T ′ 6= T and
(6) T ′ v R and (7) N oWriterBetweenS,i(T

′,v, R). From [1], that v is a total order on Trans(S)
(v ∈ Marking(S)), and that ��S is a total order on Trans(S) (S ∈ TSequential), we have (8)
∀T, T ′ ∈ Trans : T ′ v T ⇒ T ′ ��S T .

135

First we prove T ′ ≺≺S T . From [2] ,we have (9) N oWriterBetweenS,i(T,v, R). From [3] and [4],
we have (10) T ′ ∈ WritersS(i). From [9] and [10], we have (11) T ′ v T ∨ R v T ′. From [6], T ′ 6= R
and v is a total order on {R} ∪W ritersS(i) (v ∈ M arking(S)), we have (12) R 6v T ′. From [11]
and [12], we have (13) T ′ v T . From [8] and [13], we have (14) T ′ ��S T . From [14] and [5], we have
T ′ ≺≺S T .

Second, we prove N oWriterBetweenS,i(T
′,��S, T). From [2], we have (15) N oWriterBetweenS,i(R,v

, T). From R 6∈W ritersS(i), [7], [15], and Lemma 50, we have (16) N oWriterBetweenS,i(T
′,v, T).

From [16] and [8] we have N oWriterBetweenS,i(T
′,��S, T). 2

136

Theorem (Marking) F inalStateOpaque = F inalStateMarkable.

Proof.

F inalStateOpaque

= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :

H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ S ∈ TSeqSpec}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :

H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ S ∈ F inalStateMarkable}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧

∃ v ∈ M arking(S) : ��S ⊆ v ∧ ReadPres(S,v) ∧ W riteObs(S,v)}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧

∃ v ∈ M arking(H ′) : ��S ⊆ v ∧ ReadPres(H ′,v) ∧ W riteObs(H ′,v)}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈ M arking(H ′) :

ReadPres(H ′,v) ∧ W riteObs(H ′,v) ∧
∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ ��S ⊆ v }

= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈ M arking(H ′) :

��H′ ⊆ v ∧ ReadPres(H ′,v) ∧ W riteObs(H ′,v) ∧
∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ ��S ⊆ v }

= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈Marking(H ′) :

��H′ ⊆ v ∧ ReadPres(H ′,v) ∧ W riteObs(H ′,v)}
= Markable

In these eight steps we apply:
1) the definition of F inalStateOpaque,
2) Lemma 51 and S ∈ TComplete (because H ′ ∈ TExtension(H) and H ′ ≡ S),
3) the definition of F inalStateMarkable and S ∈ TComplete,
4) Lemma 48,
5) logical rearrangement,
6) transitivity of ⊆,
7) Lemma 49, and
8) the definition of F inalStateMarkable. 2

137

10.2.2 Marking TL2

Notation. Let us remind the notation. Consider an execution history H. We use l1 ≺H l2 to denote
that l1 is executed before l2. We use l1 ∼H l2 to denote that l1 is executed concurrently to l2. We use
l1 -H l2 to denote that l1 is executed before or concurrently to l2. We use ≺clock, ≺ver[i] and ≺lock[i]
to denote the linearization order of clock, ver[i] and lock[i] respectively.

A label c1’c2 is a call string that denotes a method call labeled c2 that is executed in the body of
the method call labeled c1.

We use initOfH(T) and commitOfH(T) to denote the init and commit method calls of transaction
T in history H.

For a TM algorithm specification π, let H(π) denote the set of complete transaction histories that
π results.

Marking Relation. Now, we define the marking relation for TL2. The effect order of transac-
tions is the linearization order of their calls to the clock. Every transaction reads an initial snapshot
number at I01. A committing transaction makes a new snapshot at C07. A TL2 transaction takes
effect at C07 if it is committed and at I01 otherwise. The access order of read operations and writer
transactions to location i is the execution order of their accesses to the reg[i] register. The read
method reads reg[i] at R04 and a writer transaction writes to reg[i] at C16i.

Definition 19 (Marking TL2). Consider an execution history H ∈ H(TL2). Let

readAcc(R) = R’R04

writeAcc(T, i) = commitOfH(T)’C16i

Eff(T) =

{
initOfH(T)’I01 if T ∈ Aborted(H)

commitOfH(T)’C07 if T ∈ Committed(H)

The marking v for H is the reflexive closure of < that is defined as follows:

{(T, T ′) | T, T ′ ∈ Trans(H) ∧ Eff(T) ≺clock Eff(T ′)} ∪
{(T,R) | ∃i : R ∈ G lobalTReads(H), i = arg1(R), T ∈ WritersH(i) ∧ writeAcc(T, i) ≺H readAcc(R)} ∪
{(R, T) | ∃i : R ∈ G lobalTReads(H), i = arg1(R), T ∈ WritersH(i) ∧ readAcc(R) -H writeAcc(T, i)}

We have formally proved the markability of TL2 using a novel program logic that facilitates
reasoning about execution and linearization orders. To keep the focus of this section on markability,
we avoid the formal presentation of the logic and present a simplified reasoning.

138

Lemma 52. TL2 preserves reads of aborted transactions (part 1).

∀H ∈ H(TL2) :
∀R ∈ G lobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Aborted(H)⇒ N oWriterBetweenH,i(R,v, T)

Proof Sketch.

T T ′

C02i . lock[i].trylock()
...

C07 . wver = clock.iaf()

I01 . snap = clock.read() ...
...

R03 . s1 = ver[i].read()

R04 . v = reg[i].read()

C16i . reg[i].write(v)

C17i . ver[i].write(wver)
R05 . l = lock[i].read() C18i . lock[i].unlock()
R06 . s2 = ver[i].read()
R07 . sver = rver[t].read()

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver))
return A

Figure 10.1: Case T ∈ Aborted(H) ∧ R < T ′ < T

We consider an aborted transaction T with an unaborted global read operation R from a location
i and a writer T ′ of i.
We assume that

T ′ accesses i after R
that is

(1) T ′ < R
and

T ′ takes effect before T
that is

(2) T ′ < T
We show that

TL2 aborts R.
Figure 10.1 depicts the two transactions.
By Definition 19 on [1], we have

(3) R04 ≺H C16i
By Definition 19 on [2], we have

(4) C07 ≺clock I01
The method calls R05 and C18i are on the object lock[i]. We consider two cases for the linearization
order of them and prove that R returns A in both cases.

139

Case 1:
(5) R05 ≺lock[i] C18i
By P2X on the algorithm, we have

(6) C02i ≺H C07
(7) I01 ≺H R05

By the rule XLTrans on [6], [4] and [7], we have
C02i ≺H R05

thus, by the rule X2L, we have
(8) C02i ≺lock[i] R05

By the rule TryLockReadM on [8] and [5], we have that
R05 returns true i.e. l = true

Thus,
The validation check fails and R returns A.

Case 2:
(9) C18i ≺lock[i] R05
By P2X on the algorithm, we have

(10) C17i ≺H C18i
(11) R05 ≺H R06

By the rule XLTrans on [10], [9] and [11], we have
C17i ≺H R06

Thus, by the rule X2L, we have
(12) C17i ≺ver[i] R06

By Lemma 61 on [12], we have
(13) wver ≤ s2

By P2X on the algorithm, we have
(14) R03 ≺H R04
(15) C16i ≺H C17i

By the rule XXTrans on [14], [3] and [15], we have
R03 ≺H C17i

Thus, by the rule X2L, we have
(16) R03 ≺ver[i] C17i

By Lemma 61 on [16], we have
(17) s1 < wver

From [13] and [17], we have
¬(s1 = s2)

Thus,
The validation check fails and R returns A in this case too.

2

Lemma 53. TL2 preserves reads of aborted transactions (part 2).

∀H ∈ H(TL2) :
∀R ∈ G lobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Aborted(H)⇒ N oWriterBetweenH,i(T,v, R)

140

T T ′

I01 . snap = clock.read() C02i . lock[i].trylock()
I02 . rver[t].write(snap)

C07 . wver = clock.iaf()

C16i . reg[i].write(v)

R04 . v = reg[i].read() C17i . ver[i].write(wver)
R05 . l = lock[i].read() C18i . lock[i].unlock()
R06 . s2 = ver[i].read()
R07 . sver = rver[t].read()

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver))
return A

Figure 10.2: Case T ∈ Aborted(H) ∧ T < T ′ < R

Proof Sketch.
We consider an aborted transaction T with an unaborted global read operation R from a location

i and a writer T ′ of i.
We assume that

T ′ takes effect after T
that is

(1) T < T ′

and
T ′ accesses i before R

that is
(2) T ′ < R

We show that
TL2 aborts R.

Figure 10.2 depicts the two transactions.
By Definition 19 on [1], we have

(3) I01 ≺clock C07
By Definition 19 on [2], we have

(4) C16i � R04
The method calls R05 and C18i are on the object lock[i]. We consider two cases for the linearization
order of them and prove that R returns A in both cases.
Case 1:

(5) R05 ≺lock[i] C18i
By P2X on the algorithm, we have

(6) C02i ≺H C16i
(7) R04 ≺H R05

By the rule XXTrans on [6], [4] and [7], we have
C02i ≺H R05

141

thus, by the rule X2L, we have
(8) C02i ≺lock[i] R05

By the rule TryLockReadM on [8] and [5], we have that
R05 returns true i.e. l = true.

Thus,
The validation check fails and R returns A.

Case 2:
(9) C18i ≺lock[i] R05
By P2X on the algorithm, we have

(10) C17i ≺H C18i
(11) R05 ≺H R06

By the rule XLTrans on [10], [9] and [11], we have
C17i ≺H R06

Thus, by the rule X2L, we have
(12) C17i ≺ver[i] R06

By Lemma 60 on [12], we have
(13) wver ≤ s2

By the rule SCounter on [3], we have
(14) snap < wver

The value of sver is read at R07 from rver.
The thread-local register rver is only assigned at I02 to snap.
Thus, we have

(15) snap = sver
From [13], [14] and [15], we have

sver > s2
Thus,

The validation check fails and R returns A in this case too.
2

Lemma 54. TL2 preserves reads of aborted transactions.

∀H ∈ H(TL2) :
∀R ∈ G lobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Aborted(H)⇒
N oWriterBetweenH,i(R,v, T) ∧ N oWriterBetweenH,i(T,v, R)

Proof. Immediate from Lemma 52 and Lemma 53. 2

Lemma 55. TL2 preserves reads of committed transactions (part 1).

∀H ∈ H(TL2) :
∀R ∈ G lobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Committed(H)⇒
N oWriterBetweenH,i(R,v, T)

Proof Sketch.
We consider a committed transaction T with an unaborted global read operation R from a location

i and a writer T ′ of i.

142

T T ′

C02′i . lock[i].trylock()
...

I01 . snap = clock.read() C07′ . wver′ = clock.iaf()
I02 . rver[t].write(snap) ...

...

R04 . v = reg[i].read()

... C16′i . reg[i].write(v′)

C07 . wver = clock.iaf()
...

C08 . sver = rver[t].read()
if (wver 6= sver + 1) C17′i . ver[i].write(wver′)

C10i . l = lock[i].read() C18′i . lock[i].unlock()
C11i . s = ver[i].read()

if (¬(¬l ∧ s ≤ sver))
foreach (j ∈ lset)
lock[j].unlock()

return A

Figure 10.3: Case T ∈ Committed(H) ∧ R < T ′ < T

We assume that
T ′ accesses i after R

that is
(1) R < T ′

and
T ′ takes effect before T

that is
(2) T ′ < T

We show that
TL2 aborts R.

Figure 10.3 depicts the two transactions. We annotate the labels and variables of T ′ by a prime so
that they do not conflict with the labels and variables of T .
By Definition 19 on [1], we have

(3) R04 ≺H C16i
By Definition 19 on [2], we have

(4) C07′ ≺clock C07
The method calls I01 and C07′ are on the object clock. We consider two cases for the linearization
order of them.
Case 1:

(5) C07′ ≺clock I01
From [5] and [3],
The proof of this case reduces to the proof of Lemma 52.

143

Case 2:
(6) I01 ≺clock C07′

By the rule SCounter on [4], we have
(7) wver′ < wver

By the rule SCounter on [6], we have
(8) snap < wver′

The value of sver is read at R07 from rver.
The thread-local register rver is only assigned at I02 to snap.
Thus, we have

(9) snap = sver
From [8] and [9], we have

(10) sver < wver′

From [10] and [7], we have
(11) wver 6= sver + 1

Thus,
The if branch is taken.

The method calls C10i and C18′i are on the object lock[i].
We consider two cases for the linearization order of them.
Case 2.1:

(12) C10i ≺lock[i] C18′i
By P2X on the algorithm, we have

(13) C02′i ≺H C07′

(14) C07 ≺H C10i
By the rule XLTrans on [13], [4] and [14], we have

C02′i ≺H C10i
thus, by the rule X2L, we have

(15) C02′i ≺lock[i] C10i
By the rule TryLockReadM on [15] and [12], we have that

R05 returns true i.e. l = true
Thus,

The validation check fails and R returns A.

Case 2.2:
(16) C18′i ≺lock[i] C10i

By P2X on the algorithm, we have
(17) C17′i ≺H C18′i
(18) C10i ≺H C11i

By the rule XLTrans on [17], [16] and [18], we have
C17′i ≺H C11i

Thus, by the rule X2L, we have
(19) C17′i ≺ver[i] C11i

By Lemma 61 on [19], we have
(20) wver′ ≤ s

From [10], [20], we have
sver < s

144

Thus,
The validation check fails and R returns A in this case too.

2

Lemma 56. TL2 preserves reads of committed transactions (part 2).

∀H ∈ H(TL2) :
∀R ∈ G lobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Committed(H)⇒
N oWriterBetweenH,i(T,v, R)

Proof Sketch.

T T ′

R04 . v = reg[i].read()
...

C07 . wver = clock.iaf()

... C07′ . wver′ = clock.iaf()
...

C16′i . reg[i].write(v′)

Figure 10.4: Case T ∈ Committed(H) ∧ T < T ′ < R

We consider a committed transaction T with an unaborted global read operation R from a location
i and a writer T ′ of i. We should show that it is impossible that T ′ takes effect after T and T ′ accesses
i before R.
We assume that

T ′ takes effect after T
that is

(1) T < T ′

We show that
T ′ accesses i after R.

that is
(2) R < T ′

Figure 10.4 depicts the two transactions. We annotate the labels and variables of T ′ by a prime so
that they do not conflict with the labels and variables of T .
By Definition 19 on [1], we have

(3) C07 ≺clock C07′

By Definition 19 on [2], we have to show
R04 ≺H C16i

By P2X and the algorithm, we have
(4) C04 ≺H C07
(5) C07′ ≺H C16′i

By the rule XLTrans on [4], [3], and [5], we have

145

R04 ≺H C16i
2

Lemma 57. TL2 preserves reads of committed transactions.

∀H ∈ H(TL2) :
∀R ∈ G lobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Committed(H)⇒
N oWriterBetweenH,i(R,v, T) ∧ N oWriterBetweenH,i(T,v, R)

Proof. Immediate from Lemma 55 and Lemma 56. 2

Lemma 58. TL2 is read-preserving.

∀H ∈ H(TL2) : ReadPres(H,v)

Proof. Immediate from Lemma 54 and Lemma 57. 2

146

Lemma 59. Version registers are updated to ascending numbers.
Let C171

i denote the method call at line C17i executed by a transaction T1 and let wver1 denote
its argument. Similarly, let C172

i denote the method call at line C17i executed by a transaction T2
and let wver2 denote its argument. If C171

i ≺ver[i] C172
i , then wver1 < wver2.

Proof Sketch.

T1 T2

...
C021

i . locked1 = lock[i].trylock()
...

C071 . wver1 = clock.iaf()
...

C171
i . ver[i].write(wver1)

C181
i . lock[i].unlock() ...

... C022
i . locked2 = lock[i].trylock()

...
C072 . wver2 = clock.iaf()

...
C172

i ver[i].write(wver2)
C182

i lock[i].unlock()
...

Figure 10.5: Updating Version Registers

We have that
(1) C171

i ≺ver[i] C172
i

We show that
wver1 < wver2

By P2X on the algorithm, we have
(2) C021

i ≺H C171
i

(3) C172
i ≺H C182

i

By the rule XLTrans on [2], [1] and [3], we have
(4) C021

i ≺H C182
i

Thus, by the rule X2L, we have
(5) C021

i ≺lock[i] C182
i

From the algorithm,
(6) The ownership of lock[i] is respected.

By the rule TryLock on [6] and [5], we have
(7) C181

i ≺lock[i] C022
i

By P2X on the algorithm, we have
(8) C071 ≺H C181

i

(9) C022
i ≺H C072

147

By the rule XLTrans on [8], [7], and [9], we have
(10) C071 ≺H C072

By the rule X2L on [10], we have
(11) C071 ≺clock C072

By the rule SCounter on [11], we have
wver1 < wver2

2

Lemma 60. For every write method call W on ver[i] with argument v and every read method call R
on ver[i] with the return value v′, if W ≺ver[i] R then v ≤ v′.

Proof Sketch.
We have

(1) W is a write method call on ver[i].
(2) R is a read method call on ver[i].
(3) W ≺ver[i] R.
(4) The argument of W is v.
(5) The return value of R is v′.

We show that
v ≤ v′

Let
(6) W ′ is last write on ver[i] linearized before R.
(7) The argument of W ′ is v′′.

By the rule AReg’ on [6], [7], and [5], we have
(8) v′ = v′′

From [6], and [1], we have
(9) W �ver[i] W ′

By the algorithm and [1], and [6], we have
(10) W and W ′ are both at C17.

By Lemma 59 on [10], [9], [4] and [7], we have
(11) v ≤ v′′

From [8] and [11], we have
v ≤ v′

2

Lemma 61. For every write method call W on ver[i] with argument v and every read method call R
on ver[i] with the return value v′, if R ≺ver[i] W then v′ < v.

Proof Sketch.
We have

(1) W is a write method call on ver[i].
(2) R is a read method call on ver[i].
(1) R ≺ver[i] W .
(2) The argument of W is v.

148

(3) The return value of R is v′.
We show that

v′ < v

Let
(4) W ′ is last write on ver[i] linearized before R.
(7) The argument of W ′ is v′′.

By the rule AReg’ on [4], [7], and [3], we have
(8) v′ = v′′

From [1], and [4], we have
(9) W ′ ≺ver[i] W

By the algorithm and [1], and [4], we have
(10) W and W ′ are both at C17.

By Lemma 59 on [10], [9], [4] and [7], we have
(11) v′′ < v

From [8] and [11], we have
v′ < v

2

149

Lemma 62. TL2 is global-write-observant.

∀H ∈ H(TL2) :
∀R ∈ G lobalTReads(H) : ∃W ∈ G lobalTWrites(H) : Let T ′ = transH(W) :
LastPreAccessorH,v(T ′, R) ∧
arg1H(R) = arg1H(W) ∧ retvH(R) = arg2H(W)

Proof Sketch.
We consider a transaction T with an unaborted global read operation R from a location i.

The read operation R is from the location i, thus,
(1) The argument of R is i.

As R is global, thus,
(2) The return value of R is the return value of R04.

We first show that
(3) The read method call from reg[i] at R04 is race-free.
We assume that there is a write method call on reg[i] concurrent to it and show that TL2 aborts

R.
Figure 10.6 depicts this situation.

T T ′

C02i . locked = lock[i].trylock()
...

R03 . s1 = ver[i].read()
R04 . v = reg[i].read() C16i . v = reg[i].write(v)

... C17i . ver[i].write(wver)
R05 . lock[i].read() C18i . lock[i].unlock()
R06 . s2 = ver[i].read() ...
R07 . sver = rver[t].read()

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver))
return A

Figure 10.6: R04 is race-free

We assume that there a race between R04 and C16i. Thus,
(4) R04 ∼ C16i

The method calls R05 and C18i are on the object lock[i].
We consider two cases for the linearization order of them and prove that R returns A in both

cases.
We consider two cases
Case 1:

(5) R04 ≺lock[i] C18i
By P2X and the algorithm, we have

(6) C02i ≺H C16i
(7) R04 ≺H R05

By the rule XXTrans on [6], [4], and [7], we have

150

(8) C02i ≺H R05
By the rule X2L on [8], we have

(9) C02i ≺lock[i] R05
By the rule TryLockReadM on [9] and [5], we have that

R05 returns true i.e. l = true
Thus,

The validation check fails and R returns A.
Case 2:

(10) C18i ≺lock[i] R04
By P2X and the algorithm, we have

(11) R03 ≺H R04
(12) R05 ≺H R06
(13) C16i ≺H C17i
(14) C17i ≺H C18i

By the rule XXTrans on [11], [4], and [13], we have
(15) R03 ≺H C17i

By Lemma 61 on [15], we have
(16) s1 < wver

By the rule XLTrans on [14], [10], and [12], we have
(17) C17i ≺H R06

By Lemma 60 on [17], we have
(18) s2 > wver

From [15] and [17], we have
(19) s1 6= s2

Thus,
The validation check fails and R returns A.

Second, we show that
(20) The register reg[i] is sequentially-written i.e. no two write methods on reg[i] are concurrent.
We assume two concurrent write method calls on reg[i] and show a contradiction.
Figure 10.7 depicts this situation.

T T ′

C02i . locked = lock[i].trylock()
... C02′i . locked′ = lock[i].trylock()

...
C16i . v = reg[i].write(v) C16′i . v′ = reg[i].write(v′)

... ...
C18i . lock[i].unlock()

C18′i . lock[i].unlock()

Figure 10.7: reg[i] is sequentially-written

We assume that C16i and C16′i are concurrent. Thus,
(21) C16i ∼ C16′i

151

By P2X and the algorithm, we have
(22) C02i ≺H C16i
(23) C16′i ≺H C18′i

By the rule XXTrans on [22], [21], and [23], we have
(24) C02i ≺H C18′i

By the rule X2L on [8], we have
(25) C02i ≺lock[i] C18′i

By the rule TryLock on [25], we have that
(26) C18i ≺lock[i] C02′i

By P2X and the algorithm, we have
(27) C16i ≺H C18i
(28) C02′i ≺H C16′i

By the rule XLTrans on [27], [26], and [28], we have
(29) C16i ≺H C16′i

That is a contradiction to [21].

By the rule BReg on [3], and [20], we have
(30) There is a write method call w on reg[i] such that

The argument of w is equal to the return value of R04.
The last write method call on reg[i] that is executed before R04 is w.

By the algorithm, we have
(31) The register reg[i] is written only at C16i.

From [28] and [29], we have
There is a transaction T ′ such that

(We annotate the labels and variables of T ′ by a prime
so that they do not conflict with the labels and variables of T .)

(32) The argument of C16′i is equal to the return value of R04.
(33) The last write method call on reg[i] that is executed before R04 is C16′i.

By the algorithm, we have
(34) The argument of C16′i is the value of the key i in the map wset[T ′] in the commit.
(35) The map wset[T ′] is updated only at W01 in a write of T ′ such that

The key is equal to the first argument of the write.
The value is equal to the second argument of the write.

From [34], and [35], we have
(36) There exists a write W of T ′

(37) The first argument of W is equal to i.
(38) W is the last write of T ′ with the first argument equal to i.
(39) The second argument of W is equal to the argument of C16′i.

From [1], and [37], we have
(40) The first argument of R is the first argument of W .

From [2], [32], and [39], we have
(41) The return value of R is the second argument of W .

From [38], we have
(42) W is a global write.

152

We show that
(43) The transaction T ′ is the last pre-accessor of R.
From [33], we have

(44) C16′i ≺H R04
By Definition 19 on [44], we have

(45) T ′ < R

Now, we show that
(46) Every transaction T ′′ other than T ′ that accesses i before R, takes effect before T ′.
We assume that

(47) T ′′ 6= T ′

(48) T ′′ < R
We should show that

T ′′ < T ′

By Definition 19 on [48], we have
(We annotate the labels and variables of T ′ by a double prime.)

(49) C16′′i ≺H R04
From [33], [33], and [49], we have

(50) C16′′i ≺H C16′i
Consider Figure 10.8.

T ′′ T ′

C02′′i . locked′′ = lock[i].tryLock()
... C02′i . locked′ = lock[i].tryLock()

C07′′ . wver′′ = clock.iaf() ...
... C07′ . wver′ = clock.iaf()

C16′′i . reg[i].write(v′′) ...
... C16′i . reg[i].write(v′)

C18′′i . lock[i].unlock() ...
C18′i . lock[i].unlock()

Figure 10.8: Effect-order of pre-accessors

By P2X and the algorithm, we have
(51) C02′′i ≺H C16′′i
(52) C16′i ≺H C18′i

By the rule XXTrans on [51], [50], and [52], we have
(53) C02′′i ≺H C18′i

By the rule X2L on [53], we have
(54) C02′′i ≺lock[i] C18′i

By the rule TryLock on [45], we have that
(55) C18′′i ≺lock[i] C02′i

By P2X and the algorithm, we have
(56) C07′′i ≺H C18′′i

153

(57) C02′i ≺H C07′i
By the rule XLTrans on [56], [55], and [57], we have

(58) C07′′ ≺H C07′

By Definition 19 on [58], we have
T ′′ < T ′.

The conclusion is
[36], [42], [40], [41], and [43]

2

Lemma 63. TL2 is local-write-observant.

∀H ∈ H(TL2) :
∀R ∈ LocalTReads(H) : Let T = transH(R), i = arg1H(R), H ′ = H|T |i :
∃W ∈ TWrites(H ′) :

W ≺H′ R ∧ NoWriteBetweenH′(W,R) ∧
retvH′(R) = arg2H′(W)

Proof Sketch.
Let

(1) The operation R is a local read with the first argument i by the transaction T .
From [1], as R is local, we have

(2) There is a write operation before R with the first argument i by T .
From [2], let

(3) The operation W is the last write operation before R with the first argument i by the
transaction T .

By the algorithm
(4) The value of a key i in wset is updated only at W01 in a write operation with the first

argument i
and the value of the key i is updated to the second argument of the write operation.

From [3] and [4], we have
(5) The value of a key i in wset during the execution of R is equal to the second argument of

W .
Thus, by the algorithm

(6) R01-R02 find a value for the key i in wset.
Thus,

(7) The return value of R is equal to the value of key i in wset.
From [7] and [5], we have

(8) The return value of R is equal to the second argument of W .
The conclusion is

[3] and [8]
2

Lemma 64. TL2 is write-observant.

∀H ∈ H(TL2) : W riteObs(H,v)

Proof. Immediate from Lemma 63 and Lemma 62. 2

154

Lemma 65. TL2 is real-time-preserving.

∀H ∈ H(TL2) : RealT imePres(H,v)

Proof Sketch.
We assume that

(1) T ��H T ′

We show that
T v T ′

By the definition of ��H , from [1], we have
(2) All the operations of T are executed before all the operations of T ′.

By the rule X2L, from [2], we have
(3) All the operations of T on clock are linearized before all the operations of T ′ on clock.

By Definition 19,
(4) The effect point of each transaction is one of its own operations on the clock object.

From [3] and [4], we have
(5) The transaction T takes effect before the transaction T ′.

that is
T v T ′

2

Lemma 66. The relation v is a marking relation.

∀H ∈ H(TL2) : v ∈Marking(H)

Proof Sketch.
Consider Definition 19.
By the totality of the linearization order ≺clock, the relation v is a total on the set of transactions.
As every pair of method calls either execute in order or concurrently, every read operation of

a location i is ordered either before or after every writer to i. In addition, as no method call can
execute before another method call and also after after or concurrent to it, no read operation of a
location i is ordered both before and after a writer to i.

2

155

Lemma 67. TL2 is markable.

∀H ∈ H(TL2) : H ∈ F inalStateMarkable

Proof. Immediate from Lemma 66, Lemma 58, Lemma 64, and Lemma 65.
2

Theorem 7. TL2 is opaque.

∀H ∈ H(TL2) : H ∈ F inalStateOpaque

Proof. Immediate from Lemma 67, and Theorem 1.
2

156

10.3 Testing TM Algorithms

10.3.1 Example: Dekker Mutual Exclusion

1 DekkerSpec {

2 f_1: AtomicRegister

3 f_2: AtomicRegister

4 r: BasicRegister

5

6 def this() {

7 W_01 > f_1.write (0)

8 W_02 > f_2.write (0)

9 }

10

11 main {

12 {

13 W_1 > f_1.write (1)

14 R_2 > x_2 = f_2.read()

15 I_1 > if (x_2 = 0)

16 C_1 > r.write (1)

17 } || {

18 W_2 > f_2.write (1)

19 R_1 > x_1 = f_1.read()

20 I_2 > if (x_1 = 0)

21 C_2 > r.write (2)

22 }

23 }

24

25 order {

26 W_1 -> R_2 &&

27 W_2 -> R_1

28 }

29

30 spec {

31 ~ (

32 exec(C_1) /\

33 exec(C_2)

34)

35 }

36 }

Figure 10.9: Dekker Algorithm Specification

We introduce a DSL called Samand for the specification of concurrent object algorithms. A
specification of a concurrent object declares the type of a set of shared base objects and defines
a set of methods. The set of supported base object types are BasicRegister, AtomicRegister,

157

1 W_01 > f_1.write (0)

2 W_02 > f_2.write (0)

3

4

5

6

7

8

9

10 .

1

2

3

4

5

6

7 W_1 > f_1.write (1)

8 R_2 > x_2 = f_2.read()

9 I_1 > if (x_2 =1)

10 C_1 > r.write (1)

1

2

3 W_2 > f_2.write (1)

4 R_1 > x_1 = f_1.read()

5 I_2 > if (x_1 =0)

6 C_2 > r.write (2)

7

8

9

10 .

Figure 10.10: Bug Trace for Incorrect If Condition

AtomicCASRegister, Lock and TryLock. There is also support for arrays of these types and thread-
local objects. User can define record types. A record type contains a set of object declarations. The
new operator dynamically allocates an instance of a record type and returns a reference to it. The
method definitions call methods on the base objects. Method calls are ordered by program control
and data dependencies and lock happens-before orders. To allow for performance benefits of out-of-
order execution, method calls that are unordered by the program are allowed to appear reordered
in the histories of the program. The user can explicitly require specific orders in the order block.
Note that these orders can be translated to fences for specific architectures. In order to represent
complete specifications, there is no implicit program order in the language. The language enforces
the discipline that the object types and the program order are explicitly declared.

In the main block, the user can write a concurrent program that calls the methods of the specified
concurrent object. The main block is a sequence of blocks, one for each thread. Finally, the spec

block specifies the correctness assertion. Every history of the concurrent program is expected to
satisfy the correctness assertion. The correctness assertion can assert a partial correctness condition.
In particular, it can be the negation of a bug pattern.

The set of histories of a specification are constrained by two set of constraints. Firstly, every
history respects the guarantees of the base objects. For example, if a base object is an atomic
register, then the sub-history for that register should be linearizable. Secondly, every history respects
the control, data and program order dependencies. For example, if a method call is data-dependent
on another method call, then the latter should precede the former in the history.

Figure 10.9 shows the specification of Dekker mutual exclusion algorithm in Samand. The two
flags are declared as atomic registers. The optional this method specifies the initialization state-
ments. This method is executed before the concurrent execution begins. This simple specification
does not define any other method. The main block specifies the concurrent program. The order

block specifies that each thread should set its own flag before reading the other thread’s flag. Fi-
nally, the spec block specifies the correctness assertion i.e. the two critical sections should not both
execute.

Running Samand checker on the specification of Dekker results in approval of the specification.
If the specification is not met, the Samand checker reports the trace that leads to violation of the

specification in a graphical user interface. If the condition of the statement at line I_1 is replaced with
the incorrect condition (x_2 = 1), Samand checker shows the interleaving depicted in Figure 10.10.

158

1 W_02 > f_2.write (0)

2 W_01 > f_1.write (0)

3

4

5

6

7

8

9

10 .

1

2

3 R_2 > x_2 = f_2.read()

4 I_1 > if (x_2 =0)

5

6

7 W_1 > f_1.write (1)

8

9

10 C_1 > r.write (1)

1

2

3

4

5 W_2 > f_2.write (1)

6 R_1 > x_1 = f_1.read()

7

8 I_2 > if (x_1 =0)

9 C_2 > r.write (2)

10 .

Figure 10.11: Bug Trace for Removed Program Order

1 W_02 > f_2.write (0)

2 W_01 > f_1.write (0)

3

4

5

6

7

8 .

1

2

3 W_1 > f_1.write (1)

4 R_2 > x_2 = f_2.read()

5

6

7 I_1 > if (x_2 =0)

8 C_1 > r.write (1)

1

2

3

4

5 W_2 > f_2.write (1)

6 R_1 > x_1 = f_1.read()

7

8 .

Figure 10.12: Dekker Random Execution

If the declared order W_1 -> R_2 is removed, Samand checker shows the interleaving depicted in
Figure 10.11.

Samand checker is not only a checking tool but can also be viewed as an execution tool. The false
literal is an assertion that any execution violates. Therefore, declaring false as the specification
assertion results in a random execution. Updating the spec block of the dekker specification as follows
shows an execution instance such as the execution depicted in Figure 10.12. In this execution only
one of the critical sections C_1 is executed.

spec {

false

}

10.3.2 Language

The set of currently supported object types are basic registers BasicRegister, atomic registers
AtomicRegister, atomic cas registers AtomicCASRegister, locks Lock and try-locks TryLock. As
defined in the base objects section, atomic registers, atomic cas registers, locks and try-locks are
linearizable objects and basic registers behave as registers only if they are not accessed concurrently.

A base object called r of type BasicRegister is declared as follows:

r: BasicRegister

159

There is also support for arrays. The following declaration declares an array of try-locks objects of
size 10.

tryLocks: TryLock [10]

The 7th element of the array can be accessed by tryLocks[6]. There is also support for thread-local
objects. A thread-local basic register can be declared as

reg: TLocal BasicRegister

Thread-local objects are arrays in nature. The thread identifier is implicitly passed for accesses to
thread-local variables, and hence thread-local variables are conveniently accessed as normal objects.
It is also possible to declare thread-local arrays. User-defined record types are also supported. For
example, a Node type can be defined as follows:

Node {

lock: Lock

value: BasicRegister

next: BasicRegister

}

A specification can declare methods. For instance, the following lines show the declaration of a
transfer method.

def transfer(a) {

L> lock.lock()

R1 > v1 = b1.read()

R2 > v2 = b2.read()

C1 > v3 = v1 - a

C2 > v4 = v2 + a

W1 > b1.write(v3)

W2 > b2.write(v4)

U> lock.unlock ()

F> return

}

Each method declaration has an implicit parameter for the calling thread identifier. The variable
name t is reserved for this parameter and should not be used to name any other variable. The
argument for this parameter is automatically passed at the call site. A statement is either a method
call, a record creation, an if statement, a return statement or a math statement. The following
statement allocates memory for an object of record type Node and returns a reference to it that is
assigned to ref.

ref = new Node()

The following statement calls the method method on the base object object with the argument arg
and assigns the return value to ret.

ret = object.method(arg)

If no receiver object is specified for a method call, the receiver is the current object. The following
statement calls the method method on the field object of the record referenced by ref with the
argument arg and assigns the return value to ret.

160

ret = ref.object.method(arg)

The supported math statements are of the form x3 = x1 + x2 or x3 = x1 - x2.
The main block specifies the concurrent program. The thread blocks are separated by ||.
Data and control dependencies order method call. Correctness of the specified algorithm may be

dependent on a specific order of method calls that are not ordered by data and control dependencies.
The user can declare the required order of method calls in the order block. The program order of a
specification is the transitive closure of data and control dependencies, the declared orders and the
following conventional orders for locks and this method calls.

Locks (and try-locks) as the foundation of mainstream language memory models have ordering
implications (in addition to the linearizability property). Every statement after a lock method (or
a successful try-lock method) is ordered after it and every statement before an unlock method is
ordered before it. Method calls on this object have ordering implications as well. A function call
whose side effects are not clear is even stronger than a compiler barrier. This excludes inline functions
and functions known to be pure. We consider full ordering for method calls on this object. The
statements before and after method calls on this object (and their enclosing statements) are ordered
respectively before and after the call. In addition, the statements of this and ~this methods are
ordered respectively before and after all the statements of the concurrent program (the main block).

Finally, the spec block specifies the assertion that every history of the specification should satisfy.
Note that the correctness assertion can assert complete or partial correctness of the specification such
as the negation of a bug pattern. The assertion language supports conjunction /\, disjunction \/,
negation ~ of assertions. Currently, atomic assertions can be that a specific method call is executed

exec(M)

a method call is executed before another method call

M1 \prec M2

an equality for variables and values

x1 = 2

x1 = x2

and true and false literals.

10.3.3 TM Algorithms in Samand

Note that we have restated the algorithms for the number of threads and locations that are needed
for the testing program. Also the foreach loops and procedure callas are inlined. The set and map
objects are implemented by registers.

The specification of DSTM is as follows:

Loc {

writer: AtomicRegister

oldValue: AtomicRegister

newValue: AtomicRegister

// These could be basic registers.

// The bug exists even with these stronger registers.

161

}

DSTM {

state: AtomicCASRegister [4] // To store thread identifiers

// Let state [3] be the state of the init trans

start: AtomicCASRegister [2] // To store Reference to Loc

rset: TLocal AtomicRegister [2]

// This could be a basic register array.

// The bug exists even with these stronger registers.

def this() {

// init state and start

I01 > state [1]. write(\R)

I02 > state [2]. write(\R)

I03 > state [3]. write(\C)

I04 > loc1 = new Loc()

I05 > loc1.writer.write (3)

I06 > loc1.newValue.write (0)

I07 > start [0]. write(loc1)

I08 > loc2 = new Loc()

I09 > loc2.writer.write (3)

I10 > loc2.newValue.write (0)

I11 > start [1]. write(loc2)

}

def read(i) {

R0> s = state[t].read()

R1> if (s = \A)

R2> return \A

R3> start = start[i].read()

// --------------

// Stable value

R4> tp = start.writer.read()

R5> sp = state[tp].read()

R6> if (tp != t && sp = \R)

R7> state[tp].cas(\R, \A)

R8> if (sp = \A)

R9> v = start.oldValue.read()

else

R10 > v = start.newValue.read()

// --------------

R11 > if (tp != t)

R12 > rset[i].write(v)

// --------------

// Validate

R13 > rv0 = rset [0]. read()

162

R14 > if (rv0 != \bot) {

R15 > s0 = start [0]. read()

R16 > wt0 = s0.writer.read()

R17 > st0 = state[wt0].read()

R18 > if (st0 = \C)

R19 > vp0 = s0.newValue.read()

else

R20 > vp0 = s0.oldValue.read()

R21 > if (rv0 != vp0)

R22 > return \A

R23 > cts0 = state[t].read()

R24 > if (cts0 != \R)

R25 > return \A

}

R26 > rv1 = rset [1]. read()

R27 > if (rv1 != \bot) {

R28 > s1 = start [1]. read()

R29 > wt1 = s1.writer.read()

R30 > st1 = state[wt1].read()

R31 > if (st1 = \C)

R32 > vp1 = s1.newValue.read()

else

R33 > vp1 = s1.oldValue.read()

R34 > if (rv1 != vp1)

R35 > return \A

R36 > cts1 = state[t].read()

R37 > if (cts1 != \R)

R38 > return \A

}

// --------------

R39 > return v

}

def write(i, v) {

W0> s = state[t].read()

W1> if (s = \A)

W2> return \A

W3> start = start[i].read()

W4> wt = start.writer.read()

W5> if (wt = t) {

W6> start.newValue.write(v)

W7> return \Ok

}

// --------------

// Stable value

W8> tp = start.writer.read()

W9> sp = state[tp].read()

163

W10 > if (tp != t && sp = \R)

W11 > state[tp].cas(\R, \A)

W12 > if (sp = \A)

W13 > vp = start.oldValue.read()

else

W14 > vp = start.newValue.read()

// --------------

W15 > startp = new Loc()

W16 > startp.writer.write(t)

W17 > startp.oldValue.write(vp)

W18 > startp.newValue.write(v)

W19 > b = start[i].cas(start , startp)

W20 > if (b = 1)

W21 > return \Ok

else

W22 > return \A

}

def commit () {

C01 > rv0 = rset [0]. read()

C02 > if (rv0 != \bot) {

C03 > s0 = start [0]. read()

C04 > wt0 = s0.writer.read()

C05 > st0 = state[wt0].read()

C06 > if (st0 = \C)

C07 > vp0 = s0.newValue.read()

else

C08 > vp0 = s0.oldValue.read()

C09 > if (rv0 != vp0)

C10 > return \A

C11 > cts0 = state[t].read()

C12 > if (cts0 != \R)

C13 > return \A

}

C14 > rv1 = rset [1]. read()

C15 > if (rv1 != \bot) {

C16 > s1 = start [1]. read()

C17 > wt1 = s1.writer.read()

C18 > st1 = state[wt1].read()

C19 > if (st1 = \C)

C20 > vp1 = s1.newValue.read()

else

C21 > vp1 = s1.oldValue.read()

C22 > if (rv1 != vp1)

C23 > return \A

C24 > cts1 = state[t].read()

C25 > if (cts1 != \R)

164

C26 > return \A

}

C27 > b = state[t].cas(\R, \C)

C28 > if (b = 1)

C29 > return \C

else

C30 > return \A

}

main {

{

S11 > rset [0]. write(\bot)

S12 > rset [1]. write(\bot)

L11 > v10 = read (0)

L12 > v11 = read (1)

L13 > write(0, 7)

L14 > c1 = commit ()

} || {

S21 > rset [0]. write(\bot)

S22 > rset [1]. write(\bot)

L21 > v20 = read (0)

L22 > v21 = read (1)

L23 > write(1, 7)

L24 > c2 = commit ()

}

}

order {

R3 -> R15 &&

R3 -> R28 &&

W16 -> W19 &&

W17 -> W19 &&

W18 -> W19 &&

C02 -> C27 &&

C15 -> C27

}

spec {

~(

L11_Ret \prec L22_Inv /\

L21_Ret \prec L12_Inv /\

L12_Ret \prec L23_Inv /\

L22_Ret \prec L13_Inv /\

165

L13_Ret \prec L24_Inv /\

L23_Ret \prec L14_Inv /\

v10 = 0 /\

v11 = 0 /\

v20 = 0 /\

v21 = 0 /\

c1 = \C /\

c2 = \C

)

}

}

The specification of McRT is as follows:

McRT {

r: AtomicRegister [2]

ver: AtomicRegister [2]

lock: TryLock [2]

rset: TLocal AtomicRegister [2]

uset: TLocal AtomicRegister [2]

// These regs could be basic register arrays

def this() {

L01 > lock [0]. unlock ()

L02 > lock [1]. unlock ()

L03 > r[0]. write (0)

L04 > r[1]. write (0)

L05 > ver [0]. write (0)

L06 > ver [1]. write (0)

}

def read(i) {

R0> u = uset[i].read()

R1> if (u = \bot) {

R2> ve = ver[i].read()

R3> l = lock[i].read()

R4> if (l = 1) {

R5> ov0 = uset [0]. read()

R6> if (ov0 != \bot) {

R7> r[0]. write(ov0)

R8> lock [1]. unlock ()

}

R9> ov1 = uset [1]. read()

R10 > if (ov1 != \bot) {

R11 > r[1]. write(ov1)

R12 > lock [1]. unlock ()

166

}

R13 > return \A

}

R14 > r = rset[i].read()

R15 > if (r = \bot)

R16 > rset[i].write(ve)

}

R17 > v = r[i].read()

R18 > return v

}

def write(i, v) {

W0> u = uset[i].read()

W1> if (u = \bot) {

W2> l = lock[i]. tryLock ()

W3> if (l = 0) {

W4> ov0 = uset [0]. read()

W5> if (ov0 != \bot) {

W6> r[0]. write(ov0)

W7> lock [0]. unlock ()

}

W8> ov1 = uset [1]. read()

W9> if (ov1 != \bot) {

W10 > r[1]. write(ov1)

W11 > lock [1]. unlock ()

}

W12 > return \A

}

W13 > ov = r[i].read()

W14 > uset[i].write(ov)

}

W15 > r[i].write(v)

W16 > return \Ok

}

def commit () {

C0> ove0 = rset [0]. read()

C1> if (ove0 != \bot) {

C2> l0 = lock [0]. read()

C3> ve0 = ver [0]. read()

C4> if ((l0 = 1)|| (ve0 != ove0)) {

C5> ov10 = uset [0]. read()

C6> if (ov10 != \bot) {

C7> r[0]. write(ov10)

C8> lock [0]. unlock ()

}

C9> ov11 = uset [1]. read()

167

C10 > if (ov11 != \bot) {

C11 > r[1]. write(ov11)

C12 > lock [1]. unlock ()

}

C13 > return \A

}

}

C14 > ove1 = rset [1]. read()

C15 > if (ove1 != \bot) {

C16 > l1 = lock [1]. read()

C17 > ve1 = ver [1]. read()

C18 > if ((l1 = 1) || (ve1 != ove1)) {

C19 > ov20 = uset [0]. read()

C20 > if (ov20 != \bot) {

C21 > r[0]. write(ov20)

C22 > lock [0]. unlock ()

}

C23 > ov21 = uset [1]. read()

C24 > if (ov21 != \bot) {

C25 > r[1]. write(ov21)

C26 > lock [1]. unlock ()

}

C27 > return \A

}

}

C28 > u0 = uset [0]. read()

C29 > if (u0 != \bot) {

C30 > v0 = ver [0]. read()

C31 > vp0 = v0 + 1

C32 > ver [0]. write(vp0)

C33 > lock [0]. unlock ()

}

C34 > u1 = uset [1]. read()

C35 > if (u1 != \bot) {

C36 > v1 = ver [1]. read()

C37 > vp1 = v1 + 1

C38 > ver [1]. write(vp1)

C39 > lock [1]. unlock ()

}

C40 > return \C

}

main {

{

I11 > rset [0]. write(\bot)

168

I12 > rset [1]. write(\bot)

I13 > uset [0]. write(\bot)

I14 > uset [1]. write(\bot)

L11 > r1 = read (1)

L12 > write(0, 7)

L13 > c1 = commit ()

} || {

I21 > rset [0]. write(\bot)

I22 > rset [1]. write(\bot)

I23 > uset [0]. write(\bot)

I24 > uset [1]. write(\bot)

L21 > write(1, 7)

L22 > r2 = read (0)

L23 > c2 = commit ()

}

}

order {

R2 -> R3 &&

R3 -> R17 &&

C2 -> C3 &&

C16 -> C17

}

spec {

~(

r1 = 7 /\

r2 = 7 /\

c1 = \A /\

c2 = \A

)

}

}

169

10.4 Synchronization Object Program Logic

10.4.1 Soundness

Theorem 3 (Soundness).
∀π,A : ((π,Γ ` A) ∧ (π |= Γ))⇒ (π |= A).

Proof.

Hypothesis
(1) π,Γ ` A
(2) X |= Γ

Desired Conclusion
π |= A

Let
(3) π = (T ,D,P)
(4) D = d∗

(5) P = p0, (p1||p2||...||pn)
(6) X = (X, σ,L) ∈ [[π]]

By Definitions 16, we need to show that
X |= A

Let
(7) X ′ = σ(X)

By definition [2.71] on [6] and [7], we have
(8) X ′ ∈ H(π)

By definition [2.70] on [6], we have
(9) ∀o : Tbase(o) ∈ BT ⇒

X ′|o ∈ HB(o)
(10) ∀o : Tbase(o) ∈ LT ⇒

(X ′|o,L(o)) ∈ HL(o)
∃X1, ..., Xn :

(11) ∀i ∈ {0..n} : (Xi, σ) ∈ [[pi]] ∧
(12) X ′′ ∈ Interleave(X1, . . . , Xn) ∧

X = X0 ·X ′′
By definition [2.16] on [9], we have

(13) ∀o : o ∈ Tbase(o) ∈ BT ⇒
(X ′|o ∈ Sequential)⇒
(X ′|o ∈ SeqSpec(o))

By definition [2.18] on [10], we have
(14) ∀o : o ∈ Tbase(o) ∈ LT ⇒

X ′|o ≡ L(o) ∧
L(o) ∈ SeqSpec(o) ∧
≺X′|o⊆≺L(o)

Induction on the derivation of [1]:
Case rule X2L:

By rule X2L on [1], we have that
(15) Tbase(o) ∈ LT
(16) π,Γ ` l ≺ l′

(17) π,Γ ` obj(l) = obj(l′) = o
(18) A = l ≺o l′

We show that
X |= A

That is
l ≺L(σ(o)) l′

By the induction hypothesis on [16] and [17],
and then [2], [6] and [7], we have

(19) l ≺X′ l′

(20) objX′(l) = objX′(l′) = σ(o)
From [19] and [20], we have

(21) l ≺X′|σ(o) l
′

By [15], we have
(22) Tbase(σ(o)) ∈ LT

By [10] and [22], we have
(23) (X ′|σ(o),L(σ(o))) ∈ HL(o)

By Lemma 8 on [23] and [21], we have
l ≺L(σ(o)) l′

Case rule Src:
We have that

(24) A =
∨
i=1..n c = ci

(25) π,Γ ` exec(ς’c)
(26) π,Γ ` obj(ς’c) = θ
(27) π,Γ ` name(ς’c) = n
(28) Callsπ(basename(θ), n) = {ci}

We show that
A |=

∨
i=1..n c = ci

that is∨
i=1..n c = ci

170

By the induction hypothesis on [25], [26],
[27], and then [2], [6] and [7], we have

(29) ς’c ∈ X ′
(30) objX′(ς’c) = ς’θ
(31) nameX′(ς’c) = n

From [7] and [12] on [29], [30], [31], we have
∃i ∈ 0..n :

(32) ς’c ∈ Xi

(33) objXi(ς’c) = ς’θ
(34) nameXi(ς’c) = n

By Lemma 69 on [11] and [32], we have
(35) basename(objXi(ς’c)) = objπ(c)
(36) nameXi(ς’c) = nameπ(c)

By the definition of basename and ’, we have
(37) basename(ς’θ) = basename(θ)

From [35], [30] and [37], we have
(38) basename(objπ(c)) = basename(θ)

From [36] and [34], we have
(39) nameπ(c) = n

From the definition of callsπ(basename(θ), n)

on [38] and [39], we have
(40) c ∈ callsπ(basename(θ), n)

From [28] and [36], we have∨
i=1..n c = ci

Case rule P2X:
We have that

(41) A = ς’c1 � ς’c2
(42) c1 →π c2
(43) π,Γ ` exec(ς’c1)
(44) π,Γ ` exec(ς’c2)

We show that
X |= ς’c1 ≺ ς’c2

that is
ς’c1 ≺X′ ς’c2

By the induction hypothesis on [43], [44],
and then [2], we have

(45) X |= exec(ς’c1)
(46) X |= exec(ς’c2)

that is
(47) ς’c1 ∈ X ′
(48) ς’c2 ∈ X ′

From Lemma 73 on [8], [47] and [48]
[42], we have

ς’c1 ≺X′ ς’c2

Case rule OX2IX:
We have that

(49) A = c1’c3 ≺ c2’c4
(50) π,Γ ` c1 ≺ c2
(51) π,Γ ` exec(c1’c3)
(52) π,Γ ` exec(c2’c4)

We show that
X |= c1’c3 ≺ c2’c4

that is
c1’c3 ≺X′ c2’c4

By the induction hypothesis on [50], [51],
[52], and then [2], we have

(53) X |= c1 ≺ c2
(54) X |= exec(c1’c3)
(55) X |= exec(c2’c4)

that is
(56) c1 ≺X′ c2
(57) c1’c3 ∈ X ′
(58) c2’c4 ∈ X ′

From [56], we have
(59) rEv(c1)�X′ iEv(c2)

From Lemma 74 on [8] and [57], we have
(60) rEv(c1’c3)�X′ rEv(c1))

From Lemma 74 on [8], and [58], we have
(61) (iEv(c2)�X′ iEv(c2’c4)

From [60], [59] and [61], we have
(62) rEv(c1’c3)�X′ iEv(c2’c4)

From [62], we have
(63) c1’c3 ≺X′ c2’c4

Case rule IControl:
We have that

(64) A =
exec(c’c′)⇔
exec(c) ∧∨
ci
c′ = ci ∧

c’condπ(c′) ∧∧
i=1..n ¬exec(c’ci)

(65) Labels(nameπ(c)) = {ci}
(66) PreReturnsπ(c′) = {cr}

171

We show that
X |= A

That is
c’c′ ∈ X ′ ⇔
c ∈ X ′ ∧∨
ci
c′ = ci ∧

σ(c’condπ(c′)) ∧∧
cr
¬(c’cr ∈ X ′)

We first show that
c’c′ ∈ X ′ ⇒
c ∈ X ′ ∧∨
ci
c′ = ci ∧

σ(c’condπ(c′)) ∧∧
i=1..n ¬(c’ci ∈ X ′)

We assume that
(67) c’c′ ∈ X ′

We show that
c ∈ X ′ ∧∨
ci
c′ = ci ∧

σ(c’condπ(c′)) ∧∧
i=1..n ¬(c’ci ∈ X ′)

From [7] and [12] on [67], we have
∃i ∈ {0..n} :

(68) c’c′ ∈ Xi

By Lemma 70 on [65], [66], [11] and [68],
we have

(69) c ∈ Xi ∧∨
ci
c′ = ci ∧

σ(c’condπ(c′)) ∧∧
i=1..n ¬(c’ci ∈ Xi)

From [7] and [12] and uniqueness of label c
on [69], we have

(70) c ∈ X ′ ∧∨
ci
c′ = ci ∧

σ(c’condπ(c′)) ∧∧
i=1..n ¬(c’ci ∈ X ′)

Now, we show that
c ∈ X ′ ∧∨
ci
c′ = ci ∧

σ(c’condπ(c′)) ∧∧
i=1..n ¬(c’ci ∈ X ′)

⇒
c’c′ ∈ X ′

We assume that
(71) c ∈ X ′ ∧
(72)

∨
ci
c′ = ci ∧

(73) σ(c’condπ(c′)) ∧
(74)

∧
i=1..n ¬(c’ci ∈ X ′)

We show that
c’c′ ∈ X ′

From [7] and [12] on [71], we have
∃i ∈ {0..n} :

(75) c ∈ Xi

From [7] and [12] on [74], we have
∀i ∈ {0..n} :

(76)
∧
i=1..n ¬(c’ci ∈ Xi)

By Lemma 71 on [65], [66], [11], [75],
[72], [73] and [76], we have

(77) c’c′ ∈ Xi

From [7] and [12] on [77], we have
c’c′ ∈ X ′

Case rule OControl:
Similar to rule IControl using Lemma 72.

Case rule TSeq:
We have that

(78) A = l1 ≺ l2 ∨ l2 ≺ l1 ∨ l1 = l2
(79) π,Γ ` exec(l1)
(80) π,Γ ` exec(l2)
(81) π,Γ ` thread(l1) = thread(l2)
(82) π,Γ ` obj(l1) = obj(l2) = this ∨

(¬obj(l1) = this ∧ ¬obj(l2) = this)
We show that
X |= l1 ≺ l2 ∨ l2 ≺ l1 ∨ l1 = l2

that is
l1 ≺X′ l2 ∨ l2 ≺X′ l1 ∨ l1 = l2

By the induction hypothesis on [79], [80],
[81], [82], and then [2], we have

(83) X |= exec(l1)
(84) X |= exec(l2)
(85) X |= thread(l1) = thread(l2)
(86) X |= obj(l1) = obj(l2) = this ∨

(¬obj(l1) = this ∧ ¬obj(l2) = this)
that is

(87) l1 ∈ X ′
(88) l2 ∈ X ′

172

(89) threadX′(l1) = threadX′(l2)
(90) objX′(l1) = objX′(l2) = this ∨
(¬objX′(l1) = this ∧ ¬objX′(l2) = this)

By [11] and [12] on [87] and [88], we have
∃i, j ∈ 0..n :

(91) l1 ∈ Xi ∧ (Xi, σ) ∈ [[pi]]
(92) l2 ∈ Xj ∧ (Xj, σ) ∈ [[pj]]

Case analysis on [90]:
Case

(93) objX′(l1) = objX′(l2) = this
By Lemma 75 on [8], [87], [88], [93],
we have
∃c1, c2 :

(94) l1 = c1
(95) l2 = c2

By Lemma 77 on [91], [92], [94], [95],
we have

(96) threadX(l1) = Ti
(97) threadX(l2) = Tj

From [96], [97] and [89], we have
(98) i = j

By Lemma 79 on [91], [92], and [94], [95],
and [98], we have

(99) l1 ≺X l2 ∨ l2 ≺X l1 ∨ l1 = l2
Case

(100) ¬objX′(l1) = this ∧
¬objX′(l2) = this

Similar to the previous case where
lemmas 76, 78 and 80 are used.

Case rule TLocal:
We have that

(101) A = thread(l1) = thread(l2)
(102) T (basename(φ)) = ThreadLocal st
(103) π,Γ ` exec(l1) ∧ exec(l2)
(104) π,Γ ` obj(l1) = obj(l2) = φ[u]

We show that
X |= thread(l1) = thread(l2)

that is
threadX′(l1) = threadX′(l2)

By the induction hypothesis on [104],
and then [2], we have

(105) X |= exec(l1) ∧ exec(l2)
(106) X |= obj(l1) = obj(l2) = φ[u]

that is

(107) objX′(l1) = objX′(l2) = φ[σ(u)]
(108) l1 ∈ X ′
(109) l2 ∈ X ′

From [107] , we have
(110) basename(objX′(l1)) = φ
(111) index(objX′(l1)) = σ(u)
(112) basename(objX′(l2)) = φ
(113) index(objX(l2)) = σ(u)

From Lemma 81 on [3], [102], [8], [108] and
[110] we have

(114) threadX′(l1) = index(objX′(l1))
From Lemma 81 on [3], [102], [8], [109] and
[112] we have

(115) threadX′(l2) = index(objX′(l2))
From [114] and [111] we have

(116) threadX′(l1) = σ(u)
From [115] and [113] we have

(117) threadX′(l2) = σ(u)
From [116] and [117] we have

(118) threadX′(l1) = threadX′(l2)

Case rule Id:
We have that

(119) A = obj(ς’c) = ς’θ ∧
name(ς’c) = n ∧
thread(ς’c) = ς’τ ∧
arg∗(ς’c) = ς’u∗ ∧
retv(ς’c) = ς’x

(120) objπ(c) = θ
(121) nameπ(c) = n
(122) threadπ(c) = τ
(123) argπ(c) = u
(124) retvπ(c) = x
(125) π,Γ ` exec(ς’c)

We show that
(126) X |= A

that is
objX′(ς’c) = σ(ς’θ) ∧
nameX′(ς’c) = n ∧
threadX′(ς’c) = σ(ς’τ) ∧
arg∗X′(ς’c) = σ(ς’u∗) ∧
retvX′(ς’c) = σ(ς’x)

By the induction hypothesis on [125],
and then [2], we have

(127) X |= exec(ς’c)

173

that is
(128) ς’c ∈ X ′

From [7] and [128], we have
(129) ς’c ∈ X

From [12] and [129], we have
∃i ∈ {0..n} :

(130) ς’c ∈ Xi

From Lemma 68 on [11] and [130], we have
(131) objXi(ς’c) = ς’θ ∧

nameXi(ς’c) = n ∧
threadXi(ς’c) = ς’τ ∧
arg∗Xi(ς’c) = ς’u∗ ∧
retvXi(ς’c) = ς’x

From [131], [12], we have
(132) objX(ς’c) = ς’θ ∧

nameX(ς’c) = n ∧
threadX(ς’c) = ς’τ ∧
arg∗X(ς’c) = ς’u∗ ∧
retvX(ς’c) = ς’x

From [132], [7], we have
(133) objX′(ς’c) = σ(ς’θ) ∧

nameX′(ς’c) = n ∧
threadX′(ς’c) = σ(ς’τ) ∧
arg∗X′(ς’c) = σ(ς’u∗) ∧
retvX′(ς’c) = σ(ς’x)

Case rule Caller:
We have that

(134) A =
c’t = thread(c) ∧
c’x∗ = arg∗(c) ∧∨
i=1..n(exec(c’ci) ∧ arg1(c’ci) = retv(c))

(135) π,Γ ` exec(c)
(136) π,Γ ` obj(c) = this
(137) π,Γ ` name(c) = n
(138) tparπ(n) = t ∧ par1π(n) = x
(139) Returnsπ(n) = {ci}

We show that
X |= A

that is
σ(c’t) = threadX′(c) ∧
σ(c’x∗) = arg∗X′(c) ∧∨
i=1..n

(c’ci ∈ X ′ ∧
arg1X′(c’ci) = retvX′(c))

By induction hypothesis on [135], [136] and
[137], and then [2], [6] and [7], we have

(140) c ∈ X ′
(141) objX′(c) = this
(142) nameX′(c) = n

From [7] on [140], [141] and [142], we have
(143) c ∈ X
(144) objX(c) = this
(145) nameX(c) = n

By Lemma 82 on [6], [138], [139], [143],
[144], and [145], we have

(146) σ(c’t) = σ(threadX(c)) ∧
(147) σ(c’x∗) = σ(arg∗X(c)) ∧
(148)

∨
i=1..n

(c’ci ∈ X ∧
σ(arg1X(c’ci)) = σ(retvX(c)))

From [7] on [146], [147], and [148], we have
σ(c’t) = threadX′(c) ∧
σ(c’x∗) = arg∗X′(c) ∧∨
i=1..n

(c’ci ∈ X ′ ∧
arg1X′(c’ci) = retvX′(c))

Case rule Ret:
We have that

(149) tparπ(n) = t ∧ par1π(n) = x
(150) c′ ∈ Returnsπ(n)
(151) π,Γ ` exec(c’c′)
(152) A =

exec(c) ∧
obj(c) = this ∧ name(c) = n ∧
thread(c) = c’t ∧ arg∗(c) = c’x∗ ∧
retv(c) = arg1(c’c′)

We show that
X |= A

that is
c ∈ X ′ ∧
objX′(c) = this ∧ nameX′(c) = n ∧
threadX′(c) = σ(c’t) ∧
arg∗X′(c) = σ(c’x∗) ∧
retvX′(c) = arg1X′(c’c′)

By induction hypothesis on [151],
and then [2], [6] and [7], we have

174

(153) c’c′ ∈ X ′
From [7] and [153], we have

(154) c’c′ ∈ X
From Lemma 84 on [6], [149], [150], and
[154], we have

(155) c ∈ X ∧
(156) objX(c) = this ∧ nameX(c) = n ∧
(157) σ(threadX(c)) = σ(c’t) ∧
(158) σ(arg∗X(c)) = σ(c’x∗) ∧
(159) σ(retvX(c)) = σ(arg1X(c’c′))

From [7] on [155]-[159], we have
c ∈ X ′ ∧
objX′(c) = this ∧ nameX′(c) = n ∧
threadX′(c) = σ(c’t) ∧
arg∗X′(c) = σ(c’x∗) ∧
retvX′(c) = arg1X′(c’c′)

Case rule Callee:
Similar to rule Ret

Case rule XASym:
We have that

(160) π,Γ ` l ≺ l′

(161) A =
¬(l′ ≺ l) ∧ ¬(l′ ∼ l) ∧ ¬(l′ = l)

We show that
X |= A

that is
¬(l′ ≺X′ l) ∧ ¬(l′ ∼X′ l) ∧ ¬(l′ = l)

Straightforward from Lemma 1.

Case rule XTotal:
Straightforward from Lemma 4.

Case rule X2X:
Straightforward from Lemma 5.

Case rule LASym:
We have that

(162) π,Γ ` l ≺o l′
(163) A =

¬(l′ ≺o l) ∧
¬(l′ = l)

We show that

X |= A
Let

(164) O = L(σ(o))
We need to show that
¬(l′ ≺O l) ∧
¬(l′ = l)

Straightforward from Lemma 10.

Case rule LTotal:
We have that

(165) Tbase(o) ∈ LT
(166) π,Γ ` exec(l) ∧ exec(l′)
(167) π,Γ ` obj(l) = obj(l′) = o
(168) A = (l ≺o l′) ∨ (l′ ≺o l) ∨ (l′ = l)

We show that
X |= A

From [165], let
(169) O = L(σ(o))

We need to show that
(l ≺O l′) ∨ (l′ ≺O l) ∨ (l′ = l)

By induction hypothesis on [166] and [167],
and then [2], [6] and [7], we have

(170) l ∈ X ′
(171) l′ ∈ X ′
(172) objX′(l) = σ(o)
(173) objX′(l′) = σ(o)

From [172] and [173], we have
(174) l ∈ X ′|σ(o)
(175) l′ ∈ X ′|σ(o)

From [165], we have
(176) Tbase(σ(o)) ∈ LT

From [10], and [176], we have
(177) (X ′|σ(o),L(σ(o))) ∈ HL(o)

By Lemma 12 on [177], [174], [175], we have
l ≺O l′ ∨ l′ ≺O l ∨ l′ = l

Case rule L2X:
We have that

(178) π,Γ ` l ≺o l′
(179) A = exec(l) ∧ exec(l′) ∧

obj(l) = obj(l′) = o
We show that
X |= A

175

that is
l ∈ X ′ ∧ l′ ∈ X ′ ∧
objX′(l) = objX′(l′) = σ(o)

Let
(180) O = L(σ(o))

By induction hypothesis on [178], and then
[2],

and [6], we have
(181) l ≺O l′

From [10] on [180], we have
(182) (X ′|σ(o),L(σ(o))) ∈ HL(σ(o))

By Lemma 13 on [182] and [181], we have
l ∈ X ′ ∧ l′ ∈ X ′
objX′(l) = objX′(l′) = σ(o)

Case rule XTrans:
Straightforward from Lemma 2.

Case rule XXTrans:
Straightforward from Lemma 3.

Case rule LTrans:
Straightforward from Lemma 11.

Case rule TReal:
We have that

(183) π,Γ ` T ≺≺ T ′

(184) π,Γ ` exec(l) ∧ thread(l) = T
(185) π,Γ ` exec(l′) ∧ thread(l′) = T ′

(186) A = l ≺ l′ ∨ l = l′

We show that
X |= A

that is
l ≺X′ l′

By induction hypothesis on [183], [184], and
[185], and then [2], [6] and [7],
we have

(187) T ≺≺X′ T ′

(188) l ∈ X ′
(189) threadX′(l) = T
(190) l′ ∈ X ′
(191) threadX′(l′) = T ′

From [189], we have

(192) l ∈ X ′|T
From [189], we have

(193) l′ ∈ X ′|T ′
From [187], we have

(194) ∀T, T ′ : X ′|T �H X
′|T ′

From [194], [192] and [193], we have
l ≺X′ l′

Case rule AReg:
We have that

(195) Tbase(reg) = AtomicRegister
(196) π,Γ ` isReadreg(lR)
(197) A = ∃`W :

isWriterreg(`W , lR) ∧
retv(lR) = arg1(`W)

Let
(198) reg′ = σ(reg)
(199) Reg = L(reg′)

From [195] and [198], we have
(200) reg′ ∈ AtomicRegister

From [10] and [200], [199], we have
(201) (X ′|reg′, Reg) ∈ HL(reg′)

By the definition of isWriter on [197], we
have

(202) A = ∃`W :
isWritereg(`W) ∧
`W ≺reg lR ∧
∀`′W : isWritereg(`

′
W)⇒

(`′W �reg `W ∨ lR ≺reg `′W) ∧
retv(lR) = arg1(`W)

We show that
X |= A

that is
∃lW :

isXWriteX′,reg′(lW) ∧
lW ≺Reg lR ∧
∀l′W : isXWriteX′,reg′(l

′
W)⇒

(l′W �Reg lW ∨ lR �Reg l′W) ∧
retvX′(lR) = arg1X′(lW)

From [196], we have
(203) π,Γ `

exec(lR) ∧
obj(lR) = reg ∧
name(lR) = read

176

By induction hypothesis on [203],
and then [2], [6] and [7], we have

(204) lR ∈ X ′ ∧
objX′(lR) = reg′ ∧
nameX′(lR) = read

From the definition of isXRead on [204],
we have

(205) isXReadX′,reg′(lR)
By Lemma 17 on [200], [201] and [205],
we have

(206) ∃lw :
isLWriterX′|reg′,Reg,reg′(lW , lR) ∧
retvX′|reg′(lR) = arg1X′(lW)

From the definition of isLWriter on [206],
we have
∃lW :

isXWriteX′|reg′,reg′(lW) ∧
lW ≺Reg lR ∧
∀l′W : isXWriteX′|reg′,reg′(l

′
W)⇒

(l′W �Reg lW ∨ lR �Reg l′W) ∧
retvX′|reg′(lR) = arg1X′|reg′(lW)

After simplification, we have
∃lW :

isXWriteX′,reg′(lW) ∧
lW ≺Reg lR ∧
∀l′W : isXWriteX′,reg′(l

′
W)⇒

(l′W �Reg lW ∨ lR �Reg l′W) ∧
retvX′(lR) = arg1X′(lW)

Case rule BReg:
Similar to rule AReg by Lemma 16.

Case rule CASRegRead:
By Lemma 18.

Case rule CASRegCAST:
By Lemma 19.

Case rule CASRegCASF:
By Lemma 19.

Case rule Lock:
We have that

(207) Tbase(lo) = Lock
(208) π,Γ ` isOwnerRespecting(lo)

(209) π,Γ ` isLocklo(ll1)
(210) π,Γ ` isUnlocklo(lu2)
(211) π,Γ ` ll1 ≺lo lu2
(212) A = ∃`u1 , `l2 :

isUnlocklo(`u1) ∧
thread(`u1) = thread(ll1) ∧
isLocklo(`l2) ∧
thread(lu2) = thread(`l2) ∧
`u1 ≺lo `l2

Let
(213) lo′ = σ(lo)
(214) L = L(lo′)

We show that
X |= A

that is
(215) ∃lu1 , ll2 :

isXUnlockX′,lo′(lu1) ∧
threadX′(ll1) = threadX′(lu1) ∧
isXLockX′,lo′(ll2) ∧
threadX′(ll2) = threadX′(lu2) ∧
lu1 ≺L ll2

By induction hypothesis on [208]-[211],
and then [2], [6] and [7], we have

(216) isXOwnerRespectinglo′(X
′) ∧

(217) isXLockX′,lo′(ll1) ∧
(218) isXUnlockX′,lo′(lu2) ∧
(219) ll1 ≺L lu2)

From [216]-[219], we have
(220) isXOwnerRespectinglo′(X

′|lo′) ∧
(221) isXLockX′|lo′,lo′(ll1) ∧
(222) isXUnlockX′|lo′,lo′(lu2) ∧
(223) ll1 ≺L lu2)

From [207] and [213], we have
(224) lo′ ∈ Lock

From Lemma 21 on [224], and [220]-[223],
we have
∃lu1 , ll2 :

(225) isXUnlockX′|lo′,lo′(lu1) ∧
(226) threadX′|lo′(ll1) = threadX′|lo′(lu1) ∧

(227) isXLockX′|lo′,lo′(ll2) ∧
(228) threadX′|lo′(ll2) = threadX′|lo′(lu2) ∧

(229) lu1 ≺L ll2

177

From [225]-[229], we have
∃lu1 , ll2 :

(230) isXUnlockX′,lo′(lu1) ∧
(231) threadX′(ll1) = threadX′(lu1) ∧
(232) isXLockX′,lo′(ll2) ∧
(233) threadX′(ll2) = threadX′(lu2) ∧
(234) lu1 ≺L ll2

Case rule LockReadL:
Similar to the proof of rule Lock
using Lemma 22.

Case rule LockReadR:
Similar to the proof of rule Lock
using Lemma 23.

Case rule TryLock:
Similar to the proof of rule Lock
using Lemma 26.

Case rule TryLockReadL:
Similar to the proof of rule Lock
using Lemma 27.

Case rule TryLockReadR:

Similar to the proof of rule Lock

using Lemma 28.

Case rule SCounter:

By Lemma 30.

Case rule BasicSetContains:

By Lemma 31.

Case rule BasicSetAdd:

By Lemma 32.

Case rule BasicMapGet:

By Lemma 33.

Case rule BasicMapPut:

By Lemma 34.

The basic inference rules and the equivalence and
arithmetic rules are standard. 2

Lemma 68.
∀p,X, σ, ς, c′ :

((X, σ) ∈ [[p]] ∧ ς’c′ ∈ X)
⇒

(objX(ς’c′) = ς’objπ(c′) ∧ threadX(ς’c′) = ς’threadπ(c′) ∧
nameX(ς’c′) = nameπ(ci) ∧ arg1X(ς’c′) = ς’arg1π(c′) ∧
retvX(ς’c′) = ς’retvπ(c′)).

Proof.

Structural induction on p:
(1) Case p = c . nτ (u

∗):x
Straightforward form definition [2.67].

(2) Case p = p1; p2

Straightforward form definition [2.68] and
the induction hypothesis.

(3) Case p = if b p1 else p2
Straightforward form definition [2.69] and
the induction hypothesis.

2

Lemma 69.
∀p,X, σ, ς, c′ :

((X, σ) ∈ [[p]] ∧ ς’c′ ∈ X)
⇒

basename(objX(ς’c′)) = objπ(c′) ∧ nameX(ς’c′) = nameπ(c′).

178

Proof.

Structural induction on p:
(1) Case p = c . nτ (u

∗):x
Straightforward form definition [2.67] and
basename(c’objπ(c′)) = basename(objπ(c′)).

(2) Case p = p1; p2
Straightforward form definition [2.68] and
the induction hypothesis.

(3) Case p = if b p1 else p2
Straightforward form definition [2.69] and
the induction hypothesis. 2

Lemma 70.
Let

Labels(nameπ(c)) = {ci}
PreReturnsπ(c′) = {cr}

∀p,X, σ, c, c′ :
((X, σ) ∈ [[p]] ∧ c’c′ ∈ X)

⇒
c ∈ X ∧

∨
ci
c′ = ciσ(c’condπ(c′)) ∧

∧
cr
¬(c’cr ∈ X).

Proof.

Structural induction on p:
(1) Case p = c . nτ (u

∗):x
Straightforward form definition [2.67]

(2) Case p = p1; p2

Straightforward form definition [2.68],
the induction hypothesis and
the uniqueness of label c.

(3) Case p = if b p1 else p2
Straightforward form definition [2.69] and
the induction hypothesis. 2

Lemma 71.
Let

Labels(nameπ(c)) = {ci}
PreReturnsπ(c′) = {cr}

∀p,X, σ, c, c′ :
((X, σ) ∈ [[p]] ∧
c ∈ X ∧∨

ci
c′ = ci ∧

σ(c’condπ(c′)) ∧∧
cr
¬(c’cr ∈ X))

⇒
c’c′ ∈ X.

Proof.

Structural induction on p:
(1) Case p = c . nτ (u

∗):x
Straightforward form definition [2.67]

(2) Case p = p1; p2

Straightforward form definition [2.68], and

the induction hypothesis.

(3) Case p = if b p1 else p2

Straightforward form definition [2.69] and

the induction hypothesis. 2

Lemma 72.
Let
∀p,X, σ, c :

179

(X, σ) ∈ [[p]]
⇒
σ(condπ(c))
⇔
c ∈ X.

Proof.

Structural induction on p:
(1) Case p = c . nτ (u

∗):x
Straightforward form definition [2.67]
condπ(c) = true

(2) Case p = p1; p2

Straightforward form definition [2.68], and
the induction hypothesis.

(3) Case p = if b p1 else p2
Straightforward form definition [2.69] and
the induction hypothesis.
σ(b) for the then part and
¬σ(b) for the else part. 2

Lemma 73.
∀π,X, ς, c1, c2 :

X ∈ H(π) ∧
ς’c1 ∈ X ∧
ς’c2 ∈ X ∧
c1 →π c2

⇒
ς’c1 ≺X ς’c2.

Proof.

Case analysis on c1 →π c2
(1) Case: the initialization order

Straightforward form definition [2.71] and
[2.70].
X = X0 ·X ′

(2) Case: the sequential order of the sequential
programs pi

Straightforward form structural induction on
pi

and definition [2.67], [2.68], and [2.69].
X = X1 ·X2

(3) Case: →n of a method n.
Straightforward form definition [2.67]
∀ci, cj ∈ {ci} :
((ci →n cj) ∧ c’ci ∈ X ′ ∧ c’cj ∈ X ′)⇒
c’ci ≺X′ c’cj 2

Lemma 74.
∀π,Xc, c′ :

X ∈ H(π) ∧ c’c′ ∈ X)⇒
(iEv(c)�X iEv(c’c′) ∧ rEv(c’c′)�X rEv(c)).

Proof.

We have that

(1) X ∈ H(π)

(2) c’c′ ∈ X
We show that

iEv(c)�X iEv(c’c′)

rEv(c’c′)�X rEv(c)

From definition 2.71 and [2.70]on [1] and [2], we
have

∃Xi :

(3) (Xi, σ) ∈ [[pi]]

(4) c’c′ ∈ Xi

180

(5) Xi b X
We show that

(6) iEv(c)�Xi iEv(c’c′)
(7) rEv(c’c′)�Xi rEv(c)
Structural induction on p:

(8) Case p = c . nτ (u
∗):x

Straightforward form definition [2.67]
X = inv(c . nτ (u)) ·X ′ · ret(c . x′)

(9) Case p = p1; p2
Straightforward form definition [2.68],

the induction hypothesis and

the uniqueness of label c.

(10) Case p = if b p1 else p2
Straightforward form definition [2.69] and

the induction hypothesis.

From [5] on [6] and [7], we have

iEv(c)�X iEv(c’c′)

rEv(c’c′)�X rEv(c)

2

Lemma 75.
∀π,X, σ, c :

X ∈ H(π) ∧
l ∈ X ∧
objX(l) = this ∧

⇒
∃c : l = c.

Proof.

From definition 2.71 and [2.70], we have
∃Xi :

(1) (Xi, σ) ∈ [[pi]]

(2) l ∈ Xi

(3) Xi b X

Straightforward form structural induction on pi
2

Lemma 76.
∀π,X, σ, c :

X ∈ H(π) ∧
l ∈ X ∧
¬objX(l) = this ∧

⇒
∃c, c′ : l = c’c′.

Proof. Similar to Lemma 75. 2

Lemma 77.
∀π, T ,D,P , p0, ..., pn, X, σ, c :

(π = (T ,D,P) ∧
P = p0, (p1||p2||...||pn) ∧
(X, σ) ∈ [[pi]] ∧
c ∈ X ∧

⇒
threadX(c) = i.

181

Proof.

By structural induction on pi, we have
(1) c ∈ Labels(pi)
(2) threadX(c) = threadπ(c)

From the well-formedness conditions, we have

The thread argument of each method call is
the

identifier of the thread in which it is called.
(3) ∀c ∈ Labels(pi) : threadπ(c) = i

From [1], [2] and [3], we have
(4) threadX(c) = Ti 2

Lemma 78.
∀π, T ,D,P , p0, ..., pn, X, σ, c :

(π = (T ,D,P) ∧
P = p0, (p1||p2||...||pn) ∧
(X, σ) ∈ [[pi]] ∧
c’c′ ∈ X ∧

⇒
σ(threadX(c’c′)) = i.

Proof.

By structural induction on pi, we have
∃n, τ :

(1) c′ ∈ Labels(n)
(2) threadX(c’c′) = c’threadπ(c′)
(3) σ(c’tparπ(n)) = σ(τ)
(4) c ∈ X
(5) threadX(c) = τ

By Lemma 77 on [4], we have
(6) threadX(c) = i

From the well-formedness conditions, we have
The thread argument of each method call is

the
identifier of the thread in which it is called.

(7) ∀c′ ∈ Labels(n) : threadπ(c′) = tparπ(n)
From [2], [7], [3], [5], and [6], we have

(8) σ(threadX(c′c′)) = i 2

Lemma 79.
∀p,X, σ, c1, c2 :

(X, σ) ∈ [[p]] ∧
c1 ∈ X ∧
c2 ∈ X ∧

⇒
c1 ≺X c2 ∨ c2 ≺X c1 ∨ c1 = c2.

Proof. Straightforward structural induction on p. 2

Lemma 80.
∀p,X, σ, c1, c2, c3, c4 :

(X, σ) ∈ [[p]] ∧
c1’c2 ∈ X ∧
c3’c4 ∈ X ∧

⇒
c1’c2 ≺X c3’c4 ∨ c3’c4 ≺X c1’c2 ∨ c1’c2 = c3’c4.

182

Proof. Straightforward structural induction on p. 2

Lemma 81.
∀π,X, φ, st :

π = (T ,D,P) ∧
T (φ) = Threadlocal st ∧
X ∈ H(π) ∧
l ∈ X ∧
basename(objX(l)) = φ

⇒
threadX(l)) = index(objX(l)).

Proof.

We have
(1) π = (T ,D,P)
(2) T (φ) = Threadlocal st
(3) X ∈ H(π)
(4) l ∈ X
(5) basename(objX(l)) = φ

From definition 2.71 and 2.70 on [3] and [5], we
have
∃Xi :

(6) l ∈ Xi

(7) (Xi, σ) ∈ [[pi]]
(8) basename(objXi(l)) = φ
(9) Xi b X

We show that
(10) threadXi(l) = index(objXi(l))

Structural induction on pi:
(11) Case pi = c . nτ (u

∗):x
Form definition [2.67], we have

(12) l = c’c′

(13) index(objectXi(c’c
′)) = c’indexπ(c′)

(14) threadXi(c’c
′) = c’threadπ(c′)

From the well-formedness conditions, we have

The thread argument of each method call is
the

identifier of the thread in which it is called.

(15) ∀c′ ∈ Labels(n) : threadπ(c′) = tparπ(n)

From the well-formedness conditions, we have

The array access index to every thread-local

object is the current thread identifier.

(16) ∀φ, st, c′ :
T (φ) = Threadlocal st ∧
c′ ∈ Labels(n)⇒
indexπ(c′) = tparπ(n)

From [13], [14], [15], [16], we have

(17) threadXi(l) = index(objXi(l))

(18) Case pi = p′ p′′

Straightforward form definition [2.68],

the induction hypothesis and

the uniqueness of label l.

(19) Case p = if b p1 else p2
Straightforward form definition [2.69] and

the induction hypothesis.

From [10] and [9], we have

threadX(l) = index(objX(l))

2

Lemma 82.
∀π,X, σ,L, c, n, t, x :

(X, σ,L) ∈ [[π]]
tparπ(n) = t ∧ par1π(n) = x
Returnsπ(n) = {ci}
c ∈ X
objX(c) = this
nameX(c) = n

183

⇒
σ(c’t) = threadX(c) ∧
σ(c’x∗) = arg∗X(c) ∧∨

i=1..n

(c’ci ∈ X ∧
arg1X(c’ci) = retvX(c)).

Proof.

We have that
(1) (X, σ,L) ∈ [[π]]
(2) tparπ(n) = t ∧ par1π(n) = x
(3) Returnsπ(n) = {ci}
(4) c ∈ X
(5) objX(c) = this
(6) nameX(c) = n

We show that
σ(c’t) = σ(threadX(c)) ∧
σ(c’x∗) = σ(arg∗X(c)) ∧∨
i=1..n

(c’ci ∈ X ∧
σ(arg1X(c’ci)) = σ(retvX(c)))

From definition 2.70 on [1], [4], [5], and [6], we
have
∃Xi :

(7) (Xi, σ) ∈ [[pi]]
(8) c ∈ Xi

(9) objXi(c) = this
(10) nameXi(c) = n
(11) Xi b X

We show that
(12) σ(c’t) = σ(threadXi(c)) ∧
(13) σ(c’x∗) = σ(arg∗Xi(c)) ∧
(14)

∨
i=1..n

(c’ci ∈ Xi ∧
σ(arg1Xi(c’ci)) = σ(retvXi(c)))

Structural induction on pi:

(15) Case pi = c . nτ (u
∗):x

From the Well-formedness
condition of specifications that

Every branch of every method definition
ends

in a return statement.
we have
∃cr ∈ {cr} : σ(c’condπ(ci))

The rest is straightforward form the follow-
ing

conditions of definition [2.67]
∀ci ∈ {ci} :

c’ci ∈ X ′ ⇔
(σ(c’condπ(ci)) ∧
∀cj ∈ PreReturnsπ(ci)⇒ ¬c’cj ∈ X ′

and
∀cr ∈ {cr} :

c’cr ∈ X ′ ⇒ σ(x′) = σ(c’arg1π(cr))
(16) Case pi = p′ p′′

Straightforward form definition [2.68],
the induction hypothesis and
the uniqueness of label c.

(17) Case p = if b p1 else p2
Straightforward form definition [2.69] and
the induction hypothesis.

From [11] on [12], [13] and [14], we have
σ(c’t) = σ(threadX(c)) ∧
σ(c’x∗) = σ(arg∗X(c)) ∧∨
i=1..n

(c’ci ∈ X ∧
σ(arg1X(c’ci)) = σ(retvX(c))) 2

Lemma 83.
∀X, σ, c, n, τ, u, x′ :

(X, σ) ∈ [[c . nτ (u):x]]
c′, c′′ ∈ Returnsπ(n)
c’c′ ∈ X ∧ c’c′′ ∈ X

⇒

184

c′ = c′′.

Proof.

We have that
(1) (X, σ) ∈ [[c . nτ (u):x]]
(3) c′ ∈ Returnsπ(n)
(3) c′′ ∈ Returnsπ(n)
(4) c’c′ ∈ X
(5) c’c′′ ∈ X

We show that
c′ = c′′

We consider three cases
Case

c′ = c′′

Obvious

Case

c′ ∈ PreReturnsπ(c′′)

By definition [2.67] on [5], we have

¬c’c′ ∈ X
which is contradiction to [4].

Case

c′′ ∈ PreReturnsπ(c′)

By definition [2.67] on [4], we have

¬c’c′′ ∈ X
which is contradiction to [5]. 2

Lemma 84.
∀π,X, σ,L, c, c′, n, t, x :

(X, σ,L) ∈ [[π]]
tparπ(n) = t ∧ par1π(n) = x
c′ ∈ Returnsπ(n)
c’c′ ∈ X

⇒
c ∈ X ∧
objX(c) = this ∧ nameX(c) = n ∧
σ(threadX(c)) = σ(c’t) ∧
σ(arg∗X(c)) = σ(c’x∗) ∧
σ(retvX(c)) = σ(arg1X(c’c′)).

Proof.

We have that

(1) (X, σ,L) ∈ [[π]]

(2) tparπ(n) = t ∧ par1π(n) = x

(3) c′ ∈ Returnsπ(n)

(4) c’c′ ∈ X
We show that

c ∈ X ∧
objX(c) = this ∧ nameX(c) = n ∧
σ(threadX(c)) = σ(c’t) ∧
σ(arg∗X(c)) = σ(c’x∗) ∧
σ(retvX(c)) = σ(arg1X(c’c′))

From definition 2.70 on [1] and [4], we have

∃Xi :

(5) (Xi, σ) ∈ [[pi]]

(6) c’c′ ∈ Xi

(7) Xi b X

We show that

(8) c ∈ Xi ∧
(9) objXi(c) = this ∧ nameXi(c) = n ∧
(10) σ(threadXi(c)) = σ(c’t) ∧
(11) σ(arg∗Xi(c)) = σ(c’x∗) ∧
(12) σ(retvXi(c)) = σ(arg1Xi(c’c

′))

Structural induction on pi:

(13) Case pi = c . nτ (u
∗):x

Straightforward form definition [2.67] and

Lemma 83.

(14) Case pi = p′ p′′

Straightforward form definition [2.68],

the induction hypothesis and

185

the uniqueness of label c.
(15) Case p = if b p1 else p2

Straightforward form definition [2.69] and
the induction hypothesis.

From [11] on [8]-[12], we have
c ∈ X ∧

objX(c) = this ∧ nameX(c) = n ∧
σ(threadX(c)) = σ(c’t) ∧
σ(arg∗X(c)) = σ(c’x∗) ∧
σ(retvX(c)) = σ(arg1X(c’c′))

2

10.4.2 Derived Rules

P2L:
Derived from rule P2X and rule X2L.

IX2OX:
Derived from rule X2X, rule Callee, rule TSeq, rule OX2IX, and rule XASym.

XLTrans:
Derived from rule L2X, rule XTotal, rule XTrans, rule XXTrans, rule X2L, and rule LASym.

X2L’:
Derived from rule L2X, rule XTotal, rule X2L, and rule LASym.

AReg’:
Derived from rule AReg and the following

(π,Γ ` isWriterreg(lW , lR) ∧ isWriterreg(lW ′ , lR))⇒ (π,Γ ` lW = lW ′)

BReg’:
Derived from rule BReg and the following

π,Γ ` isSequential(reg)⇒ π,Γ ` ∀` : (isReadreg(`) ∨ isWritereg(`))⇒ isRaceFreereg(`)

TReg:
Derived from rule TLocal, rule TSeq and rule BReg’.

CASRegRead’:
Derived from rule CASRegRead and the following

(π,Γ ` isCWriterreg(lW , lR) ∧ isCWriterreg(lW ′ , lR))⇒ (π,Γ ` lW = lW ′)

SCounter’:
Derived from rule LTotal and rule SCounter.

BasicMapGet’:
Derived from rule BasicMapGet.

186

BasicMapPut’:
Derived from rule BasicMapPut.

DisjSyllL:
Derived form rule DisjElim and rule NegElim.

DisjSyllR:
Derived form rule DisjElim and rule NegElim.

CondElim’:
Derived form rule Premise, rule CondElim, and rule NegIntro.

Other Lemmas:
Lemma 36:
Derived from rule Premise.

Lemma 37:
Derived from rule Premise.

187

10.5 Syntactic TM Correctness

10.5.1 Transactions

Let us define

Inits(X) = {l | l ∈ X ∧ objX(l) = this ∧ nameX(l) = init} (10.3)

Reads(X) = {l | l ∈ X ∧ objX(l) = this ∧ nameX(l) = read} (10.4)

W rites(X) = {l | l ∈ X ∧ objX(l) = this ∧ nameX(l) = write} (10.5)

C ommits(X) = {l | l ∈ X ∧ objX(l) = this ∧ nameX(l) = commit} (10.6)

Committed(X) = {T | ∃l : l ∈ C ommits(X) ∧ threadX(l) = T ∧ retvX(l) = C} (10.7)

Aborted(X) = {T | ∃l : l ∈ X ∧ objX(l) = this ∧ threadX(l) = T ∧ retvX(l) = A}(10.8)

Lemma 85.
∀X, σ, c :

(X, σ) ∈ [[transj]] ∧
c ∈ X

⇒
(c ∈ Inits(X) ∧ c = ILj ∨
c ∈ Reads(X) ∨
c ∈W rites(X) ∨
c ∈ C ommits(X) ∧ c = CLj) ∧
(ILj � c) ∧
(CLj ∈ X ⇒ c � CLj)

Proof.
Case j = 0:

Derived from Equation 2.3 and Equation 2.68.
Case 0 < j ≤ n:

Derived from Equation 2.4, induction on the structure of op and Equation 2.69. 2

Lemma 86.
∀X, σ :

(X, σ) ∈ [[transj]]
⇒
∃c :
c ∈ X ∧ objX(c) = this ∧ threadX(c) = j ∧
(retvX(c) = C ∨ retvX(c) = A)

Proof.
Case j = 0:

Derived from Equation 2.3, Equation 2.68, Equation 2.67 and the well-formedness condition
∀c′ ∈ Returnsπ(commit) : retvπ(c′) = C ∨ retvπ(c′) = A.

Case 0 < j ≤ n:
Derived from Equation 2.4, induction on the structure of op and Equation 2.69, Equation 2.67

and the well-formedness condition
∀c′ ∈ Returnsπ(commit) : retvπ(c′) = C ∨ retvπ(c′) = A. 2

188

Lemma 87.
∀X, σ, c, c′ :

(X, σ) ∈ [[transj]]
c ∈ X ∧ objX(c) = this ∧ threadX(c) = j ∧
c′ ∈ X ∧ objX(c′) = this ∧ threadX(c′) = j ∧
(retvX(c) = C ∨ retvX(c) = C) ∨ (retvX(c′) = A ∨ retvX(c′) = A)⇒
c = c′

Proof.
Case j = 0:

Derived from Equation 2.3, Equation 2.68, Equation 2.67 and the well-formedness conditions
∀c ∈ Returnsπ(init) : arg1π(c) = ok
∀c ∈ Returnsπ(write) : arg1π(c) 6= C

and that in every execution of the transaction trans0, all the write method calls return ok.
Case 0 < j ≤ n:

Derived from Equation 2.4, induction on the structure of op and Equation 2.69, Equation 2.67
and

the following well-formedness conditions
∀c ∈ Returnsπ(init) : arg1π(c) = ok
∀c ∈ Returnsπ(read) : arg1π(c) 6= C
∀c ∈ Returnsπ(write) : arg1π(c) 6= C
∀c ∈ Returnsπ(commit) : arg1π(c) = C ∨ arg1π(c) = A 2

Lemma 88.
∀π ∈ ΠTM : ∀X ∈ H(π) : ∀T ∈ Trans(X) : Let l = commitOf(T) : l ∈ Inits(X) ∧ threadX(l) = T

Proof. Derived from Equation 2.3, Equation 2.4, Equation 2.5, Equation 2.71, Equation 2.70, and
Equation 2.68. 2

Lemma 89.
∀π ∈ ΠTM : ∀X ∈ H(π) : ∀l, l′ :

(l ∈ Inits(X) ∧ l′ ∈ Inits(X) ∧ threadX(l) = threadX(l′))⇒
l = l′

Proof. Derived from Equation 2.71, Equation 2.70, Lemma 75, Lemma 77, and Lemma 85. 2

Lemma 90.
∀π ∈ ΠTM : ∀X ∈ H(π) : ∀l, l′ :

(l ∈ Inits(X) ∧ l′ ∈ X ∧ objX(l′) = this ∧ threadX(l) = threadX(l′))⇒
l �X l′

Proof. Derived from Equation 2.71, Equation 2.70, Lemma 75, Lemma 77, and Lemma 85. 2

Lemma 91.
∀π ∈ ΠTM : ∀X ∈ H(π) : ∀T ∈ Trans(X)
Let l = commitOf(T) :

T ∈ Committed(X)⇒
(l ∈ C ommits(X) ∧ threadX(l) = T)

189

Proof. Derived from Equation 2.6, Equation 2.71, Equation 2.70, Lemma 75, Lemma 85 and Lemma 77.
2

Lemma 92.
∀π ∈ ΠTM : ∀X ∈ H(π) : ∀l, l′ :

(l ∈ C ommits(X) ∧ l′ ∈ C ommits(X) ∧ threadX(l) = threadX(l′))⇒
l = l′

Proof. Derived from Equation 2.71, Equation 2.70, Lemma 75, Lemma 77 and Lemma 85. 2

Lemma 93.
∀π ∈ ΠTM : ∀X ∈ H(π) : ∀l, l′ :

(l ∈ X ∧ objX(l) = this ∧ l′ ∈ C ommits(X) ∧ threadX(l) = threadX(l′))⇒
l �X l′

Proof. Derived from Equation 2.71, Equation 2.70, Lemma 75, Lemma 77 and Lemma 85. 2

Lemma 94.
∀π ∈ ΠTM : ∀X ∈ H(π) : ∀t : 0 ≤ t ≤ n

(t ∈ Committed(X) ∧ t ∈ ¬Aborted(X)) ∨ (t ∈ Aborted(X) ∧ t ∈ ¬Committed(X))

Proof. Derived from Equation 2.71, Equation 2.70, Lemma 86, and Lemma 87. 2

Lemma 39
∀π ∈ ΠTM : π |= Γ0.

Proof. Derived from Equations 10.3-10.8, Equations 6.7-6.13, Definition 15, Definition 16 and Lem-
mas 88-94. 2

Theorem 40.

Proof. Derived from Theorem 3 and Lemma 39. 2

10.5.2 Markability

Theorem 5:
M arkable ⊆ Opaque.

Proof.

We assume that
(1) π ∈ M arkable

We show that that
π ∈ Opaque

By Definition 17 on [1], we have
(2) π,Γ0 ` isMarking(v)

From Lemma 40 on [2], we have
(3) π |= isMarking(v)

By Definition 15, and Figure 6.2, Figure 3.5

190

on [3], we have
(4) ∀X ∈ [[π]] : X ∈ F inalStateMarkable

By Theorem 1 on [4], we have
(5) ∀X ∈ [[π]] : X ∈ F inalStateOpaque

By Definition 14 on [5], we have
(6) π ∈ Opaque 2

191

32

6. Previous Works

Guerraoui et al. [10] [12] modeled TM algorithms as transition

systems. A state transition, also called a command, is a fragment

of a TM operation. It is assumed that no two commands execute

concurrently. Both the TM algorithm and the correctness criteria

are specified as transition systems. Verifying the correctness of

the TM algorithm reduces to deciding language inclusion of the

former in the latter. Due to unbounded number of threads and

locations, the transition systems have infinite states. The problem

is tackled by a “small world” result: a meta-theorem that for every

TM algorithm with some assumptions, the algorithm is correct if

and only if it is correct for two threads and two memory locations.

Thus, the language inclusion is needed to be decided only on the

finite-state instances of the transition systems.

In a follow up research, Emmi et al. [8] rewrites the transition

systems of the TM algorithms and strict serializability that were

presented by [12] to a first-order logical representation of

parametrized systems. The product (or composition) of two

parametrized systems is defined. It is essentially a parametrized

system that transitions in both systems on each command.

Verification of the TM algorithm reduces to model-checking the

following logical statement in the product transition system of the

TM and strict serializability: for each state, for each action, if the

guard of the TM transition system then the guard of strict

serializability. This essentially means that at each state, the TM

transition system allows an action only if strict serializability

allows it. To verify that a target statement is an invariant of a

system, ideas from verification by invisible invariants and

template-based invariant generation are adapted. The verification

procedure tries to come up with inductive invariants of the system

and check if those invariants entail the target statement. To find an

inductive invariant, candidate invariants are generated from a

template schema (that are statements of the form

). Instances of the parametrized system are thoroughly

generated and the candidate invariants that are not invariants of

these instances are filtered. The candidate inductive invariant is

the conjunction of some of the remained candidate invariants that

is valid in the initial state and is preserved in the transitions. It is

checked whether the inductive invariant entails the target

statement. Otherwise the procedure is repeated where candidate

invariants are generated from a larger template scheme and

invariants are filtered using larger instances of the system.

The model-checking approach needs the specification of the

TM algorithm as a transition system. Rewriting a TM algorithm to

a transition system is a burden and prone to mistakes. A rigorous

verification needs the proof of equivalence for the TM algorithm

and its transition system specification. As an example, there is no

visible reads in DSTM algorithm [19] but the specifications of

DSTM in [10][12] and [8] abort the visible readers during the

execution of the validate command. The specification is more

similar to the visible readers version of DSTM2 algorithm [18]

than DSTM algorithm. As another example, TL2 algorithm [5] is

based on version numbers while the specifications of TL2 in [10]

[12] and [8] replace the version number concept with the new

notion of modified sets. It is needed to define and prove

equivalence of version numbers to modified sets. Furthermore,

there has been a typo of writing instead of in the TL2

transition system in [12]. The follow up work [8] that rewrites this

specification, incorrectly fixed to and thus verified a

different algorithm.

More importantly, both of the previous works assume that

fragments of TM procedures run atomically. By these atomicity

assumptions, the fundamental monotonicity property is satisfied.

In the first work [10][12], fragments of TM procedures (also

called commands or actions) are executed on a state transition.

There is no interleaving during the execution of a fragment. The

second work [8] further assumes atomicity for two consecutive

commands of the TL2 commit procedure. The presumption that a

fragment of a procedure executes atomically is barely valid in a

TM algorithm. In fact, it is the subtle interleavings that can be

overlooked and render a TM algorithm incorrect.

Later, Guerraoui et al. [11][33] considered the fact that

fragments of the TM operations can not be assumed to run

atomically. But to have the monotonicity property, over simplified

versions of the algorithms were considered and verified. For

example, DSTM is specified with no dynamic object allocation

while DSTM is fundamentally based on dynamic creation of

locator objects. There is no distinction between read and write

operations. The read operation simply calls the write operation.

This means that similar to a writes, reads acquire the location.

This is while readers do not acquire the location in DSTM. The

commit operation writes to every location that is written to during

the transaction. This is while commitment is done by a single

compare-and-swap in DSTM. There are oversimplifications in

TL2 as well. The check that the version of the read location is less

than the read version is replaced with an equality check. This

restricts the concurrency of the algorithm. A local array lver is

introduced that is written during the read operations and checked

during the commit procedure. This local array does not exist in the

Figure 26. The specification of DSTM algorithm according to [12] and [8]

Figure 10.13: Specification of DSTM

33

original algorithm.

We rewrite the transition systems of [12] and [8] using a

conventional language to make them more readable. Horizontal

lines separate fragments that are assumed to be executed

atomically.

The specification of DSTM algorithm according to [12] and

[8] is shown in Figure 26.

Verification is employed to make sure that subtle interleavings

can not break the TM algorithm. For example in DSTM2 [18], the

tentative writer of a location that is being read is aborted. It is

aborted to prevent interleavings such as the following that can

lead to reading inconsistent values. Assume that a transaction

writes to two locations and and a transaction reads the

same two locations. Consider the following order of execution:

writes to and , starts committing and aborts visible readers

of and , reads the old value of , commits new values

to and , reads the new value of . reads insonsistent

values: the old value of and the new value of . This is

prevented by abortion of the tentative writer of (that is) when

 reads . does not commit and does not write back new

values. reads the old value of that is consistent with the old

value of that it has previously read. In the transition system of

DSTM in [10][12] and [8], it is assumed that aborting visible

readers and committing the transaction are executed atomically.

Thus the mentioned interleaving can not happen and the transition

system is correct even without its validation transition that aborts

writers.

The specification of TL2 algorithm according to [12] is shown

in Figure 27.

The specification of TL2 [8] is the same as above except that

there is no horizontal line between and and .

Here, we show that DSTM (Figure 4) is not monotonic. The

most important property which allows to reduce the verification

property is the monotonicity in TM. Let be the set of

opaque histories with all committed and exactly one unfinished

transaction. We define a function such that if

, then is sequential and strictly equivalent to .

The monotonicity property for opacity states that if ,

where , and is not an abort, and is an operation of the

unfinnished transaction in , then there is a history

such that the history is a finite prefix of a history in .

Note the monotonicity propery is used in the reduction

theorem as follows: “So, using property P4, there exists a history

 such that the history is in .”

Consider the following history:

Let

We show that there is no i.e. is sequential

and strictly equivalent to .

We show this by contradiction: Assume that there is

 i.e. is sequential and strictly equivalent to .

There is a conflict between

and

So, as is equal and strictly equivalent to ,

In this execution, aborts during

Thus, if is invoked after , is returned. Thus,

 is not a history of DSTM. Thus, .

Figure 27. The specification of TL2 algorithm according to [12]

Figure 10.14: Specification of TL2

10.6 Related Works

We rewrite the transition systems of [31] and [24] to make them more readable. Figure 10.13 presents
the specification of DSTM algorithm according to [31] and [24]. Figure 10.14 presents the specification
of TL2 algorithm according to [31]. The specification of TL2 in [24] is the same as Figure 10.14 except
that there is no horizontal line between and and C10 and C11. Horizontal lines separate fragments
that are assumed to be executed atomically.

192

Chapter 11

Bibliography

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional memory and automatic
mutual exclusion. In POPL, pages 63–74, 2008.

[2] Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM Trans. Program. Lang. Syst.,
17(3):507–535, May 1995.

[3] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and Sean Lie.
Unbounded transactional memory. In HPCA, 2005.

[4] Woongki Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Implementing and evaluating a
model checker for transactional memory systems. In Engineering of Complex Computer Systems
(ICECCS), 2010 15th IEEE International Conference on, pages 117–126, 2010.

[5] Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using hardware memory protection to
build a high-performance, strongly-atomic hybrid transactional memory. In Proceedings of the
35th Annual International Symposium on Computer Architecture, ISCA ’08, pages 115–126,
Washington, DC, USA, 2008. IEEE Computer Society.

[6] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. A
critique of ansi sql isolation levels. SIGMOD Rec., 24(2):1–10, May 1995.

[7] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission ac-
counting in separation logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’05, pages 259–270, New York, NY, USA, 2005.
ACM.

[8] John Boyland. Checking interference with fractional permissions. In Proceedings of the 10th
international conference on Static analysis, SAS’03, pages 55–72, Berlin, Heidelberg, 2003.
Springer-Verlag.

[9] Stephen Brookes. A semantics for concurrent separation logic. Theor. Comput. Sci., 375(1-
3):227–270, April 2007.

[10] Alexandre Buisse, Lars Birkedal, and Kristian Støvring. Step-indexed kripke model of separation
logic for storable locks. Electron. Notes Theor. Comput. Sci., 276:121–143, September 2011.

193

[11] Ariel Cohen, John W. O’Leary, Amir Pnueli, Mark R. Tuttle, and Lenore D. Zuck. Verifying
correctness of transactional memories. In FMCAD, 2007.

[12] Ariel Cohen, Amir Pnueli, and Lenore D. Zuck. Mechanical verification of transactional memories
with non-transactional memory accesses. In CAV, 2008.

[13] Joey W. Coleman and Cliff B. Jones. A structural proof of the soundness of rely/guarantee
rules. J. Log. and Comput., 17(4):807–841, August 2007.

[14] Intel Corporation. Intel architecture instruction set extensions programming reference. 319433-
012, 2012.

[15] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark Moir, Michael L. Scott,
and Michael F. Spear. Hybrid norec: A case study in the effectiveness of best effort hardware
transactional memory. In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XVI, pages 39–52, New
York, NY, USA, 2011. ACM.

[16] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: streamlining stm by abolish-
ing ownership records. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’10, pages 67–78, New York, NY, USA, 2010. ACM.

[17] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In Proceedings of the
Theory and practice of software, 14th international conference on Tools and algorithms for the
construction and analysis of systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[18] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC, (LNCS 4167), 2006.

[19] Dave Dice and Nir Shavit. TLRW: Return of the read-write lock. In SPAA, 2010.

[20] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor
Vafeiadis. Concurrent abstract predicates. In Proceedings of the 24th European conference on
Object-oriented programming, ECOOP’10, pages 504–528, Berlin, Heidelberg, 2010. Springer-
Verlag.

[21] Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-guarantee reasoning.
In Proceedings of the 18th European Symposium on Programming Languages and Systems: Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
ESOP ’09, pages 363–377, Berlin, Heidelberg, 2009. Springer-Verlag.

[22] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and verifying
transactional memory. Formal Aspects of Computing, 2012.

[23] Aleksandar Dragojevic, Rachid Guerraoui, and Michal Kapalka. Stretching transactional mem-
ory. In PLDI, 2009.

[24] Michael Emmi, Rupak Majumdar, and Roman Manevich. Parameterized verification of trans-
actional memories. In Proceedings of PLDI’10, ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 134–145, June 2010.

194

[25] Xinyu Feng. Local rely-guarantee reasoning. In Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’09, pages 315–327, New
York, NY, USA, 2009. ACM.

[26] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the relationship between concurrent sepa-
ration logic and assume-guarantee reasoning. In Proceedings of the 16th European conference on
Programming, ESOP’07, pages 173–188, Berlin, Heidelberg, 2007. Springer-Verlag.

[27] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. Local reasoning
for storable locks and threads. In Proceedings of the 5th Asian conference on Programming
languages and systems, APLAS’07, pages 19–37, Berlin, Heidelberg, 2007. Springer-Verlag.

[28] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPOPP, pages
175–184, 2008.

[29] Rachid Guerraoui, Thomas A. Henzinger, Barbara Jobstmann, and Vasu Singh. Model checking
transactional memories. In ACM SIGPLAN Conference on Programming Languages Design and
Implemen tation, pages 372–382, 2008.

[30] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Software transactional memory
on relaxed memory models. In Proceedings of CAV’09, Seventh International Conference on
Computer Aided Verification, pages 321–336, 2009.

[31] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Model checking transactional mem-
ories. Distributed Computing, 2010.

[32] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben Hertzberg,
Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun. Transactional
memory coherence and consistency. In ISCA, 2004.

[33] R. Haring, M. Ohnmacht, T. Fox, M. Gschwind, D. Sattereld, K. Sugavanam, P. Coteus, P. Hei-
delberger, M. Blumrich, R. Wisniewski, A. Gara, G.-T. Chiu, P. Boyle, N. Chist, , and C. Kim.
The IBM Blue Gene/Q compute chip. IEEE Micro, 32(2):48–60, 2012.

[34] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory. Morgan and Claypool
Publishers, second edition, 2010.

[35] Tim Harris, Simon Marlow, Simon Peyton, and Jones Maurice Herlihy. Composable memory
transactions. In PPOPP’05, pages 48–60. ACM Press, 2005.

[36] Jonathan Hayman and Glynn Winskel. Independence and concurrent separation logic. In In
Proc. LICS 06. IEEE Press, 2006.

[37] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You assume, we guarantee:
Methodology and case studies. In Proceedings of the 10th International Conference on Computer
Aided Verification, CAV ’98, pages 440–451, London, UK, UK, 1998. Springer-Verlag.

[38] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing software trans-
actional memory. In OOPSLA, pages 253–262, 2006.

195

[39] M. Herlihy, V. Luchangco, M. Moir, and III W. N. Scherer. Software transactional memory for
dynamic-sized data structures. In PODC, 2003.

[40] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, July 1990.

[41] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for lock-free
data structures. In ISCA, pages 289–300, 1993.

[42] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, 1969.

[43] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle semantics for con-
current separation logic. In Proceedings of the Theory and practice of software, 17th European
conference on Programming languages and systems, ESOP’08/ETAPS’08, pages 353–367, Berlin,
Heidelberg, 2008. Springer-Verlag.

[44] Damien Imbs, José Ramon de Mendivil, and Michel Raynal. Brief announcement: virtual world
consistency: a new condition for stm systems. In Proceedings of the 28th ACM symposium
on Principles of distributed computing, PODC ’09, pages 280–281, New York, NY, USA, 2009.
ACM.

[45] Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language for mutable data structures.
In Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’01, pages 14–26, New York, NY, USA, 2001. ACM.

[46] Cliff B. Jones. Specification and design of (parallel) programs. In R. E. A. Mason, editor,
Information Processing 83, volume 9 of IFIP Congress Series, pages 321–332, Paris, France,
September 1983. IFIP, North-Holland
slashIFIP.

[47] E. Koskinen, M. Parkinson, and M. Herlihy. Coarse-grained transactions. In POPL, pages 19–30,
2010.

[48] Leslie Lamport. On interprocess communication. part i: Basic formalism. Distributed Computing,
1(2):77–85, 1986.

[49] Mohsen Lesani. On the correctness of transactional memory algorithms, the companion. http:
//www.cs.ucla.edu/~lesani/companion/dissertation.

[50] Mohsen Lesani, Victor Luchangco, and Mark Moir. A framework for formally verifying software
transactional memory algorithms. In CONCUR, 2012.

[51] Mohsen Lesani, Victor Luchangco, and Mark Moir. Putting opacity in its place. In WTTM’12,
2012.

[52] João Lourenço and Gonçalo Cunha. Testing patterns for software transactional memory engines.
In Proceedings of the 2007 ACM Workshop on Parallel and Distributed Systems: Testing and
Debugging, PADTAD ’07, pages 36–42, New York, NY, USA, 2007. ACM.

196

http://www.cs.ucla.edu/~lesani/companion/dissertation
http://www.cs.ucla.edu/~lesani/companion/dissertation

[53] Chaiyasit Manovit, Sudheendra Hangal, Hassan Chafi, Austen McDonald, Christos Kozyrakis,
and Kunle Olukotun. Testing implementations of transactional memory. In Proceedings of the
15th International Conference on Parallel Architectures and Compilation Techniques, PACT ’06,
pages 134–143, New York, NY, USA, 2006. ACM.

[54] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David Eisenstat,
William N. Scherer III, and Michael L. Scott. Lowering the overhead of software transactional
memory. In ACM SIGPLAN Workshop on Transactional Computing. Jun 2006. Held in conjunc-
tion with PLDI 2006. Expanded version available as TR 893, Department of Computer Science,
University of Rochester, March 2006.

[55] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan Bronson,
Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective hybrid transactional mem-
ory system with strong isolation guarantees. In Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA ’07, pages 69–80, New York, NY, USA, 2007. ACM.

[56] J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Trans. Softw. Eng., 7(4):417–
426, July 1981.

[57] K. F. Moore and D. Grossman. High-level small-step operational semantics for transactions. In
POPL, pages 51–62, 2008.

[58] Leonor Prensa Nieto. The rely-guarantee method in isabelle/hol. In Proceedings of the 12th Eu-
ropean conference on Programming, ESOP’03, pages 348–362, Berlin, Heidelberg, 2003. Springer-
Verlag.

[59] Peter W. OHearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-
3):271–307, April 2007.

[60] Peter W. OHearn, Hongseok Yang, and John C. Reynolds. Separation and information hiding.
In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’04, pages 268–280, New York, NY, USA, 2004. ACM.

[61] J. O’Leary, B. Saha, and Mark R. Tuttle. Model checking transactional memory with spin.
In Distributed Computing Systems, 2009. ICDCS ’09. 29th IEEE International Conference on,
pages 335–342, 2009.

[62] Susan Owicki and David Gries. An axiomatic proof technique for parallel programs i. Acta
Informatica, 6(4):319–340, December 1976.

[63] S. Owre, J.M. Rushby, and N. Shankar. Pvs: A prototype verification system. In Deepak Kapur,
editor, Automated DeductionCADE-11, volume 607 of Lecture Notes in Computer Science, pages
748–752. Springer Berlin Heidelberg, 1992.

[64] V. Pankratius, A.-R. Adl-Tabatabai, , and F. Otto. Does transactional memory keep its
promises? results from an empirical study. Technical Report 2009–12, Institute for Program
Structures and Data Organization (IPD), University of Karlsruhe, September 2009.

197

[65] Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. SIGPLAN Not.,
40(1):247–258, January 2005.

[66] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS ’02, pages 55–74,
Washington, DC, USA, 2002. IEEE Computer Society.

[67] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is transactional programming
actually easier? SIGPLAN Notices, 45(5), January 2010.

[68] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin
Hertzberg. McRT-STM: a high performance software transactional memory system for a multi-
core runtime. In PPoPP, 2006.

[69] M. L. Scott. Sequential specification of transactional memory semantics. In TRANSACT, 2006.

[70] Nir Shavit and Dan Touitou. Software transactional memory. In PODC, 1995.

[71] Vasu Singh. Formalizing and Verifying Transactional Memories. PhD thesis, Ecole Polytech-
nique Federale de Lausanne, April 2010.

[72] Vasu Singh. Runtime verification for software transactional memories. In Proceedings of the First
International Conference on Runtime Verification, RV’10, pages 421–435, Berlin, Heidelberg,
2010. Springer-Verlag.

[73] Serdar Tasiran. A compositional method for verifying software transactional memory implemen-
tations. Technical Report MSR-TR-2008-56, Microsoft Research, apr 2008.

[74] Viktor Vafeiadis. Concurrent separation logic and operational semantics. Electron. Notes Theor.
Comput. Sci., 276:335–351, September 2011.

[75] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separation logic.
In Lus Caires and VascoT. Vasconcelos, editors, CONCUR 2007 Concurrency Theory, volume
4703 of Lecture Notes in Computer Science, pages 256–271. Springer Berlin Heidelberg, 2007.

198

	List of Figures
	Introduction
	Synchronization Object Language
	Introduction
	Syntax
	Specification
	TM Algorithm Specification
	Extended Syntax
	Example Specifications

	Semantics
	Execution History
	Synchronization Object Types
	History Semantics

	TM Correctness
	Introduction
	Opacity
	Markability
	Write-observation and Read-preservation
	Marking TL2
	The Marking Theorem

	Testing TM Algorithms
	Introduction
	Opacity Bug Patterns
	Automatic Bug Finding
	Experiments

	Synchronization Object Program Logic
	Introduction
	Simple Example
	Algorithm Specification
	Program Logic
	Deduction

	Assertion Language
	Assertion Semantics
	Inference Rules
	Classical First-order Logic Inference Rules
	Structure Inference Rules
	Basic Inference Rules
	Synchronization Object Inference Rules

	Soundness
	Dekker Mutual Exclusion

	Syntactic TM Correctness
	Client Transactions
	Markability

	Verification of TM Algorithms
	Marking TL2
	Marking DSTM (visible reads)
	Marking NORec

	Related Works
	Verification of Transactional Memory
	Concurrent Program Logics

	Conclusions and Future Works
	Appendix
	Synchronization Object Language
	Specification
	Semantics

	TM Correctness
	The Marking Theorem
	Marking TL2

	Testing TM Algorithms
	Example: Dekker Mutual Exclusion
	Language
	TM Algorithms in Samand

	Synchronization Object Program Logic
	Soundness
	Derived Rules

	Syntactic TM Correctness
	Transactions
	Markability

	Related Works

	Bibliography

