Polynomial-time Fence Insertion For Structured Programs

M. Taheri, A. Pourdamghani, M. Lesani

University of California, Riverside Sharif University of Technology

Correctness Dependent on Program Order

Dekker Mutual Exclusion Algorithm

Weak (relaxed) memory models

1	bool p0()
3	read(flag1):
2	write(flag0,
5	// critical
6	flag0 $=0 ;$
7	return true;
8	$\}$

1 bool p0()

2 write(flag0, 1)
3 read(flag1): 0
$\begin{array}{ll}5 & \text { // critical } \\ 6 & \text { flago }=0 ; \\ 7 & \text { return true; } \\ 8 & \end{array}$

Out of order execution
Both x86 and ARMv7

Fence Instructions

Declarative Fence Insertion

	1 p0()
2	flag0 $=1$
3	if (flag1 == 1)
4	return false;
5	// critical
6	flag0 = 0;
7	return true;
8	

\{2 -> 3\}

1 bool pl()
2 flag1 = 1
3 if (flag0 == 1)
4 return false;
5 // critical
6 flag1 = 0;
7 return true;
8 \}
\{2 $->3\}$

Fence Insertion for Straight-line Programs

- Straight-line Programs
- Polynomial greedy algorithm

Fence Insertion for structured programs

Fence Insertion for structured programs

1. A greedy and polynomial-time optimum fence insertion algorithm for Structured programs.
2. The minimum fence insertion problem with multiple types of fence instructions is NP-hard.

Fence Insertion for loop-free programs

1. Constraint Elimination
2. Finding Diamonds
3. Diamond Decomposition
4. Fence Insertion for Simple Paths

Constraint Elimination

Diamonds

$$
e c b
$$

Diamonds

Decomposing Diamonds to Simple Paths

Diamond Decomposition: Absorbing and Emitting Paths

Diamond Decomposition: Absorbing and Emitting Paths

Diamond Decomposition: Absorbing and Emitting Paths

Diamond Decomposition: Absorbing and Emitting Paths

Diamond Decomposition: Absorbing and Emitting Paths

Diamond Decomposition: Absorbing and Emitting Paths

Diamond Decomposition: Absorbing and Emitting Paths

Diamond Decomposition, Level 0

Diamond Decomposition, Level 1

Diamond Decomposition, Level 2

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Fence Insertion for Simple Paths

Optimality and Complexity

1. Decomposing Diamonds
2. Absorbing path: The spanning constraint can be covered with no extra fence in the path.
3. Emitting: If the extra fence is put outside the path, it may cover other overlapping constraints.
4. Simple Paths
5. The size of the optimum solution is at least the size of every set of non-overlapping constraints.
6. The constraints that lead to addition of fences are non-overlapping.
$\mathcal{O}(|C| \log |C|+|C||V|+|V| l o g|V|)$ time and $\mathcal{O}(|C|+|V|)$ space complexity.

Converting a loop to a diamond

Multi-type Fence Insertion Problem is NP-hard

$\langle C T, F T, G, C\rangle$

$$
\begin{aligned}
U & =\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \\
S & =\left\{S_{1}, S_{2}, S_{3}, \ldots, S_{k}\right\}
\end{aligned}
$$

$$
C T=U
$$

$$
F T=S
$$

Polynomial-time Fence Insertion For Structured Programs

M. Taheri, A. Pourdamghani, M. Lesani

University of California, Riverside Sharif University of Technology

