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Correctness Dependent on Program Order
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1 bool p0()
2   flag0 = 1
3   if (flag1 == 1)
4      return false;
5   // critical
6   flag0 = 0;
7   return true;
8 }
 

1 bool p1()
2   flag1 = 1
3   if (flag0 == 1)
4      return false;
5   // critical
6   flag1 = 0;
7   return true;
8 }
 

Dekker Mutual Exclusion Algorithm



Weak (relaxed) memory models

�3

1 bool p0()
3   read(flag1): 0

2   write(flag0, 1)

5   // critical
6   flag0 = 0;
7   return true;
8 }

1 bool p0()

2   write(flag0, 1)
3   read(flag1): 0

5   // critical
6   flag0 = 0;
7   return true;
8 }

Out of order execution 
Both x86 and ARMv7



Fence Instructions
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1 bool p0()
2   flag0 = 1
    fence
3   if (flag1 == 1)
4      return false;
5   // critical
6   flag0 = 0;
7   return true;
8 }

1 bool p1()
2   flag1 = 1
    fence
3   if (flag0 == 1)
4      return false;
5   // critical
6   flag1 = 0;
7   return true;
8 }



Declarative Fence Insertion
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1 bool p0()
2   flag0 = 1
3   if (flag1 == 1)
4      return false;
5   // critical
6   flag0 = 0;
7   return true;
8 }

{2 -> 3}

1 bool p1()
2   flag1 = 1
3   if (flag0 == 1)
4      return false;
5   // critical
6   flag1 = 0;
7   return true;
8 }

{2 -> 3}



Fence Insertion for Straight-line Programs

• Straight-line Programs 
• Polynomial greedy algorithm
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read(i)

write(i, v)

read(i)

write(i, v)



Fence Insertion for structured programs
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Figure 2 An example of AFG and its constraints. A constraint Ès, tÍ is shown as a dashed arrow
from the source s to the sink t. The diamonds Èe, mÍ and Èg, nÍ are at level 0. The diamond Èc, oÍ
is at level 1 and the diamond Èb, pÍ is at level 2. The constraint Èh, kÍ is an internal constraint for
the diamond Èe, mÍ, the constraint Èd, jÍ is a spanning constraint for the diamond Èg, nÍ, and The
constraint Èd, pÍ is a passing constraint for the diamond Èg, nÍ.

flow-graphs to fence insertion for a set of paths. It also presents a transformation that77

reduces fence insertion for looping structured programs to loop-free structured programs.78

For example, fence insertion for the graph shown in Figure 1.(a) is reduced to fence insertion79

for the two paths shown in Figure 1.(b). The high-level idea is that we can incrementally80

transform a diamond to a single branch by extracting branches. Fences can be independently81

inserted for the extracted branches. For example, the right branch of Figure 1.(a) is extracted82

in Figure 1.(b). The orders within a branch can be only preserved by fences inserted within83

that branch. Thus, the extracted right branch takes the order from d to f with it. Further,84

the extracted right branch can cover the spanning order from e to h with no extra fences.85

Thus, it takes in the spanning order from e to h too; it takes it as the shrunk order from e86

to g. Thus, fence insertion for the extracted right branch covers both constraints from d to f87

and from e to h. The left branch and the vertices above and below the diamond make the88

second path. The order from c to h overlaps with the left branch and stays within the second89

extracted path. The result is two paths and fencing for each can be done in polynomial time.90

We will elaborate on the algorithm in the following sections.91

In the following sections, we first define the problem model (section 2) and then present92

the greedy fence insertion algorithm for loop-free structured programs and state its optimality93

and complexity (section 3). We then present a reduction from fence insertion for looping94

programs to fence insertion for loop-free programs (section 4). Then, we prove the NP-95

hardness of fence insertion with multiple fence types (section 5). Finally, we discuss the96

related works (section 6) before we conclude (section 7).97

2 Problem Model98

We now present the basic definitions and the problem instances that we use throughout the99

paper.100

DISC 2019



Fence Insertion for structured programs
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1. A greedy and polynomial-time optimum fence 
insertion algorithm for Structured programs. 

2. The minimum fence insertion problem with multiple 
types of fence instructions is NP-hard.



Fence Insertion for loop-free programs
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1. Constraint Elimination 
2. Finding Diamonds 
3. Diamond Decomposition 
4. Fence Insertion for Simple Paths
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(b) The diamond (a) after con-
straint elimination. The path
bceg is absorbing. The path
bdfg is emitting.
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(c) The diamond (b) after the
transformation of the span-
ning constraints. The con-
straints Èe, hÍ and Èe, gÍ are up-
dated to Èe, gÍ and Èg, hÍ.

Figure 4 Transformation of spanning constraints.

Algorithm 3 Decomposing Diamonds into a Set of Simple Paths
1: procedure FenceInsertion (q) Û q is the minimum priority queue ordering diamonds by level
2: Initialize the set F to ÿ.
3: while q is not empty do
4: Extract the innermost diamond d from q.
5: while there is more than one path in d do
6: Pick a path p in d.
7: Call Algorithm 4 on p to find the fencing f and the type t.
8: Add f to F
9: if t is absorbing then

10: Update the end point of the spanning constraints to the merge point of d.
11: else Û t is emitting
12: Update the start point of the spanning constraints to the merge point of d.
13: Remove p from d.
14: return F

Figure 4.(b), the constraint Èf, hÍ is updated to Èg, hÍ. We note that the transformation
leaves the internal and passing constraints unchanged.

We illustrate the iteration over diamonds of di�erent levels in Figure 5. Constraint
elimination on the graph in Figure 2 results in Figure 5.(a). Figure 5.(b) shows the result
of Algorithm 3 on Figure 5.(a) after processing the diamonds of level 0. The diamonds of
level 0 are Èe, mÍ and Èg, nÍ. For the diamond Èe, mÍ, the left simple path ehikm is extracted.
The constraint Èk, pÍ is a spanning constraint for this path. The optimum fencing for the
internal constraints of this path is one fence on the edge Èi, kÍ that does not cover the
spanning constraint Èk, pÍ. So the path is emitting and the constraint Èk, pÍ is shrunk to
Èm, pÍ. Extracting the left path reduces the diamond to a simple path. The other diamond
of level 0 is Èg, nÍ. The left edge Èg, nÍ with no constraint can be simply extracted to reduce
the diamond to a simple path.

Figure 5.(c) shows the result of Algorithm 3 on the graph of Figure 5.(b) after processing
the diamonds of the next level, that has been level 1 in the original graph of Figure 5.(a).
The only diamond of the next level is Èc, oÍ. There are no spanning constraints and simply
extracting the right path cflo reduces the diamond to a simple path. Figure 5.(c) has only

Constraint Elimination
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Figure 3 An example execution of Algorithm 2 that finds diamonds on the graph in Figure 2.
The calculated label of each vertex is shown close to it. Four diamonds are found. The numbers with
the dark background show the level of the enclosing diamonds. level(Èe, mÍ) = 0, level(Èg, nÍ) = 0,
level(Èc, oÍ) = 1, level(Èb, pÍ) = 2.

the di�erence of the labels of the merge and branch vertices. When a diamond is found, it is180

added to a priority queue based on its level. Finally, the priority queue is returned.181

As an example, Figure 3 shows the execution of Algorithm 2 on the graph in Figure 2.182

The calculated label of each vertex is shown close to it and the numbers with the dark183

background show the level of the enclosing diamonds. The label of the start vertex a is 0.184

The labels of the subsequent branch vertices b, c and e are 1, 2 and 3 respectively. The labels185

of the merge vertices m and o are both 3. Thus, the level of the diamond Èe, mÍ is 0 and the186

level of the diamond Èc, oÍ is 1. The algorithm finds four diamonds with the following levels:187

level(Èe, mÍ) = 0, level(Èg, nÍ) = 0, level(Èc, oÍ) = 1, and level(Èb, pÍ) = 2.188

3.3 Decomposing Diamonds into Simple Paths189

In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into190

simple paths and finds the optimum fencing for them. The algorithm iterates the diamonds191

from the innermost to the outermost. For each diamond, it incrementally extracts simple192

paths until only a simple path remains in the diamond. Therefore, the degree of the nesting193

diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As194

the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited195

when they are already simple.196

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple197

paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the198

internal constraints of the path. The rationale for the separation of paths is that the internal199

constraints of a path can be covered by only fences inside the path. Thus, the optimum200

fencing for the internal constraints can be locally determined. The algorithm then checks if201

the resulting fence placement can cover the spanning constraints of the path.202

Accordingly there are two path types: absorbing and emitting. We use an example in203

Figure 4 to illustrate these types. Figure 4.(a) shows a simple diamond. Figure 4.(b) shows204
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of the merge vertices m and o are both 3. Thus, the level of the diamond Èe, mÍ is 0 and the186

level of the diamond Èc, oÍ is 1. The algorithm finds four diamonds with the following levels:187

level(Èe, mÍ) = 0, level(Èg, nÍ) = 0, level(Èc, oÍ) = 1, and level(Èb, pÍ) = 2.188

3.3 Decomposing Diamonds into Simple Paths189

In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into190

simple paths and finds the optimum fencing for them. The algorithm iterates the diamonds191

from the innermost to the outermost. For each diamond, it incrementally extracts simple192

paths until only a simple path remains in the diamond. Therefore, the degree of the nesting193

diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As194

the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited195

when they are already simple.196

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple197

paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the198

internal constraints of the path. The rationale for the separation of paths is that the internal199

constraints of a path can be covered by only fences inside the path. Thus, the optimum200

fencing for the internal constraints can be locally determined. The algorithm then checks if201

the resulting fence placement can cover the spanning constraints of the path.202

Accordingly there are two path types: absorbing and emitting. We use an example in203

Figure 4 to illustrate these types. Figure 4.(a) shows a simple diamond. Figure 4.(b) shows204
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In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into190
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paths until only a simple path remains in the diamond. Therefore, the degree of the nesting193

diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As194

the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited195

when they are already simple.196

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple197

paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the198

internal constraints of the path. The rationale for the separation of paths is that the internal199

constraints of a path can be covered by only fences inside the path. Thus, the optimum200

fencing for the internal constraints can be locally determined. The algorithm then checks if201

the resulting fence placement can cover the spanning constraints of the path.202

Accordingly there are two path types: absorbing and emitting. We use an example in203
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background show the level of the enclosing diamonds. The label of the start vertex a is 0.184

The labels of the subsequent branch vertices b, c and e are 1, 2 and 3 respectively. The labels185

of the merge vertices m and o are both 3. Thus, the level of the diamond Èe, mÍ is 0 and the186

level of the diamond Èc, oÍ is 1. The algorithm finds four diamonds with the following levels:187

level(Èe, mÍ) = 0, level(Èg, nÍ) = 0, level(Èc, oÍ) = 1, and level(Èb, pÍ) = 2.188

3.3 Decomposing Diamonds into Simple Paths189

In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into190

simple paths and finds the optimum fencing for them. The algorithm iterates the diamonds191
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paths until only a simple path remains in the diamond. Therefore, the degree of the nesting193

diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As194

the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited195

when they are already simple.196

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple197

paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the198

internal constraints of the path. The rationale for the separation of paths is that the internal199

constraints of a path can be covered by only fences inside the path. Thus, the optimum200

fencing for the internal constraints can be locally determined. The algorithm then checks if201

the resulting fence placement can cover the spanning constraints of the path.202

Accordingly there are two path types: absorbing and emitting. We use an example in203

Figure 4 to illustrate these types. Figure 4.(a) shows a simple diamond. Figure 4.(b) shows204
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added to a priority queue based on its level. Finally, the priority queue is returned.181

As an example, Figure 3 shows the execution of Algorithm 2 on the graph in Figure 2.182

The calculated label of each vertex is shown close to it and the numbers with the dark183

background show the level of the enclosing diamonds. The label of the start vertex a is 0.184

The labels of the subsequent branch vertices b, c and e are 1, 2 and 3 respectively. The labels185

of the merge vertices m and o are both 3. Thus, the level of the diamond Èe, mÍ is 0 and the186

level of the diamond Èc, oÍ is 1. The algorithm finds four diamonds with the following levels:187

level(Èe, mÍ) = 0, level(Èg, nÍ) = 0, level(Èc, oÍ) = 1, and level(Èb, pÍ) = 2.188

3.3 Decomposing Diamonds into Simple Paths189

In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into190

simple paths and finds the optimum fencing for them. The algorithm iterates the diamonds191

from the innermost to the outermost. For each diamond, it incrementally extracts simple192

paths until only a simple path remains in the diamond. Therefore, the degree of the nesting193

diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As194

the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited195

when they are already simple.196

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple197

paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the198

internal constraints of the path. The rationale for the separation of paths is that the internal199

constraints of a path can be covered by only fences inside the path. Thus, the optimum200

fencing for the internal constraints can be locally determined. The algorithm then checks if201

the resulting fence placement can cover the spanning constraints of the path.202

Accordingly there are two path types: absorbing and emitting. We use an example in203

Figure 4 to illustrate these types. Figure 4.(a) shows a simple diamond. Figure 4.(b) shows204
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the di�erence of the labels of the merge and branch vertices. When a diamond is found, it is180

added to a priority queue based on its level. Finally, the priority queue is returned.181

As an example, Figure 3 shows the execution of Algorithm 2 on the graph in Figure 2.182

The calculated label of each vertex is shown close to it and the numbers with the dark183

background show the level of the enclosing diamonds. The label of the start vertex a is 0.184

The labels of the subsequent branch vertices b, c and e are 1, 2 and 3 respectively. The labels185

of the merge vertices m and o are both 3. Thus, the level of the diamond Èe, mÍ is 0 and the186

level of the diamond Èc, oÍ is 1. The algorithm finds four diamonds with the following levels:187

level(Èe, mÍ) = 0, level(Èg, nÍ) = 0, level(Èc, oÍ) = 1, and level(Èb, pÍ) = 2.188

3.3 Decomposing Diamonds into Simple Paths189

In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into190

simple paths and finds the optimum fencing for them. The algorithm iterates the diamonds191

from the innermost to the outermost. For each diamond, it incrementally extracts simple192

paths until only a simple path remains in the diamond. Therefore, the degree of the nesting193

diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As194

the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited195

when they are already simple.196

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple197

paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the198

internal constraints of the path. The rationale for the separation of paths is that the internal199

constraints of a path can be covered by only fences inside the path. Thus, the optimum200

fencing for the internal constraints can be locally determined. The algorithm then checks if201

the resulting fence placement can cover the spanning constraints of the path.202

Accordingly there are two path types: absorbing and emitting. We use an example in203

Figure 4 to illustrate these types. Figure 4.(a) shows a simple diamond. Figure 4.(b) shows204
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the di�erence of the labels of the merge and branch vertices. When a diamond is found, it is180

added to a priority queue based on its level. Finally, the priority queue is returned.181

As an example, Figure 3 shows the execution of Algorithm 2 on the graph in Figure 2.182

The calculated label of each vertex is shown close to it and the numbers with the dark183

background show the level of the enclosing diamonds. The label of the start vertex a is 0.184

The labels of the subsequent branch vertices b, c and e are 1, 2 and 3 respectively. The labels185

of the merge vertices m and o are both 3. Thus, the level of the diamond Èe, mÍ is 0 and the186

level of the diamond Èc, oÍ is 1. The algorithm finds four diamonds with the following levels:187

level(Èe, mÍ) = 0, level(Èg, nÍ) = 0, level(Èc, oÍ) = 1, and level(Èb, pÍ) = 2.188

3.3 Decomposing Diamonds into Simple Paths189

In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into190

simple paths and finds the optimum fencing for them. The algorithm iterates the diamonds191

from the innermost to the outermost. For each diamond, it incrementally extracts simple192

paths until only a simple path remains in the diamond. Therefore, the degree of the nesting193

diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As194

the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited195

when they are already simple.196

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple197

paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the198

internal constraints of the path. The rationale for the separation of paths is that the internal199

constraints of a path can be covered by only fences inside the path. Thus, the optimum200

fencing for the internal constraints can be locally determined. The algorithm then checks if201

the resulting fence placement can cover the spanning constraints of the path.202

Accordingly there are two path types: absorbing and emitting. We use an example in203

Figure 4 to illustrate these types. Figure 4.(a) shows a simple diamond. Figure 4.(b) shows204
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the di�erence of the labels of the merge and branch vertices. When a diamond is found, it is180

added to a priority queue based on its level. Finally, the priority queue is returned.181

As an example, Figure 3 shows the execution of Algorithm 2 on the graph in Figure 2.182

The calculated label of each vertex is shown close to it and the numbers with the dark183

background show the level of the enclosing diamonds. The label of the start vertex a is 0.184

The labels of the subsequent branch vertices b, c and e are 1, 2 and 3 respectively. The labels185

of the merge vertices m and o are both 3. Thus, the level of the diamond Èe, mÍ is 0 and the186

level of the diamond Èc, oÍ is 1. The algorithm finds four diamonds with the following levels:187

level(Èe, mÍ) = 0, level(Èg, nÍ) = 0, level(Èc, oÍ) = 1, and level(Èb, pÍ) = 2.188

3.3 Decomposing Diamonds into Simple Paths189

In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into190

simple paths and finds the optimum fencing for them. The algorithm iterates the diamonds191

from the innermost to the outermost. For each diamond, it incrementally extracts simple192

paths until only a simple path remains in the diamond. Therefore, the degree of the nesting193

diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As194

the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited195

when they are already simple.196

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple197

paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the198

internal constraints of the path. The rationale for the separation of paths is that the internal199

constraints of a path can be covered by only fences inside the path. Thus, the optimum200

fencing for the internal constraints can be locally determined. The algorithm then checks if201

the resulting fence placement can cover the spanning constraints of the path.202

Accordingly there are two path types: absorbing and emitting. We use an example in203

Figure 4 to illustrate these types. Figure 4.(a) shows a simple diamond. Figure 4.(b) shows204
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the di�erence of the labels of the merge and branch vertices. When a diamond is found, it is180

added to a priority queue based on its level. Finally, the priority queue is returned.181

As an example, Figure 3 shows the execution of Algorithm 2 on the graph in Figure 2.182

The calculated label of each vertex is shown close to it and the numbers with the dark183

background show the level of the enclosing diamonds. The label of the start vertex a is 0.184

The labels of the subsequent branch vertices b, c and e are 1, 2 and 3 respectively. The labels185

of the merge vertices m and o are both 3. Thus, the level of the diamond Èe, mÍ is 0 and the186

level of the diamond Èc, oÍ is 1. The algorithm finds four diamonds with the following levels:187

level(Èe, mÍ) = 0, level(Èg, nÍ) = 0, level(Èc, oÍ) = 1, and level(Èb, pÍ) = 2.188

3.3 Decomposing Diamonds into Simple Paths189

In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into190

simple paths and finds the optimum fencing for them. The algorithm iterates the diamonds191

from the innermost to the outermost. For each diamond, it incrementally extracts simple192

paths until only a simple path remains in the diamond. Therefore, the degree of the nesting193

diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As194

the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited195

when they are already simple.196

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple197

paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the198

internal constraints of the path. The rationale for the separation of paths is that the internal199

constraints of a path can be covered by only fences inside the path. Thus, the optimum200

fencing for the internal constraints can be locally determined. The algorithm then checks if201

the resulting fence placement can cover the spanning constraints of the path.202

Accordingly there are two path types: absorbing and emitting. We use an example in203

Figure 4 to illustrate these types. Figure 4.(a) shows a simple diamond. Figure 4.(b) shows204
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added to a priority queue based on its level. Finally, the priority queue is returned.181

As an example, Figure 3 shows the execution of Algorithm 2 on the graph in Figure 2.182

The calculated label of each vertex is shown close to it and the numbers with the dark183

background show the level of the enclosing diamonds. The label of the start vertex a is 0.184

The labels of the subsequent branch vertices b, c and e are 1, 2 and 3 respectively. The labels185

of the merge vertices m and o are both 3. Thus, the level of the diamond Èe, mÍ is 0 and the186

level of the diamond Èc, oÍ is 1. The algorithm finds four diamonds with the following levels:187

level(Èe, mÍ) = 0, level(Èg, nÍ) = 0, level(Èc, oÍ) = 1, and level(Èb, pÍ) = 2.188

3.3 Decomposing Diamonds into Simple Paths189

In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into190

simple paths and finds the optimum fencing for them. The algorithm iterates the diamonds191

from the innermost to the outermost. For each diamond, it incrementally extracts simple192

paths until only a simple path remains in the diamond. Therefore, the degree of the nesting193

diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As194

the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited195

when they are already simple.196

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple197

paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the198

internal constraints of the path. The rationale for the separation of paths is that the internal199

constraints of a path can be covered by only fences inside the path. Thus, the optimum200

fencing for the internal constraints can be locally determined. The algorithm then checks if201

the resulting fence placement can cover the spanning constraints of the path.202

Accordingly there are two path types: absorbing and emitting. We use an example in203

Figure 4 to illustrate these types. Figure 4.(a) shows a simple diamond. Figure 4.(b) shows204
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the di�erence of the labels of the merge and branch vertices. When a diamond is found, it is180

added to a priority queue based on its level. Finally, the priority queue is returned.181

As an example, Figure 3 shows the execution of Algorithm 2 on the graph in Figure 2.182

The calculated label of each vertex is shown close to it and the numbers with the dark183

background show the level of the enclosing diamonds. The label of the start vertex a is 0.184

The labels of the subsequent branch vertices b, c and e are 1, 2 and 3 respectively. The labels185

of the merge vertices m and o are both 3. Thus, the level of the diamond Èe, mÍ is 0 and the186

level of the diamond Èc, oÍ is 1. The algorithm finds four diamonds with the following levels:187

level(Èe, mÍ) = 0, level(Èg, nÍ) = 0, level(Èc, oÍ) = 1, and level(Èb, pÍ) = 2.188

3.3 Decomposing Diamonds into Simple Paths189

In this step, we present an algorithm (Algorithm 3) that decomposes each diamond into190

simple paths and finds the optimum fencing for them. The algorithm iterates the diamonds191

from the innermost to the outermost. For each diamond, it incrementally extracts simple192

paths until only a simple path remains in the diamond. Therefore, the degree of the nesting193

diamond decreases from one to zero. This makes the nesting diamond a simple diamond. As194

the algorithm iterates all the nested diamonds before the nesting one, diamonds are visited195

when they are already simple.196

For each path of a diamond, the algorithm calls the fence insertion algorithm for simple197

paths (that we will see in Algorithm 4) to obtain an optimum fence placement for the198

internal constraints of the path. The rationale for the separation of paths is that the internal199

constraints of a path can be covered by only fences inside the path. Thus, the optimum200

fencing for the internal constraints can be locally determined. The algorithm then checks if201

the resulting fence placement can cover the spanning constraints of the path.202

Accordingly there are two path types: absorbing and emitting. We use an example in203

Figure 4 to illustrate these types. Figure 4.(a) shows a simple diamond. Figure 4.(b) shows204
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Figure 5 Decomposition of Nested Diamonds into a Set of Simple Paths
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Figure 7 Fence insertion for a
simple path. The algorithm visits
the constraints in the order Èa, cÍ,
Èb, dÍ, Èc, eÍ, Èf, iÍ, Èg, iÍ, and Èh, iÍ
and inserts the fences Èb, cÍ, Èd, eÍ,
and Èh, iÍ. The inserted fences
cover the spanning constraint start-
ing from g.

3.4 Fence Insertion for Simple Paths249

In this section, we present an algorithm (Algorithm 4) that finds the optimum fencing for250

simple paths. More precisely, given the internal constraints of a simple path and a bottom251
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Figure 4 Transformation of spanning constraints.

Algorithm 3 Decomposing Diamonds into a Set of Simple Paths
1: procedure FenceInsertion (q) Û q is the minimum priority queue ordering diamonds by level
2: Initialize the set F to ÿ.
3: while q is not empty do
4: Extract the innermost diamond d from q.
5: while there is more than one path in d do
6: Pick a path p in d.
7: Call Algorithm 4 on p to find the fencing f and the type t.
8: Add f to F
9: if t is absorbing then

10: Update the end point of the spanning constraints to the merge point of d.
11: else Û t is emitting
12: Update the start point of the spanning constraints to the merge point of d.
13: Remove p from d.
14: return F

Figure 4.(b), the constraint Èf, hÍ is updated to Èg, hÍ. We note that the transformation
leaves the internal and passing constraints unchanged.

We illustrate the iteration over diamonds of di�erent levels in Figure 5. Constraint
elimination on the graph in Figure 2 results in Figure 5.(a). Figure 5.(b) shows the result
of Algorithm 3 on Figure 5.(a) after processing the diamonds of level 0. The diamonds of
level 0 are Èe, mÍ and Èg, nÍ. For the diamond Èe, mÍ, the left simple path ehikm is extracted.
The constraint Èk, pÍ is a spanning constraint for this path. The optimum fencing for the
internal constraints of this path is one fence on the edge Èi, kÍ that does not cover the
spanning constraint Èk, pÍ. So the path is emitting and the constraint Èk, pÍ is shrunk to
Èm, pÍ. Extracting the left path reduces the diamond to a simple path. The other diamond
of level 0 is Èg, nÍ. The left edge Èg, nÍ with no constraint can be simply extracted to reduce
the diamond to a simple path.

Figure 5.(c) shows the result of Algorithm 3 on the graph of Figure 5.(b) after processing
the diamonds of the next level, that has been level 1 in the original graph of Figure 5.(a).
The only diamond of the next level is Èc, oÍ. There are no spanning constraints and simply
extracting the right path cflo reduces the diamond to a simple path. Figure 5.(c) has only

Diamond Decomposition: Absorbing and Emitting Paths
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Algorithm 3 Decomposing Diamonds into a Set of Simple Paths
1: procedure FenceInsertion (q) Û q is the minimum priority queue ordering diamonds by level
2: Initialize the set F to ÿ.
3: while q is not empty do
4: Extract the innermost diamond d from q.
5: while there is more than one path in d do
6: Pick a path p in d.
7: Call Algorithm 4 on p to find the fencing f and the type t.
8: Add f to F
9: if t is absorbing then

10: Update the end point of the spanning constraints to the merge point of d.
11: else Û t is emitting
12: Update the start point of the spanning constraints to the merge point of d.
13: Remove p from d.
14: return F

Figure 4.(b), the constraint Èf, hÍ is updated to Èg, hÍ. We note that the transformation
leaves the internal and passing constraints unchanged.

We illustrate the iteration over diamonds of di�erent levels in Figure 5. Constraint
elimination on the graph in Figure 2 results in Figure 5.(a). Figure 5.(b) shows the result
of Algorithm 3 on Figure 5.(a) after processing the diamonds of level 0. The diamonds of
level 0 are Èe, mÍ and Èg, nÍ. For the diamond Èe, mÍ, the left simple path ehikm is extracted.
The constraint Èk, pÍ is a spanning constraint for this path. The optimum fencing for the
internal constraints of this path is one fence on the edge Èi, kÍ that does not cover the
spanning constraint Èk, pÍ. So the path is emitting and the constraint Èk, pÍ is shrunk to
Èm, pÍ. Extracting the left path reduces the diamond to a simple path. The other diamond
of level 0 is Èg, nÍ. The left edge Èg, nÍ with no constraint can be simply extracted to reduce
the diamond to a simple path.

Figure 5.(c) shows the result of Algorithm 3 on the graph of Figure 5.(b) after processing
the diamonds of the next level, that has been level 1 in the original graph of Figure 5.(a).
The only diamond of the next level is Èc, oÍ. There are no spanning constraints and simply
extracting the right path cflo reduces the diamond to a simple path. Figure 5.(c) has only
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Algorithm 3 Decomposing Diamonds into a Set of Simple Paths
1: procedure FenceInsertion (q) Û q is the minimum priority queue ordering diamonds by level
2: Initialize the set F to ÿ.
3: while q is not empty do
4: Extract the innermost diamond d from q.
5: while there is more than one path in d do
6: Pick a path p in d.
7: Call Algorithm 4 on p to find the fencing f and the type t.
8: Add f to F
9: if t is absorbing then

10: Update the end point of the spanning constraints to the merge point of d.
11: else Û t is emitting
12: Update the start point of the spanning constraints to the merge point of d.
13: Remove p from d.
14: return F

Figure 4.(b), the constraint Èf, hÍ is updated to Èg, hÍ. We note that the transformation
leaves the internal and passing constraints unchanged.

We illustrate the iteration over diamonds of di�erent levels in Figure 5. Constraint
elimination on the graph in Figure 2 results in Figure 5.(a). Figure 5.(b) shows the result
of Algorithm 3 on Figure 5.(a) after processing the diamonds of level 0. The diamonds of
level 0 are Èe, mÍ and Èg, nÍ. For the diamond Èe, mÍ, the left simple path ehikm is extracted.
The constraint Èk, pÍ is a spanning constraint for this path. The optimum fencing for the
internal constraints of this path is one fence on the edge Èi, kÍ that does not cover the
spanning constraint Èk, pÍ. So the path is emitting and the constraint Èk, pÍ is shrunk to
Èm, pÍ. Extracting the left path reduces the diamond to a simple path. The other diamond
of level 0 is Èg, nÍ. The left edge Èg, nÍ with no constraint can be simply extracted to reduce
the diamond to a simple path.

Figure 5.(c) shows the result of Algorithm 3 on the graph of Figure 5.(b) after processing
the diamonds of the next level, that has been level 1 in the original graph of Figure 5.(a).
The only diamond of the next level is Èc, oÍ. There are no spanning constraints and simply
extracting the right path cflo reduces the diamond to a simple path. Figure 5.(c) has only
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Algorithm 3 Decomposing Diamonds into a Set of Simple Paths
1: procedure FenceInsertion (q) Û q is the minimum priority queue ordering diamonds by level
2: Initialize the set F to ÿ.
3: while q is not empty do
4: Extract the innermost diamond d from q.
5: while there is more than one path in d do
6: Pick a path p in d.
7: Call Algorithm 4 on p to find the fencing f and the type t.
8: Add f to F
9: if t is absorbing then

10: Update the end point of the spanning constraints to the merge point of d.
11: else Û t is emitting
12: Update the start point of the spanning constraints to the merge point of d.
13: Remove p from d.
14: return F

Figure 4.(b), the constraint Èf, hÍ is updated to Èg, hÍ. We note that the transformation
leaves the internal and passing constraints unchanged.

We illustrate the iteration over diamonds of di�erent levels in Figure 5. Constraint
elimination on the graph in Figure 2 results in Figure 5.(a). Figure 5.(b) shows the result
of Algorithm 3 on Figure 5.(a) after processing the diamonds of level 0. The diamonds of
level 0 are Èe, mÍ and Èg, nÍ. For the diamond Èe, mÍ, the left simple path ehikm is extracted.
The constraint Èk, pÍ is a spanning constraint for this path. The optimum fencing for the
internal constraints of this path is one fence on the edge Èi, kÍ that does not cover the
spanning constraint Èk, pÍ. So the path is emitting and the constraint Èk, pÍ is shrunk to
Èm, pÍ. Extracting the left path reduces the diamond to a simple path. The other diamond
of level 0 is Èg, nÍ. The left edge Èg, nÍ with no constraint can be simply extracted to reduce
the diamond to a simple path.

Figure 5.(c) shows the result of Algorithm 3 on the graph of Figure 5.(b) after processing
the diamonds of the next level, that has been level 1 in the original graph of Figure 5.(a).
The only diamond of the next level is Èc, oÍ. There are no spanning constraints and simply
extracting the right path cflo reduces the diamond to a simple path. Figure 5.(c) has only
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Algorithm 3 Decomposing Diamonds into a Set of Simple Paths
1: procedure FenceInsertion (q) Û q is the minimum priority queue ordering diamonds by level
2: Initialize the set F to ÿ.
3: while q is not empty do
4: Extract the innermost diamond d from q.
5: while there is more than one path in d do
6: Pick a path p in d.
7: Call Algorithm 4 on p to find the fencing f and the type t.
8: Add f to F
9: if t is absorbing then

10: Update the end point of the spanning constraints to the merge point of d.
11: else Û t is emitting
12: Update the start point of the spanning constraints to the merge point of d.
13: Remove p from d.
14: return F

Figure 4.(b), the constraint Èf, hÍ is updated to Èg, hÍ. We note that the transformation
leaves the internal and passing constraints unchanged.

We illustrate the iteration over diamonds of di�erent levels in Figure 5. Constraint
elimination on the graph in Figure 2 results in Figure 5.(a). Figure 5.(b) shows the result
of Algorithm 3 on Figure 5.(a) after processing the diamonds of level 0. The diamonds of
level 0 are Èe, mÍ and Èg, nÍ. For the diamond Èe, mÍ, the left simple path ehikm is extracted.
The constraint Èk, pÍ is a spanning constraint for this path. The optimum fencing for the
internal constraints of this path is one fence on the edge Èi, kÍ that does not cover the
spanning constraint Èk, pÍ. So the path is emitting and the constraint Èk, pÍ is shrunk to
Èm, pÍ. Extracting the left path reduces the diamond to a simple path. The other diamond
of level 0 is Èg, nÍ. The left edge Èg, nÍ with no constraint can be simply extracted to reduce
the diamond to a simple path.

Figure 5.(c) shows the result of Algorithm 3 on the graph of Figure 5.(b) after processing
the diamonds of the next level, that has been level 1 in the original graph of Figure 5.(a).
The only diamond of the next level is Èc, oÍ. There are no spanning constraints and simply
extracting the right path cflo reduces the diamond to a simple path. Figure 5.(c) has only
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Algorithm 3 Decomposing Diamonds into a Set of Simple Paths
1: procedure FenceInsertion (q) Û q is the minimum priority queue ordering diamonds by level
2: Initialize the set F to ÿ.
3: while q is not empty do
4: Extract the innermost diamond d from q.
5: while there is more than one path in d do
6: Pick a path p in d.
7: Call Algorithm 4 on p to find the fencing f and the type t.
8: Add f to F
9: if t is absorbing then

10: Update the end point of the spanning constraints to the merge point of d.
11: else Û t is emitting
12: Update the start point of the spanning constraints to the merge point of d.
13: Remove p from d.
14: return F

Figure 4.(b), the constraint Èf, hÍ is updated to Èg, hÍ. We note that the transformation
leaves the internal and passing constraints unchanged.

We illustrate the iteration over diamonds of di�erent levels in Figure 5. Constraint
elimination on the graph in Figure 2 results in Figure 5.(a). Figure 5.(b) shows the result
of Algorithm 3 on Figure 5.(a) after processing the diamonds of level 0. The diamonds of
level 0 are Èe, mÍ and Èg, nÍ. For the diamond Èe, mÍ, the left simple path ehikm is extracted.
The constraint Èk, pÍ is a spanning constraint for this path. The optimum fencing for the
internal constraints of this path is one fence on the edge Èi, kÍ that does not cover the
spanning constraint Èk, pÍ. So the path is emitting and the constraint Èk, pÍ is shrunk to
Èm, pÍ. Extracting the left path reduces the diamond to a simple path. The other diamond
of level 0 is Èg, nÍ. The left edge Èg, nÍ with no constraint can be simply extracted to reduce
the diamond to a simple path.

Figure 5.(c) shows the result of Algorithm 3 on the graph of Figure 5.(b) after processing
the diamonds of the next level, that has been level 1 in the original graph of Figure 5.(a).
The only diamond of the next level is Èc, oÍ. There are no spanning constraints and simply
extracting the right path cflo reduces the diamond to a simple path. Figure 5.(c) has only
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Algorithm 3 Decomposing Diamonds into a Set of Simple Paths
1: procedure FenceInsertion (q) Û q is the minimum priority queue ordering diamonds by level
2: Initialize the set F to ÿ.
3: while q is not empty do
4: Extract the innermost diamond d from q.
5: while there is more than one path in d do
6: Pick a path p in d.
7: Call Algorithm 4 on p to find the fencing f and the type t.
8: Add f to F
9: if t is absorbing then

10: Update the end point of the spanning constraints to the merge point of d.
11: else Û t is emitting
12: Update the start point of the spanning constraints to the merge point of d.
13: Remove p from d.
14: return F

Figure 4.(b), the constraint Èf, hÍ is updated to Èg, hÍ. We note that the transformation
leaves the internal and passing constraints unchanged.

We illustrate the iteration over diamonds of di�erent levels in Figure 5. Constraint
elimination on the graph in Figure 2 results in Figure 5.(a). Figure 5.(b) shows the result
of Algorithm 3 on Figure 5.(a) after processing the diamonds of level 0. The diamonds of
level 0 are Èe, mÍ and Èg, nÍ. For the diamond Èe, mÍ, the left simple path ehikm is extracted.
The constraint Èk, pÍ is a spanning constraint for this path. The optimum fencing for the
internal constraints of this path is one fence on the edge Èi, kÍ that does not cover the
spanning constraint Èk, pÍ. So the path is emitting and the constraint Èk, pÍ is shrunk to
Èm, pÍ. Extracting the left path reduces the diamond to a simple path. The other diamond
of level 0 is Èg, nÍ. The left edge Èg, nÍ with no constraint can be simply extracted to reduce
the diamond to a simple path.

Figure 5.(c) shows the result of Algorithm 3 on the graph of Figure 5.(b) after processing
the diamonds of the next level, that has been level 1 in the original graph of Figure 5.(a).
The only diamond of the next level is Èc, oÍ. There are no spanning constraints and simply
extracting the right path cflo reduces the diamond to a simple path. Figure 5.(c) has only
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simple path. The algorithm visits
the constraints in the order Èa, cÍ,
Èb, dÍ, Èc, eÍ, Èf, iÍ, Èg, iÍ, and Èh, iÍ
and inserts the fences Èb, cÍ, Èd, eÍ,
and Èh, iÍ. The inserted fences
cover the spanning constraint start-
ing from g.

3.4 Fence Insertion for Simple Paths249

In this section, we present an algorithm (Algorithm 4) that finds the optimum fencing for250

simple paths. More precisely, given the internal constraints of a simple path and a bottom251
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3.4 Fence Insertion for Simple Paths249

In this section, we present an algorithm (Algorithm 4) that finds the optimum fencing for250

simple paths. More precisely, given the internal constraints of a simple path and a bottom251

DISC 2019



Diamond Decomposition, Level 2

�19

M. Taheri, A. Pourdamghani and M. Lesani 34:9

b

a

g

j

n

p

c

f

l

e

m

o

i

k

h

d

(a) The graph of Figure 2 after
constraint elimination.

b

a

g

j

n

p

c

f

l

e

m

o

d

g

n

h

i

k

m

e

(b) Decomposing diamonds of
level 0

b

a

g

j

n

p

c

f

l

e

m

o

d

g

n

h

i

k

m

e c

o

(c) Decomposing diamonds of
level 1

Figure 5 Decomposition of Nested Diamonds into a Set of Simple Paths

b

a

g

j

n

p

c

f

l

e

m

o

d g

n

h

i

k

m

e c

o

b

p

Figure 6 The Final Set of
Simple Paths for Figure 5.(a)

a

b

c

d

e

f

g

h

i

j

Figure 7 Fence insertion for a
simple path. The algorithm visits
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Èb, dÍ, Èc, eÍ, Èf, iÍ, Èg, iÍ, and Èh, iÍ
and inserts the fences Èb, cÍ, Èd, eÍ,
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their endpoints, inserts fenced in the last edges of constraints, and removes all the covered
constraints. Thus, if a fence is inserted for a constraint, its start point can be only at or after
the end point of the last constraint that required a fence; thus, the two constraints do not
overlap. J

I Theorem 2. Algorithm 1 provides optimal fence insertion for AFGs.

Proof. We prove this fact by induction on the level of diamonds. In the base case, suppose
we have a diamond of level 0. The internal constraints of a branch can be covered by only
fences inside the branch. Algorithm 1 uses Algorithm 4 to find the fencing for the branches of
the diamond. By Theorem 1, each of these fencings are optimal for the internal constraints
of that branch. Further, Algorithm 4 puts fences on the lowest possible edges. At the end, it
checks whether the inserted fences can cover the spanning constraint as well and accordingly
decides whether the paths are of absorbing or emitting type. Based on the type of the path,
Algorithm 1 transforms the spanning constraints of the path: an absorbing path absorbs it
inside and an emitting path emits it outside of the path. An absorbing path can cover the
spanning constraint with no extra fence in the path. Thus, extra constraints are covered
without increasing the number of fences. Therefore, the solution stays optimum after pulling
the spanning constraint inside the path. On the other hand, in an emitting path, an extra
fence is needed to cover the spanning constraint. If an extra fence is inserted inside the
path, it cannot cover any additional constraints inside or outside the path. However, if it is
put outside the path, it may cover other overlapping constraints. Therefore, pushing the
spanning constraint outside can result in either the same or fewer number of fences. In the
inductive case, consider a diamond of level k. Algorithm 1 reduces nested diamonds of lower
levels to simple paths; thus, the diamond is reduced to a diamond of level 0. With the same
argument as the base case, Algorithm 1 finds the optimum fencing. J

I Theorem 3. Algorithm 1 is of O(|C|log|C| + |C||V | + |V |log|V |) time and O(|C| + |V |)
space complexity.

Proof. Algorithm 1 has three steps and its time complexity is the sum of their complexities.
We consider each step in turn. We note that it takes O(|C| + |E|) space to represent the
input.

In the first step, we eliminate the constraints that are implicitly covered by the branch
vertices. The algorithm traverses the vertices from the start vertex, and for each branch
vertex eliminates the constraints which have been started but not finished. Since each edge
and each constraint is visited just once, the running time is O(|C| + |E|). Additionally, we
do not need any extra memory for running this step. Therefore, its space complexity is
O(|C| + |E|).

In the second step, the algorithm finds the diamonds (Algorithm 2) by traversing the
graph vertices using a depth-first-search and pushes the diamonds into a priority queue. So,
it takes O(|E|log|E| + |V |) time. The algorithm uses data structures that store vertices and
thus, needs O(|V |) extra space for this step.

In the third step, the algorithm decomposes the diamonds (Algorithm 3) into simple
paths and finds the optimum fencing for them. Algorithm 3 applies Algorithm 4 to each
branch of each diamond. For a path p, let Cp be set of constraints on p. Algorithm 4
sorts Cp, which takes O(|Cp|log|Cp|) and then traverses Cp and inserts fences which takes
O(|Cp|). Therefore, its time complexity is O(|C|log|C|). Also, it needs at most O(|E|) space
to represent the fencing. Thus, fence insertion for the branches takes O(|C|log|C|) time and
O(|E|) space for all the diamonds. In addition, Algorithm 3 updates spanning constraints for
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We now sum the complexity of the steps. The time complexity of Algorithm 1 is O(|V | +331

|E|log|E| + |C| log |C| + |C||E|). The space complexity of Algorithm 1 is O(|C| + |E| + |V |).332

To further simplify these orders, we show that |E| œ O(|V |). It is easy to see that the333

sum of the degree of all the merge vertices of an AFG is O(|V |). Similarly, the sum of334

the degrees of all the branch vertices of an AFG is O(|V |). Also, the sum of the degrees335

of all non-merge non-branch vertices is O(|V |). As a result, the sum of degrees of all the336

vertices is O(|V |) thus, |E| œ O(|V |). Therefore, the time complexity of Algorithm 1 is337

O(|V |log|V | + |C|log|C| + |C||V |) and its space complexity is O(|C| + |V |) J338

4 Fence Insertion for Loops339

In this section, we present a transformation for loops in a given CFG with loops to an AFG.340

Therefore, we can reduce fence insertion for any CFG to an AFG and use Algorithm 1 to341

find an optimal fence insertion.342

We illustrate the transformation using an example. Figure 9.(a) shows a CFG with a343

loop. The vertex b is the branch instruction: it jumps either to the body of loop at the344

vertex c or out of the loop to vertex g. We call the edge Èb, cÍ that jumps from the branch345

vertex to the loop body, the start edge. The body of the loop is a CFG in general. In this346

example, it is the simple path cef . We call the edge Èf, bÍ that jumps from the end of the347

loop body back to the branch vertex, the return edge. We call the edge Èb, gÍ that jumps348

from the branch vertex out of the loop, the exit edge.349

We now transform the CFG in Figure 9.(a) to the AFG in Figure 9.(b). The graph has350

two internal constraints in the loop body: Èe, cÍ and Èc, fÍ, and the constraint Èf, hÍ from351

inside the loop body to outside of the loop. The constraint Èe, cÍ is upwards: it requires352

the execution of e in one iteration of the loop to be executed before the execution of c in353

the next iteration of the loop. We notice that the branch instruction b is executed between354
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example, it is the simple path cef . We call the edge Èf, bÍ that jumps from the end of the347

loop body back to the branch vertex, the return edge. We call the edge Èb, gÍ that jumps348
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the next iteration of the loop. We notice that the branch instruction b is executed between354

M. Taheri, A. Pourdamghani and M. Lesani 34:13

the execution of e in one iteration of the loop to be executed before the execution of c in
the next iteration of the loop. We notice that the branch instruction b is executed between
the instructions of any iteration and the next. As mentioned in subsection 3.1, hardware
memory models can preserve control dependencies. Thus, the order of instruction between
one iteration and the next is preserved. Therefore, the constraint Èe, cÍ in Figure 8.(a) is
implicitly enforced and is eliminated in Figure 8.(b). The constraint Èf, hÍ is eliminated with
the same argument. Thus, we should preserve the constrains when the loop body is either
executed once in an iteration or is not executed. To represent these two paths in a diamond,
we add a vertex b

Õ to represent a dummy instruction after the loop. The return edge Èf, bÍ

is updated to Èf, b
Õ
Í. The exit edge Èb, gÍ is updated to a dummy edge Èb, b

Õ
Í and the edge

Èb
Õ
, gÍ. Thus, the loop is transformed to the diamond Èb, b

Õ
Í and the constraint Èc, fÍ remains

unchanged.
No constraint ends at b

Õ. Thus, Algorithm 4 puts no fence on the dummy edge Èb, b
Õ
Í

and Èf, bs
Õ
Í. In addition, the transformation did not change the constraints in the body of

the loop. Any fence on the new edge Èb
Õ
, gÍ corresponds to a fence on the old edge Èb, gÍ.

Therefore, if a fence is needed in the resulting AFG, it is needed in the CFG as well and will
cover the same set of constraints. Therefore, every optimal fence insertion for the AFG is an
optimal fence insertion for the CFG.

5 Multi-type Fence Insertion Problem

Common architectures often o�er di�erent fence instructions that preserve the order of
certain instruction pairs. In this section, we study the complexity of the insertion problem
when there are di�erent types of constraints and fences such that each fence type can cover a
subset of the constraint types. (We note that these constraint types are defined based on the
endpoint instructions and for a target architecture, and are irrelevant to the three constraint
types presented in section 2.) We show that this problem is NP-hard even for straight-line
programs through a reduction from the set cover problem.

An instance of the Multi-type Fence Insertion problem is defined as ÈCT, FT, G, CÍ. CT is
the set of constraint types. Each constraint has a type according to its endpoint instructions.
FT is the set of fence types. Each fence type can cover a certain subset of the constraint
types CT . G is the CFG. C is the set of constraints on G of di�erent types from CT . The
goal is to find the minimum number of fences, regardless of their types from FT , to cover C.

We provide a polynomial-time reduction from the minimum set cover problem to the
multi-type fence insertion problem. The set cover has been one of the fundamental problems
in computer science [17]. It has been shown that the minimum set cover problem is NP-hard
[10] and it can be approximated with a O(log n) factor [16].

I Theorem 4. The multi-type fence insertion problem is NP-hard.

Proof. We provide a reduction from an instance I of the minimum set cover problem to an
instance of I

Õ the multi-type fence insertion problem for straight-line programs. Consider
an instance I of the minimum set cover problem ÈU, SÍ where U = {u1, u2, . . . , un} is the
set of all elements and S = {S1, S2, S3, . . . , Sk} are the subsets of U . The goal is to find the
minimum number of the subsets in S that cover U .

The reduction defines the set of constraint types CT to be U . Each element of the set
U corresponds to constraint type. The reduction also defines the set of fence types FT to
be S. Each fence type Si covers the set of constraint types that correspond to the elements
in Si. The reduction constructs a straight-line program with 2n instructions. Then, for
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the execution of e in one iteration of the loop to be executed before the execution of c in
the next iteration of the loop. We notice that the branch instruction b is executed between
the instructions of any iteration and the next. As mentioned in subsection 3.1, hardware
memory models can preserve control dependencies. Thus, the order of instruction between
one iteration and the next is preserved. Therefore, the constraint Èe, cÍ in Figure 8.(a) is
implicitly enforced and is eliminated in Figure 8.(b). The constraint Èf, hÍ is eliminated with
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Therefore, if a fence is needed in the resulting AFG, it is needed in the CFG as well and will
cover the same set of constraints. Therefore, every optimal fence insertion for the AFG is an
optimal fence insertion for the CFG.

5 Multi-type Fence Insertion Problem

Common architectures often o�er di�erent fence instructions that preserve the order of
certain instruction pairs. In this section, we study the complexity of the insertion problem
when there are di�erent types of constraints and fences such that each fence type can cover a
subset of the constraint types. (We note that these constraint types are defined based on the
endpoint instructions and for a target architecture, and are irrelevant to the three constraint
types presented in section 2.) We show that this problem is NP-hard even for straight-line
programs through a reduction from the set cover problem.

An instance of the Multi-type Fence Insertion problem is defined as ÈCT, FT, G, CÍ. CT is
the set of constraint types. Each constraint has a type according to its endpoint instructions.
FT is the set of fence types. Each fence type can cover a certain subset of the constraint
types CT . G is the CFG. C is the set of constraints on G of di�erent types from CT . The
goal is to find the minimum number of fences, regardless of their types from FT , to cover C.

We provide a polynomial-time reduction from the minimum set cover problem to the
multi-type fence insertion problem. The set cover has been one of the fundamental problems
in computer science [17]. It has been shown that the minimum set cover problem is NP-hard
[10] and it can be approximated with a O(log n) factor [16].

I Theorem 4. The multi-type fence insertion problem is NP-hard.

Proof. We provide a reduction from an instance I of the minimum set cover problem to an
instance of I

Õ the multi-type fence insertion problem for straight-line programs. Consider
an instance I of the minimum set cover problem ÈU, SÍ where U = {u1, u2, . . . , un} is the
set of all elements and S = {S1, S2, S3, . . . , Sk} are the subsets of U . The goal is to find the
minimum number of the subsets in S that cover U .

The reduction defines the set of constraint types CT to be U . Each element of the set
U corresponds to constraint type. The reduction also defines the set of fence types FT to
be S. Each fence type Si covers the set of constraint types that correspond to the elements
in Si. The reduction constructs a straight-line program with 2n instructions. Then, for
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the execution of e in one iteration of the loop to be executed before the execution of c in
the next iteration of the loop. We notice that the branch instruction b is executed between
the instructions of any iteration and the next. As mentioned in subsection 3.1, hardware
memory models can preserve control dependencies. Thus, the order of instruction between
one iteration and the next is preserved. Therefore, the constraint Èe, cÍ in Figure 8.(a) is
implicitly enforced and is eliminated in Figure 8.(b). The constraint Èf, hÍ is eliminated with
the same argument. Thus, we should preserve the constrains when the loop body is either
executed once in an iteration or is not executed. To represent these two paths in a diamond,
we add a vertex b

Õ to represent a dummy instruction after the loop. The return edge Èf, bÍ

is updated to Èf, b
Õ
Í. The exit edge Èb, gÍ is updated to a dummy edge Èb, b

Õ
Í and the edge

Èb
Õ
, gÍ. Thus, the loop is transformed to the diamond Èb, b

Õ
Í and the constraint Èc, fÍ remains

unchanged.
No constraint ends at b

Õ. Thus, Algorithm 4 puts no fence on the dummy edge Èb, b
Õ
Í

and Èf, bs
Õ
Í. In addition, the transformation did not change the constraints in the body of

the loop. Any fence on the new edge Èb
Õ
, gÍ corresponds to a fence on the old edge Èb, gÍ.

Therefore, if a fence is needed in the resulting AFG, it is needed in the CFG as well and will
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optimal fence insertion for the CFG.
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certain instruction pairs. In this section, we study the complexity of the insertion problem
when there are di�erent types of constraints and fences such that each fence type can cover a
subset of the constraint types. (We note that these constraint types are defined based on the
endpoint instructions and for a target architecture, and are irrelevant to the three constraint
types presented in section 2.) We show that this problem is NP-hard even for straight-line
programs through a reduction from the set cover problem.

An instance of the Multi-type Fence Insertion problem is defined as ÈCT, FT, G, CÍ. CT is
the set of constraint types. Each constraint has a type according to its endpoint instructions.
FT is the set of fence types. Each fence type can cover a certain subset of the constraint
types CT . G is the CFG. C is the set of constraints on G of di�erent types from CT . The
goal is to find the minimum number of fences, regardless of their types from FT , to cover C.

We provide a polynomial-time reduction from the minimum set cover problem to the
multi-type fence insertion problem. The set cover has been one of the fundamental problems
in computer science [17]. It has been shown that the minimum set cover problem is NP-hard
[10] and it can be approximated with a O(log n) factor [16].

I Theorem 4. The multi-type fence insertion problem is NP-hard.
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Õ the multi-type fence insertion problem for straight-line programs. Consider
an instance I of the minimum set cover problem ÈU, SÍ where U = {u1, u2, . . . , un} is the
set of all elements and S = {S1, S2, S3, . . . , Sk} are the subsets of U . The goal is to find the
minimum number of the subsets in S that cover U .

The reduction defines the set of constraint types CT to be U . Each element of the set
U corresponds to constraint type. The reduction also defines the set of fence types FT to
be S. Each fence type Si covers the set of constraint types that correspond to the elements
in Si. The reduction constructs a straight-line program with 2n instructions. Then, for
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the execution of e in one iteration of the loop to be executed before the execution of c in
the next iteration of the loop. We notice that the branch instruction b is executed between
the instructions of any iteration and the next. As mentioned in subsection 3.1, hardware
memory models can preserve control dependencies. Thus, the order of instruction between
one iteration and the next is preserved. Therefore, the constraint Èe, cÍ in Figure 8.(a) is
implicitly enforced and is eliminated in Figure 8.(b). The constraint Èf, hÍ is eliminated with
the same argument. Thus, we should preserve the constrains when the loop body is either
executed once in an iteration or is not executed. To represent these two paths in a diamond,
we add a vertex b

Õ to represent a dummy instruction after the loop. The return edge Èf, bÍ
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Í. In addition, the transformation did not change the constraints in the body of

the loop. Any fence on the new edge Èb
Õ
, gÍ corresponds to a fence on the old edge Èb, gÍ.

Therefore, if a fence is needed in the resulting AFG, it is needed in the CFG as well and will
cover the same set of constraints. Therefore, every optimal fence insertion for the AFG is an
optimal fence insertion for the CFG.

5 Multi-type Fence Insertion Problem

Common architectures often o�er di�erent fence instructions that preserve the order of
certain instruction pairs. In this section, we study the complexity of the insertion problem
when there are di�erent types of constraints and fences such that each fence type can cover a
subset of the constraint types. (We note that these constraint types are defined based on the
endpoint instructions and for a target architecture, and are irrelevant to the three constraint
types presented in section 2.) We show that this problem is NP-hard even for straight-line
programs through a reduction from the set cover problem.

An instance of the Multi-type Fence Insertion problem is defined as ÈCT, FT, G, CÍ. CT is
the set of constraint types. Each constraint has a type according to its endpoint instructions.
FT is the set of fence types. Each fence type can cover a certain subset of the constraint
types CT . G is the CFG. C is the set of constraints on G of di�erent types from CT . The
goal is to find the minimum number of fences, regardless of their types from FT , to cover C.

We provide a polynomial-time reduction from the minimum set cover problem to the
multi-type fence insertion problem. The set cover has been one of the fundamental problems
in computer science [17]. It has been shown that the minimum set cover problem is NP-hard
[10] and it can be approximated with a O(log n) factor [16].

I Theorem 4. The multi-type fence insertion problem is NP-hard.

Proof. We provide a reduction from an instance I of the minimum set cover problem to an
instance of I

Õ the multi-type fence insertion problem for straight-line programs. Consider
an instance I of the minimum set cover problem ÈU, SÍ where U = {u1, u2, . . . , un} is the
set of all elements and S = {S1, S2, S3, . . . , Sk} are the subsets of U . The goal is to find the
minimum number of the subsets in S that cover U .

CT = U

FT = S

The reduction defines the set of constraint types CT to be U . Each element of the set
U corresponds to constraint type. The reduction also defines the set of fence types FT to
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