Decomposing Opacity (Appendix)

Mohsen Lesani Jens Palsberg Computer Science Department University of California, Los Angeles {lesani, palsberg}@ucla.edu

Contents

1	Histories	2
2	Opacity	5
3	Markability	7
4	Marking Theorem	10
5	Synchronization Object Types	23
6	Marking TL2	37
7	Marking DSTM (visible reads)	57
8	Marking NORec	59
9	The Cost of Read Validation	61

1 Histories

Strings. We use ||s|| to denote the size of the string s. If s_1 and s_2 are strings, we write $s_1 \in s_2$ iff s_1 is a subsequence of s_2 . For example, $bd \in abcde$. Let s be an isogram (i.e. contains no repeating occurrence of the alphabet.) For any $s_1, s_2 \in s$, we write $s_1 \triangleleft_s s_2$ iff the last element of s_1 occurs before the first element of s_2 in s. For example, $ab \triangleleft_{abcde} de$. We use s(i) to denote the i^{th} element of s.

Method calls and events. Let O denote the set of objects, n denote the set of method names, Trans denote the set of transactions, V denote the set of values and Label denote the set of labels. We use l, R and W as labels. The set of invocation events is $Inv = \{inv(l \triangleright o.n_T(v)) \mid l \in Label, o \in O, n \in N, T \in Trans, v \in V\}$. The set of response events is $Res = \{ret(l \triangleright v) \mid l \in Label, v \in V \cup \{A, \mathbb{C}\}\}$. (A and \mathbb{C} are used later to denote abortion and commitment of transactions.) The set of events is $Ev = Inv \cup Res$. We will use the term completed method call to denote a sequence of an invocation event followed by the matching response event (with the same label). We use $l \triangleright o.n_T(v)$:v to denote the completed method call $inv(l \triangleright o.n_T(v)) \cdot ret(l \triangleright v)$.

Operations on event sequences. Let E and E' be event sequences. We use $E \cdot E'$ to denote the concatenation of E and E'. For a transaction T, we use E|T to denote the subsequence of all events of T in E. For an object o, we use E|o to denote the subsequence of all events of o in E. Let Sequential be the set of sequences of completed method calls possibly followed by an invocation event. A transaction T is sequential in a sequence of events E if E|T is sequential. **Execution history.** An execution history is a sequence of events where each invocation event has a unique label and every transaction is sequential. Let History denote the set of execution histories. We say label l is in X and write $l \in X$ if there is an invocation event with label l in X. Let Labels(X) denote the set of labels in X. Let Trans(X) denote the set of transactions in X. As the labels are unique in a history, the following functions on Labels(X) are defined. The functions obj_X , $name_X$, $trans_X$, $arg1_X$, $arg2_X$, $retv_X$ map labels to the receiving object, the method name, the transaction identifier, the first and the second argument, and the return value associated with the labels. Similary, iEv and rEv functions on Labels(X) map labels to the invocation and the response events associated with the labels.

A history X is equivalent to a history X', $X \equiv X'$, if one is a permutation of the other one that is only the events are reordered but the components of the events (including the argument and return values) are preserved.

Real-time relations. For an execution history X, we define the real-time relations $\prec_X, \preceq_X, \sim_X, \preccurlyeq_X$ on Labels(X) as follows: First, $l_1 \prec_X l_2$ iff $rEv(l_1) \triangleleft_X iEv(l_2)$. $l_1 \preceq_X l_2$ iff $l_1 \prec_X l_2 \lor l_1 = l_2$. Second, $l_1 \sim_X l_2$ iff $l_1 \not\prec_X l_2 \land l_2 \not\prec_X l_1$. Third, $l_1 \preccurlyeq_X l_2$ iff $l_1 \prec_X l_2 \lor l_1 \sim_X l_2$.

From the definition of Sequential we have that $X \in Sequential$ iff $\forall l, l' \in X : l \leq_X l' \lor l' \prec_X l$. For an execution history X, we define the real-time relations \prec_X and \leq_X as follows. First, $T \prec_X T'$ iff $X|T \triangleleft_X X|T'$. Second, $T \leq_X T'$ iff $T \prec_X T' \lor T = T'$.

We now define shared memory and transaction histories.

Transactional Memory. The transactional memory is a singleton object mem that encapsulates a set of locations where each location, $i \in I$, $I = \{1, \ldots, m\}$ encapsulates a value v. The object mem has five methods $init_t()$, $read_t(i)$, $write_t(i, v)$, $commit_t()$ and $abort_t()$. The parameter t is the invoking transaction identifier. The method call $init_t()$ initializes t and returns ok. The method call $read_t(i)$ returns the value of location i or aborts t and returns \mathbb{A} . The method $write_t(i, v)$ writes v to location i and returns ok or aborts t and returns \mathbb{A} . The method $abort_t()$ tries to commit transaction t. If t is successfully committed, it returns \mathbb{C} ; otherwise, it returns \mathbb{A} . The method $abort_t()$ aborts t and returns \mathbb{A} . The object mem can be implicit, that is $read_t(i)$ abbreviates $mem.read_T(i)$. The values ok, \mathbb{A} , \mathbb{C} are reserved values that are used to denote successful completion of writes and abortion and commitment of transactions respectively.

Transaction History. A transaction history H is an execution history such that $H|mem = H_{Init} \cdot H'$ with the following conditions. H_{Init} is the following history that initializes every location to v_0 . $H_{Init} =$

 $l_{0i} \triangleright init_{T_0}() \cdot l_{00} \triangleright write_{T_0}(1, v_0): ok \cdot \ldots \cdot l_{0m} \triangleright write_{T_0}(m, v_0): ok \cdot l_{0c} \triangleright commit_{T_0}: \mathbb{C}$. For every $T \in H'$, the history H'|T is a prefix of *e.e'*. The event sequence *e* is the initialization method call $l \triangleright init_T()$ (for some *l*), and then a sequence of reads $l \triangleright read_T(i): v$ and writes $l \triangleright write_T(i, v)$ (for some *l*, *i*, and *v*). The event sequence *e'* is one of the following sequences (for some *l*, *i*, and *v*): (1) $inv(l \triangleright read_T(i))$, $ret(l \triangleright \mathbb{A})$, (2) $inv(l \triangleright write_T(i, v))$, $ret(l \triangleright \mathbb{A})$, (3) $inv(l \triangleright commit_T())$, $ret(l \triangleright \mathbb{C})$, (4) $inv(l \triangleright commit_T())$, $ret(l \triangleright \mathbb{A})$, or (5) $inv(l \triangleright abort_T())$, $ret(l \triangleright \mathbb{A})$. Let *THistory* denote the set of transaction histories. Let *Trans(H)* denote the set of transactions of *H*. The projection of *H* on *i*, written H|i, denotes the subsequence of history *H* that contains exactly the events on location *i*. For a TM algorithm specification π , let $\mathbb{H}(\pi)$ denote the set of complete transaction histories that π results.

Now, we present a set of basic lemmas about execution orders.

Lemma 1 (XASym) For every execution history X and method calls l and l', if $l \prec_X l'$ then $\neg(l' \prec_X l) \land \neg(l' \sim_X l) \land \neg(l' = l)$

Lemma 2 (XTrans) For every execution history X and method calls l, l. and l'', if $l \prec_X l'$ and $l' \prec l''$ then $l \prec_X l''$

Lemma 3 (XXTrans) For every execution history X and method calls l_1 , l_2 , l_3 , and l_4 , if $l_1 \prec_X l_2$, $l_2 \preceq_X l_3$, and $l_3 \prec_X l_4$ then $l_1 \prec_X l_4$

Lemma 4 (XTotal) For every execution history X and method calls l and l', if $l \in X$, and $l' \in X$, then $(l \prec_X l') \lor (l' \prec_X l) \lor (l \sim_X l') \lor (l = l')$

Lemma 5 (X2X) For every execution history X and method calls l and l', if $l \prec_X l'$ then $l \in X$, and $l' \in X$.

Lemma 6 (XI2X) For every execution history X and method calls l, l', and l'' if $l \prec_X l'$ and $inv(l') \triangleleft_X inv(l'')$ then $l \prec_X l''$.

Lemma 7 (RX2X) For every execution history X and method calls l, l', and l'' if $ret(l) \triangleleft_X ret(l')$ and $l' \prec_X l''$ then $l \prec_X l''$.

Proof Sketches.

Lemma 1: We Assume (1) $l \prec_X l'$ From [1] and definition of \sim_X , we have (2) $\neg(l' \sim_X l)$ From [1], we have (3) $rEv(l) \triangleleft_X iEv(l')$ As X is a valid history, we have (4) $iEv(l) \triangleleft_X rEv(l)$ (5) $iEv(l) \triangleleft_X rEv(l)$ (6) $iEv(l) \triangleleft_X rEv(l')$ From [4], [3], and [5], we have (6) $iEv(l) \triangleleft_X rEv(l')$ From [6], we have (7) $\neg(rEv(l') \triangleleft_X iEv(l))$ From [7], and definition of \prec_X , we have (9) $\neg(l' \prec_X l)$ From [3] and [7], we have (9) $\neg(l' = l)$

Lemma 2:

Straightforward from the definition of \prec_X .

Lemma 3:

We have (1) $l_1 \prec_X l_2$ (2) $l_3 \prec_X l_4$ (3) $l_2 \sim_X l_3$ From [1], we have (4) $rEv(l_1) \triangleleft_X iEv(l_2)$ From [2], we have (5) $rEv(l_3) \triangleleft_X iEv(l_4)$ From [3], we have (6) $\neg (l_3 \prec_X l_2)$ From [6], we have (7) $\neg (rEv(l_3) \triangleleft_X iEv(l_2))$ From [7], we have (8) $iEv(l_2) \triangleleft_X rEv(l_3)$ From [4], [8], and [5], we have (9) $rEv(l_1) \triangleleft_X iEv(l_4)$ From [9], we have $l_1 \prec_X l_4$

Lemma 4:

Straightforward from the definition of \prec_X and \sim_X .

Lemma 5:

Straightforward from the definition of \prec_X .

Lemma 6:

Straightforward from the definition of \prec_X and \triangleleft_X .

Lemma 7:

Straightforward from the definition of \prec_X and \triangleleft_X .

2 Opacity

In this section, we present a formal definition of opacity. Opacity of a TM algorithm is defined in two steps. First, it is defined what it means for a transaction history to be opaque which is called final-state-opacity. Then, a TM algorithm is defined to be opaque if every transaction history of every source program running on top of that TM algorithm is final-state-opaque.

FinalStateOpaque is defined in Figure 1. First, we present some preliminary definitions. We use T prefix before some of the terms for transactions to avoid confusion with the terms for concurrent objects. We say that a transaction history is transaction sequential if it is a sequence of transactions. A transaction T is committed or aborted in a transaction history H if there is respectively a commit or abort response event for Tin H. A completed transaction is either committed or aborted. A live transaction is a transaction that is not completed. A transaction history is complete if all its transactions are completed. A pending transaction has a pending event and a commit-pending transaction has a commit pending event. An extension of a history is obtained by committing or aborting its commit-pending transactions and aborting the other live transactions. For a TM algorithm specification π , let $\mathbb{H}(\pi)$ denote the set of complete transaction histories that π results.

If H is a transaction history and p is a predicate on transaction identifiers, we define filter(H, p) to be the subsequence of H that contains the events of transactions T for which p(T) is true. The visible history for a transaction T in a sequential transaction history S, Visible(S,T), is the sequence of committed transactions before T in S and T itself. The sequential specification of a location i, SeqSpec(i), is the set of sequential histories of read and write method calls on location i where every read returns the value given as the argument to the latest preceding write (regardless of transaction identifiers). It is essentially the sequential specification of a register. Transactional sequential specification is the set of complete sequential transaction histories S that for every transaction T and location i, Visible(S,T)|i is a member of the sequential specification of i. A transaction history H is final-state-opaque if there is an equivalent sequential sequential specification. The sequential history S is called the justifying history. In other words, every correct concurrent execution is indistinguishable from a correct sequential execution.

TReads(H) = $\{R \mid R \in H \land obj_H(R) = mem \land name_H(R) = read \land retv_H(R) \neq A\}$ TWrites(H) = $\{W \mid W \in H \land obj_H(W) = mem \land name_H(W) = write \land retv_H(W) \neq A\}$ Commits(H) = $\{C \mid C \in H \land obj_H(C) = mem \land name_H(C) = commit\}$ Trans(H) = $\{T \mid \exists l \in H : trans_H(l) = T\}$ TSequential = $\{S \in THistory \mid \underline{\prec}_S \text{ is a total order of } Trans(S)\}$ Committed(H) = $\{T \mid \exists l \in Commits(H) \land retv_H(l) = \mathbb{C}\}\$ Aborted(H) = $\{T \mid \exists l \in H : obj_H(l) = mem \land trans_H(l) = T \land retv_H(l) = \mathbb{A}\}$ Completed(H) = $Committed(H) \cup Aborted(H)$ Live(H) = $Trans(H) \setminus Completed(H)$ TComplete = $\{H \in THistory \mid \forall T \in Trans(H) \colon T \in Completed(H)\}$ CommitPending(H) = $\{T \in Live(H) \mid \exists l \in H : obj_H(l) = mem \land trans_H(l) = T \land name_H(l) = commit\}$ TExtension(H) = $\{H' \in THistory \mid \exists H'' \colon H' = H \cdot H''$ $Trans(H'') \subseteq Trans(H) \land \forall T \colon ||H''|T|| \le 1 \land$ $Live(H) \setminus CommitPending(H) \subseteq Aborted(H') \land$ $CommitPending(H) \subseteq Completed(H')$ Visible(S,T) = $filter (S, \lambda T'. (T' = T) \lor ((T' \prec_S T) \land T' \in Committed(S)))$ $NoWriteBetween_S(W, R) =$ $\forall W' \in TWrites(S) \colon W' \preceq_S W \lor R \prec_S W'$ SeqSpec(i) = $\{S \in Sequential \mid \forall R \in TReads(S) : \exists W \in TWrites(S) : \exists W \in TWrites(W \in TWrites(S) : \exists W \in TWrites(S) : \exists W \in TWrites(S) : \exists W \in TWrites(TWrites(TWrites(W \in TWrites(TWrites(W \in TWrites(W \in$ $W \prec_S R \land NoWriteBetween_S(W, R) \land$ $retv_S(R) = arg2_S(W)$ TSeqSpec = $\{S \in TSequential \cap TComplete \mid \forall T \in S \colon \forall i \in I \colon$ $(Visible(S,T) \mid i) \in SeqSpec(i)\}$ FinalStateOpaque = $\{H \in THistory \mid \exists H' \in TExtension(H) \colon \exists S \in TSequential \colon$ $H' \equiv S \land \underline{\prec}_{H'} \subseteq \underline{\prec}_S \land S \in TSeqSpec\}$

Figure 1: *FinalStateOpaque*

3 Markability

In this section, we define markability for general histories.

First, we present some preliminary definitions in Figure 2. (We use T prefix before some of the terms for transactions to avoid confusion with similar terms that used for concurrent objects.) A transaction T is *committed* or *aborted* in a transaction history H if there is respectively a commit or abort response event for T in H. A *completed* transaction is either committed or aborted. A *live* transaction is a transaction has a pending event and a *commit-pending* transaction has a commit pending event. An *extension* of a history is obtained by committing or aborting its commit-pending transactions and aborting the other live transactions.

A *local* read is a read that is preceded by a write by the same transaction to the same location. Intuitively, a local read should read a value that is previously written by the same transaction and hence the name. A *global read* is a read that is not local. A *local write* is a write that precedes a write by the same transaction to the same location. A local write is overwritten by the same transaction and hence the name. A *global write* is a write that is not local. The *writers of i* are the committed transactions that write to location i.

Markability is defined in Figure 3. A marking \sqsubseteq of a transaction history is the union of the following relations on the set of transactions and the global reads.

- The *effect order*: The set of transactions is totally ordered by \sqsubseteq . In other words, \sqsubseteq is total, antisymmetric and transitive on the set of transactions.
- The access orders: For each global read R from a location i, R and every writer of i are ordered by \sqsubseteq . In other words, \sqsubseteq totally orders every global read R from a location i with respect to writers of i and is antisymmetric.

The write-observation property is comprised of the two properties: local write-observation and global write-observation. Local write-observation requires that every local read R from a location i returns the value written by the last write before it in the same transaction to i. Global write-observation requires that the value that every global read R from a location i returns is the value written by the global write of the last pre-accessor transaction to i. We remind that pre-accessors of R are the writers of i that are ordered before R in the access order and the last pre-accessor is the one that is greatest in the effect order.

The *Read-preservation* property requires that for every global read R from location i by transaction T, there is no writer transaction T' of i such that T' is marked between T and R (i.e. T' accesses i after R and takes effect before T), or similarly, T' is marked between R and T (i.e. T' takes effect after T and accesses i before R).

The *real-time-preservation* property requires that if T is before T' in the real-time order, then T takes effect before T' as well.

A transaction history is *final-state-markable* if and only if there exists a marking for an extension of it that is write-observant, read-preserving, and real-time-preserving.

 $Committed(H) = \{T \mid \exists l \in H: obj_H(l) = mem \land trans_H(l) = T \land retv_H(l) = \mathbb{C}\}$ Aborted(H) = { $T \mid \exists l \in H: obj_H(l) = mem \land trans_H(l) = T \land retv_H(l) = \mathbb{A}$ } $Completed(H) = Committed(H) \cup Aborted(H)$ $Live(H) = Trans(H) \setminus Completed(H)$ $CommitPending(H) = \{T \in Live(H) \mid \exists l \in H : obj_H(l) = mem \land trans_H(l) = T \land$ $name_H(l) = commit\}$ $TExtension(H) = \{H' \in THistory \mid \exists H'': H' = H \cdot H''$ $Trans(H'') \subseteq Trans(H) \land \forall T \colon ||H''|T|| \le 1 \land$ $Live(H) \setminus CommitPending(H) \subseteq Aborted(H') \land$ $CommitPending(H) \subseteq Completed(H')$ $TReads(H) = \{R \mid R \in H \land obj_H(R) = mem \land name_H(R) = read \land retv_H(R) \neq A\}$ $TWrites(H) = \{W \mid W \in H \land obj_H(W) = mem \land name_H(W) = write \land retv_H(W) \neq A\}$ $LocalTReads(H) = \{R \mid R \in TReads(H) \land \exists W \in TWrites(H):$ $trans_H(R) = trans_H(W) \land arg1_H(R) = arg1_H(W) \land W \prec_H R$ $GlobalTReads(H) = TReads(H) \setminus LocalTReads(H)$ $LocalTWrites(H) = \{W \mid W \in TWrites(H) \land \exists W' \in TWrites(H):$ $trans_H(W) = trans_H(W') \land arg1_H(W) = arg1_H(W') \land W \prec_H W' \}$ $GlobalTWrites(H) = TWrites(H) \setminus LocalTWrites(H)$ $Writers_H(i) = \{T \in Trans(H) \mid \exists l \in TWrites(H) : arg1_H(l) = i \land$ $trans_H(l) = T \land T \in Committed(H)$

Figure 2: Basic Definitions

 $Marking(H) = \{ \sqsubseteq \mid$ $\forall T1, T2, T3 \in Trans(H)$: $(T1 \sqsubseteq T2 \lor T2 \sqsubseteq T1) \land$ $(T1 \sqsubseteq T2 \land T2 \sqsubseteq T1) \Rightarrow (T1 = T2) \land$ $(T1 \sqsubseteq T2) \land (T2 \sqsubseteq T3) \Rightarrow (T1 \sqsubseteq T3) \land$ $\forall R, T: Let \ i = arg1_H(R): (R \in GlobalTRead(H) \land T \in Writers_H(i)) \Rightarrow$ $(R \sqsubseteq T \lor T \sqsubseteq R) \land$ $(R \sqsubseteq T \Rightarrow \neg T \sqsubseteq R) \land (T \sqsubseteq R \Rightarrow \neg R \sqsubseteq T) \}$ $NoWriteBetween_H(W, R) \Leftrightarrow$ $\forall W' \in TWrites(H) \colon W' \preceq_H W \lor R \prec_H W'$ $LocalWriteObs(H) \Leftrightarrow$ $\forall R \in LocalTReads(H): Let T = trans_H(R), i = arg1_H(R), H' = H|T|i:$ $\exists W \in TWrites(H'): W \prec_{H'} R \land NoWriteBetween_{H'}(W, R) \land retv_{H'}(R) = arg2_{H'}(W)$ $NoWriterBetween_{H,i}(x, \sqsubseteq, x') \Leftrightarrow$ $\forall T \in Writers_H(i) \colon T \sqsubseteq x \lor x' \sqsubseteq T$ $LastPreAccessor_{H \sqcap}(T', R) \Leftrightarrow Let \ i = arg1_H(R), T = trans_H(R):$ $T' \in Writers_H(i) \land T' \neq T \land T' \sqsubset R \land NoWriterBetween_{H,i}(T', \sqsubseteq, R)$ $GlobalWriteObs(H, \sqsubseteq) \Leftrightarrow$ $\forall R \in GlobalTReads(H) : \exists W \in GlobalTWrites(H) : Let T' = trans_H(W) :$ $LastPreAccessor_{H,\Box}(T',R) \land arg1_H(R) = arg1_H(W) \land retv_H(R) = arg2_H(W)$ $WriteObs(H, \sqsubseteq) \Leftrightarrow$ $LocalWriteObs(H) \land GlobalWriteObs(H, \Box)$ $ReadPres(H, \sqsubseteq) \Leftrightarrow$ $\forall R \in GlobalTReads(H)$: Let $i = arg1_H(R), T = trans_H(R)$: $NoWriterBetween_{H,i}(R, \subseteq, T) \land NoWriterBetween_{H,i}(T, \subseteq, R)$ $RealTimePres(H, \sqsubseteq) \Leftrightarrow$ $\preceq _{H} \subseteq \sqsubseteq$ $FinalStateMarkable = \{H \in THistory \mid \exists H' \in TExtension(H) : \exists \sqsubseteq \in Marking(H') :$ $ReadPres(H', \sqsubseteq) \land WriteObs(H', \sqsubseteq) \land RealTimePres(H', \bigsqcup)$ Figure 3: FinalStateMarkable

4 Marking Theorem

In this section, we prove the marking theorem.

For the sake of brevity, we use the shorthand notation

 $\exists l = o.n_T(v_1): v_2 \in X$

for

 $\exists l \in X: obj_X(l) = o \land name_X(l) = n \land trans_X(l) = T \land arg1_X(l) = v_1 \land retv_X(l) = v_2$ and similarly for universal quantification.

We also use W, R to denote labels.

Lemma 8 For all $S \in TS$ equantial, $T \in S$, S' = Visible(S,T), and $T', T'' \in S'$, we have $T' \preceq_{S'} T'' \iff T' \preceq_{S} T''$.

Proof.

$$T' \preceq_{S'} T''$$

$$\iff S'|T' \lhd_{S'} S'|T'' \lor T' = T''$$

$$\iff S|T' \lhd_{S'} S|T'' \lor T' = T''$$

$$\iff S|T' \lhd_{S} S|T'' \lor T' = T''$$

$$\iff T' \preceq_{S} T''$$

In these four steps we apply:

- 1) the definition of $\underline{\prec}_{S'}$,
- 2) that the definition of Visible(S,T) implies both S'|T' = S|T' and S'|T'' = S|T'',
- 3) $S' \Subset S$, and
- 4) the definition of $\underline{\prec}_S$.

Lemma 9 For all $S \in TS$ equantial, $T \in S$, $i \in I$, $v, v' \in V$, $R = read_T(i): v \in GlobalReads(S)$, S' = Visible(S,T), $T' \in S'$, and $W' = write_{T'}(i, v') \in GlobalWrites(S)$, we have

$$NoWriteBetween_{(S'|i)}(W', R) \iff NoWriterBetween_{S,i}(T', \preceq_S, T)$$

Proof.

$$\begin{split} NoWriteBetween_{(S'|i)}(W',R) \\ \Leftrightarrow \forall W'' \in Writes(S'|i) : W'' \preceq_{(S'|i)} W' \lor R \preceq_{(S'|i)} W'' \\ \Leftrightarrow \forall T'' \in S'|i : \forall i' \in I : \forall v'' \in V : \forall W'' = write_{T''}(i',v'') \in S'|i : W'' \preceq_{(S'|i)} W' \lor R \preceq_{(S'|i)} W'' \\ \Leftrightarrow \forall T'' \in S'|i : \forall v'' \in V : \forall W'' = write_{T''}(i,v'') \in S'|i : W'' \preceq_{(S'|i)} W' \lor R \preceq_{(S'|i)} W'' \\ \Leftrightarrow \forall T'' \in S' : \forall v'' \in V : \forall W'' = write_{T''}(i,v'') \in S' : W'' \preceq_{S'} W' \lor R \preceq_{S'} W'' \\ \Leftrightarrow \forall T'' \in S' : \forall v'' \in V : \forall W'' = write_{T''}(i,v'') \in S' : T'' \preceq_{S'} T \lor T \preceq_{S'} T'' \\ \Leftrightarrow \forall T'' \in S' : \forall v'' \in V : \forall W'' = write_{T''}(i,v'') \in S' : T'' \preceq_{S} T \lor T \preceq_{S} T'' \\ \Leftrightarrow \forall T'' \in S' : \forall v'' \in V : \forall W'' = write_{T''}(i,v'') \in S' : T'' \ll_{S} T \Rightarrow T'' \preceq_{S} T' \\ \Leftrightarrow \forall T'' \in S : \forall v'' \in V : \forall W'' = write_{T''}(i,v'') \in S : \\ [[(T'' = T) \lor (T'' \prec_{S} T \land T'' \in Committed(S))] \land [T'' \prec_{S} T]] \Rightarrow T'' \preceq_{S} T' \\ \Leftrightarrow \forall T'' \in S : \forall v'' \in V : \forall W'' = write_{T''}(i,v'') \in S : \\ (T'' \in Committed(S) \land T'' \ll_{S} T) \Rightarrow T'' \preceq_{S} T' \\ \Leftrightarrow \forall T'' \in Writers_{S}(i) : T'' \ll_{S} T \Rightarrow T'' \preceq_{S} T'' \\ \Leftrightarrow \forall T'' \in Writers_{S}(i) : T'' \ll_{S} T \to T'' \preceq_{S} T'' \\ \Leftrightarrow NoWriterBetween_{S,i}(T', \preceq_{S}, T) \end{aligned}$$

In these twelve steps, we apply:

1) the definition of NoWriteBetween,

2) the definition of *Writes*,

3) the definition of projection S'|i,

4) R, W' and W'' access location i,

5) $S' \in TS$ equantial and $R \in GlobalReads(S')$ and $W' \in GlobalWrites(S')$ (that are concluded from $S \in TS$ equantial, $R \in GlobalReads(S)$, $W' \in GlobalWrites(S)$ and S' = Visible(S,T).),

6) Lemma 8,

7) Boolean logic and that $\underline{\prec}_S$ is total,

8) the definition of *Visible*,

9) logical simplification,

10) the definition of *Writers*,

11) Boolean logic and that $\underline{\prec}_S$ is total, and

12) the definition of NoWriterBetween.

Lemma 10 $TSequential \subset Sequential$

Proof. Straightforward from definitions of *TSequential*, *THistory* and *Sequential*.

Lemma 11 $\forall i \in I: \forall v, v' \in V: \forall T, T' \in Trans: if <math>R = read_T(i):v, W = write_{T'}(i, v), W' = write_T(i, v'), S \in TS equential, W \prec_S R, NoWrite Between_S(W, R) and W' \prec_S R, then T = T'.$

Proof. Suppose (1) $S \in TSequential$, (2) $W \prec_S R$, (3) $NoWriteBetween_S(W, R)$ and (4) $W' \prec_S R$. From [1] and Lemma 10, we have (5) $S \in Sequential$. From [4] and [5], we have (6) $\neg(R \prec_S W')$. From [3] we have (7) $W' \preceq_S W \lor R \prec_S W'$. From [6] and [7], we have (8) $W' \preceq_S W$. From [2] and [8], we have (9) $W' \preceq_S W \preceq_S R$. From [9], [1], and that W' and R are by T and W is by T', we have T = T'. \Box

Lemma 12 Suppose $S \in TS$ equantial. We have:

$$\begin{array}{l} \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_{T}(i) : v \in LocalReads(S) \colon \\ \exists T' \in Visible(S,T) \colon \exists W = write_{T'}(i,v) \in Visible(S,T) \colon \\ W \prec_{(Visible(S,T) \ | \ i)} R \land NoWriteBetween_{(Visible(S,T) \ | \ i)}(W,R) \\ \Leftrightarrow S \in LocalTSeqSpec \end{array}$$

Proof. Suppose $S \in TS$ equential. Thus, from Lemma 10, we have $S \in S$ equential. Let S' = Visible(S, T). From $S \in TS$ equential and Lemma 8, we have $S' \in TS$ equential. Thus, from Lemma 10, we have $S' \in S$ equential. From the definition of Visible, we have S'|T = S|T.

$$\forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in LocalReads(S): \\ \exists T' \in S': \exists W = write_{T'}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R) \\ \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in LocalReads(S): \\ \exists v' \in V: \exists W' = write_{T'}(i, v) \in S: W' \prec_{S} R \land \\ \exists T' \in S': \exists W = write_{T'}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R) \\ \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in LocalReads(S): \\ \exists v' \in V: \exists W' = write_{T}(i, v') \in S': W' \prec_{S} R \land \\ \exists T' \in S': \exists W = write_{T'}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R) \\ \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in LocalReads(S): \\ \exists v' \in V: \exists W' = write_{T'}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R) \\ \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in LocalReads(S): \\ \exists v' \in V: \exists W' = write_{T'}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R) \\ \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in LocalReads(S): \\ \exists v' \in V: \exists W' = write_{T'}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)} R \land \\ \exists T' \in S': \exists W = write_{T'}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R) \\ \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in LocalReads(S): \\ \exists v' \in V: \exists W' = write_{T}(i, v') \in S': W' \prec_{(S' \mid i)} R \land \\ \exists W = write_{T}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R) \\ \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in LocalReads(S): \\ \exists W = write_{T}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R) \\ \Leftrightarrow T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in LocalReads(S): \\ \exists W = write_{T}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R) \\ \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in LocalReads(S): \\ \exists W = write_{T}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R) \\ \Leftrightarrow \forall T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in LocalReads(S): \\ \exists W = write_{T}(i, v) \in S': \\ W \prec_{(S' \mid i)} R \land NoWriteBetween_{(S' \mid i)}(W, R) \\ \Leftrightarrow T \in S: \forall i \in I: \forall v \in V: \forall R = read_{T}(i):v \in L$$

 $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S$: $W \prec_{S'} R \land NoWriteBetween_{(S' \mid i)}(W, R)$ $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S$: $W \prec_S R \land NoWriteBetween_{(S'+i)}(W,R)$ $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S$: $W \prec_S R \land \forall W' \in Writes(S' \mid i) \colon W' \preceq_{(S' \mid i)} W \lor R \prec_{(S' \mid i)} W'$ $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S$: $W \prec_S R \land \neg \exists W' \in Writes(S' \mid i) : \neg(W' \preceq_{(S' \mid i)} W) \land \neg(R \prec_{(S' \mid i)} W')$ $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S$: $W \prec_S R \land \neg \exists W' \in Writes(S' \mid i) \colon W \prec_{(S' \mid i)} W' \prec_{(S' \mid i)} R$ $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S:$ $W \prec_S R \land \neg \exists v' \in V : \exists W' = write_T(i, v') : W \prec_{(S'+i)} W' \prec_{(S'+i)} R$ $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S$: $W \prec_S R \land \neg \exists v' \in V : \exists W' = write_T(i, v') : W \prec_{(S+i)} W' \prec_{(S+i)} R$ $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S:$ $W \prec_S R \land \neg \exists W' \in Writes(S \mid i) : W \prec_{(S \mid i)} W' \prec_{(S \mid i)} R$ $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S$: $W \prec_S R \land \forall W' \in Writes(S \mid i) : \neg(W \prec_{(S \mid i)} W') \lor \neg(W' \prec_{(S \mid i)} R)$ $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S \colon W \prec_S R \land$ $\forall W' \in Writes(S \mid i) \colon W' \preceq_{(S \mid i)} W \lor R \prec_{(S \mid i)} W'$ $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S|T|i: W \prec_{S|T|i} R \land$ $\forall W' \in Writes(S|T|i) \colon W' \preceq_{(S|T|i)} W \lor R \prec_{(S|T|i)} W'$ $\iff \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in Local Reads(S) \colon$ $\exists W = write_T(i, v) \in S|T|i:$ $W \prec_{S|T|i} R \land NoWriteBetween_{(S|T|i)}(W, R)$ $\iff S \in LocalTSeqSpec$

In these twenty steps, we apply: 1) the definition of *LocalReads*,

2) the definition of Visible,

- 3) S'|T = S|T and that both W' and R are by T,
- 4) that both W' and R are on i,
- 5) Lemma 11,
- 6) duplicate conjunction,
- 7) the definition of *Visible*,
- 8) that both R and W are on i,
- 9) S'|T = S|T and that both R and W are by T,
- 10) the definition of NoWriteBetween,
- 11) first-order logic,
- 12) $(S' \mid i) \in Sequential,$

13) from $(S' \mid i) \in TS$ equantial, R and W are by transaction T and W' is between them, we have W' is by T,

14) S'|T = S|T,

15) from $(S \mid i) \in TS$ equantial, R and W are by transaction T and W' is between them, we have W' is by T.

- 16) first-order logic,
- 17) $(S \mid i) \in Sequential,$
- 18) $(S \mid i) \in Sequential, trans_H(R) = trans_H(W) = T$ and $arg1_H(R) = arg1_H(W) = i$,
- 19) the definition of NoWriteBetween,
- 20) the definition of LocalTSeqSpec.

Lemma 13 Suppose $S \in TS$ equential \cap TC omplete. We have:

$$S \in TSeqSpec \\ \iff S \in LocalTSeqSpec \land \\ \forall T \in S : \forall i \in I : \forall v \in V : \forall R = read_T(i): v \in GlobalReads(S): \\ \exists T' \in Committed(S): \exists W = write_{T'}(i, v) \in GlobalWrites(S): \\ (T' \prec_S T) \land NoWriterBetween_{S,i}(T', \preceq_S, T)$$

Proof. Suppose $S \in TS$ equential $\cap TC$ omplete. From $S \in TS$ equential and Lemma 8, we have $Visible(S,T) \in TS$ equential.

$$\begin{split} S \in TSeqSpec \\ \Longleftrightarrow \quad \forall T \in S: \; \forall i \in I: \; (Visible(S,T) \mid i) \in SeqSpec(i) \\ \Leftrightarrow \quad \forall T \in S: \; \forall i \in I: \\ \quad \forall T'' \in (Visible(S,T) \mid i): \; \forall v \in V: \; \forall R = read_{T''}(i): v \in (Visible(S,T) \mid i): \\ \quad \exists T' \in (Visible(S,T) \mid i): \; \exists W = write_{T'}(i, v) \in (Visible(S,T) \mid i): \\ \quad W \prec (Visible(S,T) \mid i): \; \exists W = write_{T'}(i, v) \in (Visible(S,T) \mid i): \\ W \prec (Visible(S,T) \mid i) \; R \land NoWriteBetween_{(Visible(S,T) \mid i)}(W,R) \\ \Leftrightarrow \quad \forall T \in S: \; \forall i \in I: \\ \forall T'' \in Visible(S,T): \; \forall v \in V: \; \forall R = read_{T''}(i): v \in Visible(S,T): \\ \exists T' \in Visible(S,T): \; \exists W = write_{T'}(i, v) \in Visible(S,T): \\ W \prec (Visible(S,T) \mid i) \; R \land NoWriteBetween_{(Visible(S,T) \mid i)}(W,R) \\ \Leftrightarrow \quad \forall T \in S: \; \forall i \in I: \; \forall v \in V: \; \forall R = read_{T}(i): v \in S: \\ \exists T' \in Visible(S,T): \; \exists W = write_{T'}(i, v) \in Visible(S,T): \\ W \prec (Visible(S,T) \mid i) \; R \land NoWriteBetween_{(Visible(S,T) \mid i)}(W,R) \\ \Leftrightarrow \quad \forall T \in S: \; \forall i \in I: \; \forall v \in V: \; \forall R = read_{T}(i): v \in LocalReads(S): \\ \exists T' \in Visible(S,T) \mid i) \; R \land NoWriteBetween_{(Visible(S,T) \mid i)}(W,R) \\ \land \forall T \in S: \; \forall i \in I: \; \forall v \in V: \; \forall R = read_{T}(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T) \mid i) \; R \land NoWriteBetween_{(Visible(S,T) \mid i)}(W,R) \\ \land \forall (Visible(S,T) \mid i) \; R \land NoWriteBetween_{(Visible(S,T) \mid i)}(W,R) \\ \land \forall (Visible(S,T) \mid i) \; R \land NoWriteBetween_{(Visible(S,T) \mid i)}(W,R) \\ \land \forall T \in S: \; \forall i \in I: \; \forall v \in V: \; \forall R = read_{T}(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T) \mid i \; R \land NoWriteBetween_{(Visible(S,T) \mid i)}(W,R) \\ \Leftrightarrow S \in LocalTSeqSpec \land \\ \forall T \in S: \; \forall i \in I: \; \forall v \in V: \; \forall R = read_{T}(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T) \mid i \; R \land NoWriteBetween_{(Visible(S,T) \mid i)}(W,R) \\ \Leftrightarrow M \in S: \; \forall i \in I: \; \forall v \in V: \; \forall R = read_{T}(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T) \mid i \; R \land NoWriteBetween_{(Visible(S,T) \mid i)}(W,R) \\ \Leftrightarrow M \in V: \; \forall i \in I: \; \forall v \in V: \; \forall R = read_{T}(i): v \in Visible(S,T) \mid i) (W,R) \\ \Rightarrow M \in Visible(S,T) \mid i \; R \land NoWriteBetween_{Visible}(S,T) \mid i) (W,R) \\ \Rightarrow M \in Visible(S,T) \mid i \; R \land NoWriteBetween_{Visible}(S,T) \mid i) (W,R) \\ \Rightarrow M \in Visible(S,T) \mid i \; R \land NoWriteBetween_{Visi$$

$$\Leftrightarrow S \in LocalTSeqSpec \land \\ \forall T \in S : \forall i \in I : \forall v \in V : \forall R = read_T(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T): \exists W = write_{T'}(i, v) \in Visible(S,T): \\ W \prec_{Visible(S,T)} R \land NoWriteBetween_{(Visible(S,T) | i)}(W,R) \\ \Leftrightarrow S \in LocalTSeqSpec \land \\ \forall T \in S : \forall i \in I : \forall v \in V : \forall R = read_T(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T): \exists W = write_{T'}(i, v) \in Visible(S,T): \\ T' \prec_{Visible(S,T)} T \land NoWriteBetween_{(Visible(S,T) | i)}(W,R) \\ \Leftrightarrow S \in LocalTSeqSpec \land \\ \forall T \in S : \forall i \in I : \forall v \in V : \forall R = read_T(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T): \exists W = write_{T'}(i, v) \in Visible(S,T): \\ T' \prec_{S} T \land NoWriteBetween_{(Visible(S,T) | i)}(W,R) \\ \Leftrightarrow S \in LocalTSeqSpec \land \\ \forall T \in S : \forall i \in I : \forall v \in V : \forall R = read_T(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T): \exists W = write_{T'}(i, v) \in GlobalWrites(S): \\ T' \prec_{S} T \land NoWriteBetween_{(Visible(S,T) | i)}(W,R) \\ \Leftrightarrow S \in LocalTSeqSpec \land \\ \forall T \in S : \forall i \in I : \forall v \in V : \forall R = read_T(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T): \exists W = write_{T'}(i, v) \in GlobalWrites(S): \\ T' \prec_{S} T \land NoWriteBetween_{(Visible(S,T) | i)}(W,R) \\ \Leftrightarrow S \in LocalTSeqSpec \land \\ \forall T \in S : \forall i \in I : \forall v \in V : \forall R = read_T(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T): \exists W = write_{T'}(i, v) \in GlobalWrites(S): \\ T' \prec_{S} T \land NoWriterBetween_{S_i}(T', \preceq_{S},T) \\ \Leftrightarrow S \in LocalTSeqSpec \land \\ \forall T \in S : \forall i \in I : \forall v \in V : \forall R = read_T(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T): \exists W = write_{T'}(i, v) \in GlobalWrites(S): \\ (T' \prec_{S} T) \land T' \in Committed(S) \land NoWriterBetween_{S_i}(T', \preceq_{S},T) \\ \Leftrightarrow S \in LocalTSeqSpec \land \\ \forall T \in S : \forall i \in I : \forall v \in V : \forall R = read_T(i): v \in GlobalReads(S): \\ \exists T' \in Visible(S,T): \exists W = write_{T'}(i, v) \in GlobalWrites(S): \\ (T' \prec_{S} T) \land T' \in Committed(S) \land NoWriterBetween_{S_i}(T', \preceq_{S},T) \\ \Leftrightarrow S \in LocalTSeqSpec \land \\ \forall T \in S : \forall i \in I : \forall v \in V : \forall R = read_T(i): v \in GlobalReads(S): \\ \exists T' \in Committed(S): \exists W = write_{T'}(i, v) \in GlobalWrites(S): \\ (T' \prec_{S} T) \land NoWriterBetween_{S_i}(T', \preceq_{S},T) \\ \end{cases}$$

In these thirteen steps, we apply:

1) the definition of TSeqSpec and $S \in TSequential \cap TComplete$,

- 2) the definition of SeqSpec(i),
- 3) R and W access location i,
- 4) that we can choose T'' = T,
- 5) $Reads(S) = LocalReads(S) \cup GlobalReads(S)$,
- 6) Lemma 12,
- 7) that R and W are both on location i

8) that R and W are by transactions T and T' respectively, $Visible(S,T) \in TSequential$, and $R \in GlobalReads(Visible(S,T))$ (because $R \in GlobalReads(R)$ and Visible(S,T)|T = S|T),

- 9) Lemma 8,
- 10) $T' \prec_S T$ and $NoWriteBetween_{(Visible(S,T) | i)}(W, R)$,
- 11) Lemma 9,

- 12) $T' \in Visible(S,T)$ and $(T' \prec_S T)$, and 13) the definition of Visible(S,T).

Lemma 14 (Invariance) If $H \equiv H'$, then Marking(H) = Marking(H') and ReadPres(H) = ReadPres(H')and WriteObs(H) = WriteObs(H').

Proof. Immediate from the definitions of *Marking*, *ReadPres*, and *WriteObs*.

Lemma 15 $\forall H \in THistory: \forall \sqsubseteq \in Marking(H): \exists S \in TSequential: H \equiv S \land \underline{\prec}_H \subseteq \underline{\prec}_S \land \underline{\prec}_S \subseteq \sqsubseteq$.

Proof. Let $H \in TH$ is tory and let $\sqsubseteq \in Marking(H)$. We have that \sqsubseteq is a total order of Trans so we can choose a permutation π on 1..n such that $\forall i, j \in 1..n : (i < j) \Leftrightarrow (T_{\pi(i)} \sqsubset T_{\pi(j)})$. Define: $S = H|T_{\pi(1)}, \ldots, H|T_{\pi(n)}$. It is straightforward to prove that $S \in TS$ equantial $\land H \equiv S \land \preceq_H \subseteq \preceq_S$ $\land \preceq_S \subseteq \sqsubseteq$. \Box

Lemma 16 Suppose $\sqsubseteq \in Marking(H) \land p_2 \notin Writers_H(i)$. If NoWriterBetween_{H,i} (T_1, \sqsubseteq, p_2) and NoWriterBetween_{H,i} (p_2, \sqsubseteq, T_3) , then NoWriterBetween_{H,i} (T_1, \sqsubseteq, T_3) .

Proof.

 $NoWriterBetween_{H,i}(T_1, \sqsubseteq, p_2) \land NoWriterBetween_{H,i}(p_2, \sqsubseteq, T_3)$ $\iff \forall T \in Writers_H(i) \colon (T \sqsubseteq T_1 \lor p_2 \sqsubseteq T) \land (T \sqsubseteq p_2 \lor T_3 \sqsubseteq T)$ $\iff \forall T \in Writers_H(i) \colon (T \sqsubseteq T_1 \land (T \sqsubseteq p_2 \lor T_3 \sqsubseteq T)) \lor$ $(p_2 \sqsubseteq T \land T \sqsubseteq p_2) \lor (p_2 \sqsubseteq T \land T_3 \sqsubseteq T)$ $\implies \forall T \in Writers_H(i) \colon (T \sqsubseteq T_1) \lor (T_3 \sqsubseteq T)$ $\iff NoWriterBetween_{H,i}(T_1, \sqsubseteq, T_3)$

The first step uses the definition of NoWriterBetween. The second step uses \land distribution over \lor . The third step simplifies the first disjunct using conjunction elimination, eliminates the second disjunct using $p_2 \notin Writers_H(i)$ and simplifies the third disjunct using conjunction elimination. The fourth step uses the definition of NoWriterBetween.

Lemma 17 Suppose $S \in TS$ equential \cap TC omplete. We have:

$$S \in TSeqSpec \iff S \in FinalStateMarkable$$

$$(4.1)$$

Proof. Let $S \in TS$ equential \cap *TComplete*. From Lemma 13, the definition of *FinalStateMarkable*, and $S \in TC$ omplete, we have that we must prove:

$$\begin{split} S \in LocalTSeqSpec \ \land \\ \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_{T}(i) : v \in GlobalReads(S) \colon \\ \exists T' \in Committed(S) \colon \exists W = write_{T'}(i,v) \in GlobalWrites(S) \colon \\ (T' \prec_{S} T) \ \land \ NoWriterBetween_{S,i}(T', \preceq_{S}, T) \\ \Leftrightarrow \ \exists \sqsubseteq \in Marking(S) \colon \ \preceq_{S} \subseteq \sqsubseteq \ \land \sqsubseteq \in ReadPres(S) \land \sqsubseteq \in WriteObs(S) \end{split}$$

From the definition of *WriteObs* and *LastPreAccessor* we have that:

$$\begin{split} & \sqsubseteq \in WriteObs(S) \\ \Leftrightarrow S \in LocalTSeqSpec \land \\ & \forall T \in Trans: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in GlobalReads(S): \\ & \exists T' \in Trans: \exists W = write_{T'}(i, v) \in GlobalWrites(S): \\ & T' \in Writers_S(i) \land T' \neq T \land T' \sqsubset R \land NoWriterBetween_{S,i}(T', \sqsubseteq, R) \\ \Leftrightarrow S \in LocalTSeqSpec \land \\ & \forall T \in Trans: \forall i \in I: \forall v \in V: \forall R = read_T(i): v \in GlobalReads(S): \\ & \exists T' \in Trans: \exists W = write_{T'}(i, v) \in GlobalWrites(S): \\ & T' \in Committed(S) \land T' \neq T \land T' \sqsubset R \land NoWriterBetween_{S,i}(T', \sqsubseteq, R) \end{split}$$

We are now ready to prove the two directions of the equivalence. $\Rightarrow:$

Assume that

$$\begin{split} S &\in LocalTSeqSpec \land \\ \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in GlobalReads(S) \colon \\ \exists T' \in Committed(S) \colon \exists W = write_{T'}(i,v) \in GlobalWrites(S) \colon \\ (T' \prec_S T) \land NoWriterBetween_{S,i}(T', \preceq_S, T) \end{split}$$

Define:

$$p_1 \sqsubset p_2 \iff (p_1 \prec_S p_2) \lor \\ (trans_S(p_1) \preceq_S p_2) \lor \\ (p_1 \preceq_S trans_S(p_2)) \\ p_1 \sqsubseteq p_2 \iff p_1 \sqsubset \lor p_2 p_1 = p_2$$

We show that

$$\begin{split} & \sqsubseteq \in Marking(S) \land \\ & \preceq_{S} \subseteq \sqsubseteq \land \sqsubseteq \in ReadPres(S) \land \\ & S \in LocalTSeqSpec \land \\ & \forall T \in Trans: \forall i \in I: \forall v \in V: \forall R = read_{T}(i): v \in GlobalReads(S): \\ & \exists T' \in Trans: \exists W = write_{T'}(i, v) \in GlobalWrites(S): \\ & T' \in Committed(S) \land T' \neq T \land T' \sqsubset R \land NoWriterBetween_{S,i}(T', \sqsubseteq, R) \end{split}$$

It is straightforward to prove $\sqsubseteq \in Marking(S)$ and $\preceq_S \subseteq \sqsubseteq, \sqsubseteq \in ReadPres(S)$. Additionally, the first conjunct of WriteObs(S) (that is, $S \in LocalTSeqSpec$) is immediate from the assumption. So, we still need to prove the second conjunct of WriteObs(S).

Let $T \in Trans$, $i \in I$, $v \in V$, $R = read_T(i): v \in GlobalReads(S)$. From the assumption (the left-hand side), we have that we can find (1) $T' \in Committed(S)$ and (2) $W = write_{T'}(i, v) \in GlobalWrites(S)$ such that (3) $(T' \prec_S T)$ and (4) NoWriterBetween_{S,i}(T', \preceq_S, T). Let us now prove each conjunct of $T' \neq T \land T' \sqsubseteq R \land NoWriterBetween_{S,i}(T', \sqsubseteq, R)$ in turn.

From [3] and that $\underline{\prec}_S$ is a total order of Trans(S), we have (5) $T' \neq T$. From [3] and the definition of \sqsubseteq , we have $T' \sqsubseteq R$. From [4] and $\underline{\prec}_S \subseteq \sqsubseteq$, we have (6) NoWriterBetween_{S,i} (T', \sqsubseteq, T) . From $T \underline{\prec}_S T$ and the definition of \sqsubseteq , we have (7) $R \sqsubseteq T$. From [6], [7] and the definition of \sqsubseteq and transitivity of $\underline{\prec}_S$, we have NoWriterBetween_{S,i} (T', \sqsubseteq, R) .

⇐:

Assume the right-hand side and choose $\sqsubseteq \in Marking(S)$ such that:

$$\underline{\prec}_{S} \subseteq \sqsubseteq \land \sqsubseteq \in ReadPres(S) \land \\ S \in TLocalSeqSpec \land \\ \forall T \in Trans: \forall i \in I: \forall v \in V: \forall R = read_{T}(i): v \in GlobalReads(S): \\ \exists T' \in Committed(S): \exists W = write_{T'}(i, v) \in GlobalWrites(S): \\ T' \neq T \land T' \sqsubseteq R \land NoWriterBetween_{S,i}(T', \sqsubseteq, R)$$

We show that

$$\begin{split} S &\in LocalTSeqSpec \ \land \\ \forall T \in S \colon \forall i \in I \colon \forall v \in V \colon \forall R = read_T(i) \colon v \in GlobalReads(S) \colon \\ \exists T' \in Committed(S) \colon \exists W = write_{T'}(i,v) \in GlobalWrites(S) \colon \\ (T' \prec_S T) \ \land \ NoWriterBetween_{S,i}(T', \preceq_S, T) \end{split}$$

The first conjunct (of the left-hand side), $S \in LocalTSeqSpec$, is immediate from the assumption. From the assumption we have $(1) \leq _S \subseteq \subseteq$, $(2) \subseteq \in ReadPres(S)$. Let $T \in Trans$, $i \in I$, $v \in V$, $R = read_T(i): v \in GlobalReads(S)$. From the above property of \subseteq , we have that we can find (3) $T' \in Committed(S)$ and (4) $W = write_{T'}(i, v) \in GlobalWrites(S)$ such that (5) $T' \neq T$ and (6) $T' \subseteq R$ and (7) $NoWriterBetween_{S,i}(T', \subseteq, R)$. From [1], that \subseteq is a total order on Trans(S) ($\subseteq \in Marking(S)$), and that \leq_S is a total order on Trans(S) ($S \in TSequential$), we have (8) $\forall T, T' \in Trans: T' \subseteq T \Rightarrow T' \leq_S T$.

First we prove $T' \ll_S T$. From [2] ,we have (9) $NoWriterBetween_{S,i}(T, \sqsubseteq, R)$. From [3] and [4], we have (10) $T' \in Writers_S(i)$. From [9] and [10], we have (11) $T' \sqsubseteq T \lor R \sqsubseteq T'$. From [6], $T' \neq R$ and \sqsubseteq is a total order on $\{R\} \cup Writers_S(i)$ ($\sqsubseteq \in Marking(S)$), we have (12) $R \not\sqsubseteq T'$. From [11] and [12], we have (13) $T' \sqsubseteq T$. From [8] and [13], we have (14) $T' \preceq_S T$. From [14] and [5], we have $T' \ll_S T$.

Second, we prove $NoWriterBetween_{S,i}(T', \preceq_S, T)$. From [2], we have (15) $NoWriterBetween_{S,i}(R, \sqsubseteq, T)$. T. From $R \notin Writers_S(i)$, [7], [15], and Lemma 16, we have (16) $NoWriterBetween_{S,i}(T', \sqsubseteq, T)$. From [16] and [8] we have $NoWriterBetween_{S,i}(T', \preceq_S, T)$. **Theorem 18 (Marking)** FinalStateOpaque = FinalStateMarkable.

Proof.

$$\begin{aligned} FinalStateOpaque \\ &= \{H \in THistory \mid \exists H' \in TExtension(H) \colon \exists S \in TSequential \colon \\ H' \equiv S \land \preccurlyeq_{H'} \subseteq \preccurlyeq_S \land S \in TSeqSpec \} \\ &= \{H \in THistory \mid \exists H' \in TExtension(H) \colon \exists S \in TSequential \colon \\ H' \equiv S \land \preccurlyeq_{H'} \subseteq \preccurlyeq_S \land S \in FinalStateMarkable \} \\ &= \{H \in THistory \mid \exists H' \in TExtension(H) \colon \exists S \in TSequential \colon H' \equiv S \land \preccurlyeq_{H'} \subseteq \preccurlyeq_S \land \\ \exists \sqsubseteq \in Marking(S) \colon \preccurlyeq_S \subseteq \sqsubseteq \land \sqsubseteq \in ReadPres(S) \cap WriteObs(S) \} \\ &= \{H \in THistory \mid \exists H' \in TExtension(H) \colon \exists S \in TSequential \colon H' \equiv S \land \preccurlyeq_{H'} \subseteq \preccurlyeq_S \land \\ \exists \sqsubseteq \in Marking(H') \colon \preccurlyeq_S \subseteq \sqsubseteq \land \sqsubseteq \in ReadPres(H') \cap WriteObs(H') \} \\ &= \{H \in THistory \mid \exists H' \in TExtension(H) \colon \exists \sqsubseteq \in Marking(H') \colon \\ \sqsubseteq \in ReadPres(H') \cap WriteObs(H') \land \\ \exists S \in TSequential \colon H' \equiv S \land \preccurlyeq_{H'} \subseteq \preccurlyeq_S \land \preccurlyeq_S \subseteq \sqsubseteq \} \\ &= \{H \in THistory \mid \exists H' \in TExtension(H) \colon \exists \sqsubseteq \in Marking(H') \colon \\ \preccurlyeq_{H'} \subseteq \sqsubseteq \land \vDash \in ReadPres(H') \cap WriteObs(H') \land \\ \exists S \in TSequential \colon H' \equiv S \land \preccurlyeq_{H'} \subseteq \preccurlyeq_S \land \preccurlyeq_S \subseteq \sqsubseteq \} \\ &= \{H \in THistory \mid \exists H' \in TExtension(H) \colon \exists \sqsubseteq \in Marking(H') \colon \\ \preccurlyeq_{H'} \subseteq \sqsubseteq \land \bowtie \iff M' \in TExtension(H) \colon \exists \sqsubseteq Marking(H') \colon \\ \preccurlyeq_{H'} \subseteq \sqsubseteq \land \bowtie \iff M' \in TExtension(H) \colon \exists \sqsubseteq Marking(H') \colon \\ \preccurlyeq_{H'} \subseteq \sqsubseteq \land \bowtie \iff M' \in TExtension(H) \colon \exists \sqsubseteq Marking(H') \colon \\ \preccurlyeq_{H'} \subseteq \sqsubseteq \land \bowtie \iff M' \in TExtension(H) \colon \exists \sqsubseteq Marking(H') \colon \\ \preccurlyeq_{H'} \subseteq \sqsubseteq \land \vDash \iff M' \in TExtension(H) \colon \exists \sqsubseteq Marking(H') \colon \\ \preccurlyeq_{H'} \subseteq \sqsubseteq \land \sqsubseteq \And (H \in TExtension(H) \colon \exists \sqsubseteq Marking(H') \colon \\ \preccurlyeq_{H'} \subseteq \sqsubseteq \land \vDash (H \in ReadPres(H') \cap WriteObs(H')) \} \\ = Markable \end{aligned}$$

In these eight steps we apply:

- 1) the definition of *FinalStateOpaque*,
- 2) Lemma 17 and $S \in TComplete$ (because $H' \in TExtension(H)$ and $H' \equiv S$),
- 3) the definition of FinalStateMarkable and $S \in TComplete$,
- 4) Lemma 14,
- 5) logical rearrangement,
- 6) transitivity of \subseteq ,
- 7) Lemma 15, and
- 8) the definition of FinalStateMarkable.

5 Synchronization Object Types

In this subsection, we first define the semantics of basic and linearizable objects. Then, we define the interface and the sequential specifications of the following abstract object types: register, lock, try-lock, counter, set and map. For each abstract object type, we define concrete synchronization object types. We define the following synchronization object types: basic register, atomic register, atomic cas register, lock, try-lock, strong counter, basic set and basic map. For each synchronization object type, we present lemmas that characterize the properties of its execution histories. Please see the end of this section for notes on the proof of the lemmas that we present in this subsection.¹

Basic and Linearizable Object Types

The abstract type of each object o specifies the sequential specification of o, denoted by SeqSpec(o), that is the prefix-closed set of correct sequential histories of o. In the following subsections, we will consider several synchronization object types and define their sequential specifications.

We consider two concurrent types: basic and linearizable. Linearizable objects comply with their sequential specification in every concurrent execution. Basic objects, on the other hand, comply with their sequential specification if they are accessed sequentially.

Definition 1 (Basic Object Semantics) Every sequential execution on a basic object is an execution in its sequential specification. The semantics of a basic object o, $\mathbb{H}_B(o)$, is a set of histories that is constrained as follows:

$$\mathbb{H}_B(o) \cap Sequential \subseteq SeqSpec(o) \tag{5.1}$$

Definition 2 (Linearizable Object Semantics) An execution history X is linearizable for an object o iff there is an indistinguishable sequential history L that is in the sequential specification of o and is realtime-preserving. L is a linearization and \prec_L is a linearization order of X. The semantics of a linearizable object o, $\mathbb{H}_L(o)$, is defined as the following set of execution and linearization pairs.

$$\mathbb{H}_L(o) = \{ (X, L) \mid X \equiv L \land L \in SeqSpec(o) \land \prec_X \subseteq \prec_L \}$$

$$(5.2)$$

Lemma 19 (X2L) For every linearization L of an execution history X on object o and method calls l and l', if $l \prec_X l'$ then $l \prec_L l'$.

Lemma 20 (LASym) For every linearization L of an execution history X on object o and method calls l and l', if $l \prec_L l'$ then $\neg(l' \prec_L l) \land \neg(l = l')$

Lemma 21 (LTrans) For every linearization L of an execution history X on object o and method calls l, l', and l'', if $l \prec_L l'$ and $l' \prec_L l''$ then $l \prec_L l''$.

Lemma 22 (LTotal) For every linearization L of an execution history X on object o and method calls l and l', if $l \in X$ and $l' \in X$ then $(l \prec_L l') \lor (l' \prec_L l) \lor (l = l')$

Lemma 23 (L2X) For every linearization L of an execution history X on object o and method calls l and l', if $(l \prec_L l')$ then $l \in X$, $l' \in X$, and l and l' are both on o.

Lemma 24 (XLTrans) For every linearization L of an execution history X on object o and method calls $l_1, l_2, l_3, and l_4, if <math>l_1 \prec_X l_2, l_2 \prec_L l_3, l_3 \prec_X l_4$, then $l_1 \prec_X l_4$

¹ In this subsection, we use \forall and \exists as a notational convenience. $\forall l : p$ can be rewritten as $\bigwedge_{(l \in Labels(X))} p(X)$ and $\exists l : p$ can be rewritten as $\bigvee_{(l \in Labels(X))} p(X)$.

Register

Register. A register reg is an object that encapsulates a value and supports read and write methods. The method call reg.read() returns the current encapsulated value of reg. The method call reg.write(v) overwrites the encapsulated value of reg with v.

Definition 3 The sequential specification of register reg is the set of sequential histories of read and write method calls on reg where every read returns the argument of the latest preceding write (regardless of thread identifiers). (Note that it is assumed that a write method call initializes the register before other methods are invoked.) The sequential specification of a register r, SeqSpec(r), is defined as follows:

 $isXRead_{X,r}(l_R) = l_R \in X \land obj_X(l_R) = r \land name_X(l_R) = read$ (5.3)

$$isXWrite_{X,r}(l_W) = l_W \in X \land obj_X(l_W) = r \land name_X(l_W) = write$$

$$(5.4)$$

$$NoWriteBetween_{X,r}(l_W, l_R) = \forall l'_W : is XWrite_{X,r}(l'_W) \Rightarrow (l'_W \preceq_X l_W \lor l_R \prec_X l'_W)$$
(5.5)

$$isXWrite_{X,r}(l_W, l_R) = isXWrite_{X,r}(l_W) \land$$

$$(5.6)$$

$$l_W \prec_X l_R \land$$

$$NoWriteBetween_{X,r}(l_W, l_R)$$

$$Legal(r) = \{S \mid \forall l_R : isXRead_{S,r}(l_R) \Rightarrow$$
(5.7)

$$\exists l_W : is XWriter_{S,r}(l_W, l_R) \land \\ retv_S(l_R) = arg \mathbf{1}_S(l_W) \}$$

$$SeqSpec(r) = \{S \mid S \mid r = S \land S \in Sequential \cap Legal(r)\}$$
(5.8)

Basic Register. A basic register is a basic instance of the register type.

Let *BasicRegister* denote the type of basic registers.

Lemma 25 In every sequential execution on a basic register, every read reads the value that the latest preceding write writes. Formally,

$$\forall reg \in BasicRegister : \forall X \in \mathbb{H}_B(reg) : X \in Sequential \Rightarrow$$

$$\forall l_R : isXRead_{X,reg}(l_R) \Rightarrow$$

$$\exists l_W : isXWriter_{X,reg}(l_W, l_R) \land$$

$$retv_X(l_R) = arg1_X(l_W)$$
(5.9)

Two concurrent read method calls on a register do not conflict. Thus, basic registers can maintain consistency even when the execution involves concurrent read method calls. Let us define

$$isXRaceFree_{X,r}(l) = \forall l_w : isXWrite_{X,r}(l_w) \Rightarrow l_w \preceq_X l \lor l \prec_X l_w$$
(5.10)

$$isXSequentiallyWritten_r(X) = \forall l \in X : isXWrite_{X,r}(l) \Rightarrow isRaceFree_{X,r}(l)$$
 (5.11)

A method call is race-free if an only if there is no write method call that executes concurrent to it. An execution is sequentially-written if and only if every pair of write method calls on it are ordered in the execution order or in other words, every write method call on it is race-free.

Definition 4 (Basic Register Semantics) An execution history on a basic register is in the semantics of the basic register if and only if it is not sequentially-written or it is sequentially-written and every race-free

read reads the value that the latest preceding write writes. The semantics of a basic register r, $\mathbb{H}_B(r)$, is defined as follows.

$$\mathbb{H}_{B}(r) = \{X \mid X \mid o = X \land$$

$$is X Sequentially Written_{r}(X) \Rightarrow$$

$$\forall l_{r} : is X Read_{X,r}(l_{r}) \land is X Race Free_{X,r}(l_{r}) \Rightarrow$$

$$\exists l_{w} : is X Writer_{X,r}(l_{w}, l_{r}) \land$$

$$retv_{X}(l_{r}) = arg1_{X}(l_{w}) \}$$
(5.12)

Note that if an execution is not sequentially-written, reads may return arbitrary values. Similarly, racy reads may return arbitrary values.

Note that this definition satisfies the constraint of Definition 1.

Lemma 26 (BReg) In every sequentially-written execution on a basic register, every race-free read reads the value that the latest preceding write writes. Formally,

$$\forall reg \in BasicRegister: \forall X \in \mathbb{H}_B(reg): isXSequentiallyWritten_r(X) \Rightarrow$$
(5.13)
$$\forall l_R: isXRead_{X,reg}(l_R) \land isXRaceFree_{X,r}(l_R) \Rightarrow$$

$$\exists l_W: isXWriter_{X,reg}(l_W, l_R) \land$$

$$retv_X(l_R) = arg1_X(l_W)$$

Atomic Register. An atomic register is a linearizable instance of the register type.

Let *AtomicRegister* denote the type of atomic registers. L

$$LNoWriteBetween_{X,L,r}(l_W, l_R) = \forall l'_W : isXWrite_{X,r}(l'_W) \Rightarrow (l'_W \preceq_L l_W \lor l_R \prec_L l'_W) \quad (5.14)$$

$$isLWrite_{X,L,r}(l_W, l_R) = isXWrite_{X,r}(l_W) \land \qquad (5.15)$$

$$l_W \prec_L l_R \land \qquad LNoWriteBetween_{X,L,r}(l_W, l_R)$$

Lemma 27 (AReg) In every execution on an atomic register, every read reads the value written by the last write linearized before it. Formally,

$$\forall r \in AtomicRegister : \forall (X,L) \in \mathbb{H}_{L}(r) :$$

$$\forall l_{R}: isXRead_{X,r}(l_{R}) \Rightarrow$$

$$\exists l_{W}: isLWriter_{X,L,r}(l_{W},l_{R}) \land$$

$$retv_{X}(l_{R}) = arg1_{X}(l_{W})$$

$$(5.16)$$

CAS (Compare-And-Swap) Register

A CAS register is an object that encapsulates a value and supports the cas method in addition to read and write methods. The method call $r.cas(v_1, v_2)$ updates the value of the register to v_2 and returns true if the current value of the register is v_1 . It returns *false* otherwise.

A successful write is either a write method call or a successful cas method call. The written value of a successful write is its first argument, if it is a *write* method call or is its second argument, if it is a *cas* method call.

Definition 5 The sequential specification of cas register reg is the set of sequential histories of read, write and cas method calls on reg with the following two conditions. Every read returns the written value of the latest preceding successful write (regardless of thread identifiers). (Note that it is assumed that a write method call initializes the register before other methods are invoked.) Every cas with the first argument v_1 returns true if the written value of the latest preceding successful write is v_1 and returns false otherwise.

Atomic CAS Register. An atomic CAS register is a linearizable instance of CAS register type.

Let *AtomicCASRegister* denote the type of Atomic CAS registers.

Let us define

$$isXCAS_{X,r}(l_W) = l_W \in X \land obj_X(l_W) = r \land name_X(l_W) = cas$$
(5.17)

$$isXCWrite_{X,r}(l_W) = isXWrite(l_W) \lor (isXCAS(l_W) \land retv_X(l_W) = true)$$
(5.18)

$$writtenValue_X(l_W) = \begin{cases} arg1_X(l_W) & \text{if } name_X(l_W) = write \\ arg2_X(l_W) & \text{if } name_X(l_W) = cas \end{cases}$$
(5.19)

$$LNoWriteBetween_{X,L,r}(l_W, l_R) = \forall l'_W : isXCWrite_{X,r}(l'_W) \Rightarrow (l'_W \preceq_L l_W \lor l_R \prec_L l'_W) \quad (5.20)$$

$$isLCWrite_{X,L,r}(l_W, l_R) = isXCWrite_{X,r}(l_W) \land \qquad (5.21)$$

$$l_W \prec_L l_R \land$$

$$LNoWriteBetween_{X,L,r}(l_W, l_R)$$

Lemma 28 (CASRegRead) In every execution on an atomic cas register, every read returns the value the last successful write linearized before it writes. Formally,

$$\forall r \in AtomicCASRegister : \forall (X, L) \in \mathbb{H}_{L}(r):$$

$$\forall l_{R}: isXRead_{X,r}(l_{R}) \Rightarrow$$

$$\exists l_{W}: isLCWriter_{X,L,r}(l_{W}, l_{R}) \land$$

$$retv_{X}(l_{R}) = arg1_{X}(l_{W})$$
(5.22)

Lemma 29 (CASRegCAS) In every execution on an atomic cas register, every cas returns true if its first argument is equal to the argument of the last successful write linearized before it and returns false otherwise. Formally,

$$\forall reg \in AtomicCASRegister : \forall (X, Reg) \in \mathbb{H}_L(reg) :$$

$$\forall l_C, l_W :$$

$$isXCAS_{X,reg}(l_C) \land$$

$$isLCWriter_{X,Reg,reg}(l_W, l_R)$$

$$\Rightarrow$$

$$(writtenValue_X(l_W) = arg1_X(l_C) \Rightarrow retv_X(l_C) = true) \land$$

$$(\neg (writtenValue_X(l_W) = arg1_X(l_C)) \Rightarrow retv_X(l_C) = false)$$

$$(5.23)$$

Lock

Abstract lock. An abstract lock l is an object that encapsulates a state, acquired \mathbb{A} or released \mathbb{R} , and supports the following methods: *lock*: The method call *l.lock*() changes the state from \mathbb{R} to \mathbb{A} . *unlock*: The method call *l.unlock*() changes the state from \mathbb{A} to \mathbb{R} . *read*: The method call *l.read*() returns *true* if the state of *lock* is \mathbb{A} and *false* otherwise. The method calls *lock* and *unlock* are mutating method calls. The method call *read* is an accessor method call.

Definition 6 The sequential specification of a lock l is the set of sequential histories L of lock, unlock, and read method calls on l where the sub-history of L for mutating methods is an alternating sequence of lock and unlock methods and every read method call in L returns true if the last mutating method call before it in L is a lock and returns false otherwise.

Lock. A lock is a linearizable instance of the abstract lock type.

Let *Lock* denote the type of locks.

Now, we present some preliminary definitions and then lemmas about locks.

$$isXLock_{X,lo}(l) = \tag{5.24}$$

$$l \in X \land obj_X(l) = lo \land name_X(l) = lock$$

$$isXUnlock_{Xlo}(l) =$$
(5.25)

$$l \in X \land obj_X(l) = lo \land name_X(l) = unlock$$

$$isXRead_{X,lo}(l) =$$
(5.26)

$$l \in X \land obj_X(l) = lo \land name_X(l) = read$$

The common usage protocol for locks is that a thread unlocks a lock only if it has already acquired it. Many languages including Java enforce this property of programs by runtime checks. We capture this property as follows.

Definition 7 A history is owner-respecting for a lock if every thread in the history releases the lock only after it has already acquired it.

$$is XOwner Respecting_{lo}(X) =$$

$$\forall l: is XUnlock_{X,lo}(l) \Rightarrow$$

$$\exists l': is XLock_{X,lo}(l') \land$$

$$thread_X(l') = thread_X(l) \land$$

$$l' \prec_X l \land$$

$$\forall l'': (is XUnLock_{X,lo}(l'') \land thread_X(l'') = thread_X(l)) \Rightarrow (l'' \prec_X l' \lor l \preceq_X l'')$$

$$(5.27)$$

Lemma 30 If l is a lock, X is an owner-respecting history of l and L is the linearization of X, then the sub-history of L for mutating method calls is a sequence of pairs of lock and unlock method calls by the same thread (possibly followed by a lock method call).

Lemma 31 (Lock) In an owner-respecting execution for a lock l, if a lock method call by a thread T_1 is linearized before an unlock method call by a thread T_2 , then an unlock method call by T_1 is linearized before a lock method call by T_2 . Formally,

$$\forall o \in Lock \colon \forall (X,L) \in \mathbb{H}_{L}(o) \colon \forall l_{l1}, l_{u2} \colon$$

$$(isXOwnerRespecting_{o}(X) \land$$

$$isXLock_{X,o}(l_{l1}) \land$$

$$isXUnlock_{X,o}(l_{u2}) \land$$

$$l_{l1} \prec_{L} l_{u2}) \Rightarrow$$

$$\exists l_{u1}, l_{l2} \colon$$

$$isXUnlock_{X,o}(l_{u1}) \land thread_{X}(l_{l1}) = thread_{X}(l_{u1}) \land$$

$$isXLock_{X,o}(l_{l2}) \land thread_{X}(l_{l2}) = thread_{X}(l_{u2}) \land$$

$$l_{u1} \prec_{L} l_{l2}$$

$$(5.28)$$

Lemma 32 (LockReadL) In an owner-respecting execution for a lock l, if a read method call that returns false is linearized before an unlock method call by a thread T, then the read method call is linearized before a lock method call by T. Formally,

$$\forall o \in Lock \colon \forall (X, L) \in \mathbb{H}_{L}(o) \colon \forall l_{u1}, l_{r2} \colon$$

$$(is XOwner Respecting_{o}(X) \land$$

$$is XRead_{X,o}(l_{r2}) \land retv_{X}(l_{r2}) = false$$

$$is XUnlock_{X,o}(l_{u1}) \land$$

$$l_{r2} \prec_{L} l_{u1}) \Rightarrow$$

$$\exists l_{l1} \colon$$

$$is XLock_{X,o}(l_{l1}) \land thread_{X}(l_{l1}) = thread_{X}(l_{u1}) \land$$

$$l_{r2} \prec_{L} l_{l1}$$

$$(5.29)$$

Lemma 33 (LockReadR) In an owner-respecting execution for a lock l, if a lock method call by a thread T is linearized before a read method call that returns false, then an unlock method call by T is linearized before the read method call. Formally,

$$\forall o \in Lock \colon \forall (X, L) \in \mathbb{H}_{L}(o) \colon \forall l_{l1}, l_{r2} \colon$$

$$(isXOwnerRespecting_{o}(X) \land$$

$$isXLock_{X,o}(l_{l1}) \land$$

$$isXRead_{X,o}(l_{r2}) \land retv_{X}(l_{r2}) = false$$

$$l_{l1} \prec_{L} l_{r2}) \Rightarrow$$

$$\exists l_{u1} \colon$$

$$isXUnlock_{X,o}(l_{u1}) \land thread_{X}(l_{l1}) = thread_{X}(l_{u1}) \land$$

$$l_{u1} \prec_{L} l_{r2}$$

$$(5.30)$$

Lemma 34 (LockReadM) In an owner-respecting execution for a lock l, every read method call that is linearized between a pair of matching lock and unlock method calls returns true. Formally,

$$\forall o \in Lock : \forall (X, L) \in \mathbb{H}_{L}(o) : \forall l_{l1}, l_{u1}, l_{r2} :$$

$$(5.31)$$

$$(isXOwnerRespecting_{o}(X) \land$$

$$isXLock_{X,o}(l_{l1}) \land$$

$$isXUnlock_{X,o}(l_{u1}) \land$$

$$thread_{X}(l_{l1}) = thread_{X}(l_{u1}) \land$$

$$\forall l'_{u1} : (isXUnlock_{X,o}(l'_{u1}) \land thread_{X}(l_{l1}) = thread_{X}(l'_{u1})) \Rightarrow (l'_{u1} \prec_{X} l_{l1} \lor l_{u1} \preceq_{X} l'_{u1})$$

$$isXRead_{X,o}(l_{r2}) \land$$

$$l_{l1} \prec_{L} l_{r2} \land l_{r2} \prec_{L} l_{u1})$$

$$\Rightarrow$$

$$retv_{X}(l_{r2}) = true$$

Try-Lock

Abstract Try-lock. A try-lock l is an object that encapsulates an abstract state, acquired \mathbb{A} or released \mathbb{R} , and in addition to *lock*, *unlock* and *read* methods, it supports the *trylock* method. If the state of the *lock* is \mathbb{R} , *l.trylock*() changes it to \mathbb{A} and returns *true*. Otherwise, it returns *false*.

We call a *lock* method call or a successful *tryLock* method call, a *successful lock* method call. We call a *lock* method call, successful *tryLock* method call or *unlock* method call, a *mutating* method call.

Definition 8 The sequential specification of a try-lock l is the set of sequential histories L of lock, unlock, read and tryLock method calls on l with the following conditions: The last mutating method call before a successful lock method call is an unlock method call. Similarly, the last mutating method call before an unlock method call is a successful lock method call. A tryLock method call returns true if the latest preceding mutating method call is an unlock and returns false otherwise. Similarly, A read method call returns true if the latest preceding mutating method call is a successful lock and returns false otherwise.

Try-Lock. A try-lock is a linearizable instance of the abstract try-lock type.

Let TryLock denote the type of try-locks.

Similar to the *Lock* type, after some preliminary definitions, we define the owner-respecting histories and state the TryLock type lemmas.

$$isXTryLock_{X,o}(l) =$$
(5.32)

$$l \in X \land obj_{X}(l) = o \land name_{X}(l) = tryLock$$

$$isXTLock_{X,o}(l) =$$
(5.33)

$$isXLock_{X,o}(l) \lor (isXTryLock_{X,o}(l) \land retv_{X}(l) = true)$$

The intuition for owner-respecting histories remains the same. A history is owner-respecting for a trylock if every thread in the history releases the lock only after it has already acquired it. The minor difference from the prior definition for locks is that the acquisition of a try-lock is either by a *lock* method call or a successful tryLock method call.

$$is XTOwner Respecting_{o}(X) =$$

$$\forall l: is XUnlock_{X,o}(l) \Rightarrow$$

$$\exists l': is XTLock_{X,o}(l') \land$$

$$thread_{X}(l') = thread_{X}(l) \land$$

$$l' \prec_{X} l \land$$

$$\forall l'': (is XUnLock_{X,o}(l'') \land thread_{X}(l'') = thread_{X}(l)) \Rightarrow l'' \prec_{X} l' \lor l \preceq_{X} l''$$

$$(5.34)$$

Lemma 35 If l is a try-lock, X is an owner-respecting history of l and L is the linearization of X, then the sub-history of L for mutating method calls is a sequence of pairs of successful lock and unlock method calls by the same thread (possibly followed by a successful lock method call).

Lemma 36 (TryLock) In an owner-respecting execution for a try-lock l, if a successful lock method call by a thread T_1 is linearized before an unlock method call by a thread T_2 , then an unlock method call by T_1

is linearized before a successful lock method call by T_2 . Formally,

$$\forall o \in TryLock: \forall (X, L) \in \mathbb{H}_{L}(o): \forall l_{l1}, l_{u2}:$$

$$(isXTOwnerRespecting_{o}(X) \land$$

$$isXTLock_{X,o}(l_{l1}) \land$$

$$isXUnlock_{X,o}(l_{u2}) \land$$

$$l_{l1} \prec_{L} l_{u2}) \Rightarrow$$

$$\exists l_{u1}, l_{l2}:$$

$$isXUnlock_{X,o}(l_{u1}) \land thread_{X}(l_{l1}) = thread_{X}(l_{u1}) \land$$

$$isXTLock_{X,o}(l_{l2}) \land thread_{X}(l_{l2}) = thread_{X}(l_{u2}) \land$$

$$l_{u1} \prec_{L} l_{l2}$$

$$(5.35)$$

Lemma 37 (TryLockReadL) In an owner-respecting execution for a try-lock l, a read method call that returns false is linearized before if an unlock method call by a thread T then the read method call is linearized before a successful lock method call by T. Formally,

$$\forall o \in TryLock \colon \forall (X, L) \in \mathbb{H}_{L}(o) \colon \forall l_{u1}, l_{r2} \colon$$

$$(isXTOwnerRespecting_{o}(X) \land$$

$$isXRead_{X,o}(l_{r2}) \land retv_{X}(l_{r2}) = false$$

$$isXUnlock_{X,o}(l_{u1}) \land$$

$$l_{r2} \prec_{L} l_{u1}) \Rightarrow$$

$$\exists l_{l1} \colon$$

$$isXTLock_{X,o}(l_{l1}) \land thread_{X}(l_{l1}) = thread_{X}(l_{u1}) \land$$

$$l_{r2} \prec_{L} l_{l1}$$

$$(5.36)$$

Lemma 38 (TryLockReadR) In an owner-respecting execution for a try-lock l, if a successful lock method call by a thread T is linearized before a read method call that returns false, then an unlock method call by T is linearized before the read method call. Formally,

$$\forall o \in TryLock \colon \forall (X, L) \in \mathbb{H}_{L}(o) \colon \forall l_{l1}, l_{r2} \colon$$

$$(isXTOwnerRespecting_{o}(X) \land$$

$$isXTLock_{X,o}(l_{l1}) \land$$

$$isXRead_{X,o}(l_{r2}) \land retv_{X}(l_{r2}) = false$$

$$l_{l1} \prec_{L} l_{r2}) \Rightarrow$$

$$\exists l_{u1} \colon$$

$$isXUnlock_{X,o}(l_{u1}) \land thread_{X}(l_{l1}) = thread_{X}(l_{u1}) \land$$

$$l_{u1} \prec_{L} l_{r2}$$

$$(5.37)$$

Lemma 39 (TryLockReadM) In an owner-respecting execution for a try-lock l, every read method call

that is linearized between a pair of matching successful and unlock method calls returns true. Formally,

$$\forall o \in TryLock : \forall (X, L) \in \mathbb{H}_{L}(o) : \forall l_{l1}, l_{u1}, l_{r2} :$$

$$(5.38)$$

$$(isXOwnerRespecting_{o}(X) \land$$

$$isXTLock_{X,o}(l_{l1}) \land$$

$$isXUnlock_{X,o}(l_{u1}) \land$$

$$thread_{X}(l_{l1}) = thread_{X}(l_{u1}) \land$$

$$\forall l'_{u1} : (isXUnlock_{X,o}(l'_{u1}) \land thread_{X}(l_{l1}) = thread_{X}(l'_{u1})) \Rightarrow (l'_{u1} \prec_{X} l_{l1} \lor l_{u1} \preceq_{X} l'_{u1})$$

$$isXRead_{X,o}(l_{r2}) \land$$

$$l_{l1} \prec_{L} l_{r2} \land l_{r2} \prec_{L} l_{u1})$$

$$\Rightarrow$$

$$retv_{X}(l_{r2}) = true$$

Seq-Lock

Abstract seq-lock. A seq-lock l is an object that encapsulates a number and an abstract state, acquired A or released \mathbb{R} . It supports the *read*, *compareAndLock* and *incAndUnlock* methods. The method call *l.read()* returns the pair of the encapsulated number and *true* if the state of *lock* is A and *false* otherwise. The method call *l.compareAndLock(n)* compares the the encapsulated number with n and if they are equal, changes the state from \mathbb{R} to A and returns *true*. Otherwise, it does not change the state of the seq-lock and returns *false*. The method call *l.incAndUnlock()* increments the encapsulated number and changes the state from A to \mathbb{R} .

A successful *compareAndLock* and *incAndUnlock* are mutating method calls. The method call *read* is an accessor method call.

Definition 9 The sequential specification of a seq-lock l is the set of sequential histories L of read, compare AndLock, and incAndUnlock method calls on l with the following conditions:

Every read method call returns the pair of the number of incAndUnlock method calls before it and true if the last mutating method call before it is a successful compareAndLock and false otherwise.

A compareAndLock method call returns true if the last mutating method call before it is an incAndUnlock method call and the number of incAndUnlock method calls before it is equal to its argument. It returns false otherwise.

The last mutating method call before an incAndUnlock method call is a successful compareAndLock method call.

Seq-Lock. A seq-lock is a linearizable instance of the abstract seq-lock type.

Let *SeqLock* denote the type of seq-locks.

Counter

Abstract Counter: A counter c is an object that encapsulates a number and supports the following two methods: The method call c.read() returns the current value of c. The method call c.iaf() increments the value of c and returns the incremented value.

Definition 10 The sequential specification of a counter c is the set of sequential histories of read and iaf method calls on c where every method call returns the number of iaf method calls before it (including the method call itself). Note that it is assumed that the initial value of the counter is zero.

Strong Counter. A strong counter is a linearizable instance of abstract counter type.

Let *SCounter* denote the type of strong counters.

Lemma 40 (SCounter) The return value of every method call that is linearized before an iaf method call is smaller than the return value of the iaf method call. Formally,

$$\forall c \in SCounter : \forall (X, C) \in \mathbb{H}_{L}(c) : \forall l, l':$$

$$l \in X \land l' \in X \land name_{X}(l') = iaf \land l \prec_{C} l'$$

$$\Rightarrow$$

$$retv_{X}(l) < retv_{X}(l')$$
(5.39)

Set

A set s is an object that represents a set of values and supports the following methods: add: The method call s.add(v) adds value v to set s. contains: The method call s.containts(v) returns true if v is a member of s and false otherwise.

Definition 11 The sequential specification of a set s is the set of sequential histories of add and contains method calls on s where every contains method call returns true if there is a preceding add method call with the same argument, and returns false otherwise. Note that it is assumed that the set is initially empty.

Basic Set. A basic set is a basic instance of set type.

Let *BasicSet* denote the type of basic sets. Let us define

$$isXContains_{X,s}(l) =$$

$$(5.40)$$

 $l \in X \land obj_X(l) = s \land name_X(l) = contains$

$$isXAdd_{X,s}(l) =$$

$$l \in X \land obj_X(l) = s \land name_X(l) = add$$
(5.41)

Lemma 41 (BasicSetContains) In every sequential execution on a basic set, for every contains method call that returns true, there is a preceding add method call with the same argument. Formally,

$$\forall s \in BasicSet \colon \forall X \in \mathbb{H}_B(s) \colon X \in Sequential \Rightarrow$$

$$\forall l_c \colon isXContains_{X,s}(l_c) \land retv_X(l_c) = true \Rightarrow$$

$$\exists l_a \colon isXAdd_{X,s}(l_a) \land$$

$$arg1(l_a) = arg1(l_c) \land l_a \prec_X l_c$$

$$(5.42)$$

Lemma 42 (BasicSetAdd) In every sequential execution on a basic set, every contains method call that succeeds an add method call with the same argument returns true. Formally,

$$\forall s \in BasicSet : \forall X \in \mathbb{H}_B(s) : X \in Sequential \Rightarrow$$

$$\forall l_c, l_a :$$

$$isXContains_{X,s}(l_c) \land$$

$$isXAdd_{X,s}(l_a) \land$$

$$arg1(l_a) = arg1(l_c) \land l_a \prec_X l_c$$

$$\Rightarrow$$

$$retv_X(l_c) = true$$

$$(5.43)$$

Map

A map m is an object that represents a mapping from a set of keys to a set of values and supports the following methods: put: The method call m.put(k, v) adds or updates the mapping of the key k to the value $v \ (v \neq \perp)$ in the map m. get: The method call m.get(k) returns the value that the map m associates with the key k. It returns \perp if m does not map k.

Definition 12 The sequential specification of a map m is the set of sequential histories of put and get method calls on m where every get method call returns \perp if there is no preceding put method call with the same key argument; otherwise it returns the second argument of the latest preceding put method call with the same key argument. Note that it is assumed that the map is initially empty.

Basic Map. A basic set is a basic instance of map type.

Let *BasicMap* denote the type of basic maps.

Let us define

$$isXGet_{X,m}(l) = \tag{5.44}$$

$$l \in X \land obj_X(l) = m \land name_X(l) = get$$

$$isXPut_{X,m}(l) = \tag{5.45}$$

$$l \in X \land obj_X(l) = m \land name_X(l) = put$$

$$(5.46)$$

$$isXPutter_{X,m}(l_p, l_g) \Leftrightarrow \tag{5.46}$$

$$isXPuty(l_p) \land ara1x(l_p) \land ara1x(l_p) \land l_p \land x \mid h_p \land$$

$$isXPut_{X,m}(l_p) \land arg1_X(l_p) = arg1_X(l_g) \land l_p \prec_X l_g \land$$

$$(5.47)$$

$$\forall l'_p : is XPut_{X,m}(l'_p) \land arg \mathbf{1}_X(l'_p) = arg \mathbf{1}_X(l_g) \Rightarrow (l'_p \preceq_X l_p \lor l_g \prec_X l'_p)$$
(5.48)

Lemma 43 (BasicMapGet) In every sequential execution on a basic map, the return value of every get method call that does not return \perp is equal to the value argument of the latest preceding put method call with the same key argument. Formally,

$$\forall m \in BasicMap: \forall X \in \mathbb{H}_B(m): X \in Sequential \Rightarrow$$

$$\forall l_g: isXGet_{X,m}(l_g) \land \neg (retv_X(l_g) = \bot) \Rightarrow$$

$$\exists l_p: isPutter_{X,m}(l_p, l_g) \land$$

$$arg2_X(l_p) = retv_X(l_g)$$

$$(5.49)$$

Lemma 44 (BasicMapPut) In every sequential execution on a basic map, for every get method call q, if p is the latest preceding put method call with the same key argument then the return value of q is equal to the value argument of p. Formally,

$$\forall m \in BasicMap: \forall X \in \mathbb{H}_B(m): X \in Sequential \Rightarrow$$

$$\forall l_g, l_p:$$

$$isXGet_{X,m}(l_g) \land$$

$$isPutter_{X,m}(l_p, l_g) \land$$

$$\Rightarrow$$

$$retv_X(l_g) = arg2_X(l_p)$$
(5.50)

Proof Sketches.

Straightforward from $\prec_X \subseteq \prec_L$.

Lemma 20:

We have (1) $l \prec_L l'$ From [1], we have (2) $rEv(l) \triangleleft_L iEv(l')$ From the well-formedness of the history O, we have (3) $iEv(l) \triangleleft_L rEv(l)$ (4) $iEv(l') \triangleleft_L rEv(l')$ From [3], [2] and [4], we have (5) $iEv(l) \triangleleft_L rEv(l')$ From [5], we have (6) $\neg (rEv(l') \triangleleft_L iEv(l))$ From [2] and [6], we have (7) $\neg (l' = l)$ From the definition of \prec_X on [6], we have (8) $\neg (l' \prec_L l)$ The conclusion is [8] and [7]

Lemma 21:

Straightforward from the fact that L is a member of sequential specification and a sequential specification is a set of sequential histories and the execution order is total in sequential histories.

Lemma 22:

Straightforward from the fact that L is a member of sequential specification and a sequential specification is a set of sequential histories and the execution order is total in sequential histories.

We have

(1) $l \in X$ (2) $l' \in X$ (3) $X \equiv L$ (4) $L \in SeqSpec(o)$ From [4], we have (5) $L \in Sequential$ From [3], [1] and [2], we have (6) $l \in L$ (7) $l' \in L$ From [4], [6] and [7], we have $l \prec_L l' \lor l' \prec_L l \lor l = l'$

Lemma 23:

Straightforward from the fact that L is equivalent to X.

We have

(1) $X \equiv L$

(2) $L \in SeqSpec(o)$ (3) $l \prec_L l'$ From [3], we have (4) $l \in L$ (5) $l' \in L$ From [2] on [4] and [5], we have (6) $obj_L(l) = o$ (7) $obj_L(l') = o$ From [1] on [4] and [5], we have $l \in X$ $l' \in X$ From [1] on [6] and [7], we have $obj_X(l) = o$ $obj_X(l') = o$

Lemma 24:

Using L2X and XTotal, we have four cases: Case: $l \prec l'$ Straightforward from XTrans. Case: $l \sim l'$ Straightforward from XXTrans. Case: $l' \prec l$ Straightforward from X2L and LASym. Case: l' = lStraightforward from LASym.

Lemma 25:

Derived from the semantics of basic objects (Definition 1) and the sequential specification of register (Definition 3).

Lemma 26: Derived from the semantics of basic register (Definition 4).

Lemma 27:

This is a restatement of Theorem 3 from the original definition of linearizability []. Derivable from the semantics of linearizable objects (Definition 2) and the sequential specification of register (Definition 3).

Lemma 28:

Derivable from the semantics of linearizable objects (Definition 2) and the sequential specification of cas register (Definition 5).

Lemma 29:

Derivable from the semantics of linearizable objects (Definition 2) and the sequential specification of cas register (Definition 5).

Lemma 30:

Derivable from the semantics of linearizable objects (Definition 2), the sequential specification of the lock

(Definition 6), the owner-respecting property (Definition 7), and that the sub-history for each thread is sequential (from the definition of execution histories).

Lemma 31: Derived from Lemma 30.

Lemma 32: Derived from Lemma 30 and the sequential specification of lock (Definition 6).

Lemma 33: Derived from Lemma 30 and the sequential specification of lock (Definition 6).

Lemma 34: Derived from Lemma 30 and the sequential specification of lock (Definition 6).

Lemma 35:

Derivable from the semantics of linearizable objects (Definition 2), the sequential specification of the lock (Definition 8), the owner-respecting property (Definition 35), and that the sub-history for each thread is sequential (from the definition of execution histories).

Lemma 36: Derived from Lemma 35.

Lemma 37: Derived from Lemma 35 and the sequential specification of try-lock (Definition 8).

Lemma 38: Derived from Lemma 35 and the sequential specification of try-lock (Definition 8).

Lemma 39: Derived from Lemma 35 and the sequential specification of try-lock (Definition 8).

Lemma 40:

Derivable from the semantics of linearizable objects (Definition 2), the sequential specification of counter (Definition 10).

Lemma 41: Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 11).

Lemma 42: Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 11).

Lemma 43: Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 12).

Lemma 44: Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 12).

6 Marking TL2

reg: BasicRegister[I],	<i>rver</i> : ThreadLocal BasicRegister,
$ver: \mathbf{AtomicRegister}[I],$	rset: ThreadLocal BasicSet,
$lock: \mathbf{TryLock}[I],$	wset: ThreadLocal BasicMap,
clock: SCounter ,	$lset: \mathbf{ThreadLocal} \ \mathbf{BasicSet}$
def $init_t()$	def $commit_t()$
$\boxed{I01 \triangleright} snap = clock.read(),$	$C01 \triangleright$ foreach $(i \in wset[t])$
$\overline{I02} \triangleright rver[t].write(snap),$	$C02_i \triangleright \qquad locked = lock[i].trylock(),$
$I03 \triangleright$ return ok ,	if $(\neg locked)$
def $read_t(i)$	$C03_i \triangleright \qquad lset.add(i)$
$R01 \triangleright pv = wset[t].get(i),$	else
if $(pv \neq \bot)$	$C04_i \triangleright$ foreach $(j \in lset)$
$R02 \triangleright$ return pv ,	$C05_{ij} \triangleright \qquad lock[j].unlock(),$
	$C06_i \triangleright$ return \mathbb{A} ,
$R03 \triangleright s_1 = ver[i].read(),$	
$R04 \triangleright v = reg[i].read(),$	$C07 \triangleright$ $wver = clock.iaf(),$
$\overline{R05} \triangleright l = lock[i].read(),$	
$R06 \triangleright s_2 = ver[i].read(),$	$C08 \triangleright sver = rver[t].read(),$
$R07 \triangleright sver = rver[t].read(),$	if $(wver \neq sver + 1)$
if $(\neg(\neg l \land s_1 = s_2 \land s_2 \leq sver))$	$C09 \triangleright$ foreach $(i \in rset[t])$
$R08 \triangleright$ return \mathbb{A} ,	$C10_i \triangleright \qquad l = lock[i].read(),$
	$C11_i \triangleright \qquad s = ver[i].read(),$
$R09 \triangleright rver[t].add(i),$	if $(\neg(\neg l \land s \leq sver))$
$R10 \triangleright$ return v ,	$C12_i \triangleright$ for each $(j \in lset)$
$\{R03 \rightarrow R04, R04 \rightarrow R05, R05 \rightarrow R06\},\$	$C13_{ij} \triangleright \qquad lock[j].unlock(),$
def $write_t(i, v)$	$C14_i \triangleright$ return \mathbb{A} ,
$W01 \triangleright wset[t].put(i,v),$	
$W02 \triangleright$ return ok ,	$C15 \triangleright \mathbf{foreach} \ ((i,v) \in wset[t])$
def $abort_t()$	$C16_i \triangleright$ $reg[i].write(v),$
$A01 \triangleright$ return \mathbb{A} ,	$\overline{C17_i \triangleright} \qquad ver[i].write(wver),$
	$C18_i \triangleright lock[i].unlock(),$
	$C19 \triangleright $ return \mathbb{C} ,
	$\begin{cases} C19 \vartriangleright \text{return } \mathbb{C}, \\ \{C01 \rightarrow C07, \ C10 \rightarrow C11, \ C09 \rightarrow C15, \end{cases}$
	$\begin{array}{c} \{C01 \rightarrow C07, C10 \rightarrow C11, C09 \rightarrow C13, \\ C16 \rightarrow C17, C17 \rightarrow C18\}, \end{array}$

Figure 4: TL2 Algorithm Specification

Atomic register, try-lock and strong counter are linearizable object types and basic register, basic set and basic map are basic object types. (At a high level, for every execution on a linearizable object, there is an equivalent sequential execution that complies with the sequential specification of the object. On the other hand, a basic object complies with its sequential specification only if it is accessed sequentially.) TL2 uses the following base objects: Value registers reg: an array of basic registers. Version registers ver: an array of atomic registers with the initial value 0. Locks *lock*: an array of try-locks that are initially released. The arrays are of size memory location count $|I|^2$ Global version clock *clock*: a strong counter with the initial value 0. A strong counter provides two methods in its interface: *iaf* (inc-and-fetch) that increments the counter and returns the counter value and *read* that returns the counter value. Read version rver: a thread-local basic register. Read set *rset*: a thread-local basic set that is initially \emptyset . As relaxed execution may reorder program statements, any order that is not implied by the data or control dependencies but is required for the correctness of the algorithm is explicitly declared at the end of each method definition. The values *ok*, A, C are reserved to denote successful completion of writes and abortion and commitment of transactions respectively.

TL2 is a deferred-update TM algorithm. A value that a transaction t writes to a location is buffered in the write set wset[t] at W01 and is written back to register reg[i] at $C16_i$ while t is committing. TL2 records a version in the register ver[i] for the value stored in the register reg[i]. The version register ver[i]is updated to ascending numbers at $C17_i$ after new values are written back to reg[i] at $C16_i$. The try-lock lock[i] is used for exclusive access to the registers for location i. At commit, the lock lock[i] of each location i in the write set wset[t] is acquired at C01 to C06. (If a lock cannot be acquired, the previously acquired locks are released at C05 and the transaction is aborted at C06.) Then, a new snapshot number is read from clock at C07. Then, for each location in the read set rset[t], first lock[i] and then ver[i] are read at $C10_i$ and $C11_i$ and the read is validated. (If a read is not validated, the acquired locks are released at C13and the transaction is aborted at C14.) Finally, the value buffered for each location i in wset[t] is written back at $C15_i$ to $C18_i$. For each pair in the write set wset[t], the following three operations are executed in order. First, the buffered value is written back to req[i], then ver[i] is updated, and then lock[i] is released. In the *init* method, each transaction t reads the current snapshot version from clock at I01 and writes it to the read version register rver[t] at I02. The read version is read at R07 and C08 to validate the read values. To read a location i, a transaction reads ver[i], reg[i], lock[i] and again ver[i] in order at R03 to R06 and then validates the read. (If the validation fails, the transaction is aborted.) Finally, i is added to the read set rset[t] and the read value is returned.

²As observed by previous work [3], in the original TL2 paper, the authors maintain the version number and the lock bit of every location in the same memory word, thus, the order of reading the lock and the version register in the commit method is ambiguous. In our specification, we treat the lock and the version as separate registers and make the orders explicit.

Notation. Let us remind the notation. Consider an execution history H. We use $l_1 \prec_H l_2$ to denote that l_1 is executed before l_2 . We use $l_1 \sim_H l_2$ to denote that l_1 is executed concurrently to l_2 . We use $l_1 \preceq_H l_2$ to denote that l_1 is executed before or concurrently to l_2 . We use $\prec_{clock}, \prec_{ver[i]}$ and $\prec_{lock[i]}$ to denote the linearization order of clock, ver[i] and lock[i] respectively.

A label $c_1'c_2$ is a call string that denotes a method call labeled c_2 that is executed in the body of the method call labeled c_1 .

We use $initOf_H(T)$ and $commitOf_H(T)$ to denote the *init* and *commit* method calls of transaction T in history H.

Marking Relation. Now, we define the marking relation for TL2. The effect order of transactions is the linearization order of their calls to the *clock*. Every transaction reads an initial snapshot number at I01. A committing transaction makes a new snapshot at C07. A TL2 transaction takes effect at C07 if it is committed and at I01 otherwise. The access order of read operations and writer transactions to location i is the execution order of their accesses to the reg[i] register. The read method reads reg[i] at R04 and a writer transaction writes to reg[i] at $C16_i$.

Definition 13 (Marking TL2) Consider an execution history $H \in \mathbb{H}(TL2)$. Let

$$readAcc(R) = R'R04$$

$$writeAcc(T, i) = commitOf_H(T)'C16_i$$

$$Eff(T) = \begin{cases} initOf_H(T)'I01 & if T \in Aborted(H) \\ commitOf_H(T)'C07 & if T \in Committed(H) \end{cases}$$

The marking \sqsubseteq for H is the reflexive closure of \sqsubset that is define as follows:

 $\begin{array}{l} \{(T,T') \mid T,T' \in Trans(H) \land Eff(T) \prec_{clock} Eff(T')\} \cup \\ \{(T,R) \mid \exists i \colon R \in GlobalTReads(H), i = arg1(R), T \in Writers_H(i) \land writeAcc(T,i) \prec_H readAcc(R)\} \cup \\ \{(R,T) \mid \exists i \colon R \in GlobalTReads(H), i = arg1(R), T \in Writers_H(i) \land readAcc(R) \precsim_H writeAcc(T,i)\} \end{array}$

We have formally proved the markability of TL2 using a novel program logic that facilitates reasoning about execution and linearization orders. To keep the focus of this paper on markability, we avoid the formal presentation of the logic and present a simplified reasoning.

In addition to the lemmas presented in the previous section, we use the rule P2X that states the program-order-preservation property. If a method call l_1 is ordered before a method call l_2 in the program, and methods l_1 and l_2 are executed, then l_1 is executed before l_2 .

Lemma 45 TL2 preserves reads of aborted transactions (part 1).

 $\forall H \in \mathbb{H}(TL2): \\ \forall R \in GlobalTReads(H): Let \ i = arg1_H(R), T = trans_H(R): \\ T \in Aborted(H) \Rightarrow NoWriterBetween_{H,i}(R, \sqsubseteq, T)$

Proof Sketch.

Т		T'	
		$C02_i \triangleright$	lock[i].trylock()
		$C07 \triangleright$	wver = clock.iaf()
$I01 \triangleright$	snap = clock.read()		
$R03 \triangleright$	$s_1 = ver[i].read()$		
$R04 \triangleright$	v = reg[i].read()		
		$C16_i \triangleright$	reg[i].write(v)
		$C17_i \triangleright$	ver[i].write(wver)
$R05 \triangleright$	l = lock[i].read()	$C18_i \triangleright$	lock[i].unlock()
$R06 \triangleright$	$s_2 = ver[i].read()$		
$R07 \triangleright$	sver = rver[t].read()		
	if $(\neg (\neg l \land s_1 = s_2 \land s_2 \leq sver))$		
	$\mathbf{return} \ \mathbb{A}$		

Figure 5:	Case $T \in$	Aborted(H)	$) \land R \sqsubset T' \sqsubset T$
-----------	--------------	------------	--------------------------------------

We consider an aborted transaction T with an unaborted global read operation R from a location i and a writer T' of i.

We assume that T' accesses i after Rthat is (1) $T' \sqsubset R$ and T' takes effect before Tthat is (2) $T' \sqsubset T$ We show that TL2 aborts R. Figure 5 depicts the two transactions. By Definition 13 on [1], we have (3) $R04 \prec_H C16_i$ By Definition 13 on [2], we have (4) $C07 \prec_{clock} I01$ The method calls R05 and $C18_i$ are on the

The method calls R05 and $C18_i$ are on the object lock[i]. We consider two cases for the linearization order of them and prove that R returns \mathbb{A} in both cases. Case 1:

(5) $R05 \prec_{lock[i]} C18_i$

By P2X on the algorithm, we have (6) $C02_i \prec_H C07$ (7) $I01 \prec_H R05$ By the Lemma XLTRANS on [6], [4] and [7], we have $C02_i \prec_H R05$ thus, by the Lemma X2L, we have (8) $C02_i \prec_{lock[i]} R05$ By the Lemma TRYLOCKREADM on [8] and [5], we have that R05 returns true i.e. l = trueThus, The validation check fails and R returns \mathbb{A} . Case 2: (9) $C18_i \prec_{lock[i]} R05$ By P2X on the algorithm, we have (10) $C17_i \prec_H C18_i$ (11) $R05 \prec_H R06$ By the Lemma XLTRANS on [10], [9] and [11], we have $C17_i \prec_H R06$ Thus, by the Lemma X2L, we have (12) $C17_i \prec_{ver[i]} R06$ By Lemma 54 on [12], we have (13) $wver \leq s_2$ By P2X on the algorithm, we have (14) $R03 \prec_H R04$ (15) $C16_i \prec_H C17_i$ By the Lemma XXTRANS on [14], [3] and [15], we have $R03 \prec_H C17_i$ Thus, by the Lemma X2L, we have (16) $R03 \prec_{ver[i]} C17_i$ By Lemma 54 on [16], we have (17) $s_1 < wver$ From [13] and [17], we have $\neg(s_1 = s_2)$ Thus. The validation check fails and R returns \mathbb{A} in this case too.

Lemma 46 TL2 preserves reads of aborted transactions (part 2).

$$\begin{array}{l} \forall H \in \mathbb{H}(TL2) \colon \\ \forall R \in GlobalTReads(H) \colon Let \ i = arg1_H(R), T = trans_H(R) \colon \\ T \in Aborted(H) \Rightarrow NoWriterBetween_{H,i}(T, \sqsubseteq, R) \end{array}$$

Proof Sketch.

We consider an aborted transaction T with an unaborted global read operation R from a location i and a writer T' of i.

We assume that

Т		T'	
$I01 \triangleright$	snap = clock.read()	$C02_i \triangleright$	lock[i].trylock()
$I02 \triangleright$	rver[t].write(snap)		
		$C07 \triangleright$	wver = clock.iaf()
		$C16_i \triangleright$	reg[i].write(v)
$R04 \triangleright$	a = max[i] maxd()	$C10_i \triangleright$ $C17_i \triangleright$	5[] ()
$R04 \triangleright$ $R05 \triangleright$	$\frac{v = reg[i].read()}{l = lock[i].read()}$	$\begin{array}{c c} C11_i \triangleright \\ \hline C18_i \triangleright \end{array}$	$\frac{ver[i].write(wver)}{lock[i].unlock()}$
$R06 \triangleright$	$\frac{i - i OCK[i].read()}{s_2 = ver[i].read()}$		
$R07 \triangleright$	$\frac{s_2 - ver[t], vau()}{sver = rver[t], read()}$		
	if $(\neg(\neg l \land s_1 = s_2 \land s_2 \le sver))$		
	return A		

Figure 6:	Case $T \in$	Aborted(H)	$\land \ T \sqsubset T' \sqsubset R$
-----------	--------------	------------	--------------------------------------

T' takes effect after Tthat is (1) $T \sqsubset T'$ T' accesses *i* before *R* that is (2) $T' \sqsubset R$ We show that TL2 aborts R. Figure 6 depicts the two transactions. By Definition 13 on [1], we have (3) $I01 \prec_{clock} C07$ By Definition 13 on [2], we have (4) $C16_i \leq R04$ The method calls R05 and $C18_i$ are on the object lock[i]. We consider two cases for the linearization order of them and prove that R returns \mathbb{A} in both cases. Case 1: (5) $R05 \prec_{lock[i]} C18_i$ By P2X on the algorithm, we have (6) $C02_i \prec_H C16_i$ (7) $R04 \prec_H R05$ By the Lemma XXTRANS on [6], [4] and [7], we have $C02_i \prec_H R05$ thus, by the Lemma X2L, we have (8) $C02_i \prec_{lock[i]} R05$ By the Lemma TRYLOCKREADM on [8] and [5], we have that R05 returns true i.e. l = true. Thus,

and

The validation check fails and R returns \mathbb{A} .

Case 2: (9) $C18_i \prec_{lock[i]} R05$ By P2X on the algorithm, we have (10) $C17_i \prec_H C18_i$ (11) $R05 \prec_H R06$ By the Lemma XLTRANS on [10], [9] and [11], we have $C17_i \prec_H R06$ Thus, by the Lemma X2L, we have (12) $C17_i \prec_{ver[i]} R06$ By Lemma 53 on [12], we have (13) $wver \leq s_2$ By the Lemma SCOUNTER on [3], we have $(14) \quad snap < wver$ The value of *sver* is read at *R*07 from *rver*. The thread-local register *rver* is only assigned at *I*02 to *snap*. Thus, we have (15) snap = sverFrom [13], [14] and [15], we have $sver > s_2$ Thus. The validation check fails and R returns \mathbb{A} in this case too.

Lemma 47 TL2 preserves reads of aborted transactions.

 $\forall H \in \mathbb{H}(TL2): \\ \forall R \in GlobalTReads(H): Let \ i = arg1_H(R), T = trans_H(R): \\ T \in Aborted(H) \Rightarrow \\ NoWriterBetween_{H,i}(R, \sqsubseteq, T) \land NoWriterBetween_{H,i}(T, \sqsubseteq, R)$

Proof. Immediate from Lemma 45 and Lemma 46.

Lemma 48 TL2 preserves reads of committed transactions (part 1).

 $\forall H \in \mathbb{H}(TL2): \\ \forall R \in GlobalTReads(H): Let \ i = arg1_H(R), T = trans_H(R): \\ T \in Committed(H) \Rightarrow \\ NoWriterBetween_{H,i}(R, \sqsubseteq, T)$

Proof Sketch.

We consider a committed transaction T with an unaborted global read operation R from a location i and a writer T' of i.

We assume that

```
T' accesses i after R
that is
(1) R \sqsubset T'
and
T' takes effect before T
that is
```

Т		T'	
		$C02'_i \triangleright$	lock[i].trylock()
$I01 \triangleright$	snap = clock.read()	$C07' \triangleright$	wver' = clock.iaf()
$I02 \triangleright$	rver[t].write(snap)		
$R04 \triangleright$	v = reg[i].read()		
		$C16'_i \triangleright$	reg[i].write(v')
$C07 \triangleright$	wver = clock.iaf()		
$C08 \triangleright$	sver = rver[t].read()		
	if $(wver \neq sver + 1)$	$C17'_i \triangleright$	ver[i].write(wver')
$C10_i \triangleright$	l = lock[i].read()	$C18'_i \triangleright$	lock[i].unlock()
$C11_i \triangleright$	s = ver[i].read()		
	if $(\neg(\neg l \land s \leq sver))$		
	foreach $(j \in lset)$		
	lock[j].unlock()		
	$\mathbf{return} \ \mathbb{A}$		

Figure 7: Case $T \in Committed(H) \land R \sqsubset T' \sqsubset T$

(2) $T' \sqsubset T$

We show that

TL2 aborts R.

Figure 7 depicts the two transactions. We annotate the labels and variables of T' by a prime so that they do not conflict with the labels and variables of T.

By Definition 13 on [1], we have

(3) $R04 \prec_H C16_i$

By Definition 13 on [2], we have

(4) $C07' \prec_{clock} C07$

The method calls I01 and C07' are on the object *clock*. We consider two cases for the linearization order of them.

Case 1:

(5) $C07' \prec_{clock} I01$

From [5] and [3],

The proof of this case reduces to the proof of Lemma 45.

 $Case \ 2:$

(6) $I01 \prec_{clock} C07'$

By the Lemma SCOUNTER on [4], we have

(7) wver' < wver

By the Lemma SCOUNTER on [6], we have

(8) snap < wver'

The value of sver is read at R07 from rver.

The thread-local register rver is only assigned at I02 to snap.

Thus, we have

(9) snap = sverFrom [8] and [9], we have (10) sver < wver'From [10] and [7], we have (11) $wver \neq sver + 1$ Thus, The if branch is taken. The method calls $C10_i$ and $C18'_i$ are on the object lock[i]. We consider two cases for the linearization order of them. Case 2.1: (12) $C10_i \prec_{lock[i]} C18'_i$ By P2X on the algorithm, we have (13) $C02'_i \prec_H C07'$ (14) $C07 \prec_H C10_i$ By the Lemma XLTRANS on [13], [4] and [14], we have $C02'_i \prec_H C10_i$ thus, by the Lemma X2L, we have (15) $C02'_i \prec_{lock[i]} C10_i$ By the Lemma TRYLOCKREADM on [15] and [12], we have that R05 returns true i.e. l = trueThus, The validation check fails and R returns \mathbb{A} . Case 2.2: (16) $C18'_i \prec_{lock[i]} C10_i$ By P2X on the algorithm, we have (17) $C17'_i \prec_H C18'_i$ (18) $C10_i \prec_H C11_i$ By the Lemma XLTRANS on [17], [16] and [18], we have $C17'_i \prec_H C11_i$ Thus, by the Lemma X2L, we have (19) $C17'_i \prec_{ver[i]} C11_i$ By Lemma 54 on [19], we have (20) $wver' \leq s$ From [10], [20], we have sver < sThus, The validation check fails and R returns A in this case too.

Lemma 49 TL2 preserves reads of committed transactions (part 2).

 $\begin{array}{l} \forall H \in \mathbb{H}(TL2) \colon \\ \forall R \in GlobalTReads(H) \colon Let \ i = arg1_H(R), T = trans_H(R) \colon \\ T \in Committed(H) \Rightarrow \\ NoWriterBetween_{H,i}(T, \sqsubseteq, R) \end{array}$

Т	<i>T'</i>
$\boxed{R04 \triangleright} v = reg[i].read()$	
$\boxed{C07 \triangleright} wver = clock.iaf()$	
	$\boxed{C07' \triangleright} \qquad wver' = clock.iaf()$
	$C16'_i \triangleright reg[i].write(v')$

Figure 8: Case $T \in Committed(H) \land T \sqsubset T' \sqsubset R$

Proof Sketch.

We consider a committed transaction T with an unaborted global read operation R from a location iand a writer T' of i. We should show that it is impossible that T' takes effect after T and T' accesses ibefore R.

We assume that

T' takes effect after T

that is

(1) $T \sqsubset T'$

We show that

T' accesses *i* after *R*.

that is

(2) $R \sqsubset T'$

Figure 8 depicts the two transactions. We annotate the labels and variables of T' by a prime so that they do not conflict with the labels and variables of T.

By Definition 13 on [1], we have (2)

(3) $C07 \prec_{clock} C07'$ By Definition 13 on [2], we have to show

 $R04 \prec_H C16_i$

By P2X and the algorithm, we have

(4) $C04 \prec_H C07$

(5) $C07' \prec_H C16'_i$

By the Lemma XLTRANS on [4], [3], and [5], we have $R04 \prec_H C16_i$

Lemma 50 TL2 preserves reads of committed transactions.

$$\begin{split} \forall H \in \mathbb{H}(TL2) : \\ \forall R \in GlobalTReads(H) : Let \ i = arg1_H(R), T = trans_H(R) : \\ T \in Committed(H) \Rightarrow \\ NoWriterBetween_{H,i}(R, \sqsubseteq, T) \ \land \ NoWriterBetween_{H,i}(T, \sqsubseteq, R) \end{split}$$

Proof. Immediate from Lemma 48 and Lemma 49.

Lemma 51 *TL2 is read-preserving.*

 $\forall H \in \mathbb{H}(TL2) \colon ReadPres(H, \sqsubseteq)$

Proof. Immediate from Lemma 47 and Lemma 50.

Lemma 52 Version registers are updated to ascending numbers.

Let $C17_i^1$ denote the method call at line $C17_i$ executed by a transaction T_1 and let $wver^1$ denote its argument. Similarly, let $C17_i^2$ denote the method call at line $C17_i$ executed by a transaction T_2 and let wver² denote its argument. If $C17_i^1 \prec_{ver[i]} C17_i^2$, then $wver^1 < wver^2$.

T_1	T_2		
$C02^1_i \triangleright locked^1$	= lock[i].trylock()		
$C07^1 \triangleright wver^1 =$	clock.iaf()		
$C17^1_i \triangleright ver[i].with ver[i]$	$rite(wver^1)$		
$C18^1_i \triangleright lock[i].u$			
	C0	$2_i^2 \triangleright \qquad locked^2 = lock[i].try$	lock()
	C0	$7^2 \triangleright \qquad wver^2 = clock.iaf()$	
	C1	$7_i^2 ver[i].write(wver^2)$	
	C1	$8_i^2 \qquad lock[i].unlock()$	

Proof Sketch.

Figure 9: Updating Version Registers

We have that

(1) $C17^1_i \prec_{ver[i]} C17^2_i$ We show that $wver^1 < wver^2$

By P2X on the algorithm, we have

(2) $C02_i^1 \prec_H C17_i^1$ (3) $C17_i^2 \prec_H C18_i^2$

By the Lemma XLTRANS on [2], [1] and [3], we have (4) $C02_i^1 \prec_H C18_i^2$

Thus, by the Lemma X2L, we have

 $(5) \quad C02^1_i \prec_{lock[i]} C18^2_i$

From the algorithm,

(6) The ownership of lock[i] is respected.

- By the Lemma TRYLOCK on [6] and [5], we have (7) $C18^1_i \prec_{lock[i]} C02^2_i$
- By P2X on the algorithm, we have
 - (8) $C07_1 \prec_H C18_i^1$

(9) $C02_i^2 \prec_H C07^2$

- By the Lemma XLTRANS on [8], [7], and [9], we have (10) $C07^1 \prec_H C07^2$
- By the Lemma X2L on [10], we have

(11) $C07^1 \prec_{clock} C07^2$ By the Lemma SCOUNTER on [11], we have $wver^1 < wver^2$

Lemma 53 For every write method call W on ver[i] with argument v and every read method call R on ver[i] with the return value v', if $W \prec_{ver[i]} R$ then $v \leq v'$.

Proof Sketch.

We have

- (1) W is a write method call on ver[i].
- (2) R is a read method call on ver[i].
- (3) $W \prec_{ver[i]} R$.
- (4) The argument of W is v.
- (5) The return value of R is v'.

We show that

 $v \leq v'$

Let

- (6) W' is last write on ver[i] linearized before R.
- (7) The argument of W' is v''.
- By the Lemma AREG' on [6], [7], and [5], we have (8) v' = v''
- From [6], and [1], we have

(9) $W \preceq_{ver[i]} W'$

- By the algorithm and [1], and [6], we have (10) W and W' are both at C17.
- By Lemma 52 on [10], [9], [4] and [7], we have (11) $v \leq v''$

From [8] and [11], we have v < v'

Lemma 54 For every write method call W on ver[i] with argument v and every read method call R on ver[i] with the return value v', if $R \prec_{ver[i]} W$ then v' < v.

Proof Sketch.

We have

- (1) W is a write method call on ver[i].
- (2) R is a read method call on ver[i].
- (3) $R \prec_{ver[i]} W$.
- (4) The argument of W is v.
- (5) The return value of R is v'.

We show that

v' < v

Let

(6) W' is last write on ver[i] linearized before R.

(7) The argument of W' is v''. By the Lemma AREG' on [6], [7], and [5], we have (8) v' = v''From [3], and [6], we have (9) $W' \prec_{ver[i]} W$ By the algorithm and [1], and [6], we have (10) W and W' are both at C17. By Lemma 52 on [10], [9], [4] and [7], we have (11) v'' < vFrom [8] and [11], we have v' < v

Lemma 55 TL2 is global-write-observant.

 $\begin{array}{l} \forall H \in \mathbb{H}(TL2) \colon \\ \forall R \in GlobalTReads(H) \colon \exists W \in GlobalTWrites(H) \colon Let \ T' = trans_H(W) \colon \\ LastPreAccessor_{H,\sqsubseteq}(T',R) \land \\ arg1_H(R) = arg1_H(W) \land retv_H(R) = arg2_H(W) \end{array}$

Proof Sketch.

We consider a transaction T with an unaborted global read operation R from a location i. The read operation R is from the location i, thus,

(1) The argument of R is i.

As R is global, thus,

(2) The return value of R is the return value of R04.

We first show that

(3) The read method call from reg[i] at R04 is race-free.

We assume that there is a write method call on reg[i] concurrent to it and show that TL2 aborts R. Figure 10 depicts this situation.

Т		T'	
		$C02_i \triangleright$	locked = lock[i].trylock()
$R03 \triangleright$	$s_1 = ver[i].read()$		
$R04 \triangleright$	v = reg[i].read()	$C16_i \triangleright$	v = reg[i].write(v)
		$C17_i \triangleright$	ver[i].write(wver)
$R05 \triangleright$	lock[i].read()	$C18_i \triangleright$	lock[i].unlock()
$R06 \triangleright$	$s_2 = ver[i].read()$		
$R07 \triangleright$	sver = rver[t].read()		
	if $(\neg(\neg l \land s_1 = s_2 \land s_2 \leq sver))$		
	$\mathbf{return} \ \mathbb{A}$		

Figure 10: *R*04 is race-free

We assume that there a race between R04 and $C16_i$. Thus,

(4) $R04 \sim C16_i$

The method calls R05 and $C18_i$ are on the object lock[i].

We consider two cases for the linearization order of them and prove that R returns \mathbb{A} in both cases. We consider two cases

Case 1:

- (5) $R04 \prec_{lock[i]} C18_i$
- By P2X and the algorithm, we have
 - (6) $C02_i \prec_H C16_i$
 - (7) $R04 \prec_H R05$

By the Lemma XXTRANS on [6], [4], and [7], we have

(8) $C02_i \prec_H R05$

By the Lemma X2L on [8], we have

(9) $C02_i \prec_{lock[i]} R05$

By the Lemma TRYLOCKREADM on [9] and [5], we have that

R05 returns true i.e. l = true

Thus,

The validation check fails and R returns \mathbb{A} .

Case 2:

(10) $C18_i \prec_{lock[i]} R04$

By P2X and the algorithm, we have

- (11) $R03 \prec_H R04$
- (12) $R05 \prec_H R06$
- (13) $C16_i \prec_H C17_i$
- (14) $C17_i \prec_H C18_i$
- By the Lemma XXTRANS on [11], [4], and [13], we have

(15) $R03 \prec_H C17_i$

By Lemma 54 on [15], we have

(16) $s_1 < wver$

By the Lemma XLTRANS on [14], [10], and [12], we have

(17) $C17_i \prec_H R06$

By Lemma 53 on [17], we have

(18) $s_2 > wver$

From [15] and [17], we have

(19) $s_1 \neq s_2$

Thus,

The validation check fails and R returns \mathbb{A} .

Second, we show that

(20) The register reg[i] is sequentially-written i.e. no two write methods on reg[i] are concurrent.

We assume two concurrent write method calls on reg[i] and show a contradiction.

Figure 11 depicts this situation.

Т	T'
$C02_i \triangleright locked = lock[i].trylock()$	
	$C02'_i \triangleright locked' = lock[i].trylock()$
$C16_i \triangleright v = reg[i].write(v)$	$C16'_i \triangleright v' = reg[i].write(v')$
$C18_i \triangleright lock[i].unlock()$	
	$C18'_i \triangleright lock[i].unlock()$

Figure 11: reg[i] is sequentially-written

We assume that $C16_i$ and $C16'_i$ are concurrent. Thus,

(21) $C16_i \sim C16'_i$

By P2X and the algorithm, we have

(22) $C02_i \prec_H C16_i$

(23) $C16'_i \prec_H C18'_i$

By the Lemma XXTRANS on [22], [21], and [23], we have

(24) $C02_i \prec_H C18'_i$

By the Lemma X2L on [8], we have

(25) $C02_i \prec_{lock[i]} C18'_i$

By the Lemma TRYLOCK on [25], we have that

(26) $C18_i \prec_{lock[i]} C02'_i$ By P2X and the algorithm, we have (27) $C16_i \prec_H C18_i$ (28) $C02'_i \prec_H C16'_i$ By the Lemma XLTRANS on [27], [26], and [28], we have (29) $C16_i \prec_H C16'_i$ That is a contradiction to [21]. By the Lemma BREG on [3], and [20], we have (30) There is a write method call w on reg[i] such that The argument of w is equal to the return value of R04. The last write method call on reg[i] that is executed before R04 is w. By the algorithm, we have (31) The register reg[i] is written only at $C16_i$. From [28] and [29], we have There is a transaction T' such that (We annotate the labels and variables of T' by a prime so that they do not conflict with the labels and variables of T.) (32) The argument of $C16'_i$ is equal to the return value of R04. (33) The last write method call on req[i] that is executed before R04 is C16'. By the algorithm, we have (34) The argument of $C16'_i$ is the value of the key *i* in the map wset[T'] in the commit. (35) The map wset[T'] is updated only at W01 in a write of T' such that The key is equal to the first argument of the *write*. The value is equal to the second argument of the *write*. From [34], and [35], we have (36) There exists a write W of T'(37) The first argument of W is equal to i. (38) W is the last write of T' with the first argument equal to i. (39) The second argument of W is equal to the argument of $C16'_i$. From [1], and [37], we have (40) The first argument of R is the first argument of W. From [2], [32], and [39], we have(41) The return value of R is the second argument of W. From [38], we have (42) W is a global write. We show that (43) The transaction T' is the last pre-accessor of R. From [33], we have (44) $C16'_i \prec_H R04$ By Definition 13 on [44], we have (45) $T' \sqsubset R$ Now, we show that (46) Every transaction T'' other than T' that accesses *i* before *R*, takes effect before T'. We assume that

(47) $T'' \neq T'$

(48) $T'' \sqsubset R$ We should show that $T'' \sqsubset T'$ By Definition 13 on [48], we have (We annotate the labels and variables of T' by a double prime.) (49) $C16''_i \prec_H R04$ From [33], [33], and [49], we have (50) $C16''_i \prec_H C16'_i$ Consider Figure 12.

T''		T'	
$C02_i'' \triangleright$	locked'' = lock[i].tryLock()		
		$C02'_i \triangleright$	locked' = lock[i].tryLock()
$C07'' \triangleright$	wver'' = clock.iaf()		
		$C07' \triangleright$	wver' = clock.iaf()
$C16''_i \triangleright$	reg[i].write(v'')		
		$C16'_i \triangleright$	reg[i].write(v')
$C18_i'' \triangleright$	lock[i].unlock()		
		$C18'_i \triangleright$	lock[i].unlock()

Figure 12: Effect-order of pre-accessors

By P2X and the algorithm, we have

(51) $C02_i'' \prec_H C16_i''$ (52) $C16'_i \prec_H C18'_i$ By the Lemma XXTRANS on [51], [50], and [52], we have (53) $C02_i'' \prec_H C18_i'$ By the Lemma X2L on [53], we have (54) $C02_i'' \prec_{lock[i]} C18_i'$ By the Lemma TRYLOCK on [45], we have that (55) $C18''_i \prec_{lock[i]} C02'_i$ By P2X and the algorithm, we have (56) $C07''_i \prec_H C18''_i$ (57) $C02'_i \prec_H C07'_i$ By the Lemma XLTRANS on [56], [55], and [57], we have (58) $C07'' \prec_H C07'$ By Definition 13 on [58], we have $T'' \sqsubset T'$. The conclusion is [36], [42], [40], [41], and [43]

Lemma 56 TL2 is local-write-observant.

```
 \begin{array}{l} \forall H \in \mathbb{H}(TL2) : \\ \forall R \in LocalTReads(H) \colon Let \ T = trans_{H}(R), i = arg1_{H}(R), H' = H|T|i : \\ \exists W \in TWrites(H') : \\ W \prec_{H'} R \ \land \ NoWriteBetween_{H'}(W, R) \ \land \\ retv_{H'}(R) = arg2_{H'}(W) \end{array}
```

Proof Sketch.

Let

(1) The operation R is a local read with the first argument i by the transaction T.

From [1], as R is local, we have

(2) There is a write operation before R with the first argument i by T. From [2], let

(3) The operation W is the last write operation before R with the first argument i by the transaction T.

By the algorithm

(4) The value of a key i in *wset* is updated only at W01 in a write operation with the first argument i and the value of the key i is updated to the second argument of the write operation.

From [3] and [4], we have

(5) The value of a key i in *wset* during the execution of R is equal to the second argument of W. Thus, by the algorithm

(6) R01-R02 find a value for the key *i* in *wset*.

Thus,

(7) The return value of R is equal to the value of key i in *wset*.

From [7] and [5], we have

(8) The return value of R is equal to the second argument of W.

The conclusion is

[3] and [8]

Lemma 57 TL2 is write-observant.

 $\forall H \in \mathbb{H}(TL2) \colon WriteObs(H,\sqsubseteq)$

Proof. Immediate from Lemma 56 and Lemma 55.

Lemma 58 TL2 is real-time-preserving.

$$\forall H \in \mathbb{H}(TL2) \colon RealTimePres(H, \sqsubseteq)$$

Proof Sketch.

We assume that

(1) $T \preceq_H T'$

We show that

 $T\sqsubseteq T'$

By the definition of $\underline{\prec}_H$, from [1], we have

(2) All the operations of T are executed before all the operations of T'.

By the Lemma X2L, from [2], we have

(3) All the operations of T on *clock* are linearized before all the operations of T' on *clock*. By Definition 13,

(4) The effect point of each transaction is one of its own operations on the clock object. From [3] and [4], we have

(5) The transaction T takes effect before the transaction T'.

that is

 $T \sqsubseteq T'$

Lemma 59 The relation \sqsubseteq is a marking relation.

$$\forall H \in \mathbb{H}(TL2) \colon \sqsubseteq \in Marking(H)$$

Proof Sketch.

Consider Definition 13.

By the totality of the linearization order \prec_{clock} , the relation \sqsubseteq is a total on the set of transactions.

As every pair of method calls either execute in order or concurrently, every read operation of a location i is ordered either before or after every writer to i. In addition, as no method call can execute before another method call and also after after or concurrent to it, no read operation of a location i is ordered both before and after a writer to i.

Lemma 60 TL2 is markable.

$$\forall H \in \mathbb{H}(TL2) \colon H \in FinalStateMarkable$$

Proof.

Immediate from Lemma 59, Lemma 51, Lemma 57, and Lemma 58.

Theorem 61 TL2 is opaque.

 $\forall H \in \mathbb{H}(TL2) \colon H \in FinalStateOpaque$

Proof.

Immediate from Lemma 60, and Theorem 18.

7 Marking DSTM (visible reads)

\mathcal{T} :			
, . Lo	c {		
	writer: BasicRegister ,		
	rset: BasicSet,		
	oldVal: BasicRegister.		
	newVal: BasicRegister		
eta	<i>ite</i> : AtomicCASRegiste		
	<i>art</i> : AtomicCASRegiste		
\mathcal{D} :		·• []	
def in	it_{4}	def wr	$ite_t(i,v)$
$ I01 \triangleright$	$state[t].write(\mathbb{R}),$		$r_1 = start[i].read(),$
$101 \triangleright$ $I02 \triangleright$	return ok ,		$w = r_1.writer.read(),$
$\frac{102}{\text{def }re}$			$w = r_1 . w riter . reau(),$ if $(w = t)$
	$r_1 = start[i].read(),$	<i>W</i> 03 ⊳	
	$v = currentValue_t(r_1),$	<i>W</i> 04 ⊳	- () /
	$r_2 = clone(r_1),$		
	$r_2.rset.add(t),$	<i>W</i> 05 ⊳	$v_2 = currentValue_t(r_1),$
<i>R</i> 05 ⊳	$\vec{rd} = start[i].cas(r_1, r_2),$	<i>W</i> 06 ⊳	
	s = state[t].read(),	<i>W</i> 07 ⊳	$state[t_2].cas(\mathbb{R},\mathbb{A}),$
	if $(\neg rd \lor (s = \mathbb{A}))$		
<i>R</i> 07 ⊳	return A	<i>W</i> 08 ⊳	$r_2 = new \ Loc(),$
	else		$r_2.writer.write(t),$
$R08 \triangleright$	return v ,	$W10 \triangleright$	$r_2.oldVal.write(v_2),$
<i>R</i> 05 -	$\rightarrow R06\},$	$W11 \triangleright$	$r_2.newVal.write(v),$
def co	$mmit_t()$	$W12 \triangleright$	$wd = start[i].cas(r_1, r_2),$
$C01 \triangleright$	$c = state[t].cas(\mathbb{R}, \mathbb{C}),$		$\mathbf{if} (wd)$
	if (c)	$W13 \triangleright$	$return \ ok$
$C02 \triangleright$	$\mathbf{return}\mathbb{C}$		else
	else	$W14 \triangleright$	$\mathbf{return} \ \mathbb{A}$
$C03 \triangleright$	return \mathbb{A} ,	$ \{W06 -$	$\rightarrow W12\}$
def cu	$rrentValue_t(r)$		
$V01 \triangleright$	$t_2 = r.writer.read(),$		
	if $(\neg(t_2 = t))$		
$V02 \triangleright$	$state[t_2].cas(\mathbb{R},\mathbb{A}),$		
$V03 \triangleright$	$s = state[t_2].read(),$		
	if $(s = \mathbb{A})$		
$V04 \triangleright$	$return \ r.oldVal$		
	else		
$V05 \triangleright$	return $r.newVal$,		

Figure 13: DSTMVis DSTM (visible reads) Algorithm Specification

Notation. Let us remind the notation. Consider an execution history H.

We write $e_1 \triangleleft_H e_2$ to denote that the event e_1 comes before the event e_2 in the history H.

We use $l_1 \prec_H l_2$ to denote that l_1 is executed before l_2 . We use $l_1 \sim_H l_2$ to denote that l_1 is executed concurrently to l_2 . We use $l_1 \preceq_H l_2$ to denote that l_1 is executed before or concurrently to l_2 .

We use $\prec_{start[i]}$ to denote the linearization order of start[i].

A label $c_1'c_2$ is a call string that denotes a method call labeled c_2 that is executed in the body of the method call labeled c_1 .

We use $initOf_H(T)$ and $commitOf_H(T)$ to denote the *init* and *commit* method calls of the transaction T in the history H. We use $LastTRead_H(T)$ to denote the last read method call by the transaction T in the history H. We use $FirstTWrite_H(T,i)$ to denote the first write method call to location i by the transaction T in the history H.

Marking Relation. Now, we define the marking relation for DSTM.

Definition 14 (Marking DSTM) Consider an execution history $H \in \mathbb{H}(DSTMVis)$. Let

$$Eff(T) = \begin{cases} commitOf_H(T)'C01 & if \ T \in Committed(H) \\ LastTRead_H(T)'R05 & if \ T \in Aborted(H) \land TReads(H) \neq \emptyset \\ initOf_H(T)'I01 & if \ T \in Aborted(H) \land TReads(H) = \emptyset \end{cases}$$
$$readAcc(R) = R'R05$$
$$riteAcc(T, i) = FirstTWrite_H(T, i)'W12$$

The marking \sqsubseteq for H is the reflexive closure of \sqsubset that is define as follows:

w

 $\begin{array}{l} \{(T,T') \mid T,T' \in Trans(H) \land inv(Eff(T)) \lhd_H inv(Eff(T'))\} \cup \\ \{(T,R) \mid \exists i \colon R \in GlobalTReads(H), i = arg1(R), T \in Writers_H(i) \land writeAcc(T,i) \prec_{start[i]} readAcc(R)\} \cup \\ \{(R,T) \mid \exists i \colon R \in GlobalTReads(H), i = arg1(R), T \in Writers_H(i) \land readAcc(R) \prec_{start[i]} writeAcc(T,i)\} \end{array}$

A committed transactions takes effect at the invocation event of C01, the cas method call in its commit method call. An aborted transaction that has a successful read method call takes effect at the invocation event of R05 of its last successful read method call. An aborted transaction that has no successful read method call takes effect at the invocation event of I01 in its initialization method call.

The access point of a read method call is at R05. The access point of a writer transaction to location i is at W12 of its first write method call to i.

8 Marking NORec

\mathcal{T} :	
seqLock: SeqLock,	
$reg: \mathbf{BasicRegister}[]$	
snap: ThreadLocal BasicRegister,	
rset: ThreadLocal BasicMap,	
wset: ThreadLocal BasicMap,	
\mathcal{D} :	
def $init_t()$	def $validate_t()$
do	$V01 \triangleright$ while $(true)$
$I01 \triangleright \qquad (s,l) = seqLock.read()$	do
while (l) ,	$V02 \triangleright$ $(s1, l1) = seqLock.read(),$
$I02 \triangleright snap[t] = s,$	while $(l1)$
def $read_t(i)$	foreach $((i, v) \in rset[t])$
$R01 \triangleright pv = wset[t].get(i),$	$V03_i \triangleright \qquad v' = reg[i].read(),$
if $(pv \neq \bot)$	if $(v \neq v')$,
$R02 \triangleright$ return pv ,	$V04_i \triangleright$ return $false$,
do	$V05 \triangleright \qquad (s2, l2) = seqLock.read(),$
$R03 \triangleright \qquad v = reg[i].read(),$	if $(s2 = s1 \land \neg l2)$
$R04 \triangleright \qquad s1 = snap[t].read(),$	$V06 \triangleright \qquad snap[t].write(s1),$
$R05 \triangleright \qquad (s2, l2) = seqLock.read(),$	$V07 \triangleright$ return $true$,
if $(s2 = s1 \land \neg l2)$	$\{V02 \to V03_i, V03_i \to V05\},\$
$R06 \triangleright$ break ,	def $commit_t()$
$R07 \triangleright \qquad b = validate_t(),$	$C01 \triangleright e = wset[t].isEmpty(),$
if $(\neg b)$	$\mathbf{if}(e)$
$R08 \triangleright$ return \mathbb{A} ,	$C02 \triangleright$ return \mathbb{C} ,
while $(true)$,	do
$R09 \triangleright rset[t].put(i,v),$	$C03 \triangleright \qquad s = snap[t].read(),$
$R10 \triangleright$ return v ,	$C04 \triangleright \qquad d = seqLock.compareAndLock(s),$
$\{R03 \to R05\},$	\mathbf{if} (d)
def $write_t(i, v)$	$C05 \triangleright$ break ,
$W01 \triangleright wset[t].put(i,v),$	$C06 \triangleright \qquad b = validate_t(),$
$W02 \triangleright$ return ok ,	if $(\neg b)$
def $abort_t()$	$\mathbf{return} \ \mathbb{A},$
$A01 \triangleright$ return A	while (true),
	foreach $((i, v) \in wset[t])$
	$C07_i \triangleright reg[i].write(v),$
	$C08 \triangleright seqLock.incAndUnlock(),$
	$C09 \triangleright$ return \mathbb{C}
	$\{C04 \rightarrow C07_i, C07_i \rightarrow C08\},\$

Figure 14: NORec NORec Algorithm Specification

Notation. Let us remind the notation. Consider an execution history H.

We use $l_1 \prec_H l_2$ to denote that l_1 is executed before l_2 . We use $l_1 \sim_H l_2$ to denote that l_1 is executed concurrently to l_2 . We use $l_1 \preceq_H l_2$ to denote that l_1 is executed before or concurrently to l_2 .

We use $\prec_{seqLock}$ to denote the linearization order of seqLock.

A label $c_1'c_2$ is a call string that denotes a method call labeled c_2 that is executed in the body of the method call labeled c_1 .

We use $initOf_H(T)$ and $commitOf_H(T)$ to denote the *init* and *commit* method calls of the transaction T in the history H.

Marking Relation. Now, we define the marking relation for NoRec.

Definition 15 (Marking NoRec) Consider an execution history $H \in \mathbb{H}(NORec)$. Let

$$\begin{aligned} REff(T) &= The \ last \ execution \ of \ I01 \ or \ V05 \\ Eff(T) &= \begin{cases} REff(T) & if \ T \in Aborted(H) \lor TWrites(H) = \emptyset \\ commitOf(T)'C04 & if \ T \in Committed(H) \land TWrites(H) \neq \emptyset \end{cases} \\ readAcc(T,i) &= \begin{cases} R'R03 & if \ REff(T) \prec_H R'R03 \\ Let \ REff(T) = V'V05 \ in \ V'V03_i & if \ R'R03 \prec_H REff(T) \end{cases} \\ writeAcc(T,i) &= commitOf(T)'C07_i \end{aligned}$$

The marking \sqsubseteq for H is the reflexive closure of \sqsubset that is define as follows:

 $\begin{array}{l} \{(T,T') \mid T,T' \in Trans(H) \land Eff(T) \prec_{seqLock} Eff(T')\} \cup \\ \{(T,R) \mid \exists i \colon R \in GlobalTReads(H), i = arg1(R), T \in Writers_H(i) \land writeAcc(T,i) \prec_H readAcc(T,i)\} \cup \\ \{(R,T) \mid \exists i \colon R \in GlobalTReads(H), i = arg1(R), T \in Writers_H(i) \land readAcc(T,i) \prec_H writeAcc(T,i)\} \end{array}$

An aborted transaction or a read-only transaction takes effect at the last execution of I01 or V05. This method call reads that most recent snapshot value that the transaction is still consistent for. A committed transactions that has write method calls takes effect at C04.

The access point of a read method call is at R03 if the last recent snapshot is read before R03; otherwise, it is at $V03_i$ of the latest successful validate method call. The access point of a writer transaction to location i is at $C07_i$.

9 The Cost of Read Validation

The read-preservation invariant requires the TM algorithm to check that a read location is not overwritten between the point where the location is read and the point where the transaction takes effect. This requirement motivated us to study how read-preservation can influence the time complexity of TM operations and helped us construct client scenarios that exhibit lower bounds. We present a generalization of the seminal lower bound result presented in [2]. Let us first remind some definitions from previous works on the inherent complexity of TM [1, 2, 4, 5].

An aborted transaction that did not invoke an abort operation is said to be *forcefully* aborted. We say that two transactions *conflict* if they access the same location and one of them writes to the location. A TM algorithm is (weakly) *progressive* if and only if it forcefully aborts a transaction only when it conflicts with a live transaction. More precisely, it aborts a transaction only when there is a time t at which it conflicts with another concurrent transaction that is live at time t (not committed or aborted by time t). In addition to providing progress, progressive TM algorithms are expected to retry transactions less frequently and therefore, improve performance.

A TM algorithm is *invisible-reads* if and only if no read operation mutates any base object. Mutating base objects can potentially invalidate the caches and adversely affect performance. Thus, most high-performance TM algorithms are invisible-reads. A transaction is *read-only* if and only if it does invoke any write operations. We assume that the abort operation for a read-only transaction does not mutate any base shared object.

Two transactions *contend* on a base object *o* if and only if they access *o* and at least one of them mutates *o*. A TM algorithm is (strictly) *disjoint-access-parallel* if and only if two transactions contend on a base object only if they access a common memory location. Disjoint-access-parallelism can improve scalability as transactions that access disjoint memory locations access disjoint base objects.

A TM algorithm is *single-version* if and only if it stores a single value for each memory location in the base objects.

Theorem 62 The time complexity of the commit operation of every opaque, progressive, disjoint-accessparallel and invisible-reads TM algorithm is $\Omega(|\mathcal{R}|)$ where \mathcal{R} is the read set.

We explain the key idea here and then present the proof. Consider a TM algorithm TM that is opaque, progressive, disjoint-access-parallel and invisible-reads. Consider the following client scenario. Invoke the following methods in sequence. Wait for the response of the method call of each step before going to the next step. (1) $init_{T_1}()$, (2) $read_{T_1}(i)$ (3) $init_{T_2}()$, (4) $write_{T_2}(i, v_1)$, (5) $commit_{T_2}()$, (6) $init_{T_3}()$, (7) $read_{T_3}(j)$, (8) $abort_{T_3}()$, (9) $write_{T_1}(j, v_1)$, (10) $commit_{T_1}()$. As the TM is opaque, progressive and invisible-reads, it can be shown that it results in the history H_1 depicted in Figure 15(a). The initializing transaction T_0 (that initializes every location to v_0) and also the initializing operations of transactions are elided for brevity.

To make sure that the read location i is not overwritten, the commit operation of T_1 should access a shared object that T_2 (that is a writer of i) mutates. Assume otherwise i.e. the commit operation of T_1 does not access any shared object that T_2 mutates. Thus, T_2 is invisible to T_1 . As TM is invisible-reads, it can be shown that T_3 is invisible to other transactions. As T_2 and T_3 are invisible to T_1 , removing them from the client scenario does not affect the responses that T_1 receives. Therefore, the execution of T_1 alone results in the execution history H_2 depicted in Figure 15(b). As there is no conflicting transaction and TM is progressive, TM cannot forcefully abort the commit operation of T_1 . The commit operation should have returned \mathbb{C} but has returned \mathbb{A} that is a contradiction. Therefore, we conclude that the commit operation of T_1 accesses a shared object that T_2 mutates. The scenario can be trivially extended to an arbitrary location k in the read set \mathcal{R} by generalizing the transaction T_2 with the transaction $T_2^k = write_{T_2^k}(k, v_1) \cdot commit_{T_2^k}()$. It can be shown that for every $k \in \mathcal{R}$, the commit operation of T_1 accesses a shared object that the transaction T_1 accesses a shared object that the transaction T_1 accesses a shared object that the transaction T_2 with the transaction $T_2^k = write_{T_2^k}(k, v_1) \cdot commit_{T_2^k}()$. It can be shown that for every $k \in \mathcal{R}$, the commit operation of T_1 accesses a shared object that the transaction T_1 accesses a shared object that the transaction T_1 accesses a shared object that the transaction T_2 with the transaction $T_2^k = write_{T_2^k}(k, v_1) \cdot commit_{T_2^k}()$.

 T_2^k mutates. The transactions $\{T_2^k \mid k \in \mathcal{R}\}$ access disjoint locations. As TM is strictly disjoint-accessparallel, these transactions access disjoint shared objects. Thus, the commit operation of T_1 accesses a separate shared object for every $k \in \mathcal{R}$. Therefore, the commit operation of T_1 accesses at least $|\mathcal{R}|$ shared objects. Therefore, the time complexity of the commit operation of T_1 is $\Omega(|\mathcal{R}|)$.

This theorem shows that designers should pick at least one of the following sources of inefficiency in the design of every opaque TM algorithm: aborting non-conflicting transactions, sharing base objects between transactions that access disjoint locations, visible reads or linear-time complexity of the commit method. As an example, TL2 shares the *clock* object between all transactions and is, therefore, not disjoint-access-parallel. In addition, it has linear-time read-validation in the commit method.

Proof.

Consider a TM algorithm TM that is opaque, progressive, disjoint-access-parallel and invisible-reads. We describe the following client scenario with three transactions T_1 , T_2 and T_3 and consider its execution with TM.

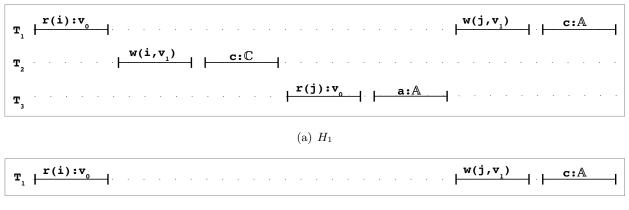
- 1. Invoke $init_{T_1}()$ and wait for the response.
- 2. Invoke $read_{T_1}(i)$ and wait for the response.
- 3. Invoke $init_{T_2}()$ and wait for the response.
- 4. Invoke $write_{T_2}(i, v_1)$ and wait for the response.
- 5. Invoke $commit_{T_2}()$ and wait for the response.
- 6. Invoke $init_{T_3}()$ and wait for the response.
- 7. Invoke $read_{T_3}(j)$ and wait for the response.
- 8. Invoke $abort_{T_3}()$ and wait for the response.
- 9. Invoke $write_{T_1}(j, v_1)$ and wait for the response.
- 10. Invoke $commit_{T_1}()$ and wait for the response.

The resulting history H_1 for this scenario is depicted in Figure 15(a). The initializing transaction T_0 (that initializes every location to v_0) and also the initializing operations of each transaction are elided for brevity.

The transaction T_1 first invokes the init and then a read operation on the location *i*. As TM is progressive and T_1 is not in conflict with any other transaction, TM does not forcefully abort the read operation. Therefore, it returns a value. As TM is opaque, there should be a justifying history S for the current execution history (after the read operation returns). As the initializing transaction T_0 is executed before T_1 , the real-time-order property requires T_0 to be ordered before T_1 in S. The transaction T_0 writes the initial value v_0 to every location and commits. Thus, the read operation returns v_0 .

Then, the transaction T_2 invokes the init and then a write operation to *i* with the value v_1 and then invokes the commit operation. As TM is invisible-reads, the read operation of T_1 is invisible to T_2 . Thus, T_2 does not observe any inconsistency and as TM is progressive, both the write and commit operations are successful.

Next, the transaction T_3 invokes the init and then a read operation on the location j and then invokes the abort operation. As there are no conflicting operations on j and TM is progressive, the read operation is not forcefully aborted. Therefore, it returns a value. As TM is opaque, there should be a justifying history S' for the current execution history (after the read operation returns). As the initializing transaction T_0 is executed before T_3 , the real-time-order property requires T_0 to be ordered before T_3 in S'. The transaction



(b) H_2

Figure 15: The execution histories constructed by the scenarios in the proof of Theorem 62. The letters r, w, c, and a abbreviate read, write, commit and abort operations. The initializing transaction T_0 (that initializes every location to v_0) and also the initializing operations of each transaction are elided.

 T_0 is the only committed transaction that has written to j. Thus, the read operation returns the initial value v_0 .

Next, the transaction T_1 invokes a write operation on location j with the value v_1 . When this write operation is invoked, neither T_2 nor T_3 are alive and TM is progressive. Therefore, TM does not forcefully abort the write operation. Finally, T_1 invokes the commit operation. We show that the commit operation aborts i.e. returns A. Let us assume otherwise, i.e. T_1 commits. As TM is opaque, there is a justifying history S'' for H_1 i.e. S'' is a sequential history that is equivalent to H_1 , is real-time-preserving and is a member of transactional sequential specification. As T_2 is executed before T_3 in H_1 , the real-time-preservation property requires T_2 to be before T_3 in S''. Thus, there are three possible transaction orderings for S''. We show that none of them is a justifying history.

• $S'' = H_1 | T_0 \cdot H_1 | T_1 \cdot H_1 | T_2 \cdot H_1 | T_3$

We have that $Visible(S'', T_3)|j = write_{T_0}(j, v_0) \cdot write_{T_1}(j, v_1) \cdot read_{T_3}(j): v_0 \notin SeqSpec(j)$. The read operation is expected to return the value v_1 but has returned v_0 . Thus, S'' is not a justifying history.

• $S'' = H_1 | T_0 \cdot H_1 | T_2 \cdot H_1 | T_1 \cdot H_1 | T_3$

Similar to the previous case, $Visible(S'', T_3)|j = write_{T_0}(j, v_0) \cdot write_{T_1}(i, v_1) \cdot read_{T_3}(j) : v_0 \notin SeqSpec(j)$. The read operation is expected to return the value v_1 but has returned v_0 . Thus, S'' is not a justifying history.

• $S'' = H_1 | T_0 \cdot H_1 | T_2 \cdot H_1 | T_3 \cdot H_1 | T_1$

We have that $Visible(S'', T_1)|i = write_{T_0}(i, v_0) \cdot write_{T_2}(i, v_1) \cdot read_{T_1}(i): v_0 \notin SeqSpec(i)$. The read operation is expected to return the value v_1 but has returned v_0 . Thus, S'' is not a justifying history.

Thus, we arrive at a contradiction. Therefore, we conclude that the commit operation of T_1 returns A.

Now, we argue that the commit operation of T_1 should access a shared object that T_2 mutates. Assume otherwise i.e. the commit operation of T_1 does not access any shared object that T_2 mutates. Thus, T_2 is invisible to T_1 . As TM is invisible-reads, the read operation of T_3 does not mutate any shared objects. Furthermore, T_3 is a read-only transaction. Thus, its abort operation does not mutate any shared objects. Therefore, T_3 is invisible to other transactions. As T_2 and T_3 are invisible to T_1 , removing them from the client scenario does not affect the responses that T_1 receives. Therefore, the execution of T_1 alone results in the execution history H_2 depicted in Figure 15(b). As there is no conflicting transaction and TM is progressive, TM cannot forcefully abort the commit operation of T_1 . The commit operation should have returned \mathbb{C} but has returned \mathbb{A} that is a contradiction. Therefore, we conclude that the commit operation of T_1 accesses a shared object that T_2 mutates.

In the above client scenario, the read set of T_1 was the singleton set *i*. The scenario can be trivially extended to an arbitrary location k in a read set \mathcal{R} .

- 1. Invoke $init_{T_1}$ () and wait for the response.
- 2. For each $i \in \mathcal{R}$:
 - 2.1. Invoke $read_{T_1}(i)$ and wait for the response.
- 3. Invoke $init_{T_2^k}()$ and wait for the response.
- 4. Invoke $write_{T_2^k}(k, v_1)$ and wait for the response.
- 5. Invoke $commit_{T_2^k}()$ and wait for the response.
- 6. Invoke $init_{T_3}$ () and wait for the response.
- 7. Invoke $read_{T_3}(j)$ and wait for the response.
- 8. Invoke $abort_{T_3}()$ and wait for the response.
- 9. Invoke $write_{T_1}(j, v_1)$ and wait for the response.
- 10. Invoke $commit_{T_1}()$ and wait for the response.

A similar reasoning concludes that for every $k \in \mathcal{R}$, the commit operation of T_1 accesses a shared object that T_2^k mutates.

The transactions T_2^k (for $k \in \mathcal{R}$) access disjoint locations. As TM is strictly disjoint-access-parallel, the transactions T_2^k (for $k \in \mathcal{R}$) access disjoint shared objects. Thus, the commit operation of T_1 accesses a separate shared object for every $k \in \mathcal{R}$. Therefore, the commit operation of T_1 accesses at least $|\mathcal{R}|$ shared objects. Therefore, the time complexity of the commit operation of T_1 is $\Omega(|\mathcal{R}|)$.

Theorem 63 The time complexity of the commit operation of every opaque, progressive, and invisible-reads TM algorithm that stores information about a constant number of locations in each shared object is $\Omega(|\mathcal{R}|)$ where \mathcal{R} is the read set.

The proof of this theorem uses the same client scenario as the proof of Theorem 62. The main difference is the final step of reasoning. As information about a constant number c of locations can be obtained from each shared object, the commit operation of T_1 has to read at least $|\mathcal{R}|/c$ shared objects.

Proof.

The proof of this theorem flows similar to the proof of Theorem 62 to the point that we have that

(1) For every $k \in \mathcal{R}$, the commit operation of T_1 reads a shared object that T_2^k mutates.

We have that

(2) Each transaction T_2^k accesses a separate location k. From the premises we have that (3) Information about a constant number c of locations is stored in each shared object. From 2 and 3, we have that

(4) At most c of the set of writer transactions $T_2^k, k \in \mathcal{R}$ can write to the same shared object.

From 1 and 4, we have

The commit operation of T_1 has to read at least $|\mathcal{R}|/c$ shared objects.

Therefore,

The time complexity of the commit operation of T_1 is $\Omega(|\mathcal{R}|)$.

We restate Theorem 3 of [2] below. Our Theorem 63 generalizes this theorem by dropping the singleversion requirement. Note that the assumption about limited capacity of shared objects is stated before the theorem in [2] and explicitly in the theorem here.

Theorem 64 (Theorem 3 of [2]) The time complexity of every opaque, progressive, single-version and invisible-reads TM algorithm that stores information about a constant number of locations in each shared object is $\Omega(|I|)$ (where I is the set of locations).

References

- [1] Hagit Attiya, Eshcar Hillel, and Alessia Milani. Inherent limitations on disjoint-access parallel implementations of transactional memory. *Theory of Computing Systems*, 49(4), 2011.
- [2] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPOPP, 2008.
- [3] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Model checking transactional memories. Distributed Computing, 2010.
- [4] Rachid Guerraoui and Michal Kapalka. On obstruction-free transactions. In SPAA, 2008.
- [5] Dmitri Perelman, Rui Fan, and Idit Keidar. On maintaining multiple versions in stm. In PODC, 2010.