
Decomposing Opacity

(Appendix)

Mohsen Lesani Jens Palsberg
Computer Science Department

University of California, Los Angeles
{lesani, palsberg}@ucla.edu

Contents

1 Histories 2

2 Opacity 5

3 Markability 7

4 Marking Theorem 10

5 Synchronization Object Types 23

6 Marking TL2 37

7 Marking DSTM (visible reads) 57

8 Marking NORec 59

9 The Cost of Read Validation 61

1

1 Histories

Strings. We use ||s|| to denote the size of the string s. If s1 and s2 are strings, we write s1 b s2 iff s1 is a
subsequence of s2. For example, bd b abcde. Let s be an isogram (i.e. contains no repeating occurrence of
the alphabet.) For any s1, s2 ∈ s, we write s1 �s s2 iff the last element of s1 occurs before the first element
of s2 in s. For example, ab�abcde de. We use s(i) to denote the ith element of s.

Method calls and events. Let O denote the set of objects, n denote the set of method names, Trans
denote the set of transactions, V denote the set of values and Label denote the set of labels. We use l, R
and W as labels. The set of invocation events is Inv = {inv(l . o.nT (v)) | l ∈ Label, o ∈ O,n ∈ N,T ∈
Trans, v ∈ V }. The set of response events is Res = {ret(l . v) | l ∈ Label, v ∈ V ∪ {A,C}}. (A and C
are used later to denote abortion and commitment of transactions.) The set of events is Ev = Inv ∪ Res.
We will use the term completed method call to denote a sequence of an invocation event followed by the
matching response event (with the same label). We use l . o.nT (v):v to denote the completed method call
inv(l . o.nT (v)) · ret(l . v).

Operations on event sequences. Let E and E′ be event sequences. We use E · E′ to denote the
concatenation of E and E′. For a transaction T , we use E|T to denote the subsequence of all events of T
in E. For an object o, we use E|o to denote the subsequence of all events of o in E. Let Sequential be
the set of sequences of completed method calls possibly followed by an invocation event. A transaction T
is sequential in a sequence of events E if E|T is sequential. Execution history. An execution history is a
sequence of events where each invocation event has a unique label and every transaction is sequential. Let
H istory denote the set of execution histories. We say label l is in X and write l ∈ X if there is an invocation
event with label l in X. Let Labels(X) denote the set of labels in X. Let Trans(X) denote the set of
transactions in X. As the labels are unique in a history, the following functions on Labels(X) are defined.
The functions objX , nameX , transX , arg1X , arg2X , retvX map labels to the receiving object, the method
name, the transaction identifier, the first and the second argument, and the return value associated with the
labels. Similary, iEv and rEv functions on Labels(X) map labels to the invocation and the response events
associated with the labels.

A history X is equivalent to a history X ′, X ≡ X ′, if one is a permutation of the other one that is only
the events are reordered but the components of the events (including the argument and return values) are
preserved.

Real-time relations. For an execution history X, we define the real-time relations ≺X , �X , ∼X , -X

on Labels(X) as follows: First, l1 ≺X l2 iff rEv(l1) �X iEv(l2). l1 �X l2 iff l1 ≺X l2 ∨ l1 = l2. Second,
l1 ∼X l2 iff l1 ⊀X l2 ∧ l2 ⊀X l1. Third, l1 -X l2 iff l1 ≺X l2 ∨ l1 ∼X l2.

From the definition of Sequential we have that X ∈ Sequential iff ∀l, l′ ∈ X : l �X l′ ∨ l′ ≺X l.
For an execution history X, we define the real-time relations ≺≺X and ��X as follows. First, T ≺≺X T ′ iff
X|T �X X|T ′. Second, T ��X T ′ iff T ≺≺X T ′ ∨ T = T ′.

We now define shared memory and transaction histories.
Transactional Memory. The transactional memory is a singleton object mem that encapsulates a set

of locations where each location, i ∈ I, I = {1, . . . ,m} encapsulates a value v. The object mem has five
methods initt(), readt(i), writet(i, v), committ() and abortt(). The parameter t is the invoking transaction
identifier. The method call initt() initializes t and returns ok. The method call readt(i) returns the value
of location i or aborts t and returns A. The method writet(i, v) writes v to location i and returns ok or
aborts t and returns A. The method committ() tries to commit transaction t. If t is successfully committed,
it returns C; otherwise, it returns A. The method abortt() aborts t and returns A. The object mem can be
implicit, that is readt(i) abbreviates mem.readT (i). The values ok, A, C are reserved values that are used
to denote successful completion of writes and abortion and commitment of transactions respectively.

Transaction History. A transaction history H is an execution history such that H|mem = HInit ·H ′

with the following conditions. HInit is the following history that initializes every location to v0. HInit =

2

l0i . initT0() · l00 . writeT0(1, v0):ok · . . . · l0m . writeT0(m, v0):ok · l0c . commitT0 :C. For every T ∈ H ′,
the history H ′|T is a prefix of e.e′. The event sequence e is the initialization method call l . initT () (for
some l), and then a sequence of reads l . readT (i):v and writes l . writeT (i, v) (for some l, i, and v). The
event sequence e′ is one of the following sequences (for some l, i, and v): (1) inv(l . readT (i)), ret(l . A),
(2) inv(l . writeT (i, v)), ret(l . A), (3) inv(l . commitT ()), ret(l . C), (4) inv(l . commitT ()), ret(l . A), or
(5) inv(l . abortT ()), ret(l .A). Let THistory denote the set of transaction histories. Let Trans(H) denote
the set of transactions of H. The projection of H on i, written H|i, denotes the subsequence of history H
that contains exactly the events on location i. For a TM algorithm specification π, let H(π) denote the set
of complete transaction histories that π results.

Now, we present a set of basic lemmas about execution orders.

Lemma 1 (XASym) For every execution history X and method calls l and l′, if l ≺X l′ then ¬(l′ ≺X
l) ∧ ¬(l′ ∼X l) ∧ ¬(l′ = l)

Lemma 2 (XTrans) For every execution history X and method calls l, l. and l′′, if l ≺X l′ and l′ ≺ l′′

then l ≺X l′′

Lemma 3 (XXTrans) For every execution history X and method calls l1, l2, l3, and l4, if l1 ≺X l2,
l2 -X l3, and l3 ≺X l4 then l1 ≺X l4

Lemma 4 (XTotal) For every execution history X and method calls l and l′, if l ∈ X, and l′ ∈ X, then
(l ≺X l′) ∨ (l′ ≺X l) ∨ (l ∼X l′) ∨ (l = l′)

Lemma 5 (X2X) For every execution history X and method calls l and l′, if l ≺X l′ then l ∈ X, and
l′ ∈ X.

Lemma 6 (XI2X) For every execution history X and method calls l, l′, and l′′ if l ≺X l′ and inv(l′) �X
inv(l′′) then l ≺X l′′.

Lemma 7 (RX2X) For every execution history X and method calls l, l′, and l′′ if ret(l) �X ret(l′) and
l′ ≺X l′′ then l ≺X l′′.

Proof Sketches.
Lemma 1:

We Assume
(1) l ≺X l′

From [1] and definition of ∼X , we have
(2) ¬(l′ ∼X l)

From [1], we have
(3) rEv(l)�X iEv(l′)

As X is a valid history, we have
(4) iEv(l)�X rEv(l)
(5) iEv(l′)�X rEv(l′)

From [4], [3], and [5], we have
(6) iEv(l)�X rEv(l′)

From [6], we have
(7) ¬(rEv(l′)�X iEv(l))

From [7], and definition of ≺X , we have

3

(9) ¬(l′ ≺X l)
From [3] and [7], we have

(9) ¬(l′ = l)

Lemma 2:
Straightforward from the definition of ≺X .

Lemma 3:
We have

(1) l1 ≺X l2
(2) l3 ≺X l4
(3) l2 ∼X l3

From [1], we have
(4) rEv(l1)�X iEv(l2)

From [2], we have
(5) rEv(l3)�X iEv(l4)

From [3], we have
(6) ¬(l3 ≺X l2)

From [6], we have
(7) ¬(rEv(l3)�X iEv(l2))

From [7], we have
(8) iEv(l2)�X rEv(l3)

From [4], [8], and [5], we have
(9) rEv(l1)�X iEv(l4)

From [9], we have
l1 ≺X l4

Lemma 4:
Straightforward from the definition of ≺X and ∼X .

Lemma 5:
Straightforward from the definition of ≺X .

Lemma 6:
Straightforward from the definition of ≺X and �X .

Lemma 7:
Straightforward from the definition of ≺X and �X .

4

2 Opacity

In this section, we present a formal definition of opacity. Opacity of a TM algorithm is defined in two steps.
First, it is defined what it means for a transaction history to be opaque which is called final-state-opacity.
Then, a TM algorithm is defined to be opaque if every transaction history of every source program running
on top of that TM algorithm is final-state-opaque.

F inalStateOpaque is defined in Figure 1. First, we present some preliminary definitions. We use T prefix
before some of the terms for transactions to avoid confusion with the terms for concurrent objects. We say
that a transaction history is transaction sequential if it is a sequence of transactions. A transaction T is
committed or aborted in a transaction history H if there is respectively a commit or abort response event for T
in H. A completed transaction is either committed or aborted. A live transaction is a transaction that is not
completed. A transaction history is complete if all its transactions are completed. A pending transaction
has a pending event and a commit-pending transaction has a commit pending event. An extension of a
history is obtained by committing or aborting its commit-pending transactions and aborting the other live
transactions. For a TM algorithm specification π, let H(π) denote the set of complete transaction histories
that π results.

If H is a transaction history and p is a predicate on transaction identifiers, we define filter(H, p) to be the
subsequence of H that contains the events of transactions T for which p(T) is true. The visible history for a
transaction T in a sequential transaction history S, V isible(S, T), is the sequence of committed transactions
before T in S and T itself. The sequential specification of a location i, SeqSpec(i), is the set of sequential
histories of read and write method calls on location i where every read returns the value given as the argument
to the latest preceding write (regardless of transaction identifiers). It is essentially the sequential specification
of a register. Transactional sequential specification is the set of complete sequential transaction histories S
that for every transaction T and location i, V isible(S, T)|i is a member of the sequential specification of i.
A transaction history H is final-state-opaque if there is an equivalent sequential transaction history S for an
extension of H such that S is real-time-preserving and a member of transactional sequential specification.
The sequential history S is called the justifying history. In other words, every correct concurrent execution
is indistinguishable from a correct sequential execution.

5

TReads(H) =

{R | R ∈ H ∧ objH(R) = mem ∧ nameH(R) = read ∧ retvH(R) 6= A}
TWrites(H) =

{W |W ∈ H ∧ objH(W) = mem ∧ nameH(W) = write ∧ retvH(W) 6= A}
Commits(H) =

{C | C ∈ H ∧ objH(C) = mem ∧ nameH(C) = commit}
Trans(H) =

{T | ∃l ∈ H : transH(l) = T}
TSequential =

{S ∈ THistory | ��S is a total order of Trans(S)}
Committed(H) =

{T | ∃l ∈ Commits(H) ∧ retvH(l) = C}
Aborted(H) =

{T | ∃l ∈ H : objH(l) = mem ∧ transH(l) = T ∧ retvH(l) = A}
Completed(H) =

Committed(H) ∪Aborted(H)

Live(H) =

Trans(H) \ Completed(H)

TComplete =

{H ∈ THistory | ∀T ∈ Trans(H) : T ∈ Completed(H)}
CommitPending(H) =

{T ∈ Live(H) | ∃l ∈ H : objH(l) = mem ∧ transH(l) = T ∧ nameH(l) = commit}
TExtension(H) =

{H ′ ∈ THistory | ∃H ′′ : H ′ = H ·H ′′

Trans(H ′′) ⊆ Trans(H) ∧ ∀T : ||H ′′|T || ≤ 1 ∧
Live(H) \ CommitPending(H) ⊆ Aborted(H ′) ∧
CommitPending(H) ⊆ Completed(H ′)}

V isible(S, T) =

filter (S, λT ′.(T ′ = T) ∨ ((T ′ ≺≺S T) ∧ T ′ ∈ Committed(S)))

NoWriteBetweenS(W,R) =

∀W ′ ∈ TWrites(S) : W ′ �S W ∨ R ≺S W ′

SeqSpec(i) =

{S ∈ Sequential | ∀R ∈ TReads(S) : ∃W ∈ TWrites(S) :

W ≺S R ∧ NoWriteBetweenS(W,R) ∧
retvS(R) = arg2S(W)}

TSeqSpec =

{S ∈ TSequential ∩ TComplete | ∀T ∈ S : ∀i ∈ I :

(V isible(S, T) | i) ∈ SeqSpec(i)}
F inalStateOpaque =

{H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :

H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ S ∈ TSeqSpec}

Figure 1: F inalStateOpaque

6

3 Markability

In this section, we define markability for general histories.
First, we present some preliminary definitions in Figure 2. (We use T prefix before some of the terms

for transactions to avoid confusion with similar terms that used for concurrent objects.) A transaction T is
committed or aborted in a transaction history H if there is respectively a commit or abort response event
for T in H. A completed transaction is either committed or aborted. A live transaction is a transaction
that is not completed. A pending transaction has a pending event and a commit-pending transaction has a
commit pending event. An extension of a history is obtained by committing or aborting its commit-pending
transactions and aborting the other live transactions.

A local read is a read that is preceded by a write by the same transaction to the same location. Intuitively,
a local read should read a value that is previously written by the same transaction and hence the name. A
global read is a read that is not local. A local write is a write that precedes a write by the same transaction
to the same location. A local write is overwritten by the same transaction and hence the name. A global
write is a write that is not local. The writers of i are the committed transactions that write to location i.

Markability is defined in Figure 3. A marking v of a transaction history is the union of the following
relations on the set of transactions and the global reads.

• The effect order : The set of transactions is totally ordered by v. In other words, v is total, antisym-
metric and transitive on the set of transactions.

• The access orders: For each global read R from a location i, R and every writer of i are ordered by
v. In other words, v totally orders every global read R from a location i with respect to writers of i
and is antisymmetric.

The write-observation property is comprised of the two properties: local write-observation and global
write-observation. Local write-observation requires that every local read R from a location i returns the
value written by the last write before it in the same transaction to i. Global write-observation requires that
the value that every global read R from a location i returns is the value written by the global write of the
last pre-accessor transaction to i. We remind that pre-accessors of R are the writers of i that are ordered
before R in the access order and the last pre-accessor is the one that is greatest in the effect order.

The Read-preservation property requires that for every global read R from location i by transaction T ,
there is no writer transaction T ′ of i such that T ′ is marked between T and R (i.e. T ′ accesses i after R and
takes effect before T), or similarly, T ′ is marked between R and T (i.e. T ′ takes effect after T and accesses
i before R).

The real-time-preservation property requires that if T is before T ′ in the real-time order, then T takes
effect before T ′ as well.

A transaction history is final-state-markable if and only if there exists a marking for an extension of it
that is write-observant, read-preserving, and real-time-preserving.

7

Committed(H) = {T | ∃l ∈ H : objH(l) = mem ∧ transH(l) = T ∧ retvH(l) = C}
Aborted(H) = {T | ∃l ∈ H : objH(l) = mem ∧ transH(l) = T ∧ retvH(l) = A}

Completed(H) = Committed(H) ∪Aborted(H)

Live(H) = Trans(H) \ Completed(H)

CommitPending(H) = {T ∈ Live(H) | ∃l ∈ H : objH(l) = mem ∧ transH(l) = T ∧
nameH(l) = commit}

TExtension(H) = {H ′ ∈ THistory | ∃H ′′ : H ′ = H ·H ′′

Trans(H ′′) ⊆ Trans(H) ∧ ∀T : ||H ′′|T || ≤ 1 ∧
Live(H) \ CommitPending(H) ⊆ Aborted(H ′) ∧
CommitPending(H) ⊆ Completed(H ′)}

TReads(H) = {R | R ∈ H ∧ objH(R) = mem ∧ nameH(R) = read ∧ retvH(R) 6= A}
TWrites(H) = {W |W ∈ H ∧ objH(W) = mem ∧ nameH(W) = write ∧ retvH(W) 6= A}

LocalTReads(H) = {R | R ∈ TReads(H) ∧ ∃W ∈ TWrites(H) :

transH(R) = transH(W) ∧ arg1H(R) = arg1H(W) ∧ W ≺H R}
GlobalTReads(H) = TReads(H) \ LocalTReads(H)

LocalTWrites(H) = {W |W ∈ TWrites(H) ∧ ∃W ′ ∈ TWrites(H) :

transH(W) = transH(W ′) ∧ arg1H(W) = arg1H(W ′) ∧ W ≺H W ′}
GlobalTWrites(H) = TWrites(H) \ LocalTWrites(H)

WritersH(i) = {T ∈ Trans(H) | ∃l ∈ TWrites(H) : arg1H(l) = i ∧
transH(l) = T ∧ T ∈ Committed(H)}

Figure 2: Basic Definitions

8

Marking(H) = {v |
∀T1, T2, T3 ∈ Trans(H) :

(T1 v T2 ∨ T2 v T1) ∧
(T1 v T2 ∧ T2 v T1)⇒ (T1 = T2) ∧
(T1 v T2) ∧ (T2 v T3)⇒ (T1 v T3) ∧

∀R, T : Let i = arg1H(R) : (R ∈ GlobalTRead(H) ∧ T ∈WritersH(i))⇒
(R v T ∨ T v R) ∧
(R v T ⇒ ¬T v R) ∧ (T v R⇒ ¬R v T)}

NoWriteBetweenH(W,R)⇔
∀W ′ ∈ TWrites(H) : W ′ �H W ∨ R ≺H W ′

LocalWriteObs(H)⇔
∀R ∈ LocalTReads(H) : Let T = transH(R), i = arg1H(R), H ′ = H|T |i :
∃W ∈ TWrites(H ′) : W ≺H′ R ∧ NoWriteBetweenH′(W,R) ∧ retvH′(R) = arg2H′(W)

N oWriterBetweenH,i(x,v, x′)⇔
∀T ∈W ritersH(i) : T v x ∨ x′ v T

LastPreAccessorH,v(T ′, R)⇔ Let i = arg1H(R), T = transH(R) :

T ′ ∈WritersH(i) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenH,i(T
′,v, R)

GlobalWriteObs(H,v)⇔
∀R ∈ GlobalTReads(H) : ∃W ∈ GlobalTWrites(H) : Let T ′ = transH(W) :

LastPreAccessorH,v(T ′, R) ∧ arg1H(R) = arg1H(W) ∧ retvH(R) = arg2H(W)

W riteObs(H,v)⇔
LocalWriteObs(H) ∧ GlobalWriteObs(H,v)

ReadPres(H,v)⇔
∀R ∈ GlobalTReads(H) : Let i = arg1H(R), T = transH(R) :

N oWriterBetweenH,i(R,v, T) ∧ N oWriterBetweenH,i(T,v, R)

RealT imePres(H,v)⇔
��H ⊆ v

F inalStateMarkable = {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈Marking(H ′) :

ReadPres(H ′,v) ∧ W riteObs(H ′,v) ∧ RealT imePres(H ′,v)}

Figure 3: F inalStateMarkable

9

4 Marking Theorem

In this section, we prove the marking theorem.
For the sake of brevity, we use the shorthand notation

∃l = o.nT (v1):v2 ∈ X
for
∃l ∈ X : objX(l) = o ∧ nameX(l) = n ∧ transX(l) = T ∧ arg1X(l) = v1 ∧ retvX(l) = v2
and similarly for universal quantification.

We also use W , R to denote labels.

Lemma 8 For all S ∈ TSequential, T ∈ S, S′ = V isible(S, T), and T ′, T ′′ ∈ S′, we have T ′ ��S′ T ′′ ⇐⇒
T ′ ��S T ′′.

Proof.

T ′ ��S′ T ′′

⇐⇒ S′|T ′ �S′ S′|T ′′ ∨ T ′ = T ′′

⇐⇒ S|T ′ �S′ S|T ′′ ∨ T ′ = T ′′

⇐⇒ S|T ′ �S S|T ′′ ∨ T ′ = T ′′

⇐⇒ T ′ ��S T ′′

In these four steps we apply:
1) the definition of ��S′ ,
2) that the definition of V isible(S, T) implies both S′|T ′ = S|T ′ and S′|T ′′ = S|T ′′,
3) S′ b S, and
4) the definition of ��S . 2

10

Lemma 9 For all S ∈ TSequential, T ∈ S, i ∈ I, v, v′ ∈ V , R = readT (i):v ∈ GlobalReads(S), S′ =
V isible(S, T), T ′ ∈ S′, and W ′ = writeT ′(i, v′) ∈ GlobalWrites(S), we have

NoWriteBetween(S′|i)(W
′, R) ⇐⇒ N oWriterBetweenS,i(T

′,��S , T)

Proof.

NoWriteBetween(S′|i)(W
′, R)

⇐⇒ ∀W ′′ ∈W rites(S′|i) : W ′′ �(S′|i) W
′ ∨R �(S′|i) W

′′

⇐⇒ ∀T ′′ ∈ S′|i : ∀i′ ∈ I : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i′, v′′) ∈ S′|i : W ′′ �(S′|i) W
′ ∨R �(S′|i) W

′′

⇐⇒ ∀T ′′ ∈ S′|i : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S′|i : W ′′ �(S′|i) W
′ ∨R �(S′|i) W

′′

⇐⇒ ∀T ′′ ∈ S′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S′ : W ′′ �S′ W ′ ∨R �S′ W ′′

⇐⇒ ∀T ′′ ∈ S′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S′ : T ′′ ��S′ T ′ ∨ T ��S′ T ′′

⇐⇒ ∀T ′′ ∈ S′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S′ : T ′′ ��S T ′ ∨ T ��S T ′′

⇐⇒ ∀T ′′ ∈ S′ : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S′ : T ′′ ≺≺S T ⇒ T ′′ ��S T ′

⇐⇒ ∀T ′′ ∈ S : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S :[
[(T ′′ = T) ∨ (T ′′ ≺≺S T ∧ T ′′ ∈ Committed(S))] ∧ [T ′′ ≺≺S T]

]
⇒ T ′′ ��S T ′

⇐⇒ ∀T ′′ ∈ S : ∀v′′ ∈ V : ∀W ′′ = writeT ′′(i, v′′) ∈ S :

(T ′′ ∈ Committed(S) ∧ T ′′ ≺≺S T)⇒ T ′′ ��S T ′

⇐⇒ ∀T ′′ ∈WritersS(i) : T ′′ ≺≺S T ⇒ T ′′ ��S T ′

⇐⇒ ∀T ′′ ∈WritersS(i) : T ′′ ��S T ′ ∨ T ��S T ′′

⇐⇒ N oWriterBetweenS,i(T
′,��S , T)

In these twelve steps, we apply:
1) the definition of NoWriteBetween,
2) the definition of W rites,
3) the definition of projection S′|i,
4) R, W ′ and W ′′ access location i,
5) S′ ∈ TSequential and R ∈ GlobalReads(S′) and W ′ ∈ GlobalWrites(S′) (that are concluded from
S ∈ TSequential, R ∈ GlobalReads(S), W ′ ∈ GlobalWrites(S) and S′ = V isible(S, T).),
6) Lemma 8,
7) Boolean logic and that ��S is total,
8) the definition of V isible,
9) logical simplification,
10) the definition of Writers,
11) Boolean logic and that ��S is total, and
12) the definition of NoWriterBetween. 2

11

Lemma 10 TSequential ⊂ Sequential

Proof. Straightforward from definitions of TSequential, THistory and Sequential. 2

Lemma 11 ∀i ∈ I : ∀v, v′ ∈ V : ∀T, T ′ ∈ Trans : if R = readT (i):v, W = writeT ′(i, v), W ′ =
writeT (i, v′), S ∈ TSequential, W ≺S R, NoWriteBetweenS(W,R) and W ′ ≺S R, then T = T ′.

Proof. Suppose (1) S ∈ TSequential, (2) W ≺S R, (3) NoWriteBetweenS(W,R) and (4) W ′ ≺S R. From
[1] and Lemma 10, we have (5) S ∈ Sequential. From [4] and [5], we have (6) ¬(R ≺S W ′). From [3] we
have (7) W ′ �S W ∨ R ≺S W ′. From [6] and [7], we have (8) W ′ �S W . From [2] and [8], we have (9)
W ′ �S W �S R. From [9], [1], and that W ′ and R are by T and W is by T ′, we have T = T ′. 2

12

Lemma 12 Suppose S ∈ TSequential. We have:

∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec

Proof. Suppose S ∈ TSequential. Thus, from Lemma 10, we have S ∈ Sequential. Let S′ = V isible(S, T).
From S ∈ TSequential and Lemma 8, we have S′ ∈ TSequential. Thus, from Lemma 10, we have S′ ∈
Sequential. From the definition of V isible, we have S′|T = S|T .

∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃T ′ ∈ S′ : ∃W = writeT ′(i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S : W ′ ≺S R ∧
∃T ′ ∈ S′ : ∃W = writeT ′(i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S′ : W ′ ≺S R ∧
∃T ′ ∈ S′ : ∃W = writeT ′(i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S′ : W ′ ≺S′ R ∧
∃T ′ ∈ S′ : ∃W = writeT ′(i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S′ : W ′ ≺(S′ | i) R ∧
∃T ′ ∈ S′ : ∃W = writeT ′(i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃v′ ∈ V : ∃W ′ = writeT (i, v′) ∈ S′ : W ′ ≺(S′ | i) R ∧
∃W = writeT (i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S′ :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺(S′ | i) R ∧ NoWriteBetween(S′ | i)(W,R)

13

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S′ R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ NoWriteBetween(S′ | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ∀W ′ ∈W rites(S′ | i) : W ′ �(S′ | i) W ∨R ≺(S′ | i) W
′

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃W ′ ∈W rites(S′ | i) : ¬(W ′ �(S′ | i) W) ∧ ¬(R ≺(S′ | i) W
′)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃W ′ ∈W rites(S′ | i) : W ≺(S′ | i) W
′ ≺(S′ | i) R

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃v′ ∈ V : ∃W ′ = writeT (i, v′) : W ≺(S′ | i) W
′ ≺(S′ | i) R

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃v′ ∈ V : ∃W ′ = writeT (i, v′) : W ≺(S | i) W
′ ≺(S | i) R

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ¬∃W ′ ∈W rites(S | i) : W ≺(S | i) W
′ ≺(S | i) R

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S :

W ≺S R ∧ ∀W ′ ∈W rites(S | i) : ¬(W ≺(S | i) W
′) ∨ ¬(W ′ ≺(S | i) R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S : W ≺S R ∧
∀W ′ ∈W rites(S | i) : W ′ �(S | i) W ∨ R ≺(S | i) W

′

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S|T |i : W ≺S|T |i R ∧
∀W ′ ∈W rites(S|T |i) : W ′ �(S|T |i) W ∨ R ≺(S|T |i) W

′

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃W = writeT (i, v) ∈ S|T |i :
W ≺S|T |i R ∧ NoWriteBetween(S|T |i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec

In these twenty steps, we apply: 1) the definition of LocalReads,

14

2) the definition of V isible,
3) S′|T = S|T and that both W ′ and R are by T ,
4) that both W ′ and R are on i,
5) Lemma 11,
6) duplicate conjunction,
7) the definition of V isible,
8) that both R and W are on i,
9) S′|T = S|T and that both R and W are by T ,
10) the definition of NoWriteBetween,
11) first-order logic,
12) (S′ | i) ∈ Sequential,
13) from (S′ | i) ∈ TSequential, R and W are by transaction T and W ′ is between them, we have W ′ is by
T ,
14) S′|T = S|T ,
15) from (S | i) ∈ TSequential, R and W are by transaction T and W ′ is between them, we have W ′ is by
T .
16) first-order logic,
17) (S | i) ∈ Sequential,
18) (S | i) ∈ Sequential, transH(R) = transH(W) = T and arg1H(R) = arg1H(W) = i,
19) the definition of NoWriteBetween,
20) the definition of LocalTSeqSpec.

2

15

Lemma 13 Suppose S ∈ TSequential ∩ TComplete. We have:

S ∈ TSeqSpec
⇐⇒ S ∈ LocalTSeqSpec ∧

∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T) ∧ N oWriterBetweenS,i(T
′,��S , T)

Proof. Suppose S ∈ TSequential ∩ TComplete. From S ∈ TSequential and Lemma 8, we have
V isible(S, T) ∈ TSequential.

S ∈ TSeqSpec
⇐⇒ ∀T ∈ S : ∀i ∈ I : (V isible(S, T) | i) ∈ SeqSpec(i)
⇐⇒ ∀T ∈ S : ∀i ∈ I :

∀T ′′ ∈ (V isible(S, T) | i) : ∀v ∈ V : ∀R = readT ′′(i):v ∈ (V isible(S, T) | i) :

∃T ′ ∈ (V isible(S, T) | i) : ∃W = writeT ′(i, v) ∈ (V isible(S, T) | i) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I :

∀T ′′ ∈ V isible(S, T) : ∀v ∈ V : ∀R = readT ′′(i):v ∈ V isible(S, T) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ S :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇐⇒ ∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ LocalReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺(V isible(S,T) | i) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

16

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

W ≺V isible(S,T) R ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

T ′ ≺≺V isible(S,T) T ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ V isible(S, T) :

T ′ ≺≺S T ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ ≺≺S T ∧ NoWriteBetween(V isible(S,T) | i)(W,R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ ≺≺S T ∧ N oWriterBetweenS,i(T
′,��S , T)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ V isible(S, T) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T) ∧ T ′ ∈ Committed(S) ∧ N oWriterBetweenS,i(T
′,��S , T)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T) ∧ N oWriterBetweenS,i(T
′,��S , T)

In these thirteen steps, we apply:
1) the definition of TSeqSpec and S ∈ TSequential ∩ TComplete,
2) the definition of SeqSpec(i),
3) R and W access location i,
4) that we can choose T ′′ = T ,
5) Reads(S) = LocalReads(S) ∪GlobalReads(S),
6) Lemma 12,
7) that R and W are both on location i
8) that R and W are by transactions T and T ′ respectively, V isible(S, T) ∈ TSequential, and R ∈
GlobalReads(V isible(S, T)) (because R ∈ GlobalReads(R) and V isible(S, T)|T = S|T),
9) Lemma 8,
10) T ′ ≺≺S T and NoWriteBetween(V isible(S,T) | i)(W,R),
11) Lemma 9,

17

12) T ′ ∈ V isible(S, T) and (T ′ ≺≺S T), and
13) the definition of V isible(S, T). 2

18

Lemma 14 (Invariance) If H ≡ H ′, then M arking(H) = M arking(H ′) and ReadPres(H) = ReadPres(H ′)
and W riteObs(H) = W riteObs(H ′).

Proof. Immediate from the definitions of M arking, ReadPres, and W riteObs. 2

Lemma 15 ∀H ∈ THistory : ∀ v ∈ M arking(H) : ∃S ∈ TSequential : H ≡ S ∧ ��H ⊆ ��S ∧ ��S ⊆ v.

Proof. Let H ∈ THistory and let v ∈ M arking(H). We have that v is a total order of Trans
so we can choose a permutation π on 1..n such that ∀i, j ∈ 1..n : (i < j) ⇔ (Tπ(i) < Tπ(j)). Define:
S = H|Tπ(1), . . . ,H|Tπ(n). It is straightforward to prove that S ∈ TSequential ∧ H ≡ S ∧ ��H ⊆ ��S
∧ ��S ⊆ v. 2

Lemma 16 Suppose v ∈ M arking(H) ∧ p2 6∈W ritersH(i).
If N oWriterBetweenH,i(T1,v, p2) and N oWriterBetweenH,i(p2,v, T3),
then N oWriterBetweenH,i(T1,v, T3).

Proof.

N oWriterBetweenH,i(T1,v, p2) ∧ N oWriterBetweenH,i(p2,v, T3)
⇐⇒ ∀T ∈W ritersH(i) : (T v T1 ∨ p2 v T) ∧ (T v p2 ∨ T3 v T)

⇐⇒ ∀T ∈W ritersH(i) : (T v T1 ∧ (T v p2 ∨ T3 v T)) ∨
(p2 v T ∧ T v p2) ∨ (p2 v T ∧ T3 v T)

=⇒ ∀T ∈W ritersH(i) : (T v T1) ∨ (T3 v T)

⇐⇒ N oWriterBetweenH,i(T1,v, T3)

The first step uses the definition of N oWriterBetween. The second step uses ∧ distribution over ∨. The
third step simplifies the first disjunct using conjunction elimination, eliminates the second disjunct using
p2 6∈W ritersH(i) and simplifies the third disjunct using conjunction elimination. The fourth step uses the
definition of N oWriterBetween. 2

19

Lemma 17 Suppose S ∈ TSequential ∩ TComplete. We have:

S ∈ TSeqSpec⇐⇒ S ∈ F inalStateMarkable (4.1)

Proof. Let S ∈ TSequential ∩ TComplete. From Lemma 13, the definition of F inalStateMarkable, and
S ∈ TComplete, we have that we must prove:

S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T) ∧ N oWriterBetweenS,i(T
′,��S , T)

⇐⇒ ∃ v ∈Marking(S) : ��S ⊆ v ∧ v ∈ ReadPres(S) ∧ v ∈WriteObs(S)

From the definition of W riteObs and LastPreAccessor we have that:

v ∈W riteObs(S)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ Trans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Trans : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ ∈WritersS(i) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenS,i(T
′,v, R)

⇐⇒ S ∈ LocalTSeqSpec ∧
∀T ∈ Trans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Trans : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ ∈ Committed(S) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenS,i(T
′,v, R)

We are now ready to prove the two directions of the equivalence.
⇒:
Assume that

S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T) ∧ N oWriterBetweenS,i(T
′,��S , T)

Define:

p1 < p2 ⇐⇒ (p1 ≺≺S p2) ∨
(transS(p1) ��S p2) ∨
(p1 ��S transS(p2))

p1 v p2 ⇐⇒ p1 < ∨ p2p1 = p2

We show that

v ∈Marking(S) ∧
��S ⊆ v ∧ v ∈ ReadPres(S) ∧
S ∈ LocalTSeqSpec ∧
∀T ∈ Trans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Trans : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ ∈ Committed(S) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenS,i(T
′,v, R)

20

It is straightforward to prove v ∈ M arking(S) and ��S ⊆ v, v ∈ ReadPres(S). Additionally, the first
conjunct of W riteObs(S) (that is, S ∈ LocalTSeqSpec) is immediate from the assumption. So, we still need
to prove the second conjunct of W riteObs(S).

Let T ∈ Trans, i ∈ I, v ∈ V , R = readT (i):v ∈ GlobalReads(S). From the assumption (the left-hand
side), we have that we can find (1) T ′ ∈ Committed(S) and (2) W = writeT ′(i, v) ∈ GlobalWrites(S)
such that (3) (T ′ ≺≺S T) and (4) N oWriterBetweenS,i(T

′,��S , T). Let us now prove each conjunct of
T ′ 6= T ∧ T ′ v R ∧ N oWriterBetweenS,i(T

′,v, R) in turn.
From [3] and that ��S is a total order of Trans(S), we have (5) T ′ 6= T . From [3] and the definition

of v, we have T ′ v R. From [4] and ��S ⊆ v, we have (6) N oWriterBetweenS,i(T
′,v, T). From T ��S T

and the definition of v, we have (7) R v T . From [6], [7] and the definition of v and transitivity of ��S , we
have N oWriterBetweenS,i(T

′,v, R).
⇐:
Assume the right-hand side and choose v ∈ M arking(S) such that:

��S ⊆ v ∧ v ∈ ReadPres(S) ∧
S ∈ TLocalSeqSpec ∧
∀T ∈ Trans : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃ W = writeT ′(i, v) ∈ GlobalWrites(S) :

T ′ 6= T ∧ T ′ v R ∧ N oWriterBetweenS,i(T
′,v, R)

We show that

S ∈ LocalTSeqSpec ∧
∀T ∈ S : ∀i ∈ I : ∀v ∈ V : ∀R = readT (i):v ∈ GlobalReads(S) :

∃T ′ ∈ Committed(S) : ∃W = writeT ′(i, v) ∈ GlobalWrites(S) :

(T ′ ≺≺S T) ∧ N oWriterBetweenS,i(T
′,��S , T)

The first conjunct (of the left-hand side), S ∈ LocalTSeqSpec, is immediate from the assumption. From the
assumption we have (1) ��S ⊆ v, (2) v ∈ ReadPres(S). Let T ∈ Trans, i ∈ I, v ∈ V , R = readT (i):v ∈
GlobalReads(S). From the above property of v, we have that we can find (3) T ′ ∈ Committed(S) and (4)
W = writeT ′(i, v) ∈ GlobalWrites(S) such that (5) T ′ 6= T and (6) T ′ v R and (7) N oWriterBetweenS,i(T

′,v
, R). From [1], that v is a total order on Trans(S) (v ∈ Marking(S)), and that ��S is a total order on
Trans(S) (S ∈ TSequential), we have (8) ∀T, T ′ ∈ Trans : T ′ v T ⇒ T ′ ��S T .

First we prove T ′ ≺≺S T . From [2] ,we have (9) N oWriterBetweenS,i(T,v, R). From [3] and [4], we
have (10) T ′ ∈ WritersS(i). From [9] and [10], we have (11) T ′ v T ∨ R v T ′. From [6], T ′ 6= R and v is
a total order on {R} ∪W ritersS(i) (v ∈ M arking(S)), we have (12) R 6v T ′. From [11] and [12], we have
(13) T ′ v T . From [8] and [13], we have (14) T ′ ��S T . From [14] and [5], we have T ′ ≺≺S T .

Second, we prove N oWriterBetweenS,i(T
′,��S , T). From [2], we have (15) N oWriterBetweenS,i(R,v

, T). From R 6∈ W ritersS(i), [7], [15], and Lemma 16, we have (16) N oWriterBetweenS,i(T
′,v, T). From

[16] and [8] we have N oWriterBetweenS,i(T
′,��S , T). 2

21

Theorem 18 (Marking) F inalStateOpaque = F inalStateMarkable.

Proof.

F inalStateOpaque

= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :

H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ S ∈ TSeqSpec}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :

H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ S ∈ F inalStateMarkable}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧

∃ v ∈ M arking(S) : ��S ⊆ v ∧ v ∈ ReadPres(S) ∩W riteObs(S)}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧

∃ v ∈ M arking(H ′) : ��S ⊆ v ∧ v ∈ ReadPres(H ′) ∩W riteObs(H ′)}
= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈ M arking(H ′) :

v ∈ ReadPres(H ′) ∩W riteObs(H ′) ∧
∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ ��S ⊆ v }

= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈ M arking(H ′) :

��H′ ⊆ v ∧ v ∈ ReadPres(H ′) ∩W riteObs(H ′) ∧
∃S ∈ TSequential : H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ ��S ⊆ v }

= {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃ v ∈Marking(H ′) :

��H′ ⊆ v ∧ v ∈ ReadPres(H ′) ∩W riteObs(H ′)}
= Markable

In these eight steps we apply:
1) the definition of F inalStateOpaque,
2) Lemma 17 and S ∈ TComplete (because H ′ ∈ TExtension(H) and H ′ ≡ S),
3) the definition of F inalStateMarkable and S ∈ TComplete,
4) Lemma 14,
5) logical rearrangement,
6) transitivity of ⊆,
7) Lemma 15, and
8) the definition of F inalStateMarkable. 2

22

5 Synchronization Object Types

In this subsection, we first define the semantics of basic and linearizable objects. Then, we define the
interface and the sequential specifications of the following abstract object types: register, lock, try-lock,
counter, set and map. For each abstract object type, we define concrete synchronization object types. We
define the following synchronization object types: basic register, atomic register, atomic cas register, lock,
try-lock, strong counter, basic set and basic map. For each synchronization object type, we present lemmas
that characterize the properties of its execution histories. Please see the end of this section for notes on the
proof of the lemmas that we present in this subsection.1

Basic and Linearizable Object Types
The abstract type of each object o specifies the sequential specification of o, denoted by SeqSpec(o), that is
the prefix-closed set of correct sequential histories of o. In the following subsections, we will consider several
synchronization object types and define their sequential specifications.

We consider two concurrent types: basic and linearizable. Linearizable objects comply with their se-
quential specification in every concurrent execution. Basic objects, on the other hand, comply with their
sequential specification if they are accessed sequentially.

Definition 1 (Basic Object Semantics) Every sequential execution on a basic object is an execution in
its sequential specification. The semantics of a basic object o, HB(o), is a set of histories that is constrained
as follows:

HB(o) ∩ Sequential ⊆ SeqSpec(o) (5.1)

Definition 2 (Linearizable Object Semantics) An execution history X is linearizable for an object o
iff there is an indistinguishable sequential history L that is in the sequential specification of o and is real-
time-preserving. L is a linearization and ≺L is a linearization order of X. The semantics of a linearizable
object o, HL(o), is defined as the following set of execution and linearization pairs.

HL(o) = {(X,L) | X ≡ L ∧ L ∈ SeqSpec(o) ∧ ≺X ⊆ ≺L} (5.2)

Lemma 19 (X2L) For every linearization L of an execution history X on object o and method calls l and
l′, if l ≺X l′ then l ≺L l′.

Lemma 20 (LASym) For every linearization L of an execution history X on object o and method calls l
and l′, if l ≺L l′ then ¬(l′ ≺L l) ∧ ¬(l = l′)

Lemma 21 (LTrans) For every linearization L of an execution history X on object o and method calls l,
l′, and l′′, if l ≺L l′ and l′ ≺L l′′ then l ≺L l′′.

Lemma 22 (LTotal) For every linearization L of an execution history X on object o and method calls l
and l′, if l ∈ X and l′ ∈ X then (l ≺L l′) ∨ (l′ ≺L l) ∨ (l = l′)

Lemma 23 (L2X) For every linearization L of an execution history X on object o and method calls l and
l′, if (l ≺L l′) then l ∈ X, l′ ∈ X, and l and l′ are both on o.

Lemma 24 (XLTrans) For every linearization L of an execution history X on object o and method calls
l1, l2, l3, and l4, if l1 ≺X l2, l2 ≺L l3, l3 ≺X l4, then l1 ≺X l4

1 In this subsection, we use ∀ and ∃ as a notational convenience. ∀l : p can be rewritten as
∧

(l∈Labels(X)) p(X) and ∃l : p can

be rewritten as
∨

(l∈Labels(X)) p(X).

23

Register
Register. A register reg is an object that encapsulates a value and supports read and write methods.
The method call reg.read() returns the current encapsulated value of reg. The method call reg.write(v)
overwrites the encapsulated value of reg with v.

Definition 3 The sequential specification of register reg is the set of sequential histories of read and write
method calls on reg where every read returns the argument of the latest preceding write (regardless of thread
identifiers). (Note that it is assumed that a write method call initializes the register before other methods
are invoked.) The sequential specification of a register r, SeqSpec(r), is defined as follows:

isXReadX,r(lR) = lR ∈ X ∧ objX(lR) = r ∧ nameX(lR) = read (5.3)

isXWriteX,r(lW) = lW ∈ X ∧ objX(lW) = r ∧ nameX(lW) = write (5.4)

NoWriteBetweenX,r(lW , lR) = ∀l′W : isXWriteX,r(l
′
W)⇒ (l′W �X lW ∨ lR ≺X l′W) (5.5)

isXWriterX,r(lW , lR) = isXWriteX,r(lW) ∧ (5.6)

lW ≺X lR ∧
NoWriteBetweenX,r(lW , lR)

Legal(r) = {S | ∀lR : isXReadS,r(lR)⇒ (5.7)

∃lW : isXWriterS,r(lW , lR) ∧
retvS(lR) = arg1S(lW)}

SeqSpec(r) = {S | S|r = S ∧ S ∈ Sequential ∩ Legal(r)} (5.8)

Basic Register. A basic register is a basic instance of the register type.
Let BasicRegister denote the type of basic registers.

Lemma 25 In every sequential execution on a basic register, every read reads the value that the latest
preceding write writes. Formally,

∀reg ∈ BasicRegister : ∀X ∈ HB(reg) : X ∈ Sequential⇒ (5.9)

∀lR : isXReadX,reg(lR)⇒
∃lW : isXWriterX,reg(lW , lR) ∧

retvX(lR) = arg1X(lW)

Two concurrent read method calls on a register do not conflict. Thus, basic registers can maintain
consistency even when the execution involves concurrent read method calls. Let us define

isXRaceFreeX,r(l) = ∀lw : isXWriteX,r(lw)⇒ lw �X l ∨ l ≺X lw (5.10)

isXSequentiallyWrittenr(X) = ∀l ∈ X : isXWriteX,r(l)⇒ isRaceFreeX,r(l) (5.11)

A method call is race-free if an only if there is no write method call that executes concurrent to it.
An execution is sequentially-written if and only if every pair of write method calls on it are ordered in the
execution order or in other words, every write method call on it is race-free.

Definition 4 (Basic Register Semantics) An execution history on a basic register is in the semantics of
the basic register if and only if it is not sequentially-written or it is sequentially-written and every race-free

24

read reads the value that the latest preceding write writes. The semantics of a basic register r, HB(r), is
defined as follows.

HB(r) = {X | X|o = X ∧ (5.12)

isXSequentiallyWrittenr(X)⇒
∀lr : isXReadX,r(lr) ∧ isXRaceFreeX,r(lr)⇒
∃lw : isXWriterX,r(lw, lr) ∧

retvX(lr) = arg1X(lw) }

Note that if an execution is not sequentially-written, reads may return arbitrary values. Similarly, racy
reads may return arbitrary values.

Note that this definition satisfies the constraint of Definition 1.

Lemma 26 (BReg) In every sequentially-written execution on a basic register, every race-free read reads
the value that the latest preceding write writes. Formally,

∀reg ∈ BasicRegister : ∀X ∈ HB(reg) : isXSequentiallyWrittenr(X)⇒ (5.13)

∀lR : isXReadX,reg(lR) ∧ isXRaceFreeX,r(lR)⇒
∃lW : isXWriterX,reg(lW , lR) ∧

retvX(lR) = arg1X(lW)

Atomic Register. An atomic register is a linearizable instance of the register type.
Let AtomicRegister denote the type of atomic registers.
Let us define

LNoWriteBetweenX,L,r(lW , lR) = ∀l′W : isXWriteX,r(l
′
W)⇒ (l′W �L lW ∨ lR ≺L l′W) (5.14)

isLWriterX,L,r(lW , lR) = isXWriteX,r(lW) ∧ (5.15)

lW ≺L lR ∧
LNoWriteBetweenX,L,r(lW , lR)

Lemma 27 (AReg) In every execution on an atomic register, every read reads the value written by the
last write linearized before it. Formally,

∀r ∈ AtomicRegister : ∀(X,L) ∈ HL(r) : (5.16)

∀lR : isXReadX,r(lR)⇒
∃lW : isLWriterX,L,r(lW , lR) ∧

retvX(lR) = arg1X(lW)

CAS (Compare-And-Swap) Register
A CAS register is an object that encapsulates a value and supports the cas method in addition to read and
write methods. The method call r.cas(v1, v2) updates the value of the register to v2 and returns true if the
current value of the register is v1. It returns false otherwise.

A successful write is either a write method call or a successful cas method call. The written value of
a successful write is its first argument, if it is a write method call or is its second argument, if it is a cas
method call.

25

Definition 5 The sequential specification of cas register reg is the set of sequential histories of read, write
and cas method calls on reg with the following two conditions. Every read returns the written value of
the latest preceding successful write (regardless of thread identifiers). (Note that it is assumed that a write
method call initializes the register before other methods are invoked.) Every cas with the first argument v1
returns true if the written value of the latest preceding successful write is v1 and returns false otherwise.

Atomic CAS Register. An atomic CAS register is a linearizable instance of CAS register type.
Let AtomicCASRegister denote the type of Atomic CAS registers.
Let us define

isXCASX,r(lW) = lW ∈ X ∧ objX(lW) = r ∧ nameX(lW) = cas (5.17)

isXCWriteX,r(lW) = isXWrite(lW) ∨ (isXCAS(lW) ∧ retvX(lW) = true) (5.18)

writtenV alueX(lW) =

{
arg1X(lW) if nameX(lW) = write
arg2X(lW) if nameX(lW) = cas

(5.19)

LNoWriteBetweenX,L,r(lW , lR) = ∀l′W : isXCWriteX,r(l
′
W)⇒ (l′W �L lW ∨ lR ≺L l′W) (5.20)

isLCWriterX,L,r(lW , lR) = isXCWriteX,r(lW) ∧ (5.21)

lW ≺L lR ∧
LNoWriteBetweenX,L,r(lW , lR)

Lemma 28 (CASRegRead) In every execution on an atomic cas register, every read returns the value
the last successful write linearized before it writes. Formally,

∀r ∈ AtomicCASRegister : ∀(X,L) ∈ HL(r) : (5.22)

∀lR : isXReadX,r(lR)⇒
∃lW : isLCWriterX,L,r(lW , lR) ∧

retvX(lR) = arg1X(lW)

Lemma 29 (CASRegCAS) In every execution on an atomic cas register, every cas returns true if its
first argument is equal to the argument of the last successful write linearized before it and returns false
otherwise. Formally,

∀reg ∈ AtomicCASRegister : ∀(X,Reg) ∈ HL(reg) : (5.23)

∀lC , lW :

isXCASX,reg(lC) ∧
isLCWriterX,Reg,reg(lW , lR)

⇒
(writtenV alueX(lW) = arg1X(lC)⇒ retvX(lC) = true) ∧
(¬(writtenV alueX(lW) = arg1X(lC))⇒ retvX(lC) = false)

Lock
Abstract lock. An abstract lock l is an object that encapsulates a state, acquired A or released R, and
supports the following methods: lock: The method call l.lock() changes the state from R to A. unlock: The
method call l.unlock() changes the state from A to R. read: The method call l.read() returns true if the
state of lock is A and false otherwise. The method calls lock and unlock are mutating method calls. The
method call read is an accessor method call.

26

Definition 6 The sequential specification of a lock l is the set of sequential histories L of lock, unlock, and
read method calls on l where the sub-history of L for mutating methods is an alternating sequence of lock
and unlock methods and every read method call in L returns true if the last mutating method call before it
in L is a lock and returns false otherwise.

Lock. A lock is a linearizable instance of the abstract lock type.
Let Lock denote the type of locks.

Now, we present some preliminary definitions and then lemmas about locks.

isXLockX,lo(l) = (5.24)

l ∈ X ∧ objX(l) = lo ∧ nameX(l) = lock

isXUnlockX,lo(l) = (5.25)

l ∈ X ∧ objX(l) = lo ∧ nameX(l) = unlock

isXReadX,lo(l) = (5.26)

l ∈ X ∧ objX(l) = lo ∧ nameX(l) = read

The common usage protocol for locks is that a thread unlocks a lock only if it has already acquired
it. Many languages including Java enforce this property of programs by runtime checks. We capture this
property as follows.

Definition 7 A history is owner-respecting for a lock if every thread in the history releases the lock only
after it has already acquired it.

isXOwnerRespectinglo(X) = (5.27)

∀l : isXUnlockX,lo(l)⇒
∃l′ : isXLockX,lo(l′) ∧

threadX(l′) = threadX(l) ∧
l′ ≺X l ∧
∀l′′ : (isXUnLockX,lo(l

′′) ∧ threadX(l′′) = threadX(l))⇒ (l′′ ≺X l′ ∨ l �X l′′)

Lemma 30 If l is a lock, X is an owner-respecting history of l and L is the linearization of X, then the
sub-history of L for mutating method calls is a sequence of pairs of lock and unlock method calls by the same
thread (possibly followed by a lock method call).

Lemma 31 (Lock) In an owner-respecting execution for a lock l, if a lock method call by a thread T1 is
linearized before an unlock method call by a thread T2, then an unlock method call by T1 is linearized before
a lock method call by T2. Formally,

∀o ∈ Lock : ∀(X,L) ∈ HL(o) : ∀ll1, lu2 : (5.28)

(isXOwnerRespectingo(X) ∧
isXLockX,o(ll1) ∧
isXUnlockX,o(lu2) ∧
ll1 ≺L lu2)⇒

∃lu1, ll2 :

isXUnlockX,o(lu1) ∧ threadX(ll1) = threadX(lu1) ∧
isXLockX,o(ll2) ∧ threadX(ll2) = threadX(lu2) ∧
lu1 ≺L ll2

27

Lemma 32 (LockReadL) In an owner-respecting execution for a lock l, if a read method call that returns
false is linearized before an unlock method call by a thread T , then the read method call is linearized before
a lock method call by T . Formally,

∀o ∈ Lock : ∀(X,L) ∈ HL(o) : ∀lu1, lr2 : (5.29)

(isXOwnerRespectingo(X) ∧
isXReadX,o(lr2) ∧ retvX(lr2) = false

isXUnlockX,o(lu1) ∧
lr2 ≺L lu1)⇒

∃ll1 :

isXLockX,o(ll1) ∧ threadX(ll1) = threadX(lu1) ∧
lr2 ≺L ll1

Lemma 33 (LockReadR) In an owner-respecting execution for a lock l, if a lock method call by a thread
T is linearized before a read method call that returns false, then an unlock method call by T is linearized
before the read method call. Formally,

∀o ∈ Lock : ∀(X,L) ∈ HL(o) : ∀ll1, lr2 : (5.30)

(isXOwnerRespectingo(X) ∧
isXLockX,o(ll1) ∧
isXReadX,o(lr2) ∧ retvX(lr2) = false

ll1 ≺L lr2)⇒
∃lu1 :

isXUnlockX,o(lu1) ∧ threadX(ll1) = threadX(lu1) ∧
lu1 ≺L lr2

Lemma 34 (LockReadM) In an owner-respecting execution for a lock l, every read method call that is
linearized between a pair of matching lock and unlock method calls returns true. Formally,

∀o ∈ Lock : ∀(X,L) ∈ HL(o) : ∀ll1, lu1, lr2 : (5.31)

(isXOwnerRespectingo(X) ∧
isXLockX,o(ll1) ∧
isXUnlockX,o(lu1) ∧
threadX(ll1) = threadX(lu1) ∧
∀l′u1 : (isXUnlockX,o(l

′
u1) ∧ threadX(ll1) = threadX(l′u1))⇒ (l′u1 ≺X ll1 ∨ lu1 �X l′u1)

isXReadX,o(lr2) ∧
ll1 ≺L lr2 ∧ lr2 ≺L lu1)

⇒
retvX(lr2) = true

Try-Lock
Abstract Try-lock. A try-lock l is an object that encapsulates an abstract state, acquired A or released R,
and in addition to lock, unlock and read methods, it supports the trylock method. If the state of the lock
is R, l.trylock() changes it to A and returns true. Otherwise, it returns false.

28

We call a lock method call or a successful tryLock method call, a successful lock method call. We call a
lock method call, successful tryLock method call or unlock method call, a mutating method call.

Definition 8 The sequential specification of a try-lock l is the set of sequential histories L of lock, unlock,
read and tryLock method calls on l with the following conditions: The last mutating method call before
a successful lock method call is an unlock method call. Similarly, the last mutating method call before an
unlock method call is a successful lock method call. A tryLock method call returns true if the latest preceding
mutating method call is an unlock and returns false otherwise. Similarly, A read method call returns true
if the latest preceding mutating method call is a successful lock and returns false otherwise.

Try-Lock. A try-lock is a linearizable instance of the abstract try-lock type.
Let TryLock denote the type of try-locks.

Similar to the Lock type, after some preliminary definitions, we define the owner-respecting histories and
state the TryLock type lemmas.

isXTryLockX,o(l) = (5.32)

l ∈ X ∧ objX(l) = o ∧ nameX(l) = tryLock

isXTLockX,o(l) = (5.33)

isXLockX,o(l) ∨ (isXTryLockX,o(l) ∧ retvX(l) = true)

The intuition for owner-respecting histories remains the same. A history is owner-respecting for a try-
lock if every thread in the history releases the lock only after it has already acquired it. The minor difference
from the prior definition for locks is that the acquisition of a try-lock is either by a lock method call or a
successful tryLock method call.

isXTOwnerRespectingo(X) = (5.34)

∀l : isXUnlockX,o(l)⇒
∃l′ : isXTLockX,o(l′) ∧

threadX(l′) = threadX(l) ∧
l′ ≺X l ∧
∀l′′ : (isXUnLockX,o(l

′′) ∧ threadX(l′′) = threadX(l))⇒ l′′ ≺X l′ ∨ l �X l′′

Lemma 35 If l is a try-lock, X is an owner-respecting history of l and L is the linearization of X, then the
sub-history of L for mutating method calls is a sequence of pairs of successful lock and unlock method calls
by the same thread (possibly followed by a successful lock method call).

Lemma 36 (TryLock) In an owner-respecting execution for a try-lock l, if a successful lock method call
by a thread T1 is linearized before an unlock method call by a thread T2, then an unlock method call by T1

29

is linearized before a successful lock method call by T2. Formally,

∀o ∈ TryLock : ∀(X,L) ∈ HL(o) : ∀ll1, lu2 : (5.35)

(isXTOwnerRespectingo(X) ∧
isXTLockX,o(ll1) ∧
isXUnlockX,o(lu2) ∧
ll1 ≺L lu2)⇒

∃lu1, ll2 :

isXUnlockX,o(lu1) ∧ threadX(ll1) = threadX(lu1) ∧
isXTLockX,o(ll2) ∧ threadX(ll2) = threadX(lu2) ∧
lu1 ≺L ll2

Lemma 37 (TryLockReadL) In an owner-respecting execution for a try-lock l, a read method call that
returns false is linearized before if an unlock method call by a thread T then the read method call is linearized
before a successful lock method call by T . Formally,

∀o ∈ TryLock : ∀(X,L) ∈ HL(o) : ∀lu1, lr2 : (5.36)

(isXTOwnerRespectingo(X) ∧
isXReadX,o(lr2) ∧ retvX(lr2) = false

isXUnlockX,o(lu1) ∧
lr2 ≺L lu1)⇒

∃ll1 :

isXTLockX,o(ll1) ∧ threadX(ll1) = threadX(lu1) ∧
lr2 ≺L ll1

Lemma 38 (TryLockReadR) In an owner-respecting execution for a try-lock l, if a successful lock method
call by a thread T is linearized before a read method call that returns false, then an unlock method call by
T is linearized before the read method call. Formally,

∀o ∈ TryLock : ∀(X,L) ∈ HL(o) : ∀ll1, lr2 : (5.37)

(isXTOwnerRespectingo(X) ∧
isXTLockX,o(ll1) ∧
isXReadX,o(lr2) ∧ retvX(lr2) = false

ll1 ≺L lr2)⇒
∃lu1 :

isXUnlockX,o(lu1) ∧ threadX(ll1) = threadX(lu1) ∧
lu1 ≺L lr2

Lemma 39 (TryLockReadM) In an owner-respecting execution for a try-lock l, every read method call

30

that is linearized between a pair of matching successful and unlock method calls returns true. Formally,

∀o ∈ TryLock : ∀(X,L) ∈ HL(o) : ∀ll1, lu1, lr2 : (5.38)

(isXOwnerRespectingo(X) ∧
isXTLockX,o(ll1) ∧
isXUnlockX,o(lu1) ∧
threadX(ll1) = threadX(lu1) ∧
∀l′u1 : (isXUnlockX,o(l

′
u1) ∧ threadX(ll1) = threadX(l′u1))⇒ (l′u1 ≺X ll1 ∨ lu1 �X l′u1)

isXReadX,o(lr2) ∧
ll1 ≺L lr2 ∧ lr2 ≺L lu1)

⇒
retvX(lr2) = true

Seq-Lock
Abstract seq-lock. A seq-lock l is an object that encapsulates a number and an abstract state, acquired A or
released R. It supports the read, compareAndLock and incAndUnlock methods. The method call l.read()
returns the pair of the encapsulated number and true if the state of lock is A and false otherwise. The
method call l.compareAndLock(n) compares the the encapsulated number with n and if they are equal,
changes the state from R to A and returns true. Otherwise, it does not change the state of the seq-lock
and returns false. The method call l.incAndUnlock() increments the encapsulated number and changes
the state from A to R.

A successful compareAndLock and incAndUnlock are mutating method calls. The method call read is
an accessor method call.

Definition 9 The sequential specification of a seq-lock l is the set of sequential histories L of read,
compareAndLock, and incAndUnlock method calls on l with the following conditions:

Every read method call returns the pair of the number of incAndUnlock method calls before it and true
if the last mutating method call before it is a successful compareAndLock and false otherwise.

A compareAndLock method call returns true if the last mutating method call before it is an incAndUnlock
method call and the number of incAndUnlock method calls before it is equal to its argument. It returns false
otherwise.

The last mutating method call before an incAndUnlock method call is a successful compareAndLock
method call.

Seq-Lock. A seq-lock is a linearizable instance of the abstract seq-lock type.
Let SeqLock denote the type of seq-locks.

Counter
Abstract Counter: A counter c is an object that encapsulates a number and supports the following two
methods: The method call c.read() returns the current value of c. The method call c.iaf() increments the
value of c and returns the incremented value.

Definition 10 The sequential specification of a counter c is the set of sequential histories of read and iaf
method calls on c where every method call returns the number of iaf method calls before it (including the
method call itself). Note that it is assumed that the initial value of the counter is zero.

31

Strong Counter. A strong counter is a linearizable instance of abstract counter type.
Let SCounter denote the type of strong counters.

Lemma 40 (SCounter) The return value of every method call that is linearized before an iaf method call
is smaller than the return value of the iaf method call. Formally,

∀c ∈ SCounter : ∀(X,C) ∈ HL(c) : ∀l, l′ : (5.39)

l ∈ X ∧ l′ ∈ X ∧ nameX(l′) = iaf ∧ l ≺C l′

⇒
retvX(l) < retvX(l′)

Set
A set s is an object that represents a set of values and supports the following methods: add: The method
call s.add(v) adds value v to set s. contains: The method call s.containts(v) returns true if v is a member
of s and false otherwise.

Definition 11 The sequential specification of a set s is the set of sequential histories of add and contains
method calls on s where every contains method call returns true if there is a preceding add method call with
the same argument, and returns false otherwise. Note that it is assumed that the set is initially empty.

Basic Set. A basic set is a basic instance of set type.
Let BasicSet denote the type of basic sets.
Let us define

isXContainsX,s(l) = (5.40)

l ∈ X ∧ objX(l) = s ∧ nameX(l) = contains

isXAddX,s(l) = (5.41)

l ∈ X ∧ objX(l) = s ∧ nameX(l) = add

Lemma 41 (BasicSetContains) In every sequential execution on a basic set, for every contains method
call that returns true, there is a preceding add method call with the same argument. Formally,

∀s ∈ BasicSet : ∀X ∈ HB(s) : X ∈ Sequential⇒ (5.42)

∀lc : isXContainsX,s(lc) ∧ retvX(lc) = true⇒
∃la : isXAddX,s(la) ∧

arg1(la) = arg1(lc) ∧ la ≺X lc

Lemma 42 (BasicSetAdd) In every sequential execution on a basic set, every contains method call that
succeeds an add method call with the same argument returns true. Formally,

∀s ∈ BasicSet : ∀X ∈ HB(s) : X ∈ Sequential⇒ (5.43)

∀lc, la :

isXContainsX,s(lc) ∧
isXAddX,s(la) ∧
arg1(la) = arg1(lc) ∧ la ≺X lc

⇒
retvX(lc) = true

32

Map
A map m is an object that represents a mapping from a set of keys to a set of values and supports the
following methods: put: The method call m.put(k, v) adds or updates the mapping of the key k to the value
v (v 6= ⊥) in the map m. get: The method call m.get(k) returns the value that the map m associates with
the key k. It returns ⊥ if m does not map k.

Definition 12 The sequential specification of a map m is the set of sequential histories of put and get
method calls on m where every get method call returns ⊥ if there is no preceding put method call with the
same key argument; otherwise it returns the second argument of the latest preceding put method call with the
same key argument. Note that it is assumed that the map is initially empty.

Basic Map. A basic set is a basic instance of map type.
Let BasicMap denote the type of basic maps.
Let us define

isXGetX,m(l) = (5.44)

l ∈ X ∧ objX(l) = m ∧ nameX(l) = get

isXPutX,m(l) = (5.45)

l ∈ X ∧ objX(l) = m ∧ nameX(l) = put

isXPutterX,m(lp, lg)⇔ (5.46)

isXPutX,m(lp) ∧ arg1X(lp) = arg1X(lg) ∧ lp ≺X lg ∧ (5.47)

∀l′p : isXPutX,m(l′p) ∧ arg1X(l′p) = arg1X(lg)⇒ (l′p �X lp ∨ lg ≺X l′p) (5.48)

Lemma 43 (BasicMapGet) In every sequential execution on a basic map, the return value of every get
method call that does not return ⊥ is equal to the value argument of the latest preceding put method call with
the same key argument. Formally,

∀m ∈ BasicMap : ∀X ∈ HB(m) : X ∈ Sequential⇒ (5.49)

∀lg : isXGetX,m(lg) ∧ ¬(retvX(lg) = ⊥)⇒
∃lp : isPutterX,m(lp, lg) ∧

arg2X(lp) = retvX(lg)

Lemma 44 (BasicMapPut) In every sequential execution on a basic map, for every get method call g, if
p is the latest preceding put method call with the same key argument then the return value of g is equal to
the value argument of p. Formally,

∀m ∈ BasicMap : ∀X ∈ HB(m) : X ∈ Sequential⇒ (5.50)

∀lg, lp :

isXGetX,m(lg) ∧
isPutterX,m(lp, lg) ∧

⇒
retvX(lg) = arg2X(lp)

Proof Sketches.
Lemma 19:

33

Straightforward from ≺X⊆≺L.

Lemma 20:
We have

(1) l ≺L l′
From [1], we have

(2) rEv(l)�L iEv(l′)
From the well-formedness of the history O,
we have

(3) iEv(l)�L rEv(l)
(4) iEv(l′)�L rEv(l′)

From [3], [2] and [4], we have
(5) iEv(l)�L rEv(l′)

From [5], we have
(6) ¬(rEv(l′)�L iEv(l))

From [2] and [6], we have
(7) ¬(l′ = l)

From the definition of ≺X on [6], we have
(8) ¬(l′ ≺L l)

The conclusion is
[8] and [7]

Lemma 21:
Straightforward from the fact that L is a member of sequential specification and
a sequential specification is a set of sequential histories and
the execution order is total in sequential histories.

Lemma 22:
Straightforward from the fact that L is a member of sequential specification and
a sequential specification is a set of sequential histories and
the execution order is total in sequential histories.
We have

(1) l ∈ X
(2) l′ ∈ X
(3) X ≡ L
(4) L ∈ SeqSpec(o)

From [4], we have
(5) L ∈ Sequential

From [3], [1] and [2], we have
(6) l ∈ L
(7) l′ ∈ L

From [4], [6] and [7], we have
l ≺L l′ ∨ l′ ≺L l ∨ l = l′

Lemma 23:
Straightforward from the fact that L is equivalent to X.
We have

(1) X ≡ L

34

(2) L ∈ SeqSpec(o)
(3) l ≺L l′

From [3], we have
(4) l ∈ L
(5) l′ ∈ L

From [2] on [4] and [5], we have
(6) objL(l) = o
(7) objL(l′) = o

From [1] on [4] and [5], we have
l ∈ X
l′ ∈ X

From [1] on [6] and [7], we have
objX(l) = o
objX(l′) = o

Lemma 24:
Using L2X and XTotal, we have four cases:
Case: l ≺ l′

Straightforward from XTrans.
Case: l ∼ l′

Straightforward from XXTrans.
Case: l′ ≺ l

Straightforward from X2L and LASym.
Case: l′ = l

Straightforward from LASym.

Lemma 25:
Derived from the semantics of basic objects (Definition 1) and the sequential specification of register (Defi-
nition 3).

Lemma 26:
Derived from the semantics of basic register (Definition 4).

Lemma 27:
This is a restatement of Theorem 3 from the original definition of linearizability []. Derivable from the
semantics of linearizable objects (Definition 2) and the sequential specification of register (Definition 3).

Lemma 28:
Derivable from the semantics of linearizable objects (Definition 2) and the sequential specification of cas
register (Definition 5).

Lemma 29:
Derivable from the semantics of linearizable objects (Definition 2) and the sequential specification of cas
register (Definition 5).

Lemma 30:
Derivable from the semantics of linearizable objects (Definition 2), the sequential specification of the lock

35

(Definition 6), the owner-respecting property (Definition 7), and that the sub-history for each thread is
sequential (from the definition of execution histories).

Lemma 31:
Derived from Lemma 30.

Lemma 32:
Derived from Lemma 30 and the sequential specification of lock (Definition 6).

Lemma 33:
Derived from Lemma 30 and the sequential specification of lock (Definition 6).

Lemma 34:
Derived from Lemma 30 and the sequential specification of lock (Definition 6).

Lemma 35:
Derivable from the semantics of linearizable objects (Definition 2), the sequential specification of the lock
(Definition 8), the owner-respecting property (Definition 35), and that the sub-history for each thread is
sequential (from the definition of execution histories).

Lemma 36:
Derived from Lemma 35.

Lemma 37:
Derived from Lemma 35 and the sequential specification of try-lock (Definition 8).

Lemma 38:
Derived from Lemma 35 and the sequential specification of try-lock (Definition 8).

Lemma 39:
Derived from Lemma 35 and the sequential specification of try-lock (Definition 8).

Lemma 40:
Derivable from the semantics of linearizable objects (Definition 2), the sequential specification of counter
(Definition 10).

Lemma 41:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 11).

Lemma 42:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 11).

Lemma 43:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 12).

Lemma 44:
Derivable from the semantics of basic objects (Definition 1), the sequential specification of set (Definition 12).

36

6 Marking TL2

reg : BasicRegister[|I|], rver : ThreadLocal BasicRegister,
ver : AtomicRegister[|I|], rset : ThreadLocal BasicSet,
lock : TryLock[|I|], wset : ThreadLocal BasicMap,
clock : SCounter, lset : ThreadLocal BasicSet

def initt() def committ()

I01 . snap = clock.read(), C01 . foreach (i ∈ wset[t])
I02 . rver[t].write(snap), C02i . locked = lock[i].trylock(),
I03 . return ok, if (¬locked)
def readt(i) C03i . lset.add(i)
R01 . pv = wset[t].get(i), else

if (pv 6= ⊥) C04i . foreach (j ∈ lset)
R02 . return pv, C05ij . lock[j].unlock(),

C06i . return A,
R03 . s1 = ver[i].read(),

R04 . v = reg[i].read(), C07 . wver = clock.iaf(),
R05 . l = lock[i].read(),
R06 . s2 = ver[i].read(), C08 . sver = rver[t].read(),
R07 . sver = rver[t].read(), if (wver 6= sver + 1)

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver)) C09 . foreach (i ∈ rset[t])
R08 . return A, C10i . l = lock[i].read(),

C11i . s = ver[i].read(),
R09 . rver[t].add(i), if (¬(¬l ∧ s ≤ sver))
R10 . return v, C12i . foreach (j ∈ lset)
{R03→ R04, R04→ R05, R05→ R06}, C13ij . lock[j].unlock(),
def writet(i, v) C14i . return A,
W01 . wset[t].put(i, v),
W02 . return ok, C15 . foreach ((i, v) ∈ wset[t])
def abortt() C16i . reg[i].write(v),

A01 . return A, C17i . ver[i].write(wver),
C18i . lock[i].unlock(),

C19 . return C,
{C01→ C07, C10→ C11, C09→ C15,
C16→ C17, C17→ C18},

Figure 4: TL2 Algorithm Specification

37

Atomic register, try-lock and strong counter are linearizable object types and basic register, basic set
and basic map are basic object types. (At a high level, for every execution on a linearizable object, there
is an equivalent sequential execution that complies with the sequential specification of the object. On the
other hand, a basic object complies with its sequential specification only if it is accessed sequentially.) TL2
uses the following base objects: Value registers reg: an array of basic registers. Version registers ver: an
array of atomic registers with the initial value 0. Locks lock: an array of try-locks that are initially released.
The arrays are of size memory location count |I|.2 Global version clock clock: a strong counter with the
initial value 0. A strong counter provides two methods in its interface: iaf (inc-and-fetch) that increments
the counter and returns the counter value and read that returns the counter value. Read version rver: a
thread-local basic register. Read set rset: a thread-local basic set that is initially ∅. Write set wset: a
thread-local basic map that is initially ∅. Lock set lset: a thread-local basic set that is initially ∅. As
relaxed execution may reorder program statements, any order that is not implied by the data or control
dependencies but is required for the correctness of the algorithm is explicitly declared at the end of each
method definition. The values ok, A, C are reserved to denote successful completion of writes and abortion
and commitment of transactions respectively.

TL2 is a deferred-update TM algorithm. A value that a transaction t writes to a location is buffered
in the write set wset[t] at W01 and is written back to register reg[i] at C16i while t is committing. TL2
records a version in the register ver[i] for the value stored in the register reg[i]. The version register ver[i]
is updated to ascending numbers at C17i after new values are written back to reg[i] at C16i. The try-lock
lock[i] is used for exclusive access to the registers for location i. At commit, the lock lock[i] of each location
i in the write set wset[t] is acquired at C01 to C06. (If a lock cannot be acquired, the previously acquired
locks are released at C05 and the transaction is aborted at C06.) Then, a new snapshot number is read
from clock at C07. Then, for each location in the read set rset[t], first lock[i] and then ver[i] are read at
C10i and C11i and the read is validated. (If a read is not validated, the acquired locks are released at C13
and the transaction is aborted at C14.) Finally, the value buffered for each location i in wset[t] is written
back at C15i to C18i. For each pair in the write set wset[t], the following three operations are executed in
order. First, the buffered value is written back to reg[i], then ver[i] is updated, and then lock[i] is released.
In the init method, each transaction t reads the current snapshot version from clock at I01 and writes it to
the read version register rver[t] at I02. The read version is read at R07 and C08 to validate the read values.
To read a location i, a transaction reads ver[i], reg[i], lock[i] and again ver[i] in order at R03 to R06 and
then validates the read. (If the validation fails, the transaction is aborted.) Finally, i is added to the read
set rset[t] and the read value is returned.

2As observed by previous work [3], in the original TL2 paper, the authors maintain the version number and the lock bit of
every location in the same memory word, thus, the order of reading the lock and the version register in the commit method is
ambiguous. In our specification, we treat the lock and the version as separate registers and make the orders explicit.

38

Notation. Let us remind the notation. Consider an execution history H. We use l1 ≺H l2 to denote
that l1 is executed before l2. We use l1 ∼H l2 to denote that l1 is executed concurrently to l2. We use
l1 -H l2 to denote that l1 is executed before or concurrently to l2. We use ≺clock, ≺ver[i] and ≺lock[i] to
denote the linearization order of clock, ver[i] and lock[i] respectively.

A label c1’c2 is a call string that denotes a method call labeled c2 that is executed in the body of the
method call labeled c1.

We use initOfH(T) and commitOfH(T) to denote the init and commit method calls of transaction T in
history H.

Marking Relation. Now, we define the marking relation for TL2. The effect order of transactions is
the linearization order of their calls to the clock. Every transaction reads an initial snapshot number at
I01. A committing transaction makes a new snapshot at C07. A TL2 transaction takes effect at C07 if it
is committed and at I01 otherwise. The access order of read operations and writer transactions to location
i is the execution order of their accesses to the reg[i] register. The read method reads reg[i] at R04 and a
writer transaction writes to reg[i] at C16i.

Definition 13 (Marking TL2) Consider an execution history H ∈ H(TL2). Let

readAcc(R) = R’R04

writeAcc(T, i) = commitOfH(T)’C16i

Eff(T) =

{
initOfH(T)’I01 if T ∈ Aborted(H)

commitOfH(T)’C07 if T ∈ Committed(H)

The marking v for H is the reflexive closure of < that is define as follows:

{(T, T ′) | T, T ′ ∈ Trans(H) ∧ Eff(T) ≺clock Eff(T ′)} ∪
{(T,R) | ∃i : R ∈ GlobalTReads(H), i = arg1(R), T ∈WritersH(i) ∧ writeAcc(T, i) ≺H readAcc(R)} ∪
{(R, T) | ∃i : R ∈ GlobalTReads(H), i = arg1(R), T ∈WritersH(i) ∧ readAcc(R) -H writeAcc(T, i)}

We have formally proved the markability of TL2 using a novel program logic that facilitates reasoning
about execution and linearization orders. To keep the focus of this paper on markability, we avoid the formal
presentation of the logic and present a simplified reasoning.

In addition to the lemmas presented in the previous section, we use the rule P2X that states the
program-order-preservation property. If a method call l1 is ordered before a method call l2 in the program,
and methods l1 and l2 are executed, then l1 is executed before l2.

39

Lemma 45 TL2 preserves reads of aborted transactions (part 1).

∀H ∈ H(TL2) :
∀R ∈ GlobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Aborted(H)⇒ N oWriterBetweenH,i(R,v, T)

Proof Sketch.

T T ′

C02i . lock[i].trylock()

...

C07 . wver = clock.iaf()

I01 . snap = clock.read() ...

...

R03 . s1 = ver[i].read()

R04 . v = reg[i].read()

C16i . reg[i].write(v)

C17i . ver[i].write(wver)

R05 . l = lock[i].read() C18i . lock[i].unlock()

R06 . s2 = ver[i].read()

R07 . sver = rver[t].read()

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver))
return A

Figure 5: Case T ∈ Aborted(H) ∧ R < T ′ < T

We consider an aborted transaction T with an unaborted global read operation R from a location i and
a writer T ′ of i.
We assume that

T ′ accesses i after R
that is

(1) T ′ < R
and

T ′ takes effect before T
that is

(2) T ′ < T
We show that

TL2 aborts R.
Figure 5 depicts the two transactions.
By Definition 13 on [1], we have

(3) R04 ≺H C16i
By Definition 13 on [2], we have

(4) C07 ≺clock I01
The method calls R05 and C18i are on the object lock[i]. We consider two cases for the linearization order
of them and prove that R returns A in both cases.
Case 1:

(5) R05 ≺lock[i] C18i

40

By P2X on the algorithm, we have
(6) C02i ≺H C07
(7) I01 ≺H R05

By the Lemma XLTrans on [6], [4] and [7], we have
C02i ≺H R05

thus, by the Lemma X2L, we have
(8) C02i ≺lock[i] R05

By the Lemma TryLockReadM on [8] and [5], we have that
R05 returns true i.e. l = true

Thus,
The validation check fails and R returns A.

Case 2:
(9) C18i ≺lock[i] R05
By P2X on the algorithm, we have

(10) C17i ≺H C18i
(11) R05 ≺H R06

By the Lemma XLTrans on [10], [9] and [11], we have
C17i ≺H R06

Thus, by the Lemma X2L, we have
(12) C17i ≺ver[i] R06

By Lemma 54 on [12], we have
(13) wver ≤ s2

By P2X on the algorithm, we have
(14) R03 ≺H R04
(15) C16i ≺H C17i

By the Lemma XXTrans on [14], [3] and [15], we have
R03 ≺H C17i

Thus, by the Lemma X2L, we have
(16) R03 ≺ver[i] C17i

By Lemma 54 on [16], we have
(17) s1 < wver

From [13] and [17], we have
¬(s1 = s2)

Thus,
The validation check fails and R returns A in this case too.

2

Lemma 46 TL2 preserves reads of aborted transactions (part 2).

∀H ∈ H(TL2) :
∀R ∈ GlobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Aborted(H)⇒ N oWriterBetweenH,i(T,v, R)

Proof Sketch.
We consider an aborted transaction T with an unaborted global read operation R from a location i and

a writer T ′ of i.
We assume that

41

T T ′

I01 . snap = clock.read() C02i . lock[i].trylock()

I02 . rver[t].write(snap)

C07 . wver = clock.iaf()

C16i . reg[i].write(v)

R04 . v = reg[i].read() C17i . ver[i].write(wver)

R05 . l = lock[i].read() C18i . lock[i].unlock()

R06 . s2 = ver[i].read()

R07 . sver = rver[t].read()

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver))
return A

Figure 6: Case T ∈ Aborted(H) ∧ T < T ′ < R

T ′ takes effect after T
that is

(1) T < T ′

and
T ′ accesses i before R

that is
(2) T ′ < R

We show that
TL2 aborts R.

Figure 6 depicts the two transactions.
By Definition 13 on [1], we have

(3) I01 ≺clock C07
By Definition 13 on [2], we have

(4) C16i � R04
The method calls R05 and C18i are on the object lock[i]. We consider two cases for the linearization order
of them and prove that R returns A in both cases.
Case 1:

(5) R05 ≺lock[i] C18i
By P2X on the algorithm, we have

(6) C02i ≺H C16i
(7) R04 ≺H R05

By the Lemma XXTrans on [6], [4] and [7], we have
C02i ≺H R05

thus, by the Lemma X2L, we have
(8) C02i ≺lock[i] R05

By the Lemma TryLockReadM on [8] and [5], we have that
R05 returns true i.e. l = true.

Thus,
The validation check fails and R returns A.

42

Case 2:
(9) C18i ≺lock[i] R05
By P2X on the algorithm, we have

(10) C17i ≺H C18i
(11) R05 ≺H R06

By the Lemma XLTrans on [10], [9] and [11], we have
C17i ≺H R06

Thus, by the Lemma X2L, we have
(12) C17i ≺ver[i] R06

By Lemma 53 on [12], we have
(13) wver ≤ s2

By the Lemma SCounter on [3], we have
(14) snap < wver

The value of sver is read at R07 from rver.
The thread-local register rver is only assigned at I02 to snap.
Thus, we have

(15) snap = sver
From [13], [14] and [15], we have
sver > s2

Thus,
The validation check fails and R returns A in this case too.

2

Lemma 47 TL2 preserves reads of aborted transactions.

∀H ∈ H(TL2) :
∀R ∈ GlobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Aborted(H)⇒
N oWriterBetweenH,i(R,v, T) ∧ N oWriterBetweenH,i(T,v, R)

Proof. Immediate from Lemma 45 and Lemma 46. 2

Lemma 48 TL2 preserves reads of committed transactions (part 1).

∀H ∈ H(TL2) :
∀R ∈ GlobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Committed(H)⇒
N oWriterBetweenH,i(R,v, T)

Proof Sketch.
We consider a committed transaction T with an unaborted global read operation R from a location i

and a writer T ′ of i.
We assume that

T ′ accesses i after R
that is

(1) R < T ′

and
T ′ takes effect before T

that is

43

T T ′

C02′i . lock[i].trylock()

...

I01 . snap = clock.read() C07′ . wver′ = clock.iaf()

I02 . rver[t].write(snap) ...

...

R04 . v = reg[i].read()

... C16′i . reg[i].write(v′)

C07 . wver = clock.iaf()

...

C08 . sver = rver[t].read()

if (wver 6= sver + 1) C17′i . ver[i].write(wver′)

C10i . l = lock[i].read() C18′i . lock[i].unlock()

C11i . s = ver[i].read()

if (¬(¬l ∧ s ≤ sver))
foreach (j ∈ lset)
lock[j].unlock()

return A

Figure 7: Case T ∈ Committed(H) ∧ R < T ′ < T

(2) T ′ < T
We show that

TL2 aborts R.
Figure 7 depicts the two transactions. We annotate the labels and variables of T ′ by a prime so that they
do not conflict with the labels and variables of T .
By Definition 13 on [1], we have

(3) R04 ≺H C16i
By Definition 13 on [2], we have

(4) C07′ ≺clock C07
The method calls I01 and C07′ are on the object clock. We consider two cases for the linearization order of
them.
Case 1:

(5) C07′ ≺clock I01
From [5] and [3],
The proof of this case reduces to the proof of Lemma 45.

Case 2:
(6) I01 ≺clock C07′

By the Lemma SCounter on [4], we have
(7) wver′ < wver

By the Lemma SCounter on [6], we have
(8) snap < wver′

The value of sver is read at R07 from rver.
The thread-local register rver is only assigned at I02 to snap.
Thus, we have

44

(9) snap = sver
From [8] and [9], we have

(10) sver < wver′

From [10] and [7], we have
(11) wver 6= sver + 1

Thus,
The if branch is taken.

The method calls C10i and C18′i are on the object lock[i].
We consider two cases for the linearization order of them.
Case 2.1:

(12) C10i ≺lock[i] C18′i
By P2X on the algorithm, we have

(13) C02′i ≺H C07′

(14) C07 ≺H C10i
By the Lemma XLTrans on [13], [4] and [14], we have
C02′i ≺H C10i

thus, by the Lemma X2L, we have
(15) C02′i ≺lock[i] C10i

By the Lemma TryLockReadM on [15] and [12], we have that
R05 returns true i.e. l = true

Thus,
The validation check fails and R returns A.

Case 2.2:
(16) C18′i ≺lock[i] C10i

By P2X on the algorithm, we have
(17) C17′i ≺H C18′i
(18) C10i ≺H C11i

By the Lemma XLTrans on [17], [16] and [18], we have
C17′i ≺H C11i

Thus, by the Lemma X2L, we have
(19) C17′i ≺ver[i] C11i

By Lemma 54 on [19], we have
(20) wver′ ≤ s

From [10], [20], we have
sver < s

Thus,
The validation check fails and R returns A in this case too.

2

Lemma 49 TL2 preserves reads of committed transactions (part 2).

∀H ∈ H(TL2) :
∀R ∈ GlobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Committed(H)⇒
N oWriterBetweenH,i(T,v, R)

45

T T ′

R04 . v = reg[i].read()

...

C07 . wver = clock.iaf()

... C07′ . wver′ = clock.iaf()

...

C16′i . reg[i].write(v′)

Figure 8: Case T ∈ Committed(H) ∧ T < T ′ < R

Proof Sketch.
We consider a committed transaction T with an unaborted global read operation R from a location i

and a writer T ′ of i. We should show that it is impossible that T ′ takes effect after T and T ′ accesses i
before R.
We assume that

T ′ takes effect after T
that is

(1) T < T ′

We show that
T ′ accesses i after R.

that is
(2) R < T ′

Figure 8 depicts the two transactions. We annotate the labels and variables of T ′ by a prime so that they
do not conflict with the labels and variables of T .
By Definition 13 on [1], we have

(3) C07 ≺clock C07′

By Definition 13 on [2], we have to show
R04 ≺H C16i

By P2X and the algorithm, we have
(4) C04 ≺H C07
(5) C07′ ≺H C16′i

By the Lemma XLTrans on [4], [3], and [5], we have
R04 ≺H C16i

2

Lemma 50 TL2 preserves reads of committed transactions.

∀H ∈ H(TL2) :
∀R ∈ GlobalTReads(H) : Let i = arg1H(R), T = transH(R) :

T ∈ Committed(H)⇒
N oWriterBetweenH,i(R,v, T) ∧ N oWriterBetweenH,i(T,v, R)

Proof. Immediate from Lemma 48 and Lemma 49. 2

Lemma 51 TL2 is read-preserving.

∀H ∈ H(TL2) : ReadPres(H,v)

Proof. Immediate from Lemma 47 and Lemma 50. 2

46

Lemma 52 Version registers are updated to ascending numbers.
Let C171i denote the method call at line C17i executed by a transaction T1 and let wver1 denote its

argument. Similarly, let C172i denote the method call at line C17i executed by a transaction T2 and let
wver2 denote its argument. If C171i ≺ver[i] C172i , then wver1 < wver2.

Proof Sketch.

T1 T2

...

C021i . locked1 = lock[i].trylock()

...

C071 . wver1 = clock.iaf()

...

C171i . ver[i].write(wver1)

C181i . lock[i].unlock() ...

... C022i . locked2 = lock[i].trylock()

...

C072 . wver2 = clock.iaf()

...

C172i ver[i].write(wver2)

C182i lock[i].unlock()

...

Figure 9: Updating Version Registers

We have that
(1) C171i ≺ver[i] C172i

We show that
wver1 < wver2

By P2X on the algorithm, we have
(2) C021i ≺H C171i
(3) C172i ≺H C182i

By the Lemma XLTrans on [2], [1] and [3], we have
(4) C021i ≺H C182i

Thus, by the Lemma X2L, we have
(5) C021i ≺lock[i] C182i

From the algorithm,
(6) The ownership of lock[i] is respected.

By the Lemma TryLock on [6] and [5], we have
(7) C181i ≺lock[i] C022i

By P2X on the algorithm, we have
(8) C071 ≺H C181i
(9) C022i ≺H C072

By the Lemma XLTrans on [8], [7], and [9], we have
(10) C071 ≺H C072

By the Lemma X2L on [10], we have

47

(11) C071 ≺clock C072

By the Lemma SCounter on [11], we have
wver1 < wver2

2

Lemma 53 For every write method call W on ver[i] with argument v and every read method call R on
ver[i] with the return value v′, if W ≺ver[i] R then v ≤ v′.

Proof Sketch.
We have

(1) W is a write method call on ver[i].
(2) R is a read method call on ver[i].
(3) W ≺ver[i] R.

(4) The argument of W is v.
(5) The return value of R is v′.

We show that
v ≤ v′

Let
(6) W ′ is last write on ver[i] linearized before R.
(7) The argument of W ′ is v′′.

By the Lemma AReg’ on [6], [7], and [5], we have
(8) v′ = v′′

From [6], and [1], we have
(9) W �ver[i] W ′

By the algorithm and [1], and [6], we have
(10) W and W ′ are both at C17.

By Lemma 52 on [10], [9], [4] and [7], we have
(11) v ≤ v′′

From [8] and [11], we have
v ≤ v′

2

Lemma 54 For every write method call W on ver[i] with argument v and every read method call R on
ver[i] with the return value v′, if R ≺ver[i] W then v′ < v.

Proof Sketch.
We have

(1) W is a write method call on ver[i].
(2) R is a read method call on ver[i].
(3) R ≺ver[i] W .

(4) The argument of W is v.
(5) The return value of R is v′.

We show that
v′ < v

Let
(6) W ′ is last write on ver[i] linearized before R.

48

(7) The argument of W ′ is v′′.
By the Lemma AReg’ on [6], [7], and [5], we have

(8) v′ = v′′

From [3], and [6], we have
(9) W ′ ≺ver[i] W

By the algorithm and [1], and [6], we have
(10) W and W ′ are both at C17.

By Lemma 52 on [10], [9], [4] and [7], we have
(11) v′′ < v

From [8] and [11], we have
v′ < v

2

49

Lemma 55 TL2 is global-write-observant.

∀H ∈ H(TL2) :
∀R ∈ GlobalTReads(H) : ∃W ∈ GlobalTWrites(H) : Let T ′ = transH(W) :
LastPreAccessorH,v(T ′, R) ∧
arg1H(R) = arg1H(W) ∧ retvH(R) = arg2H(W)

Proof Sketch.
We consider a transaction T with an unaborted global read operation R from a location i.

The read operation R is from the location i, thus,
(1) The argument of R is i.

As R is global, thus,
(2) The return value of R is the return value of R04.

We first show that
(3) The read method call from reg[i] at R04 is race-free.
We assume that there is a write method call on reg[i] concurrent to it and show that TL2 aborts R.
Figure 10 depicts this situation.

T T ′

C02i . locked = lock[i].trylock()

...

R03 . s1 = ver[i].read()

R04 . v = reg[i].read() C16i . v = reg[i].write(v)

... C17i . ver[i].write(wver)

R05 . lock[i].read() C18i . lock[i].unlock()

R06 . s2 = ver[i].read() ...

R07 . sver = rver[t].read()

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver))
return A

Figure 10: R04 is race-free

We assume that there a race between R04 and C16i. Thus,
(4) R04 ∼ C16i

The method calls R05 and C18i are on the object lock[i].
We consider two cases for the linearization order of them and prove that R returns A in both cases.
We consider two cases
Case 1:

(5) R04 ≺lock[i] C18i
By P2X and the algorithm, we have

(6) C02i ≺H C16i
(7) R04 ≺H R05

By the Lemma XXTrans on [6], [4], and [7], we have
(8) C02i ≺H R05

By the Lemma X2L on [8], we have
(9) C02i ≺lock[i] R05

By the Lemma TryLockReadM on [9] and [5], we have that
R05 returns true i.e. l = true

50

Thus,
The validation check fails and R returns A.

Case 2:
(10) C18i ≺lock[i] R04
By P2X and the algorithm, we have

(11) R03 ≺H R04
(12) R05 ≺H R06
(13) C16i ≺H C17i
(14) C17i ≺H C18i

By the Lemma XXTrans on [11], [4], and [13], we have
(15) R03 ≺H C17i

By Lemma 54 on [15], we have
(16) s1 < wver

By the Lemma XLTrans on [14], [10], and [12], we have
(17) C17i ≺H R06

By Lemma 53 on [17], we have
(18) s2 > wver

From [15] and [17], we have
(19) s1 6= s2

Thus,
The validation check fails and R returns A.

Second, we show that
(20) The register reg[i] is sequentially-written i.e. no two write methods on reg[i] are concurrent.
We assume two concurrent write method calls on reg[i] and show a contradiction.
Figure 11 depicts this situation.

T T ′

C02i . locked = lock[i].trylock()

... C02′i . locked′ = lock[i].trylock()

...

C16i . v = reg[i].write(v) C16′i . v′ = reg[i].write(v′)

... ...

C18i . lock[i].unlock()

C18′i . lock[i].unlock()

Figure 11: reg[i] is sequentially-written

We assume that C16i and C16′i are concurrent. Thus,
(21) C16i ∼ C16′i

By P2X and the algorithm, we have
(22) C02i ≺H C16i
(23) C16′i ≺H C18′i

By the Lemma XXTrans on [22], [21], and [23], we have
(24) C02i ≺H C18′i

By the Lemma X2L on [8], we have
(25) C02i ≺lock[i] C18′i

By the Lemma TryLock on [25], we have that

51

(26) C18i ≺lock[i] C02′i
By P2X and the algorithm, we have

(27) C16i ≺H C18i
(28) C02′i ≺H C16′i

By the Lemma XLTrans on [27], [26], and [28], we have
(29) C16i ≺H C16′i

That is a contradiction to [21].

By the Lemma BReg on [3], and [20], we have
(30) There is a write method call w on reg[i] such that

The argument of w is equal to the return value of R04.
The last write method call on reg[i] that is executed before R04 is w.

By the algorithm, we have
(31) The register reg[i] is written only at C16i.

From [28] and [29], we have
There is a transaction T ′ such that

(We annotate the labels and variables of T ′ by a prime
so that they do not conflict with the labels and variables of T .)

(32) The argument of C16′i is equal to the return value of R04.
(33) The last write method call on reg[i] that is executed before R04 is C16′i.

By the algorithm, we have
(34) The argument of C16′i is the value of the key i in the map wset[T ′] in the commit.
(35) The map wset[T ′] is updated only at W01 in a write of T ′ such that

The key is equal to the first argument of the write.
The value is equal to the second argument of the write.

From [34], and [35], we have
(36) There exists a write W of T ′

(37) The first argument of W is equal to i.
(38) W is the last write of T ′ with the first argument equal to i.
(39) The second argument of W is equal to the argument of C16′i.

From [1], and [37], we have
(40) The first argument of R is the first argument of W .

From [2], [32], and [39], we have
(41) The return value of R is the second argument of W .

From [38], we have
(42) W is a global write.

We show that
(43) The transaction T ′ is the last pre-accessor of R.
From [33], we have

(44) C16′i ≺H R04
By Definition 13 on [44], we have

(45) T ′ < R

Now, we show that
(46) Every transaction T ′′ other than T ′ that accesses i before R, takes effect before T ′.
We assume that

(47) T ′′ 6= T ′

52

(48) T ′′ < R
We should show that
T ′′ < T ′

By Definition 13 on [48], we have
(We annotate the labels and variables of T ′ by a double prime.)

(49) C16′′i ≺H R04
From [33], [33], and [49], we have

(50) C16′′i ≺H C16′i
Consider Figure 12.

T ′′ T ′

C02′′i . locked′′ = lock[i].tryLock()

... C02′i . locked′ = lock[i].tryLock()

C07′′ . wver′′ = clock.iaf() ...

... C07′ . wver′ = clock.iaf()

C16′′i . reg[i].write(v′′) ...

... C16′i . reg[i].write(v′)

C18′′i . lock[i].unlock() ...

C18′i . lock[i].unlock()

Figure 12: Effect-order of pre-accessors

By P2X and the algorithm, we have
(51) C02′′i ≺H C16′′i
(52) C16′i ≺H C18′i

By the Lemma XXTrans on [51], [50], and [52], we have
(53) C02′′i ≺H C18′i

By the Lemma X2L on [53], we have
(54) C02′′i ≺lock[i] C18′i

By the Lemma TryLock on [45], we have that
(55) C18′′i ≺lock[i] C02′i

By P2X and the algorithm, we have
(56) C07′′i ≺H C18′′i
(57) C02′i ≺H C07′i

By the Lemma XLTrans on [56], [55], and [57], we have
(58) C07′′ ≺H C07′

By Definition 13 on [58], we have
T ′′ < T ′.

The conclusion is
[36], [42], [40], [41], and [43]

2

Lemma 56 TL2 is local-write-observant.

∀H ∈ H(TL2) :
∀R ∈ LocalTReads(H) : Let T = transH(R), i = arg1H(R), H ′ = H|T |i :
∃W ∈ TWrites(H ′) :

W ≺H′ R ∧ NoWriteBetweenH′(W,R) ∧
retvH′(R) = arg2H′(W)

53

Proof Sketch.
Let

(1) The operation R is a local read with the first argument i by the transaction T .
From [1], as R is local, we have

(2) There is a write operation before R with the first argument i by T .
From [2], let

(3) The operation W is the last write operation before R with the first argument i by the
transaction T .

By the algorithm
(4) The value of a key i in wset is updated only at W01 in a write operation with the first argument i

and the value of the key i is updated to the second argument of the write operation.
From [3] and [4], we have

(5) The value of a key i in wset during the execution of R is equal to the second argument of W .
Thus, by the algorithm

(6) R01-R02 find a value for the key i in wset.
Thus,

(7) The return value of R is equal to the value of key i in wset.
From [7] and [5], we have

(8) The return value of R is equal to the second argument of W .
The conclusion is

[3] and [8]
2

Lemma 57 TL2 is write-observant.

∀H ∈ H(TL2) : W riteObs(H,v)

Proof. Immediate from Lemma 56 and Lemma 55. 2

54

Lemma 58 TL2 is real-time-preserving.

∀H ∈ H(TL2) : RealT imePres(H,v)

Proof Sketch.
We assume that

(1) T ��H T ′

We show that
T v T ′

By the definition of ��H , from [1], we have
(2) All the operations of T are executed before all the operations of T ′.

By the Lemma X2L, from [2], we have
(3) All the operations of T on clock are linearized before all the operations of T ′ on clock.

By Definition 13,
(4) The effect point of each transaction is one of its own operations on the clock object.

From [3] and [4], we have
(5) The transaction T takes effect before the transaction T ′.

that is
T v T ′

2

Lemma 59 The relation v is a marking relation.

∀H ∈ H(TL2) : v ∈Marking(H)

Proof Sketch.
Consider Definition 13.
By the totality of the linearization order ≺clock, the relation v is a total on the set of transactions.
As every pair of method calls either execute in order or concurrently, every read operation of a location i

is ordered either before or after every writer to i. In addition, as no method call can execute before another
method call and also after after or concurrent to it, no read operation of a location i is ordered both before
and after a writer to i.

2

55

Lemma 60 TL2 is markable.

∀H ∈ H(TL2) : H ∈ F inalStateMarkable

Proof.
Immediate from Lemma 59, Lemma 51, Lemma 57, and Lemma 58.

2

Theorem 61 TL2 is opaque.

∀H ∈ H(TL2) : H ∈ F inalStateOpaque

Proof.
Immediate from Lemma 60, and Theorem 18.

2

56

7 Marking DSTM (visible reads)

T :
Loc {

writer : BasicRegister,
rset : BasicSet,
oldV al : BasicRegister,
newV al : BasicRegister},

state : AtomicCASRegister[],
start : AtomicCASRegister[]

D :

def initt() def writet(i, v)
I01 . state[t].write(R), W01 . r1 = start[i].read(),
I02 . return ok, W02 . w = r1.writer.read(),
def readt(i) if (w = t)
R01 . r1 = start[i].read(), W03 . r1.newV al.write(v),
R02 . v = currentV aluet(r1), W04 . return ok,
R03 . r2 = clone(r1),
R04 . r2.rset.add(t), W05 . v2 = currentV aluet(r1),
R05 . rd = start[i].cas(r1, r2), W06 . foreach (t2 ∈ r1.rset)
R06 . s = state[t].read(), W07 . state[t2].cas(R,A),

if (¬rd ∨ (s = A))
R07 . return A W08 . r2 = new Loc(),

else W09 . r2.writer.write(t),
R08 . return v, W10 . r2.oldV al.write(v2),
{R05→ R06}, W11 . r2.newV al.write(v),
def committ() W12 . wd = start[i].cas(r1, r2),
C01 . c = state[t].cas(R,C), if (wd)

if (c) W13 . return ok
C02 . return C else

else W14 . return A
C03 . return A, {W06→W12}
def currentV aluet(r)
V 01 . t2 = r.writer.read(),

if (¬(t2 = t))
V 02 . state[t2].cas(R,A),
V 03 . s = state[t2].read(),

if (s = A)
V 04 . return r.oldV al

else
V 05 . return r.newV al,

Figure 13: DSTMV is DSTM (visible reads) Algorithm Specification

57

Notation. Let us remind the notation. Consider an execution history H.
We write e1 �H e2 to denote that the event e1 comes before the event e2 in the history H.
We use l1 ≺H l2 to denote that l1 is executed before l2. We use l1 ∼H l2 to denote that l1 is executed

concurrently to l2. We use l1 -H l2 to denote that l1 is executed before or concurrently to l2.
We use ≺start[i] to denote the linearization order of start[i].
A label c1’c2 is a call string that denotes a method call labeled c2 that is executed in the body of the

method call labeled c1.
We use initOfH(T) and commitOfH(T) to denote the init and commit method calls of the transaction

T in the history H. We use LastTReadH(T) to denote the last read method call by the transaction T in the
history H. We use FirstTWriteH(T, i) to denote the first write method call to location i by the transaction
T in the history H.

Marking Relation. Now, we define the marking relation for DSTM.

Definition 14 (Marking DSTM) Consider an execution history H ∈ H(DSTMV is). Let

Eff(T) =


commitOfH(T)’C01 if T ∈ Committed(H)

LastTReadH(T)’R05 if T ∈ Aborted(H) ∧ TReads(H) 6= ∅
initOfH(T)’I01 if T ∈ Aborted(H) ∧ TReads(H) = ∅

readAcc(R) = R’R05

writeAcc(T, i) = FirstTWriteH(T, i)’W12

The marking v for H is the reflexive closure of < that is define as follows:

{(T, T ′) | T, T ′ ∈ Trans(H) ∧ inv(Eff(T))�H inv(Eff(T ′))} ∪
{(T,R) | ∃i : R ∈ GlobalTReads(H), i = arg1(R), T ∈WritersH(i) ∧ writeAcc(T, i) ≺start[i] readAcc(R)} ∪
{(R, T) | ∃i : R ∈ GlobalTReads(H), i = arg1(R), T ∈WritersH(i) ∧ readAcc(R) ≺start[i] writeAcc(T, i)}

A committed transactions takes effect at the invocation event of C01, the cas method call in its commit
method call. An aborted transaction that has a successful read method call takes effect at the invocation
event of R05 of its last successful read method call. An aborted transaction that has no successful read
method call takes effect at the invocation event of I01 in its initialization method call.

The access point of a read method call is at R05. The access point of a writer transaction to location i
is at W12 of its first write method call to i.

58

8 Marking NORec

T :
seqLock : SeqLock,
reg : BasicRegister[]
snap : ThreadLocal BasicRegister,
rset : ThreadLocal BasicMap,
wset : ThreadLocal BasicMap,

D :

def initt() def validatet()
do V 01 . while (true)

I01 . (s, l) = seqLock.read() do
while (l), V 02 . (s1, l1) = seqLock.read(),

I02 . snap[t] = s, while (l1)
def readt(i) foreach ((i, v) ∈ rset[t])
R01 . pv = wset[t].get(i), V 03i . v′ = reg[i].read(),

if (pv 6= ⊥) if (v 6= v′),
R02 . return pv, V 04i . return false,

do V 05 . (s2, l2) = seqLock.read(),
R03 . v = reg[i].read(), if (s2 = s1 ∧ ¬l2)
R04 . s1 = snap[t].read(), V 06 . snap[t].write(s1),
R05 . (s2, l2) = seqLock.read(), V 07 . return true,

if (s2 = s1 ∧ ¬l2) {V 02→ V 03i, V 03i → V 05},
R06 . break, def committ()
R07 . b = validatet(), C01 . e = wset[t].isEmpty(),

if (¬b) if (e)
R08 . return A, C02 . return C,

while (true), do
R09 . rset[t].put(i, v), C03 . s = snap[t].read(),
R10 . return v, C04 . d = seqLock.compareAndLock(s),
{R03→ R05}, if (d)
def writet(i, v) C05 . break,
W01 . wset[t].put(i, v), C06 . b = validatet(),
W02 . return ok, if (¬b)
def abortt() return A,
A01 . return A while (true),

foreach ((i, v) ∈ wset[t])
C07i . reg[i].write(v),
C08 . seqLock.incAndUnlock(),
C09 . return C
{C04→ C07i, C07i → C08},

Figure 14: NORec NORec Algorithm Specification

59

Notation. Let us remind the notation. Consider an execution history H.
We use l1 ≺H l2 to denote that l1 is executed before l2. We use l1 ∼H l2 to denote that l1 is executed

concurrently to l2. We use l1 -H l2 to denote that l1 is executed before or concurrently to l2.
We use ≺seqLock to denote the linearization order of seqLock.
A label c1’c2 is a call string that denotes a method call labeled c2 that is executed in the body of the

method call labeled c1.
We use initOfH(T) and commitOfH(T) to denote the init and commit method calls of the transaction

T in the history H.
Marking Relation. Now, we define the marking relation for NoRec.

Definition 15 (Marking NoRec) Consider an execution history H ∈ H(NORec). Let

REff(T) = The last execution of I01 or V 05

Eff(T) =

{
REff(T) if T ∈ Aborted(H) ∨ TWrites(H) = ∅
commitOf(T)’C04 if T ∈ Committed(H) ∧ TWrites(H) 6= ∅

readAcc(T, i) =

{
R’R03 if REff(T) ≺H R’R03

Let REff(T) = V ’V 05 in V ’V 03i if R’R03 ≺H REff(T)

writeAcc(T, i) = commitOf(T)’C07i

The marking v for H is the reflexive closure of < that is define as follows:

{(T, T ′) | T, T ′ ∈ Trans(H) ∧ Eff(T) ≺seqLock Eff(T ′)} ∪
{(T,R) | ∃i : R ∈ GlobalTReads(H), i = arg1(R), T ∈WritersH(i) ∧ writeAcc(T, i) ≺H readAcc(T, i)} ∪
{(R, T) | ∃i : R ∈ GlobalTReads(H), i = arg1(R), T ∈WritersH(i) ∧ readAcc(T, i) ≺H writeAcc(T, i)}

An aborted transaction or a read-only transaction takes effect at the last execution of I01 or V 05. This
method call reads that most recent snapshot value that the transaction is still consistent for. A committed
transactions that has write method calls takes effect at C04.

The access point of a read method call is at R03 if the last recent snapshot is read before R03; otherwise,
it is at V 03i of the latest successful validate method call. The access point of a writer transaction to location
i is at C07i.

60

9 The Cost of Read Validation

The read-preservation invariant requires the TM algorithm to check that a read location is not overwritten
between the point where the location is read and the point where the transaction takes effect. This require-
ment motivated us to study how read-preservation can influence the time complexity of TM operations and
helped us construct client scenarios that exhibit lower bounds. We present a generalization of the seminal
lower bound result presented in [2]. Let us first remind some definitions from previous works on the inherent
complexity of TM [1,2, 4, 5].

An aborted transaction that did not invoke an abort operation is said to be forcefully aborted. We say
that two transactions conflict if they access the same location and one of them writes to the location. A
TM algorithm is (weakly) progressive if and only if it forcefully aborts a transaction only when it conflicts
with a live transaction. More precisely, it aborts a transaction only when there is a time t at which it
conflicts with another concurrent transaction that is live at time t (not committed or aborted by time t). In
addition to providing progress, progressive TM algorithms are expected to retry transactions less frequently
and therefore, improve performance.

A TM algorithm is invisible-reads if and only if no read operation mutates any base object. Mutating
base objects can potentially invalidate the caches and adversely affect performance. Thus, most high-
performance TM algorithms are invisible-reads. A transaction is read-only if and only if it does invoke any
write operations. We assume that the abort operation for a read-only transaction does not mutate any base
shared object.

Two transactions contend on a base object o if and only if they access o and at least one of them mutates
o. A TM algorithm is (strictly) disjoint-access-parallel if and only if two transactions contend on a base
object only if they access a common memory location. Disjoint-access-parallelism can improve scalability as
transactions that access disjoint memory locations access disjoint base objects.

A TM algorithm is single-version if and only if it stores a single value for each memory location in the
base objects.

Theorem 62 The time complexity of the commit operation of every opaque, progressive, disjoint-access-
parallel and invisible-reads TM algorithm is Ω(|R|) where R is the read set.

We explain the key idea here and then present the proof. Consider a TM algorithm TM that is opaque,
progressive, disjoint-access-parallel and invisible-reads. Consider the following client scenario. Invoke the
following methods in sequence. Wait for the response of the method call of each step before going to the next
step. (1) initT1(), (2) readT1(i) (3) initT2(), (4) writeT2(i, v1), (5) commitT2(), (6) initT3(), (7) readT3(j),
(8) abortT3(), (9) writeT1(j, v1), (10) commitT1(). As the TM is opaque, progressive and invisible-reads, it
can be shown that it results in the history H1 depicted in Figure 15(a). The initializing transaction T0 (that
initializes every location to v0) and also the initializing operations of transactions are elided for brevity.

To make sure that the read location i is not overwritten, the commit operation of T1 should access a
shared object that T2 (that is a writer of i) mutates. Assume otherwise i.e. the commit operation of T1
does not access any shared object that T2 mutates. Thus, T2 is invisible to T1. As TM is invisible-reads,
it can be shown that T3 is invisible to other transactions. As T2 and T3 are invisible to T1, removing them
from the client scenario does not affect the responses that T1 receives. Therefore, the execution of T1 alone
results in the execution history H2 depicted in Figure 15(b). As there is no conflicting transaction and TM
is progressive, TM cannot forcefully abort the commit operation of T1. The commit operation should have
returned C but has returned A that is a contradiction. Therefore, we conclude that the commit operation of
T1 accesses a shared object that T2 mutates. The scenario can be trivially extended to an arbitrary location k
in the read setR by generalizing the transaction T2 with the transaction T k2 = writeTk

2
(k, v1)·commitTk

2
(). It

can be shown that for every k ∈ R, the commit operation of T1 accesses a shared object that the transaction

61

T k2 mutates. The transactions {T k2 | k ∈ R} access disjoint locations. As TM is strictly disjoint-access-
parallel, these transactions access disjoint shared objects. Thus, the commit operation of T1 accesses a
separate shared object for every k ∈ R. Therefore, the commit operation of T1 accesses at least |R| shared
objects. Therefore, the time complexity of the commit operation of T1 is Ω(|R|).

This theorem shows that designers should pick at least one of the following sources of inefficiency in the
design of every opaque TM algorithm: aborting non-conflicting transactions, sharing base objects between
transactions that access disjoint locations, visible reads or linear-time complexity of the commit method.
As an example, TL2 shares the clock object between all transactions and is, therefore, not disjoint-access-
parallel. In addition, it has linear-time read-validation in the commit method.

Proof.
Consider a TM algorithm TM that is opaque, progressive, disjoint-access-parallel and invisible-reads. We
describe the following client scenario with three transactions T1, T2 and T3 and consider its execution with
TM .

1. Invoke initT1() and wait for the response.

2. Invoke readT1(i) and wait for the response.

3. Invoke initT2() and wait for the response.

4. Invoke writeT2(i, v1) and wait for the response.

5. Invoke commitT2() and wait for the response.

6. Invoke initT3() and wait for the response.

7. Invoke readT3(j) and wait for the response.

8. Invoke abortT3() and wait for the response.

9. Invoke writeT1(j, v1) and wait for the response.

10. Invoke commitT1() and wait for the response.

The resulting history H1 for this scenario is depicted in Figure 15(a). The initializing transaction T0 (that
initializes every location to v0) and also the initializing operations of each transaction are elided for brevity.

The transaction T1 first invokes the init and then a read operation on the location i. As TM is progressive
and T1 is not in conflict with any other transaction, TM does not forcefully abort the read operation.
Therefore, it returns a value. As TM is opaque, there should be a justifying history S for the current
execution history (after the read operation returns). As the initializing transaction T0 is executed before T1,
the real-time-order property requires T0 to be ordered before T1 in S. The transaction T0 writes the initial
value v0 to every location and commits. Thus, the read operation returns v0.

Then, the transaction T2 invokes the init and then a write operation to i with the value v1 and then
invokes the commit operation. As TM is invisible-reads, the read operation of T1 is invisible to T2. Thus,
T2 does not observe any inconsistency and as TM is progressive, both the write and commit operations are
successful.

Next, the transaction T3 invokes the init and then a read operation on the location j and then invokes
the abort operation. As there are no conflicting operations on j and TM is progressive, the read operation is
not forcefully aborted. Therefore, it returns a value. As TM is opaque, there should be a justifying history
S′ for the current execution history (after the read operation returns). As the initializing transaction T0 is
executed before T3, the real-time-order property requires T0 to be ordered before T3 in S′. The transaction

62

r(i):v
0

w(j,v
1
) c:�

w(i,v
1
) c:ℂ

r(j):v
0 a:�

T
1

T
2

T
3

(a) H1

r(i):v
0

w(j,v
1
) c:�T

1

(b) H2

Figure 15: The execution histories constructed by the scenarios in the proof of Theorem 62. The letters
r, w, c, and a abbreviate read, write, commit and abort operations. The initializing transaction T0 (that
initializes every location to v0) and also the initializing operations of each transaction are elided.

T0 is the only committed transaction that has written to j. Thus, the read operation returns the initial
value v0.

Next, the transaction T1 invokes a write operation on location j with the value v1. When this write
operation is invoked, neither T2 nor T3 are alive and TM is progressive. Therefore, TM does not forcefully
abort the write operation. Finally, T1 invokes the commit operation. We show that the commit operation
aborts i.e. returns A. Let us assume otherwise, i.e. T1 commits. As TM is opaque, there is a justifying history
S′′ for H1 i.e. S′′ is a sequential history that is equivalent to H1, is real-time-preserving and is a member of
transactional sequential specification. As T2 is executed before T3 in H1, the real-time-preservation property
requires T2 to be before T3 in S′′. Thus, there are three possible transaction orderings for S′′. We show that
none of them is a justifying history.

• S′′ = H1|T0 ·H1|T1 ·H1|T2 ·H1|T3
We have that V isible(S′′, T3)|j = writeT0(j, v0) · writeT1(j, v1) · readT3(j):v0 /∈ SeqSpec(j). The read
operation is expected to return the value v1 but has returned v0. Thus, S′′ is not a justifying history.

• S′′ = H1|T0 ·H1|T2 ·H1|T1 ·H1|T3
Similar to the previous case, V isible(S′′, T3)|j = writeT0(j, v0)·writeT1(i, v1)·readT3(j):v0 /∈ SeqSpec(j).
The read operation is expected to return the value v1 but has returned v0. Thus, S′′ is not a justifying
history.

• S′′ = H1|T0 ·H1|T2 ·H1|T3 ·H1|T1
We have that V isible(S′′, T1)|i = writeT0(i, v0) · writeT2(i, v1) · readT1(i):v0 /∈ SeqSpec(i). The read
operation is expected to return the value v1 but has returned v0. Thus, S′′ is not a justifying history.

Thus, we arrive at a contradiction. Therefore, we conclude that the commit operation of T1 returns A.
Now, we argue that the commit operation of T1 should access a shared object that T2 mutates. Assume

otherwise i.e. the commit operation of T1 does not access any shared object that T2 mutates. Thus, T2 is
invisible to T1. As TM is invisible-reads, the read operation of T3 does not mutate any shared objects.
Furthermore, T3 is a read-only transaction. Thus, its abort operation does not mutate any shared objects.
Therefore, T3 is invisible to other transactions. As T2 and T3 are invisible to T1, removing them from the
client scenario does not affect the responses that T1 receives. Therefore, the execution of T1 alone results

63

in the execution history H2 depicted in Figure 15(b). As there is no conflicting transaction and TM is
progressive, TM cannot forcefully abort the commit operation of T1. The commit operation should have
returned C but has returned A that is a contradiction. Therefore, we conclude that the commit operation
of T1 accesses a shared object that T2 mutates.

In the above client scenario, the read set of T1 was the singleton set i. The scenario can be trivially
extended to an arbitrary location k in a read set R.

1. Invoke initT1() and wait for the response.

2. For each i ∈ R:

2.1. Invoke readT1(i) and wait for the response.

3. Invoke initTk
2

() and wait for the response.

4. Invoke writeTk
2

(k, v1) and wait for the response.

5. Invoke commitTk
2

() and wait for the response.

6. Invoke initT3() and wait for the response.

7. Invoke readT3(j) and wait for the response.

8. Invoke abortT3() and wait for the response.

9. Invoke writeT1(j, v1) and wait for the response.

10. Invoke commitT1() and wait for the response.

A similar reasoning concludes that for every k ∈ R, the commit operation of T1 accesses a shared object
that T k2 mutates.

The transactions T k2 (for k ∈ R) access disjoint locations. As TM is strictly disjoint-access-parallel, the
transactions T k2 (for k ∈ R) access disjoint shared objects. Thus, the commit operation of T1 accesses a
separate shared object for every k ∈ R. Therefore, the commit operation of T1 accesses at least |R| shared
objects. Therefore, the time complexity of the commit operation of T1 is Ω(|R|).

2

Theorem 63 The time complexity of the commit operation of every opaque, progressive, and invisible-reads
TM algorithm that stores information about a constant number of locations in each shared object is Ω(|R|)
where R is the read set.

The proof of this theorem uses the same client scenario as the proof of Theorem 62. The main difference
is the final step of reasoning. As information about a constant number c of locations can be obtained from
each shared object, the commit operation of T1 has to read at least |R|/c shared objects.

Proof.
The proof of this theorem flows similar to the proof of Theorem 62 to the point that we have that

(1) For every k ∈ R, the commit operation of T1 reads a shared object that T k2 mutates.

We have that
(2) Each transaction T k2 accesses a separate location k.

From the premises we have that

64

(3) Information about a constant number c of locations is stored in each shared object.
From 2 and 3, we have that

(4) At most c of the set of writer transactions T k2 , k ∈ R can write to the same shared object.

From 1 and 4, we have
The commit operation of T1 has to read at least |R|/c shared objects.

Therefore,
The time complexity of the commit operation of T1 is Ω(|R|). 2

We restate Theorem 3 of [2] below. Our Theorem 63 generalizes this theorem by dropping the single-
version requirement. Note that the assumption about limited capacity of shared objects is stated before the
theorem in [2] and explicitly in the theorem here.

Theorem 64 (Theorem 3 of [2]) The time complexity of every opaque, progressive, single-version and
invisible-reads TM algorithm that stores information about a constant number of locations in each shared
object is Ω(|I|) (where I is the set of locations).

65

References

[1] Hagit Attiya, Eshcar Hillel, and Alessia Milani. Inherent limitations on disjoint-access parallel imple-
mentations of transactional memory. Theory of Computing Systems, 49(4), 2011.

[2] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPOPP, 2008.

[3] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Model checking transactional memories.
Distributed Computing, 2010.

[4] Rachid Guerraoui and Michal Kapalka. On obstruction-free transactions. In SPAA, 2008.

[5] Dmitri Perelman, Rui Fan, and Idit Keidar. On maintaining multiple versions in stm. In PODC, 2010.

66

	Histories
	Opacity
	Markability
	Marking Theorem
	Synchronization Object Types
	Marking TL2
	Marking DSTM (visible reads)
	Marking NORec
	The Cost of Read Validation

