Appendix

IX. ¥5-COMPLETENESS

In this section, we give the complete, detailed proof described
in VL. That is, we consider the complexity of determining
whether a swap system has an atomic swap protocol, showing
that this problem is ¥5-complete. Recall that X5 = NP is the
class of problems at the 2nd level of the polynomial hierarchy
that consists of problems solvable non-deterministically in
polynomial time with an NP oracle.

Our proof is based on a reduction from a restricted variant
of the 3VDNF problem. An instance of IVDNF is a boolean
expression @ = IxVyS3(x,y), where x = (x1,..., %) and
y = (y1,...,y;) are vectors of boolean variables and 5(x,y)
is a quantifier-free boolean expression in disjunctive normal
form, that is S(x,y) = 71 V 72 V ... V Ty, and each term 7,
is a conjunction of literals involving different variables. The
goal is to determine whether « is true. 3VDNF is a canonical
¥ -complete problem [29], [26]°. The problem remains -
complete even restricted to instances where each term in 5 has
only three literals. We denote this variant by 3¥3DNF.

Throughout this section, the negation of a boolean variable
x,; will be denoted ;. We will also use notation Z; for an
unspecified literal of x;, that is Z; € {x;,7;}. The same
conventions apply to the variables y;.

The restriction of IVDNF that we use in our proof, denoted
IVYDNF,, consists of instances o = IxVy/3(x,y) where each
term of § includes exactly one x-literal and one or more
y-literals that ifnvolve different variables.

We first prove the following lemma:

Lemma 4. 3VDNF,, is X5-complete.

Proof. We show how to convert a given instance a =
IxVyB(x,y) of IV3DNF into an instance o’ of IVDNFy,
such that « is true iff o' is true.

First, we can assume that 3 does not have terms with only
x-literals, since such formulas « are trivially true. All terms
that have exactly one x-literal will remain unchanged.

Consider a term with two x-literals, say 74 = T, A T4 A ¥-.
Add another variable 3 and replace 7, by (Z, A g AY') V
(§" N Zq A Yr). Let 5" be the boolean expression obtained
from S by this replacement, and o' = IxVyVy' 5 (x,y,y).
Then, by straightforward verification, « is true for a given
truth assignment for x if and only if o is true for the same
assignment for x.

By applying these replacements, we will eventually eliminate
all terms that have two or zero x-literals, thus converting «
into the 3VDNF4, form. O

Theorem 6. Let SwapAtomic be the decision problem of
deciding whether a swap system has an atomic protocol.
SwapAtomic is X5 -complete.

Notations for this problem and its variants vary across the literature. Our
notations use the convention in [29].

Proof. According to Theorem 3, a swap system S = (D, P)
has an atomic swap protocol if and only if D has a spanning
subgraph G with the following properties: (c.1) G is piece-
wise strongly connected and has no isolated vertices, (c.2) G
dominates D, and (c.3) no subgraph H of D strictly dominates
G. This characterization is of the form 3G (=3H : (G, H)),
where 7(G,H) is a polynomial-time decidable predicate, so
it immediately implies that SwapAtomic is in 5. Thus it
remains to show that SwapAtomic is %5 -hard.

To prove Y5-hardness, we give a polynomial-time reduction
from the above-defined decision problem dVDNF;,. Let the
given instance of IVDNFy, be a = IxVyS(x,y), where x =
(z1,...,2x) and y = (y1, ..., y;) are vectors of boolean variables
and B(x,y) = V72 V...VTy,, with each 7, being a conjunction
of one x-literal and one or more y-literals. Our reduction
converts « into a swap system S = (D,P) such that « is
true if and only if D has a spanning subgraph G that satisfies
conditions (c.1)-(c.3) from Theorem 3.

The following informal interpretation of IVDNF;, will
be helpful in understanding our reduction. Say that a truth
assignment to some variables kills a term 7, if it sets one of
its literals to false. A truth assignment ¢ to the x-variables
will kill some terms, while other will survive. Thus o will
be true for assigment ¢ iff there is no assignment 1) for the
y-variables that kills all terms that survived ¢. In our reduction,
the existence of this assigment ¢ will be represented by the
existence of subgraph G. The non-existence of 7/ that kills all
terms that survived ¢ will be represented by the non-existence
of a subgraph 7 that strictly dominates G.

We now describe our reduction. The digraph D will consists
of several “gadgets”. There will be 3-gadgets, which correspond
to the variables x; and will be used to set their values, through
an appropriate choices of subgraph G. Then there is the V-
gadget, that contains “sub-gadgets” representing the literals 7;
and the terms 7,. These gadgets will allow for the values of
the variables y; to be set in all possible ways. If any setting of
these values kills all terms not yet killed by the variables z;,
this gadget will contain a subgraph #H that strictly dominates
g.

In addition to these gadgets, digraph D has three auxiliary
vertices a, @’ and b. Vertices a and o’ are connected by arcs
(a,a’) and (a’,a). Vertex a also has some outgoing arcs that
will be described later. Vertex b is connected by arcs to and
from all other vertices of D except a and a’.

Next, we describe the gadgets (for now, we specify only
their vertices and arcs — the preference posets will be defined
later). The 3-gadget corresponding to z; is shown in Figure 9.
It’s constructed as follows:

— For i =1, ..., k, create vertices x;, T;, z; and Z;, with arcs
(a,z:), (a,%i), (a,2), (a,Zi), (i, %i), (T4, 2i), (w4, 2i),
and (Z;, z;). Throughout the proof we will use notation
z; for the vertex corresponding to Z;, that is z; = z; if
T; =x;, and Z; = z; if &; = T;.

The V-gadget is shown in Figure 10. It’s constructed as
follows:

to 7,’s that contain z;

(o

to and from all
nodes except a and a’

to 7,’s that contain Z;

Fig. 9. The construction of digraph D in the proof of Eg -hardness. This figure shows vertices a, a’, b, and an 3-gadget for variable z;. The arcs to and from

b are shown as bi-directional arrows at b.

from x-nodes and z-nodes

G —C—CD

from y-nodes

do)

@

) o

to and from
all nodes
except a and o’

Fig. 10. The construction of digraph D in the proof of Eg—hardness. This figures shows the V-gadget, namely the part of D that contains the vertices that
simulate setting the values of the y;-variables and the terms 7,4. The arcs to and from b are shown as bi-directional arrows at b.

— For j =0, ..., 1, create vertices g;. For j = 1,...,1, create
vertices y; and y; and arcs (¢;—1,v;), (g1, ;) (Y5, ;)
and (g, ¢j)-

— For g = 0,...,m, create vertices py. For g = 1, ...
create vertices 7, and arcs (pgy_1,7y) and (74,Dpg).

— Create arcs (g;,po) and (P, qo)-

— For each g = 1, ..., m, and for each literal y; in 7,4, create
arc (g;,7g)-

To complete the construction of D, we add arcs between
J-gadgets and the V-gadget:

— For each g = 1,...,m, if Z; is the x-literal in 7, (there
is exactly one, by the definition of IVDNF;,), create arcs
(i‘i, Tg) and (Zz, Tg).

Next, we need to define preference posets for all vertices. As
explained in Section II, all preference posets are specified by
their list of generators. An outcome (w®” | w°“?) of each vertex
v is specified by lists w® and w°** of its in-neighbors and out-
neighbors, respectively. With this convention, the generators
of all preference posets are:

— Vertices a, a/, and b do not have any generators.

— The generators for the 3-gadget corresponding to variable
x; are as follows. For each literal z;, its generators are
DEAL;, < (b|b,%;,T(%;)) and DEALz, < (b, Z;|b, Z;),
where 7; is the negation of #; and T'(Z;) is the set of terms
that contain literal ;. The generators of z; are DEALz, <
(b|b) and DEAL; < (b,%; | b, T'(Z;)).

— For each literal g, its generators are DEALg, < (b|b) and
(b]b) < (gj—11qj,T(g;)). The generators of g;, where
j & {0.1}. are DEAL,, < (b]6) and (b]B) < (3 | 741).
for all literals gj € {yj, 37]} and gj-‘rl € {yj+1,gj+1}.

, M,

— The generators of gy are DEAL,, < (b|b) and (b|b) <
(pm |91), for all §; € {y1,71}. The generators of g
are DEAL, < (b|b) and (b|b) < (g |po), for all
o€ {y Ui}

— For each term 7,4, letting Z; be the unique x-literal in
Ty, its generators are: DEAL,, < (b, Z;|b), (b,%;|b) <
(pg—1,L|pg) for any subset L of the y-literals in 7,
DEAL,, < (b,Z|b), and (b, %; |b) < (pg—1,L’|pgy) for
any non-empty subset L' of the y-literals in 74. For each
Py, Where g ¢ {0, m}, its generators are DEAL, < (b|b)
and (b]b) < (ry | 7y11).

— The generators of py are DEAL,, < (b|b) and (b|b) <
(qi| 7). The generators of p,, are DEAL, < (b|b) and
(b]b) < (7 | 0)-

With this, the description of S is complete. The construction
of § clearly takes time that is polynomial in the size of a.
Applying Theorem 3, it remains to show that « is true if and
only if D has a spanning subgraph G with properties (c.1)-(c.3).

The argument is based on several ideas. One, We design the
preference posets of Z;’s so that G is forced to choose between
two possible subsets of arcs within the 3-gadget. The choice
between these two subsets of arcs corresponds to choosing a
truth assignment for variable z;. We focus on the literals z; that
are set to false, since these kill the terms where they appear. If
Z; is set to false, its arcs to the terms 7,’s in which the literal
appears will be included in G (the first subset), otherwise its
arc to Z; will be included in G (the second subset).

Another idea is that vertices outside of the V-gadget have
their preference posets defined in such a way that their arcs in G
define an outcome that is already the best for them. Therefore,

if a subgraph H that strictly dominates G does indeed exist,
we know it must appear in the V-gadget. This leads into the
key idea of the V-gadget. The vertices in this gadget can have
outcomes that are better than their outcomes in G. All the arcs
in these better outcomes together form the cycle

C = go—>h—...—mn—q—

Po—>T1— --.Tm — Pm — Q0

2

for some choice of the literals ¢i,...,7;. We design the
preference posets of each 7, so that its outcome in G can
only be improved (specifically, towards C) only if it receives
an arc from one of its literals — in other words, if it is killed
by that literal. This way, G will have a strictly dominating
subgraph H (namely cycle C) only if all terms are killed, i.e.
when « is false. The formal proof follows.

(=) Suppose « is true. Fix some truth assignments x — ¢
for which VyS(¢,y) is true. This means that for each truth
assignment y — 1) the boolean expression [3(¢,) is true.
For each truth assignment y +— 10 we can thus choose an index
h(a) for which term 7,y is true.

Using this assignment x — ¢, we construct a spanning
subgraph G of D that satisfies the three conditions (c.1)-(c.3).
G will contain all vertices from the above construction and
all arcs that connect b to all other vertices except a and d,
in both directions. Vertices a and a’ will be connected by
arcs (a,a’) and (a’, a). This makes G spanning and piece-wise
strongly connected, with one strongly connected component
consisting of vertices a and a’ and the other consisting of all
other vertices. So (c.1) holds.

Next, we define the arcs of G for the vertices in the 3-gadgets.

For any given i, if ¢(x;) = 1, add to G the following arcs:
(x4, 2:), (T4, 24), all arcs (z;, 7;) for terms 7; € T'(x;), and all
arcs (Z;, 7;) for terms 7; € T'(Z;). Symmetrically, if ¢(z;) = 0,
add to G the following arcs: (Z;, Z;), (xi, Z;), all arcs (Z;, 75)

for terms 7; € T'(Z;), and all arcs (z;, 7;) for terms 7; € T'(x;).

(Note that we add the arcs from false literals to the terms that
they kill, and from true literals to the corresponding nodes Z;.)
We now need to verify conditions (c.2) and (c.3).

Condition (c.2) can be verified by routine inspection of all
nodes. For each vertex v we need to check that DEAL% =
DEAL?. For v € {d/,b}, we have DEALY = DEALP. For
v = a, DEALY = (d/|ad’) > DEALP. For v = &; there
are two cases: either DEALY = (b, Z;|b, %) (if ¢(Z;) = 1)
or DEALg = <b|b %;,T(%;)) (f ¢(F;) = 0); in both cases
DEALg > DEAL~ For v = Zz;, similarly, either DEALg =
(b, Z; |b T(#)) Gf ¢(&;) = 1) or DEALY = (b|b) (if qs(x,) =
0); in both cases DEALg = DEAL~ Fmally, we examine the
vertices in the V-gadget. Ifo € {pg}g N TR }] (U{g; }J ~0
then DEALY = (b|b) = DEALP. Consider a vertex v = 7,
for some g, and let Z; be the x-literal in 7. If ¢(Z;) = 1
then DEALg = (b, Z; |b), and if ¢(Z;) = O then DEALg =
(b, &; | b). In both cases, DEALg = DEAL

It remains to verify condition (c.3). Let 7—[be a subgraph of
D, and suppose that H dominates G, that is DEAL’! = DEALY
for all vertices v in ‘H. We will show that is possible only if

‘H is either equal to G or to one of the two strongly connected
components of G.

‘H cannot contain any arcs from a to literals Z;, because
then it would not dominate G at vertex a. There is also no
subgraph consisting of a and o’ that strictly dominates G. We
can thus assume that # is a subgraph of D’ = D\ {a, a’}. Let
also G’ = G\ {a,a’}. The rest of the argument is divided into
two cases, depending on whether # includes vertex b or not.

Suppose first that H includes vertex b. In this case, we claim
that H = G’, and therefore H does not strictly dominate G. To
show this, observe first that since DEALZ" > DEAng, ‘H must
contain all incoming arcs of b. So H must in fact contain all
vertices of D’. And each vertex v € D'\ {b} does not have
any outcome better than DEALY that does not have arc (b, v).
Therefore H must also contain all outgoing arcs of b.

The idea now is to show that for each vertex v € D'\ {b},
the outcome of v in G’ is already best possible among the
outcomes that have incoming and outgoing arcs from b. A more
formal argument actually focuses on arcs rather than vertices,
and involves two observations: (i) For each arc (u,v) € G,
vertex v does not have any outcome that does not include
incoming arc (u,v) and is better than DEALY. (ii) For each
arc (u,v) € D'\ G’, vertex u does not have any outcome that
includes outgoing arc (u,v) and is better than DEALY. These
observations imply that DEAL? > DALY for all v € T,
implying in turn that H# = G’, as claimed.

Both observations (i) and (ii) can be established through
routine although a bit tedious inspection of all arcs in D’.
(The process here is the same as in the NP-hardness proof in
Section X.)

We start with the vertices in the 3-gadgets. Consider some
Z; and suppose ¢(Z;) = 1 (symmetric for when ¢(z;) = 0).
There is no outcome of Z; better than DEAL%ch = (b, Z; | b, %)
that does not include the incoming arc (Z;,¥;). Also, there
is no better outcome that includes arc (Z;, Tj), for each term
7 € T(%;). For z,,DEALg = (b|b,2;, T(Z;)). There is no
outcome of F; better than DEALg that includes arc (Z;, Z;).
For a vertex Z; (still assuming that o(z;) = 1), DEALg =
DEALY = (b,%;|b,T(%;)); there is no better outcome that
does not include (&;, ;). Lastly, there is no outcome of Z;
better than DEALg_ = (b b).

We move on to the vertices in the V-gadget. For any vertex
v E {pg}zl:() U {gj}é‘:l U {QJ'};:O we have DEAL% = (b[b)
and, by the earlier argument, H contains arc (v, b). But this v
does not have any outcome with outgoing arc (v, b) that is better
than DEALg The argument when v = 7, for some g, is similar.
If the unique x-literal in 7, is Z;, then DEALg = (b, Z; | b) Gf
¢(%;) = 1) or DEALY = (b, %; |b) (if ¢(&)= 0). In cither
case, as before, there is no outcome better than DEALg among
the outcomes of 7, that contain an outgoing arc to b

Next, we consider the case when 7 does not include vertex
b. First, we observe that 7 cannot contain any vertices in the
3-gadgets (namely vertices z; and z;). This is because for these
vertices v there is no outcome that is better than DEALY and
does not include the incoming arc from b.

We can thus assume that # is a subgraph of the V-gadget.
(This is actually the most crucial case.) Let D" be the subgraph
of D induced by the vertices in the V-gadget. Observe that every
vertex v in D" has at least one outcome better than DEAL%
that does not include arcs to and from b, so now we need a
more subtle argument than the one we used earlier. For v = 7,
there are two cases. The first is when 7, has an incoming arc
from its unique x-literal Z; (which means ¢(Z;) = 0), in which
case DEAL% = (b, %; | b). By the preference poset of 74, 7,
can improve this outcome by switching to (pg—1,L | pg), for
any set L of the y-literals in 7,. That is, this 7, can improve
its outcome regardless of whether it receives any arcs from
its y-literals. The second case is when 7, does not have an
incoming arc from its x-literal Z; (which means ¢(Z;) = 1), in
which case DEALg = (b, Z; | b). By the preference poset of 7,
Ty can improve its ‘outcome by switching to (pg_1, L’ | pg) for
any non-empty subset L’ of the y-literals in 7,. That is, this
Ty can improve its outcome only if it receives an arc from at
least one of its y-literals. For v = g, DEAng = (b|b). By the
preference poset of ¢/;, §; can improve its outcome by switching
to (gj—1 | ¢;, T(9;)), which results in creating arcs to the terms
in T'(g;). For v = gj, DEALg = (b|b). By the preference
poset of g;, where j ¢ {0, l} ‘the following outcomes of ¢;
are better than DEALQ D Ly G5 1yi+1)s (W5 | j41) or
(Uj | Yj+1)- This means the preference posets of g;_1 and g,
allow only one of y; or §j; to make the switch described above.
(This corresponds to choosing which of these two literals is
false.) The same reasoning holds for ¢y and ¢;, except their
improved outcomes are (p,, | 1) and (g; | po) respectively. For
v = Dg, DEALg(= (b|b). By the preference poset of pg,
where g ¢ {0, m}, py can improve its outcome by switching
to (74| Tg+1). This means p, can only switch given that 7
makes one of switches described above (either from (b, Z; | b)
to (py—1, L | pgy) or from (b, Z; | b) to (py—1, L' | py)). The same
reasoning holds for py and p,,,, except their improved outcomes
are (q; | ™) and (7, | o) respectively.

Importantly, the outcome improvements in the above para-
graph are possible only if all the vertices in D" together
switch their outcomes as described in the above paragraph.
This would correspond to choosing a subgraph H that strictly
dominates G (namely the cycle given in (2)). We now show
this subgraph H cannot exist, by way of contradiction. Suppose
such a subgraph # that strictly dominates G does exist. Since
‘H strictly dominates G, and all vertices must improve together,
we know every vertex v € H strictly improves their outcome
from DEAL%. We focus on the outcome improvements made
by the term vertices 7;...7,,. Let us fix some term vertex 7,
and let Z; be the unique x-literal of 7.

As described above, 7, can 1mproves its outcome in one
of two ways, depending on DEAL ; specifically whether or
not (%;,74) € G. If (&;,74) € g, then Ty can improve its
outcome from DEAL% by simply “switching”. Otherwise, if
(Z4, Tg) & G, then 7,4 can only switch to an improved outcome
if it receives an arc from any of its y-literals in /. In other
words, each 7, must have either received its incoming arc from
its x-literal in G or received an incoming arc from any of its

y-literals in H.

Recall though that 7, receives an arc from one of its literals
only if that literal is set to false. This implies that each term 7,
is killed, either by its x-literal or one of its y-literals, depending
on how it improves its outcome. However, if each term is killed
under the assignments x — ¢ and y — 1), we know 3(¢, 1))
is false, contradicting our original assumption.

We show this more formally, starting with the terms being
killed by the assignment of the x variables. In graph G, for each
variable z;, if ¢(z;) = 1, then for each term 7, that contains
Z;, (Zi,79) € G. On the other hand, if ¢(z;) = 0, then for
each term 7, that contains z;, (x;,7) € G. In both cases, T,
is killed. Within the swap system, this is signified by vertex
T4’s preference to switch from DEAL_,g_g to (pg—1,L | pg).

Now we address the terms survived by the assignment x —
¢. The surviving term vertices are those that did not receive
their incoming arcs from their x-literals in G. Since we know
each surviving term vertex 7,4 strictly improves their outcome
in H, the only remaining option is that each 7, has an incoming
arc from one of their y-literals in H.

We use this to construct the assignment y — ¢ so that
B(¢,) is false. This is quite simple: for each y-literal g; that
has an outgoing arc to a surviving term vertex in H, we assign
w(gjj) = 0. We know that ¢ must be a consistent assignment,
i.e. it cannot be the case that 3j; and y] are both assigned to
true/false. This is because only either ¢; or yj are in H, by
design of the preference posets of vertices g;_1 and g;. Thus,
since we can construct a consistent assignment y —), given
the assignment x — ¢, so that every term is killed, we know
that 3(¢, 1) is false, contradicting our original assumption.

(<) Assume now that D has a spanning subgraph G that
satisfies properties (c.1) and (c.2). From G we will construct
an assignment ¢ for the x-variables that makes VyS(¢,y)
true. Condition (c.1) implies that G cannot have any arcs
(a,%;) nor (a, Z;), so vertices {a,a’} will form one strongly
connected component of G. As before, let D’ = D\ {a,a’}
and G’ = G\ {a,a’}. We focus on G'.

We first argue that G’ is in fact strongly connected and it
contains b. This is quite simple. Condition (c.2) states that
the outcome of b in G is at least as good as its outcome in
D, so G’ must contain all incoming arcs of b. On the other
hand, each vertex v € G’ \ {b} does not have an outcome
better than DEAL” that includes outgoing arc (v, b) but does
not include incoming arc (b, v). Thus, G’ must also contain
all outgoing arcs of b, which is already sufficient to make G’
strongly connected.

For each literal vertex z;, we will refer to any outcome that
contains 7'(Z;) in its set of outgoing arcs as a 0-outcome of
Z;, and to the exact outcome (b, Z; | b, 7;) as the 1-outcome ;.
We start with the following claim:

Claim 1: For each i and each literal &; € {x;,Z;}, outcome
DEALgv is either a 0-outcome or the 1-outcome of ;. Further,
for at least one of x; and x; this outcome is a 0-outcome.

Proof. Let us fix a single 3-gadget. We first show that for literal

Z; € {x;,T;}, the outcome DEALQ is either a 0-outcome or the

1-outcome of z;. Firstly, we know the incoming and outgoing
arcs between Z,; and vertex b are included in G'. Next, consider
any term vertex 7, in which term 7, contains literal ;. If we
examine the generators of vertex 7,4, limiting ourselves only
to the outcomes that include the arcs to and from vertex b, we
see that 7, must receive either an arc from Z; or Z; in order
to satisfy condition (c.2).

We now have two cases: when 74 receives an arc from Z;
and when 7, receives an arc from z;. We start with the latter
case. If 7, receives arc (%, Tg), then by z;’s generators, we
know that Z; must have received arc (Z;, Z;). This then implies
that 7; received arc (Z;,;). At this point, Z; is exactly in
the 1-outcome. We reason similarly about Z;: starting from
some vertex 7, for which term 7, contains Z;, we know that 7,
must receive either an arc from Z; or Z;. We know 7, cannot
receive an arc from Z; because for Z; to pay arc (Z;,7,), it
must receive arc (Ei, Ei), However, there is no outcome for Z;
that satisfies condition (c.2) in which Z; pays both arcs (Z;, ¥;)
and (Z;, Z;). Thus, we can conclude that Z; is the one to pay
7,. We can reason about each 7, € T'(Z;) in the same manner,
implying that Z; in fact pays every 7, € T(Z;). This allows
us to conclude that Z; is in a 0-outcome.

We move on to the former case, when 7, receives an arc from
Z;. It is easy to see that if &, pays any term vertex 7, € T'(Z;),
it must pay all term vertices in T'(Z;). This is because each
term vertex 7, € T'(Z;) must receive an arc from either Z; or
Zi, as previously stated. However, there is no outcome for ;
that satisfies condition (c.2) in which Z; pays 7, and z;, thus
Z; is responsible for paying all term vertices 7, € T'(&;). This
is sufficient to show that Z; is in a 0-outcome. We move onto
vertex Z;. Unlike the previous case, the outcome of &; is not
directly influenced by the outcome of z;. When we consider
some term vertex 7, € T'(Z;), it is possible for 7, to receive an
arc from either Z; or Z,. We show that Z; ends in a 0-outcome
or the 1-outcome, respectively. The first possibility is that 7,
receives arc (Z;,7,). We apply the same reasoning as we did
for Z;: if any 7, € T(Z;) receives its arc from Z;, then every
7, € T(&;) also receives its arc from ;. This is again sufficient
to show that Z; is in a 0-outcome. The second possibility is
that 7, receives arc (Z;,7,). For Z; to pay this arc, it must
receive arc (Z;, z;). For &; to pay this arc, it must receive arc
(%, ;). However, this is exactly the 1-outcome for Z;. We note
that this requires Z; to pay arc (Z;,¥;), changing the outcome
of Z;. Importantly though, Z; remains in a 0-outcome and still
satisfies condition (c.2) as DEALz, < (b|b, Z;, T(%;))

It is easy to see that these two cases are exhaustive by
inspection of the preference posets of 7,. With this, we have
shown both parts of claim (1): firstly, for each ¢, Z; and Z;
are either in a 0-outcome or the 1-outcome, and secondly, at
least one of Z; or &; are in a 0-outcome, regardless of which
case. O

For convenience, we now introduce the concept of a pseudo-
truth assignment. A pseudo-truth assignment is an assignment &
of boolean values to the x-literals (not just variables) such that
for each variable x; at most one of &(x;) and £(Z;) is 1. The

value of VyS3(€,y), for such a pseudo-truth assignment &, can
be computed just like for standard truth assignments. If « has a
satisfying pseudo-truth assignment £ then it also has a satisfying
standard truth assignment ¢: simply let ¢(x;) = &(x;) for all
i. This works because if a term 7, of 3 is not killed by & then
it is also not killed by ¢.

Thus it suffices to show how we can convert G into a pseudo-
truth assignment £ for the x-variables that satisfies a.. We
define & as follows: for each 4, if DEALgi is a 0-outcome then
&(z;) =0, and if DEAL% is the 1-outcome then &(%;) = 1.

Claim 2: £ is a satisfying pseudo-truth assignment for the
x-variables that satisfies c.

Proof. We begin by supposing the pseudo-truth assignment
& is not a satisfying assignment for «, towards contradiction.
This would mean that Vy/3(&,y) is false. We fix an assignment
of the y-variables v such that 5(&,)) is false. The idea is to
now take 1) and construct a subgraph # that strictly dominates
G, contradicting our original assumption. Actually, H will be
a subgraph of the V-gadget of the form given in (2), as before.

We now construct H as follows: add all vertices v €
{pg};nzo U {qj}é.zo u {Tg};nzl to H. For each j, if ¢ (y;) = 1,
add g;, otherwise, if ¥ (y;) = 0, add y; (we include the literal
that is false). Now that we have all the vertices, we must define
the arcs. Again, H will have the form of the cycle given in (2).
For each §; € H, add arcs (¢;—1,9;) and (g;,q;). Add arcs
(g1, po) and (pm, o). For each 7, € H, add arcs (pg_1,7,)
and (74, p,). Lastly, for each §; € #, add arcs (g;,7,) for
79 € T(y;).

The next step is to show that # indeed strictly dominates G. It
is easy to see that for vertices v € {pg};”zou{gjj}ézlu{qj };:0,
DEALY < DEAL’! holds by simple inspection of each vertex’s
preference poset. Thus, we focus on the term vertices 71, .., Tp,.
For each term vertex 7,4, outcome DEALZ is an improvement
in comparison to DEAL% only if (at least) one of the two
following conditions are satisfied: (1) 7, received its incoming
arc from its x-literal in G, or (2) 7, receives an incoming arc
from any of its y-literals in H.

We claim that one of these two conditions holds for every
term 7,. Suppose this is not true, towards contradiction, and
there is a term vertex 74 that does not satisfy either condition.
Specifically, 7, does not receive its incoming arc from its x-
literal in G, nor does 7, receive any of its incoming arcs from
any of its y-literals in H. If this were the case, then 7, is
actually true, contradicting the fact that (&, v) is false. Let Z;
be the x-literal of 7. If (Z;,7,) ¢ G, then DEALgi is actually
the 1-outcome for ;. This implies that £(Z;) = 1. Since 7,
does not satisfy the second condition, we know it does not
receive a single arc from any of its y-literals. However, recall
how we used 1 to construct H; a y-literal is added to H only
if that literal is false in 1. This means each of these y-literals
of 74 are actually true in the original assignment of). This
implies that the term 7, is actually true, contradicting 3(&, v)
being false.

This contradiction gives us the fact that every term vertex
T4 indeed improves their outcome from DEAL_,g_g. With this,
we have proven every vertex v € H improves their outcome
from DEAL%, meaning H strictly dominates G. However, the
existence of such an H contradicts our condition (c.3), implying
claim (2), that the pseudo-truth assignment & is indeed a
satisfying assignment of the x-variables for a.

O

With the truth assignment ¢ defined, we need to show that
the non-existence of an # that strictly dominates G implies that
the expression Vy3(¢,y) is true. For this, it’s easier to show
the contrapositive, namely if there existed some assignment
1 for the y-variables for which Vy3(¢, 1) is false, we could
convert 1 into a subgraph # that strictly dominates G.

We simply employ the exact same argument we saw in
the proof for claim (2). We convert the assignment 1) in the
exact same manner: for each y;, if ¢ (y;) = 1, add g; to
H, otherwise, if ¥ (y;) = 0, add y;. The remainder of # is
constructed in the exact same way as previously described.
Likewise, the proof that H indeed strictly dominates G is the
same. Since this contradicts condition (c.3), we know that the
expression VyB(¢,y) is in fact true.

O

X. ANOTHER PROOF OF NP-HARDNESS

In this section we give a proof of NP-hardness of
SwapAtomic that is simpler than the one in Section V.

Theorem 7. SwapAtomic is NP-hard. It remains NP-hard
even for strongly connected digraphs.

Proof. The proof is by showing a polynomial-time reduction
from CNF. Recall that in CNF we are given a boolean
expression « in conjunctive normal form, and the objective is
to determine whether there is a truth assignment that satisfies «.
In our reduction we convert « into a swap system S = (D, P)
such that « is satisfiable if and only if S has an atomic swap
protocol.

Let z1, 2o, ..., x, be the variables in «. The negation of x;
is denoted ;. We will use notation x; for an unspecified literal
of variable x;, that is Z; € {x;,%;}. Let a = c1 Vea V... Ve,
where each c; is a clause. Without loss of generality we assume
that each literal appears in at least one clause and that in each
clause no two literals are equal or are negations of each other.

We first describe a reduction that uses a digraph D that is
not strongly connected. Later we will show how to modify
our construction to make D strongly connected. Digraph D is
constructed as follows (see Figure 11) :

— For ¢ = 1,...,n, create vertices z; and Z;, connected by
arcs (z;,%;) and (Z;, ;).

— Create two vertices a,a’ with arcs (a,a’), (¢/,a), and
(a,z;), (a,Z;) forall i = 1,...,n.

— For j =1, ..., m, create vertices c¢;. For each clause c¢; and
each literal Z; in ¢;, create arc (Z;,¢;).

— Create three vertices d,d’,d” with arcs (d,d’), (d',d),
(d,d"), (d',d), (d',d") and (d”,d’). Create also arcs
(¢j,d) forall j =1,...,m.

— Create vertex b, with arcs (¢;,b) for all j =1,...,m and
(b,x;), (b,z;) forall i =1,...,n.

Next, we describe the preference posets P,, for each vertex

v in D. As explained in Section II, an outcome (w™ |w®"*) of

a vertex v is specified by lists w'” and w®“® of its in-neighbors

and out-neighbors. The preference posets of the vertices in D

are specified by their generators:

— Vertices a,a’, and b do not have any generators.

— For each literal z;, its generators are DEAL;, <
(b,%;|C(%;)) and DEALz, < (b|Z;), where Z; is the
negation of #; and C(Z;) is the set of clauses that contain
literal Z;.

— For each j, the generators of c; are DEAL.; < (Z; | b) for
each literal z; in c;.

— Vertices d,d’,d”’ have one generator each: DEALgy <
(d"|d"), DEALg < {(d|d"), DEALg» < (d'|d).

The construction of S clearly takes time that is polynomial
in the size of «.

Applying Theorem 3, it remains to show that « is satisfiable
if and only if D has a spanning subgraph G with the following
properties: (c.1) G is piece-wise strongly connected and has no
isolated vertices, (c.2) G dominates D, and (c.3) no subgraph
‘H of D strictly dominates G.

(=) Suppose that « is satisfiable, and fix some satisfying
assignment for «. Using this assignment, we construct a
spanning subgraph G of D that satisfies conditions (c.1)-(c.3).

Digraph G will contain all vertices of D. For vertices a and
a’ it will include arcs (a,a’) and (a’, a). For vertex b, it will
include all arcs (b,z;), (b,Z;) and all arcs (c;,b). Vertices
d,d',d" are connected by arcs (d,d’), (d’,d") and (d",d).
The remaining arcs are determined based on the satisfying
assignment. Suppose that literal Z; is true. Then G includes
the arcs: (Z;,2;) and (Z;,c;) for all clauses c; that contain
literal z;. (Intuitively, the truth assignment corresponds to the
direction of the arc between x; and Z; in G.)

Digraph G is spanning and has three strongly connected
components: one is the cycle a — o’ — a, another one
is the cycle d — d’ — d” — d, and the third consists of
all other vertices. This third component is indeed strongly
connected because each clause c; has a true literal, say ;,
so its corresponding vertex has incoming edge (Z;,c;). We
then have arcs from all vertices ¢; to b and from b to each
pair x; and Z;. For each ¢, among z; and Z;, the true literal
Z; is connected to all clauses where it appears (and it must
appear at least once, by our assumption), and its negation &;
is connected to Z;. So (c.1) holds.

Condition (c.2) can be verified by inspection, namely
checking that DEAL? < DEALY holds for each vertex v. For
example, consider some variable z; and assume that z; is true
(the case when x; is false is symmetric). Then DEALgi =
(b,7;|C(x;)) = DEALY , and DEALY = (b|z;) ~ DEALL.
Next, consider some clause c;. Since our truth assignment
satisfies ¢;, ¢; has some true literal &;. Then G will have arc
(Zi, ¢;). Denoting by T'(c;) the set of true literals in ¢;, we then
have DEALZ_ = (T(cj)|b) = (®;]b)y > DEALZ. Checking

Fig. 11. The variable and clause gadgets in the proof of Theorem 7.

that DEAL? < DEALY holds for v € {a,d’,b,d,d’,d"} is
straighforward. Thus, condition (c.2) is verified.
To establish condition (c.3), let H be a subgraph of D that

dominates G, that is DEAL? > DEALY for each vertex v € H.

We claim that then in fact we must have H = G, which
will imply (c.3). This claim follows from the following two
observations: (i) For each arc (u,v) € G, vertex v does not
have any outcome that does not include incoming arc (u,v)
and is better than DEALY. (ii) For each arc (u,v) € D\ G,
vertex u does not have any outcome that includes outgoing arc
(u,v) and is better than DEALY .

These observations can be verified by inspection. Starting
with a, for each literal Z;, there is no outcome of a that is better
than DEALY that includes arc (a, Z;) or does not include arc
(a’,a). For d’, there is no outcome better than DEALY = (a | a)
that does not include arc (a, a’). Consider some x;, and suppose
that x; is true in our truth assignment. There is no outcome of
x; better than DEALgi = (b,7; | C(z;)) that does not include
arcs (b, z;) and (Z;, x;), or that includes arc (x;, Z;). Regarding
T;, there is no outcome of Z; better than DEAL% that does not

have arc (b, z;) or that has any arc (Z;, ¢;), for some clause c;.

Next, consider arcs between literals and clauses. For a clause
¢; we have DEAij = (T'(c;) | b). There is no outcome of ¢,
that misses one of the arcs from T'(c;) or includes arc (c;, d)
and is better than (T'(c;) | b). (And we have already showed
that in H, vertex ¢; cannot have arcs from its false literals.)
There is also no outcome of b without arc (c;,b) better than
DEALg. The verification of the two observations for the arcs
between d, d’ and d”’ can be carried out in the same manner.

(<) Assume now that D has a spanning subgraph G that
satisfies properties (c.1) and (c.2). (We will not use (c.3) for
now). From G we will construct a satisfying assignment for
a. Condition (c.1) implies that G cannot have any arcs (a, &;),
so vertices a,a’ will form one strongly connected component
of G. Similarly, G cannot have any arcs (c;,d), so vertices
d,d',d"” will also form a strongly connected component. In
the rest of the argument we focus on the remaining vertices.
For each literal z;, since DEAL% > DEAL%, and also using
the preferences of Z;, we obtain that G must have arc (b, Z;).
Similarly, using the preferences of b, G must contain all arcs
(¢j,b). (This also follows from the fact that ¢;’s cannot be
singleton strongly connected components of G.) This means that
all vertices b, Z; and c; are in the same connected component

of G which, by property (c.1), must be strongly connected.
From the above paragraph, by strong connectivity, for each
¢ either x; or ¥; must have an arc to some clause vertex. Also,
since DEAL% b DEALZ, if x; has an arc to a clause vertex
then G must have arc (Z;, ;) and G cannot have arc (z;, Z;).
In turn, since DEAL% > DEAL%, Z; has no arcs in G to any
clause vertices. Summarizing, we have this: exactly one of arcs
(x;,%;) or (Z;,x;) is in G, and if (Z;,7;) is in G then &; does
not have any arcs to clause vertices. This allows us to define
a satisfying assignment, as follows. If G has arc (Z;, z;), set
x; to true, and if G has arc (z;,Z;), then set z; to false.
Using condition (c.1), in G each vertex c¢; must have at least
one incoming arc from some literal Z; in c;. By the previous
paragraph, this literal is true in our truth assignment, so it
satisfies ¢;. This establishes that all clauses are satisfied.

To prove the second statement in the lemma, we modify
our construction. Note that in the above proof we did not
use property (c.3) in the (<) implication. If D is strongly
connected, then it’s itself a candidate for G, so the modified
construction will need to rely on property (c.3) somehow.

This modification is in fact quite simple. Add arcs from all
literal vertices Z; to a, and set the preferences of a so that it
prefers to drop the arcs to and from these literal vertices to
form a coalition with a’. We apply the same trick to vertex d:
it will have arcs going back to all ¢;’s, but it will be happy
to drop these arcs, as well as the arc from d”, in exchange
for dropping the arc to d’. Then in the proof for implication
(<) we use condition (c.3) to argue that the arcs from « to all
Z;’s will not be in G, for otherwise a subgraph D consisting
of a,a’ and the arcs between them would strictly dominate
G. For the same reason, G will not have arcs from d to any
Cj. O]

Comment: The NP-hardness result in Theorem 7 holds even
if we require that preference posets are specified by listing
all preference pairs (including the generic ones). This can be
shown by modifying the construction so that all vertices in D
have constant degree, and thus all preference posets will have
constant size. To this end, we can use a variant of CNF where
each clause has three literals and each variable appears at most
three times. Then the only vertices of unbounded degree will be
a, b, and d. For a, its set of outgoing arcs can be replaced by a

chain of vertices each with one outgiong arc to one outneighbor
of a. The same trick applies to the arcs of b and d.

XI. EXPERIMENTS

To further study the complexity of SwapAtomic (i.e., given
a swap system S = (D, P), decide whether it has an atomic
protocol), we programmed a simple implementation in C++. We
note that this algorithm would be run by the party assembling
the swap system, preceding any interaction with any blockchain.
This would normally be a market clearing service.

The algorithm runs in three phases. Each phase is a filter for
a condition in Theorem 3. We start with every possible graph
G, and pass each of them through the three filters. If there is a
graph remaining, then we decide yes, otherwise we decide no.
The first condition is that G is spanning, piece-wise strongly
connected, and contains no isolated vertices. We first check that
G contains every vertex, each with at least one incoming and
outgoing arc. If so, we find the strongly connected components
of G using Kosaraju’s algorithm [31]. We then check for every
arc (u,v) in G that v and v are in the same component. If
so, then G is piece-wise strongly connected, and we pass this
graph to the second phase.

The second condition is that G dominates D, the original
digraph. That is, for every vertex wv, DEALE = DEALg,
where DEAL? is the outcome for v if every arc in D were
triggered, and DEAL% is the outcome for v if every arc in
G were triggered. This is simple. We say DEALUD - DEAL%
if (1) they are the same outcome, (2) DEAL% is inclusively
monotone of DEALY, or (3) DEALY - DEAL% by a non-
generic generator (and transitivity). If this holds for every
vertex, then G dominates D and we pass G to the third phase.

The last condition is that there is no subgraph H of D
that strictly dominates G. To verify this, we generate every
possible subgraph H. Then, for every vertex v in H, we see
if DEALY < DEAL and at least one vertex where DEALY <
DEALUH. If not, then H does not strictly dominate G. If no H
strictly dominates G, then we decide yes. However, if after all
three phases no graph remains, we decide no.

Results and Assessment. We ran this program on the
example swap systems presented in this paper. The program
was written in C++11 and compiled with g++ 12.2.0. It
was ran on a Windows 10 machine with a Intel Core
i5-11400F 6-Core 2.6GHz CPU and 16 GB RAM. We list
the mean of ten runs of each swap system. We provide three
additional datapoints: (1) number of arcs in the digraph, (2)
number of non-generic preferences generators, and (3) whether
or not the swap system ended up permitting an atomic protocol.

Results
Swap System | Runtime | Arcs | Preferences | Protocol?
S 0.0567s 6 5 Yes
S 0.016s 6 2 No
S3 123.116s | 14 14 Yes
Sy 61.851s | 14 12 No
Ss 328.904s | 17 14 No

Swap system S; is the system defined in Example 1. Swap
system S, is the system defined in Figure 3. Swap system Ss
is the system defined in Example 4. Swap system S, is Ss,
except the two preference generators DEAL;, < (to |t2) and
DEAL;, < (t1|t1) are removed. Swap system S5 is S3, except
we add a new party s; and arcs (ug, $1), (u2,$1), and (s1,1).
Non-generic preferences are not changed.

As we can see in S§; and S,, it is feasible to compute
SwapAtomic for small swap systems, as expected. The runtimes
are less than a second. We next look at larger graphs and
highlight the difficulty of SwapAtomic. We observe that Ss
and S, have higher runtimes. Further, their runtimes are not in
the same ballpark although they have the same number of arcs.
Firstly, because piece-wise strong connectivity is a requirement,
one might suspect that the cause is the number of arcs or the
degree of the vertices. However, the digraphs for both swap
systems are exactly the same. The natural reaction is to look
at the preference posets. We removed two generators from
S3 to S4. This made it so the swap system no longer had an
atomic protocol, which reduced the runtime. This is because
in phase three, the program halts as soon as it finds an H for
every G (that passed phases one and two). On the other hand,
when the system does permit a protocol, the entirety of phase
three needs to finish. That is, it needs to check all possible
‘H to verify G has no strictly dominating subgraphs. Lastly,
from Ss to S5, we added one party and three arcs, but no
non-generic preferences were changed. Although S5 ended up
not permitting a protocol, it scaled poorly with respect to Ss.

In practice, the runtimes may not be predictable, as is the
case with NP-Hard problems. Needless to say, an increase in
the number of arcs will generally increase the running time as
there are more rounds of Kosaraju’s algorithm in phase one.
Additionally, if one is to believe the swap system does indeed
permit a protocol, then one should expect a long runtime as
well, as the program needs to verify every subgraph in phase
three.

