
Appendix
IX. Σ2-COMPLETENESS

In this section, we give the complete, detailed proof described
in VI. That is, we consider the complexity of determining
whether a swap system has an atomic swap protocol, showing
that this problem is ΣP

2 -complete. Recall that ΣP
2 = NPNP is the

class of problems at the 2nd level of the polynomial hierarchy
that consists of problems solvable non-deterministically in
polynomial time with an NP oracle.

Our proof is based on a reduction from a restricted variant
of the ∃∀DNF problem. An instance of ∃∀DNF is a boolean
expression α = ∃x∀yβ(x,y), where x = (x1, ..., xk) and
y = (y1, ..., yl) are vectors of boolean variables and β(x,y)
is a quantifier-free boolean expression in disjunctive normal
form, that is β(x,y) = τ1 ∨ τ2 ∨ ... ∨ τm, and each term τg
is a conjunction of literals involving different variables. The
goal is to determine whether α is true. ∃∀DNF is a canonical
ΣP

2 -complete problem [29], [26]6. The problem remains ΣP
2 -

complete even restricted to instances where each term in β has
only three literals. We denote this variant by ∃∀3DNF.

Throughout this section, the negation of a boolean variable
xi will be denoted x̄i. We will also use notation x̃i for an
unspecified literal of xi, that is x̃i ∈ {xi, x̄i}. The same
conventions apply to the variables yj .

The restriction of ∃∀DNF that we use in our proof, denoted
∃∀DNF1x, consists of instances α = ∃x∀yβ(x,y) where each
term of β includes exactly one x-literal and one or more
y-literals that ifnvolve different variables.

We first prove the following lemma:

Lemma 4. ∃∀DNF1x is ΣP
2 -complete.

Proof. We show how to convert a given instance α =
∃x∀yβ(x,y) of ∃∀3DNF into an instance α′ of ∃∀DNF1x

such that α is true iff α′ is true.
First, we can assume that β does not have terms with only

x-literals, since such formulas α are trivially true. All terms
that have exactly one x-literal will remain unchanged.

Consider a term with two x-literals, say τg = x̃p ∧ x̃q ∧ ỹr.
Add another variable y′ and replace τg by (x̃p ∧ ỹr ∧ y′) ∨
(ȳ′ ∧ x̃q ∧ ỹr). Let β′ be the boolean expression obtained
from β by this replacement, and α′ = ∃x∀y∀y′β′(x,y, y′).
Then, by straightforward verification, α is true for a given
truth assignment for x if and only if α′ is true for the same
assignment for x.

By applying these replacements, we will eventually eliminate
all terms that have two or zero x-literals, thus converting α
into the ∃∀DNF1x form.

Theorem 6. Let SwapAtomic be the decision problem of
deciding whether a swap system has an atomic protocol.
SwapAtomic is ΣP

2 -complete.

6Notations for this problem and its variants vary across the literature. Our
notations use the convention in [29].

Proof. According to Theorem 3, a swap system S = (D,P)
has an atomic swap protocol if and only if D has a spanning
subgraph G with the following properties: (c.1) G is piece-
wise strongly connected and has no isolated vertices, (c.2) G
dominates D, and (c.3) no subgraph H of D strictly dominates
G. This characterization is of the form ∃G (¬∃H : π(G,H) ),
where π(G,H) is a polynomial-time decidable predicate, so
it immediately implies that SwapAtomic is in ΣP

2 . Thus it
remains to show that SwapAtomic is ΣP

2 -hard.
To prove ΣP

2 -hardness, we give a polynomial-time reduction
from the above-defined decision problem ∃∀DNF1x. Let the
given instance of ∃∀DNF1x be α = ∃x∀yβ(x,y), where x =
(x1, ..., xk) and y = (y1, ..., yl) are vectors of boolean variables
and β(x,y) = τ1∨τ2∨...∨τm, with each τg being a conjunction
of one x-literal and one or more y-literals. Our reduction
converts α into a swap system S = (D,P) such that α is
true if and only if D has a spanning subgraph G that satisfies
conditions (c.1)-(c.3) from Theorem 3.

The following informal interpretation of ∃∀DNF1x will
be helpful in understanding our reduction. Say that a truth
assignment to some variables kills a term τg if it sets one of
its literals to false. A truth assignment φ to the x-variables
will kill some terms, while other will survive. Thus α will
be true for assigment φ iff there is no assignment ψ for the
y-variables that kills all terms that survived φ. In our reduction,
the existence of this assigment φ will be represented by the
existence of subgraph G. The non-existence of ψ that kills all
terms that survived φ will be represented by the non-existence
of a subgraph H that strictly dominates G.

We now describe our reduction. The digraph D will consists
of several “gadgets”. There will be ∃-gadgets, which correspond
to the variables xi and will be used to set their values, through
an appropriate choices of subgraph G. Then there is the ∀-
gadget, that contains “sub-gadgets” representing the literals ỹj
and the terms τg. These gadgets will allow for the values of
the variables yj to be set in all possible ways. If any setting of
these values kills all terms not yet killed by the variables xi,
this gadget will contain a subgraph H that strictly dominates
G.

In addition to these gadgets, digraph D has three auxiliary
vertices a, a′ and b. Vertices a and a′ are connected by arcs
(a, a′) and (a′, a). Vertex a also has some outgoing arcs that
will be described later. Vertex b is connected by arcs to and
from all other vertices of D except a and a′.

Next, we describe the gadgets (for now, we specify only
their vertices and arcs — the preference posets will be defined
later). The ∃-gadget corresponding to xi is shown in Figure 9.
It’s constructed as follows:

— For i = 1, ..., k, create vertices xi, x̄i, zi and z̄i, with arcs
(a, xi), (a, x̄i), (a, zi), (a, z̄i), (xi, x̄i), (x̄i, xi), (xi, zi),
and (x̄i, z̄i). Throughout the proof we will use notation
z̃i for the vertex corresponding to x̃i, that is z̃i = zi if
x̃i = xi, and z̃i = z̄i if x̃i = x̄i.

The ∀-gadget is shown in Figure 10. It’s constructed as
follows:



<latexit sha1_base64="WIvs1j/RX+gA9wOrLz7IyUZ05Pk=">AAAB6nicbZDLSsNAFIZPvNZoterSzWApuCqJiHZZEMRlRXuBNpTJdNIOnUzCXMQS+ghuXCjiVnwQH8Gdb+P0stDWHwY+/v8c5pwTppwp7Xnfzsrq2vrGZm7L3d7J7+4V9g8aKjGS0DpJeCJbIVaUM0HrmmlOW6mkOA45bYbDy0nevKdSsUTc6VFKgxj3BYsYwdpatw9d1i0UvbI3FVoGfw7Fav7TlK7cj1q38NXpJcTEVGjCsVJt30t1kGGpGeF07HaMoikmQ9ynbYsCx1QF2XTUMSpZp4eiRNonNJq6vzsyHCs1ikNbGWM9UIvZxPwvaxsdVYKMidRoKsjso8hwpBM02Rv1mKRE85EFTCSzsyIywBITba/j2iP4iysvQ+O07J+Xz278YrUCM+XgCI7hBHy4gCpcQw3qQKAPj/AMLw53npxX521WuuLMew7hj5z3H+Y1kHM=</latexit>xi

<latexit sha1_base64="q+rIxGsAFVbDMWzy/XbF+ZQJaAk=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtcxmg9lUBmwsEzAPSJYwO5lNxsw+mJkVwpLSysZCEVu/wu+w8xu08Q+cJAoqeuDC4Zx7uedeL+ZMKoRejMzC4tLySnY1t7a+sbmV395pyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3Op36rUsqJIvCczWOqRvgQch8RrDSUh338gVkomKpWLEhMi3bscslTYoOKtsVaJlohsLJ++vV/lP9rdbLP3f7EUkCGirCsZQdC8XKTbFQjHA6yXUTSWNMRnhAO5qGOKDSTWdBJ/BQK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vE6ifMdNWRgnioZkvshPOFQRnF4N+0xQovhYE0wE01khGWKBidK/yeknfF0K/yfNomkdm1bdKlQdMEcW7IEDcAQsUAZVcAZqoAEIoOAa3II748K4Me6Nh3lrxvic2QU/YDx+AIBxkdw=</latexit>

a
<latexit sha1_base64="JHR2OIiE1V8H/HjJJma4idSY+Yw=">AAAB6XicdVC7SgNBFJ31GeMrainIYBCtltndYDaVARvLRMwDkiXMTmaTIbMPZmaFEFLa2VgoYutP+B12foM2/oGTREFFD1w4nHMv99zrJ5xJhdCLMTe/sLi0nFnJrq6tb2zmtrbrMk4FoTUS81g0fSwpZxGtKaY4bSaC4tDntOEPTid+45IKyeLoQg0T6oW4F7GAEay0dI4PO7k8MpFdsEsORKbluE6xoIntoqJTgpaJpsifvL9e7T1V3yqd3HO7G5M0pJEiHEvZslCivBEWihFOx9l2KmmCyQD3aEvTCIdUeqNp0jE80EoXBrHQFSk4Vb9PjHAo5TD0dWeIVV/+9ibiX14rVYHrjViUpIpGZLYoSDlUMZycDbtMUKL4UBNMBNNZIeljgYnSz8nqJ3xdCv8nddu0jk2rauXLLpghA3bBPjgCFiiCMjgDFVADBATgGtyCO2Ng3Bj3xsOsdc74nNkBP2A8fgDg0pIN</latexit>

a0

<latexit sha1_base64="4uY6yz4oc+JTvd61ajs8OqW1n6M=">AAAB6nicdVDLSgMxFM1Uq7W+al26CRbB1ZCZFjt1VXDjslL7gHYomTTThmYeJBmhDv0EN10o4lK/yJ1L/8S0VVDRAxcO59zLPfd6MWdSIfRmZNbWsxubua389s7u3n7hoNiWUSIIbZGIR6LrYUk5C2lLMcVpNxYUBx6nHW9ysfA7N1RIFoXXahpTN8CjkPmMYKWl5u2ADQolZCK7YtfKEJlW2SlXK5rYDqqWa9Ay0RKlevH9fP6cbTYGhdf+MCJJQENFOJayZ6FYuSkWihFOZ/l+ImmMyQSPaE/TEAdUuuky6gyeaGUI/UjoChVcqt8nUhxIOQ083RlgNZa/vYX4l9dLlO+4KQvjRNGQrBb5CYcqgou74ZAJShSfaoKJYDorJGMsMFH6O3n9hK9L4f+kbZvWmWldWaW6A1bIgSNwDE6BBaqgDi5BA7QAASNwB+7Bg8GNufFoPK1aM8bnzCH4AePlA89rkRg=</latexit>

zi
<latexit sha1_base64="4Tucop1eRTUrlFBlILHIkkkfIRc=">AAAB8HicdVBNS8NAEN1Uq7V+1Xr0slgETyFJi009Fbx4rGg/pA1ls920SzebsLsRauif0IsHRcSbP8ebR/+J21ZBRR8MPN6bYd6MHzMqlWW9GZml5ezKam4tv76xubVd2Cm2ZJQITJo4YpHo+EgSRjlpKqoY6cSCoNBnpO2PT2Z++4oISSN+oSYx8UI05DSgGCktXfZ8JNLraZ/2CyXLtJyKUytDy7TLbrla0cRxrWq5Bm3TmqNUL74f3zxnzxv9wmtvEOEkJFxhhqTs2lasvBQJRTEj03wvkSRGeIyGpKspRyGRXjoPPIUHWhnAIBK6uIJz9ftEikIpJ6GvO0OkRvK3NxP/8rqJClwvpTxOFOF4sShIGFQRnF0PB1QQrNhEE4QF1VkhHiGBsNI/yusnfF0K/yctx7SPTPvMLtVdsEAO7IF9cAhsUAV1cAoaoAkwCMEtuAcPhjDujEfjadGaMT5ndsEPGC8fklaT3Q==</latexit>

z̄i
<latexit sha1_base64="RLGq9oaC+uYgwHNP2u36J6zbPMA=">AAAB8XicbZC7SgNBFIbPeo2r0ailzWAIWIVdEU0ZEMQygrlgsoTZyWwyZHZ2mYsYlryFjYUiFja+hY9g59s4uRSa+MPAx/+fw5xzwpQzpT3v21lZXVvf2Mxtuds7+d29wv5BQyVGElonCU9kK8SKciZoXTPNaSuVFMchp81weDnJm/dUKpaIWz1KaRDjvmARI1hb6y7rhFiih3GXdQtFr+xNhZbBn0Oxmv80pSv3vdYtfHV6CTExFZpwrFTb91IdZFhqRjgdux2jaIrJEPdp26LAMVVBNp14jErW6aEokfYJjabu744Mx0qN4tBWxlgP1GI2Mf/L2kZHlSBjIjWaCjL7KDIc6QRN1kc9JinRfGQBE8nsrIgMsMRE2yO59gj+4srL0Dgt++flsxu/WK3ATDk4gmM4AR8uoArXUIM6EBDwCM/w4ijnyXl13malK8685xD+yPn4AQGIk2I=</latexit>

x̄i

<latexit sha1_base64="W+WwYHbKuQ4w5UNc7gWBU7hM9iI="></latexit>

to ⌧g’s that contain xi

<latexit sha1_base64="8NE/2vOhr0a/Ynd3I91sCuu43cQ=">AAACGHicdVCxThtBEN0zBIhJwEBJs8JGSXW5sy1sOks0pAMJA5JtHXPrtb3y3t5pdw7ZOvkzaPiRFGkoQFFad/wAJd/A2k4kEsGTRnp6b0Yz88JECoOe9+jklpY/rKyufcyvf/q8sVnY2j43caoZb7JYxvoyBMOlULyJAiW/TDSHKJT8IhwezfyLa66NiNUZjhPeiaCvRE8wQCsFhW9t5CPUUYYxLbUR0qBf+mIoDgApixWCUFYPQWejSSBKk6BQ9FyvXC0fVqjn+pV6pVa1pFz3apVD6rveHMXG7ven5x+5q5OgMG13Y5ZGXCGTYEzL9xLsZKBRMMkn+XZqeAJsCH3eslRBxE0nmz82oftW6dJerG2p2UFWfT2RQWTMOAptZwQ4MP97M/Etr5Vir97JhEpS5IotFvVSSW0Ks5RoV2jOUI4tAaaFvZWyAWhgaLPM2xD+fkrfJ+dl1z9wq6d+sVElC6yRXbJHvhKf1EiDHJMT0iSM3JCf5J48OLfOnfPL+b1ozTl/ZnbIP3CmL2bjo6w=</latexit>

to ⌧g’s that contain x̄i

<latexit sha1_base64="wteq9uI/OBEtDRWPXzPV1yQaPQ0=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBsAq7IprOgI1lAuYCyRJmJ2eTMbOzy8ysEJaUVjYWitj6FKl8CDufwZdwcik0+sPAx/+fw5xz/JgzpR3n08osLa+srmXXcxubW9s7+d29uooSSbFGIx7Jpk8Uciawppnm2IwlktDn2PAHV5O8cYdSsUjc6GGMXkh6ggWMEm2sqt/JF5yiM5X9F9w5FC7fx9Wv+8NxpZP/aHcjmoQoNOVEqZbrxNpLidSMchzl2onCmNAB6WHLoCAhKi+dDjqyj43TtYNImie0PXV/dqQkVGoY+qYyJLqvFrOJ+V/WSnRQ8lIm4kSjoLOPgoTbOrInW9tdJpFqPjRAqGRmVpv2iSRUm9vkzBHcxZX/Qv206J4Xz6puoVyCmbJwAEdwAi5cQBmuoQI1oIDwAE/wbN1aj9aL9TorzVjznn34JevtG4xlkS4=</latexit>

b

<latexit sha1_base64="GbsOITiX9skRMM2hkzMRWxWQxZs="></latexit>

to and from all
nodes except a and a0

Fig. 9. The construction of digraph D in the proof of ΣP
2 -hardness. This figure shows vertices a, a′, b, and an ∃-gadget for variable xi. The arcs to and from

b are shown as bi-directional arrows at b.

<latexit sha1_base64="wteq9uI/OBEtDRWPXzPV1yQaPQ0=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBsAq7IprOgI1lAuYCyRJmJ2eTMbOzy8ysEJaUVjYWitj6FKl8CDufwZdwcik0+sPAx/+fw5xz/JgzpR3n08osLa+srmXXcxubW9s7+d29uooSSbFGIx7Jpk8Uciawppnm2IwlktDn2PAHV5O8cYdSsUjc6GGMXkh6ggWMEm2sqt/JF5yiM5X9F9w5FC7fx9Wv+8NxpZP/aHcjmoQoNOVEqZbrxNpLidSMchzl2onCmNAB6WHLoCAhKi+dDjqyj43TtYNImie0PXV/dqQkVGoY+qYyJLqvFrOJ+V/WSnRQ8lIm4kSjoLOPgoTbOrInW9tdJpFqPjRAqGRmVpv2iSRUm9vkzBHcxZX/Qv206J4Xz6puoVyCmbJwAEdwAi5cQBmuoQI1oIDwAE/wbN1aj9aL9TorzVjznn34JevtG4xlkS4=</latexit>

b

<latexit sha1_base64="Gm05VTJwpWdkBgf3ADqFt0h4qkA=">AAAB6nicdVC7SgNBFJ2Nj8TER9TSwsEgWC37CGbTBW0sI5oHJEuYncwmY2YfzMwKy5I/0MZCEVu/yM7fsLZwkiio6IELh3Pu5Z57vZhRIQ3jVcstLa+s5gtrxdL6xuZWeXunLaKEY9LCEYt410OCMBqSlqSSkW7MCQo8Rjre5HTmd64JFzQKL2UaEzdAo5D6FCOppIt0cDUoVwzdsKpW3YaGbtqOXasqYjlGza5DUzfmqDT2307ypZv35qD80h9GOAlIKDFDQvRMI5ZuhrikmJFpsZ8IEiM8QSPSUzREARFuNo86hYdKGUI/4qpCCefq94kMBUKkgac6AyTH4rc3E//yeon0HTejYZxIEuLFIj9hUEZwdjccUk6wZKkiCHOqskI8Rhxhqb5TVE/4uhT+T9qWbh7r1XOz0nDAAgWwBw7AETBBDTTAGWiCFsBgBG7BPXjQmHanPWpPi9ac9jmzC35Ae/4AEtaRTg==</latexit>

yj

<latexit sha1_base64="fUbSYdymmiPtjZVRU7stznUdRuM=">AAAB8XicdVDLSsNAFJ3UR2vro+rShYNFcBWSpth0V3TjsoJ9YBvKZDptx04mYWYihNA/cOnGhSJu/Rt3/oZrF05bBRU9cOFwzr3cc68fMSqVZb0amaXlldVsbi1fWN/Y3Cpu77RkGAtMmjhkoej4SBJGOWkqqhjpRIKgwGek7U9OZ377mghJQ36hkoh4ARpxOqQYKS1dpj0fCZhM+1f9YskyrXKlXHOgZdqO61QrmpRdq+rUoG1ac5Tq+28n2cLNe6NffOkNQhwHhCvMkJRd24qUlyKhKGZkmu/FkkQIT9CIdDXlKCDSS+eJp/BQKwM4DIUuruBc/T6RokDKJPB1Z4DUWP72ZuJfXjdWQ9dLKY9iRTheLBrGDKoQzs6HAyoIVizRBGFBdVaIx0ggrPST8voJX5fC/0mrbNrHZuXcLtVdsEAO7IEDcARsUAV1cAYaoAkw4OAW3IMHQxp3xqPxtGjNGJ8zu+AHjOcPLhuUPQ==</latexit>

ȳj

<latexit sha1_base64="7/3vhp0mu5nEMsWnlq2ORCRfasU=">AAAB6nicdVDLSsNAFJ34am19VF26cLAIrkLSFJvuim5cVrQPaEOZTCft2MkkzkyEEvoHunGhiFu/yJ2/4dqF01ZBRQ9cOJxzL/fc68eMSmVZr8bC4tLySia7msuvrW9sFra2mzJKBCYNHLFItH0kCaOcNBRVjLRjQVDoM9LyRydTv3VNhKQRv1DjmHghGnAaUIyUls6vepe9QtEyrVK5VHWgZdqO61TKmpRcq+JUoW1aMxRre2/HmfzNe71XeOn2I5yEhCvMkJQd24qVlyKhKGZkkusmksQIj9CAdDTlKCTSS2dRJ/BAK30YREIXV3Cmfp9IUSjlOPR1Z4jUUP72puJfXidRgeullMeJIhzPFwUJgyqC07thnwqCFRtrgrCgOivEQyQQVvo7Of2Er0vh/6RZMu0js3xmF2sumCMLdsE+OAQ2qIAaOAV10AAYDMAtuAcPBjPujEfjad66YHzO7IAfMJ4/AAamkUY=</latexit>

qj
<latexit sha1_base64="XqLyTWfRmy1H2ZvVRxQWzu3nnAQ=">AAAB7nicdVC7SgNBFJ31lZj4iFpaOBgEG5fZ3WCSLmhjGcE8IFnC7GQ2GTP7cGZWCEv+wMbGQhFbv8fO37C2cJIoqOiBC4dz7uWee72YM6kQejUWFpeWVzLZ1Vx+bX1js7C13ZRRIghtkIhHou1hSTkLaUMxxWk7FhQHHqctb3Q69VvXVEgWhRdqHFM3wIOQ+YxgpaXWVS+9PLImvUIRmcgu2VUHItNyKk65pIldQWWnCi0TzVCs7b2dZPI37/Ve4aXbj0gS0FARjqXsWChWboqFYoTTSa6bSBpjMsID2tE0xAGVbjqLO4EHWulDPxK6QgVn6veJFAdSjgNPdwZYDeVvbyr+5XUS5VfclIVxomhI5ov8hEMVwentsM8EJYqPNcFEMJ0VkiEWmCj9oZx+wtel8H/StE3r2CydW8VaBcyRBbtgHxwCC5RBDZyBOmgAAkbgFtyDByM27oxH42neumB8zuyAHzCePwCnvZLE</latexit>

qj�1

<latexit sha1_base64="x0zyuUV2hMUzZS+QakPCu3pe6SY=">AAAB7XicdVC7SgNBFJ31lZj4iFpaOBgEq2UfwWy6oI1lBPOAZAmzk9lkzOzOMjMrhCV/YGFjoYit/2Pnb1hbOEkUVPTAhcM593LPvUHCqFSW9WosLa+sruXy64XixubWdmlntyV5KjBpYs646ARIEkZj0lRUMdJJBEFRwEg7GJ/N/PY1EZLy+FJNEuJHaBjTkGKktNTqKZT2h/1S2TItp+LUXGiZtuu51YomjmdV3Rq0TWuOcv3g7TRXvHlv9EsvvQHHaURihRmSsmtbifIzJBTFjEwLvVSSBOExGpKupjGKiPSzedopPNLKAIZc6IoVnKvfJzIUSTmJAt0ZITWSv72Z+JfXTVXo+RmNk1SRGC8WhSmDisPZ6XBABcGKTTRBWFCdFeIREggr/aCCfsLXpfB/0nJM+8SsXNjlugcWyIN9cAiOgQ2qoA7OQQM0AQZX4BbcgweDG3fGo/G0aF0yPmf2wA8Yzx9KEZKW</latexit>⌧g
<latexit sha1_base64="R5Pgu/zYUlrTHBV9c38R6qBHUQM=">AAAB6nicdVC7SgNBFJ31lZj4iFpaOBgEq2UfwWy6oI1lRPOAZAmzk9nNkNnZZWZWCCF/oI2FIrZ+kZ2/YW3hJFFQ0QMXDufcyz33BimjUlnWq7G0vLK6lsuvF4obm1vbpZ3dlkwygUkTJywRnQBJwignTUUVI51UEBQHjLSD0dnMb18TIWnCr9Q4JX6MIk5DipHS0mXaj/qlsmVaTsWpudAybddzqxVNHM+qujVom9Yc5frB22muePPe6JdeeoMEZzHhCjMkZde2UuVPkFAUMzIt9DJJUoRHKCJdTTmKifQn86hTeKSVAQwToYsrOFe/T0xQLOU4DnRnjNRQ/vZm4l9eN1Oh508oTzNFOF4sCjMGVQJnd8MBFQQrNtYEYUF1VoiHSCCs9HcK+glfl8L/Scsx7ROzcmGX6x5YIA/2wSE4Bjaogjo4Bw3QBBhE4BbcgweDGXfGo/G0aF0yPmf2wA8Yzx8AlJFC</latexit>

pg
<latexit sha1_base64="5Z2qOCdSr23th/lfCu6M1yP7Kww=">AAAB7nicdVC7SgNBFJ31lZj4iFpaOBgEG5d9BLPpgjaWEcwDkiXMTmaTIbO7w8ysEJb8gY2NhSK2fo+dv2Ft4SRRUNEDFw7n3Ms99wacUaks69VYWl5ZXcvl1wvFjc2t7dLObksmqcCkiROWiE6AJGE0Jk1FFSMdLgiKAkbawfh85reviZA0ia/UhBM/QsOYhhQjpaU272fDE3vaL5Ut03IqTs2Flmm7nlutaOJ4VtWtQdu05ijXD97OcsWb90a/9NIbJDiNSKwwQ1J2bYsrP0NCUczItNBLJeEIj9GQdDWNUUSkn83jTuGRVgYwTISuWMG5+n0iQ5GUkyjQnRFSI/nbm4l/ed1UhZ6f0ZinisR4sShMGVQJnN0OB1QQrNhEE4QF1VkhHiGBsNIfKugnfF0K/yctx7RPzcqlXa57YIE82AeH4BjYoArq4AI0QBNgMAa34B48GNy4Mx6Np0XrkvE5swd+wHj+AKGeksA=</latexit>

pg�1.  .  . .  .  .

.  .  . .  .  .<latexit sha1_base64="lOySS1Tl2w2OcHTzy1DMY8TtHJ4=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAUkIs5PZZMjsw5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee72YM6kQejEyC4tLyyvZ1dza+sbmVn57pyGjRBBaJxGPRMvDknIW0rpiitNWLCgOPE6b3uh46jcvqZAsCs/VOKbdAA9C5jOClZbOLnqoly8gE9klu+JAZFqO65RLmtguKjsVaJlohkJ1r3j1/vT2Wuvlnzv9iCQBDRXhWMq2hWLVTbFQjHA6yXUSSWNMRnhA25qGOKCym86iTmBRK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vHaifLebsjBOFA3JfJGfcKgiOL0b9pmgRPGxJpgIprNCMsQCE6W/k9NP+LoU/k8atmkdmaVTq1B1wRxZsA8OwCGwQBlUwQmogTogYACuwS24M7hxY9wbD/PWjPE5swt+wHj8AGvMklk=</latexit>

q0
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pm
<latexit sha1_base64="o/uZ3XBP6boVrYZCkhD6XCNxLjA=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAXEJs5PZZMjsg5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee/2EM6kQejFyC4tLyyv51cLa+sbmVnF7pyXjVBDaJDGPRcfHknIW0aZiitNOIigOfU7b/uh46rcvqZAsjs7VOKFeiAcRCxjBSktnSQ/1iiVkIrti1xyITMtxnWpFE9tFVacGLRPNUKrvla/en95eG73i80U/JmlII0U4lrJroUR5GRaKEU4nhYtU0gSTER7QrqYRDqn0slnUCSxrpQ+DWOiKFJyp3ycyHEo5Dn3dGWI1lL+9qfiX101V4HoZi5JU0YjMFwUphyqG07thnwlKFB9rgolgOiskQywwUfo7Bf2Er0vh/6Rlm9aRWTm1SnUXzJEH++AAHAILVEEdnIAGaAICBuAa3II7gxs3xr3xMG/NGZ8zu+AHjMcPakaSWA==</latexit>

p0

<latexit sha1_base64="p3gi7n3qjENhZ8FNC9Wp602hXvE=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAUkIs5PZZMjsw5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee72YM6kQejEyC4tLyyvZ1dza+sbmVn57pyGjRBBaJxGPRMvDknIW0rpiitNWLCgOPE6b3uh46jcvqZAsCs/VOKbdAA9C5jOClZbOLnq8ly8gE9klu+JAZFqO65RLmtguKjsVaJlohkJ1r3j1/vT2Wuvlnzv9iCQBDRXhWMq2hWLVTbFQjHA6yXUSSWNMRnhA25qGOKCym86iTmBRK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vHaifLebsjBOFA3JfJGfcKgiOL0b9pmgRPGxJpgIprNCMsQCE6W/k9NP+LoU/k8atmkdmaVTq1B1wRxZsA8OwCGwQBlUwQmogTogYACuwS24M7hxY9wbD/PWjPE5swt+wHj8AMa8kpU=</latexit>

ql

<latexit sha1_base64="RDooi039C9/xCVezAzW+dSn28JU="></latexit>

from x-nodes and z-nodes

<latexit sha1_base64="EoOANfQTKtizyUOMMhULwPUY0Ww=">AAACBnicdVBNSxtRFH2jttr0w7QuS+HRILjpMJMEk+wC3bi00KiQDOHNyx19+D6G9+5IwzArEfoD3BfcuXHRUtz6G7rr//AH+JJY0NIeuHA4517uvSfNpXAYRb+DpeWVJ09X157Vnr94+Wq9/vrNnjOF5TDgRhp7kDIHUmgYoEAJB7kFplIJ++nxx5m/fwLWCaM/4zSHRLFDLTLBGXppXH83QviCVpWZNYqWozQrp1X1QZsJuKo2rjeiMGq2m70WjcK41W112p40u1Gn1aNxGM3R6G/cfjs/Sy52x/Vfo4nhhQKNXDLnhnGUY1Iyi4JLqGqjwkHO+DE7hKGnmilwSTl/o6KbXpnQzFhfGulcfThRMuXcVKW+UzE8cn97M/Ff3rDArJuUQucFguaLRVkhKRo6y4ROhAWOcuoJ41b4Wyk/YpZx9MnNQvjzKf0/2WuG8XYYf4ob/TZZYI28Je/JFolJh/TJDtklA8LJKbkk38mP4GtwFfwMrhetS8H9zAZ5hODmDtL3nbQ=</latexit>

from y-nodes

<latexit sha1_base64="m4/ez8rgsjsNnW6T7Mlb1vi1ay0="></latexit>

to and from
all nodes
except a and a0

Fig. 10. The construction of digraph D in the proof of ΣP
2 -hardness. This figures shows the ∀-gadget, namely the part of D that contains the vertices that

simulate setting the values of the yj -variables and the terms τg . The arcs to and from b are shown as bi-directional arrows at b.

— For j = 0, ..., l, create vertices qj . For j = 1, ..., l, create
vertices yj and ȳj and arcs (qj−1, yj), (qj−1, ȳj), (yj , qj),
and (ȳj , qj).

— For g = 0, ...,m, create vertices pg. For g = 1, ...,m,
create vertices τg and arcs (pg−1, τg) and (τg, pg).

— Create arcs (ql, p0) and (pm, q0).
— For each g = 1, ...,m, and for each literal ỹj in τg , create

arc (ỹj , τg).
To complete the construction of D, we add arcs between

∃-gadgets and the ∀-gadget:
— For each g = 1, ...,m, if x̃i is the x-literal in τg (there

is exactly one, by the definition of ∃∀DNF1x), create arcs
(x̃i, τg) and (z̃i, τg).

Next, we need to define preference posets for all vertices. As
explained in Section II, all preference posets are specified by
their list of generators. An outcome 〈ωin |ωout〉 of each vertex
v is specified by lists ωin and ωout of its in-neighbors and out-
neighbors, respectively. With this convention, the generators
of all preference posets are:
— Vertices a, a′, and b do not have any generators.
— The generators for the ∃-gadget corresponding to variable

xi are as follows. For each literal x̃i, its generators are
DEALx̃i ≺ 〈b | b, ¯̃xi, T (x̃i)〉 and DEALx̃i ≺ 〈b, ¯̃xi | b, z̃i〉,
where ¯̃xi is the negation of x̃i and T (x̃i) is the set of terms
that contain literal x̃i. The generators of z̃i are DEALz̃i ≺
〈b | b〉 and DEALz̃ ≺ 〈b, x̃i | b, T (x̃i)〉.

— For each literal ỹj , its generators are DEALỹj ≺ 〈b | b〉 and
〈b | b〉 ≺ 〈qj−1 | qj , T (ỹj)〉. The generators of qj , where
j /∈ {0, l}, are DEALqj ≺ 〈b | b〉 and 〈b | b〉 ≺ 〈ỹj | ỹj+1〉,
for all literals ỹj ∈ {yj , ȳj} and ỹj+1 ∈ {yj+1, ȳj+1}.

— The generators of q0 are DEALq0 ≺ 〈b | b〉 and 〈b | b〉 ≺
〈pm | ỹ1〉, for all ỹ1 ∈ {y1, ȳ1}. The generators of ql
are DEALql ≺ 〈b | b〉 and 〈b | b〉 ≺ 〈ỹl | p0〉, for all
ỹl ∈ {yl, ȳl}.

— For each term τg, letting x̃i be the unique x-literal in
τg, its generators are: DEALτg ≺ 〈b, x̃i | b〉, 〈b, x̃i | b〉 ≺
〈pg−1, L | pg〉 for any subset L of the y-literals in τg,
DEALτg ≺ 〈b, z̃i | b〉, and 〈b, z̃i | b〉 ≺ 〈pg−1, L

′ | pg〉 for
any non-empty subset L′ of the y-literals in τg. For each
pg , where g /∈ {0,m}, its generators are DEALpg ≺ 〈b | b〉
and 〈b | b〉 ≺ 〈τg | τg+1〉.

— The generators of p0 are DEALp0 ≺ 〈b | b〉 and 〈b | b〉 ≺
〈ql | τ1〉. The generators of pm are DEALpm ≺ 〈b | b〉 and
〈b | b〉 ≺ 〈τm | q0〉.

With this, the description of S is complete. The construction
of S clearly takes time that is polynomial in the size of α.
Applying Theorem 3, it remains to show that α is true if and
only if D has a spanning subgraph G with properties (c.1)-(c.3).

The argument is based on several ideas. One, We design the
preference posets of x̃i’s so that G is forced to choose between
two possible subsets of arcs within the ∃-gadget. The choice
between these two subsets of arcs corresponds to choosing a
truth assignment for variable xi. We focus on the literals x̃i that
are set to false, since these kill the terms where they appear. If
x̃i is set to false, its arcs to the terms τg’s in which the literal
appears will be included in G (the first subset), otherwise its
arc to z̃i will be included in G (the second subset).

Another idea is that vertices outside of the ∀-gadget have
their preference posets defined in such a way that their arcs in G
define an outcome that is already the best for them. Therefore,



if a subgraph H that strictly dominates G does indeed exist,
we know it must appear in the ∀-gadget. This leads into the
key idea of the ∀-gadget. The vertices in this gadget can have
outcomes that are better than their outcomes in G. All the arcs
in these better outcomes together form the cycle

C = q0 → ỹ1 → ...→ ỹl → ql →
p0 → τ1 → ...τm → pm → q0

(2)

for some choice of the literals ỹ1, ..., ỹl. We design the
preference posets of each τg so that its outcome in G can
only be improved (specifically, towards C) only if it receives
an arc from one of its literals — in other words, if it is killed
by that literal. This way, G will have a strictly dominating
subgraph H (namely cycle C) only if all terms are killed, i.e.
when α is false. The formal proof follows.

(⇒) Suppose α is true. Fix some truth assignments x 7→ φ
for which ∀yβ(φ,y) is true. This means that for each truth
assignment y 7→ ψ the boolean expression β(φ,ψ) is true.
For each truth assignment y 7→ ψ we can thus choose an index
h(ψ) for which term τh(ψ) is true.

Using this assignment x 7→ φ, we construct a spanning
subgraph G of D that satisfies the three conditions (c.1)-(c.3).
G will contain all vertices from the above construction and
all arcs that connect b to all other vertices except a and a′,
in both directions. Vertices a and a′ will be connected by
arcs (a, a′) and (a′, a). This makes G spanning and piece-wise
strongly connected, with one strongly connected component
consisting of vertices a and a′ and the other consisting of all
other vertices. So (c.1) holds.

Next, we define the arcs of G for the vertices in the ∃-gadgets.
For any given i, if φ(xi) = 1, add to G the following arcs:
(xi, zi), (x̄i, xi), all arcs (zi, τj) for terms τj ∈ T (xi), and all
arcs (x̄i, τj) for terms τj ∈ T (x̄i). Symmetrically, if φ(xi) = 0,
add to G the following arcs: (x̄i, z̄i), (xi, x̄i), all arcs (z̄i, τj)
for terms τj ∈ T (x̄i), and all arcs (xi, τj) for terms τj ∈ T (xi).
(Note that we add the arcs from false literals to the terms that
they kill, and from true literals to the corresponding nodes z̃i.)
We now need to verify conditions (c.2) and (c.3).

Condition (c.2) can be verified by routine inspection of all
nodes. For each vertex v we need to check that DEALGv �
DEALDv . For v ∈ {a′, b}, we have DEALGv = DEALDv . For
v = a, DEALGa = 〈a′ | a′〉 � DEALDv . For v = x̃i there
are two cases: either DEALGx̃i

= 〈b, ¯̃xi | b, z̃i〉 (if φ(x̃i) = 1)
or DEALGx̃i

= 〈b | b, ¯̃xi, T (x̃i)〉 (if φ(x̃i) = 0); in both cases
DEALGx̃i

� DEALDx̃i
. For v = z̃i, similarly, either DEALGz̃i =

〈b, x̃i | b, T (x̃i)〉 (if φ(x̃i) = 1) or DEALGz̃i = 〈b | b〉 (if φ(x̃i) =

0); in both cases DEALGz̃i � DEALDz̃i . Finally, we examine the
vertices in the ∀-gadget. If v ∈ {pg}mg=0∪{yj , ȳj}

l
j=1∪{qj}

l
j=0

then DEALGv = 〈b | b〉 � DEALDv . Consider a vertex v = τg,
for some g, and let x̃i be the x-literal in τg. If φ(x̃i) = 1
then DEALGτg = 〈b, z̃i | b〉, and if φ(x̃i) = 0 then DEALGτg =

〈b, x̃i | b〉. In both cases, DEALGτj � DEALDτj .
It remains to verify condition (c.3). Let H be a subgraph of

D, and suppose that H dominates G, that is DEALHv � DEALGv
for all vertices v in H. We will show that is possible only if

H is either equal to G or to one of the two strongly connected
components of G.
H cannot contain any arcs from a to literals x̃i, because

then it would not dominate G at vertex a. There is also no
subgraph consisting of a and a′ that strictly dominates G. We
can thus assume that H is a subgraph of D′ = D\{a, a′}. Let
also G′ = G \ {a, a′}. The rest of the argument is divided into
two cases, depending on whether H includes vertex b or not.

Suppose first that H includes vertex b. In this case, we claim
that H = G′, and therefore H does not strictly dominate G. To
show this, observe first that since DEALHb � DEALGb , H must
contain all incoming arcs of b. So H must in fact contain all
vertices of D′. And each vertex v ∈ D′ \ {b} does not have
any outcome better than DEALGv that does not have arc (b, v).
Therefore H must also contain all outgoing arcs of b.

The idea now is to show that for each vertex v ∈ D′ \ {b},
the outcome of v in G′ is already best possible among the
outcomes that have incoming and outgoing arcs from b. A more
formal argument actually focuses on arcs rather than vertices,
and involves two observations: (i) For each arc (u, v) ∈ G′,
vertex v does not have any outcome that does not include
incoming arc (u, v) and is better than DEALGv . (ii) For each
arc (u, v) ∈ D′ \ G′, vertex u does not have any outcome that
includes outgoing arc (u, v) and is better than DEALGu . These
observations imply that DEALHv � DEALGv for all v ∈ D′,
implying in turn that H = G′, as claimed.

Both observations (i) and (ii) can be established through
routine although a bit tedious inspection of all arcs in D′.
(The process here is the same as in the NP-hardness proof in
Section X.)

We start with the vertices in the ∃-gadgets. Consider some
x̃i and suppose φ(x̃i) = 1 (symmetric for when φ(x̃i) = 0).
There is no outcome of x̃i better than DEALGx̃i

= 〈b, ¯̃xi | b, z̃i〉
that does not include the incoming arc (¯̃xi, x̃i). Also, there
is no better outcome that includes arc (x̃i, τj), for each term
τj ∈ T (x̃i). For ¯̃xi,DEALG¯̃xi

= 〈b | b, x̃i, T (¯̃xi)〉. There is no
outcome of ¯̃xi better than DEALG¯̃xi

that includes arc (¯̃xi, ¯̃zi).
For a vertex z̃i (still assuming that φ(x̃i) = 1), DEALGz̃i =

DEALDz̃i = 〈b, x̃i | b, T (x̃i)〉; there is no better outcome that
does not include (x̃i, z̃i). Lastly, there is no outcome of ¯̃zi
better than DEALG¯̃zi = 〈b | b〉.

We move on to the vertices in the ∀-gadget. For any vertex
v ∈ {pg}mg=0 ∪ {ỹj}

l
j=1 ∪ {qj}

l
j=0 we have DEALGv = 〈b | b〉

and, by the earlier argument, H contains arc (v, b). But this v
does not have any outcome with outgoing arc (v, b) that is better
than DEALGv . The argument when v = τg , for some g, is similar.
If the unique x-literal in τg is x̃i, then DEALGτg = 〈b, z̃i | b〉 (if
φ(x̃i) = 1) or DEALGτg = 〈b, x̃i | b〉 (if φ(x̃i) = 0). In either
case, as before, there is no outcome better than DEALGτg among
the outcomes of τg that contain an outgoing arc to b.

Next, we consider the case when H does not include vertex
b. First, we observe that H cannot contain any vertices in the
∃-gadgets (namely vertices x̃i and z̃i). This is because for these
vertices v there is no outcome that is better than DEALGv and
does not include the incoming arc from b.



We can thus assume that H is a subgraph of the ∀-gadget.
(This is actually the most crucial case.) Let D′′ be the subgraph
of D induced by the vertices in the ∀-gadget. Observe that every
vertex v in D′′ has at least one outcome better than DEALGv
that does not include arcs to and from b, so now we need a
more subtle argument than the one we used earlier. For v = τg ,
there are two cases. The first is when τg has an incoming arc
from its unique x-literal x̃i (which means φ(x̃i) = 0), in which
case DEALGτg = 〈b, x̃i | b〉. By the preference poset of τg, τg
can improve this outcome by switching to 〈pg−1, L | pg〉, for
any set L of the y-literals in τg . That is, this τg can improve
its outcome regardless of whether it receives any arcs from
its y-literals. The second case is when τg does not have an
incoming arc from its x-literal x̃i (which means φ(x̃i) = 1), in
which case DEALGτg = 〈b, z̃i | b〉. By the preference poset of τg ,
τg can improve its outcome by switching to 〈pg−1, L

′ | pg〉 for
any non-empty subset L′ of the y-literals in τg. That is, this
τg can improve its outcome only if it receives an arc from at
least one of its y-literals. For v = ỹj , DEALGỹj = 〈b | b〉. By the
preference poset of ỹj , ỹj can improve its outcome by switching
to 〈qj−1 | qj , T (ỹj)〉, which results in creating arcs to the terms
in T (ỹj). For v = qj , DEALGqj = 〈b | b〉. By the preference
poset of qj , where j /∈ {0, l}, the following outcomes of qj
are better than DEALGqj : 〈yj | yj+1〉, 〈ȳj | yj+1〉, 〈yj | ȳj+1〉 or
〈ȳj | ȳj+1〉. This means the preference posets of qj−1 and qj
allow only one of yj or ȳj to make the switch described above.
(This corresponds to choosing which of these two literals is
false.) The same reasoning holds for q0 and ql, except their
improved outcomes are 〈pm | ỹ1〉 and 〈ỹl | p0〉 respectively. For
v = pg, DEALGpg = 〈b | b〉. By the preference poset of pg,
where g /∈ {0,m}, pg can improve its outcome by switching
to 〈τg | τg+1〉. This means pg can only switch given that τg
makes one of switches described above (either from 〈b, x̃i | b〉
to 〈pg−1, L | pg〉 or from 〈b, z̃i | b〉 to 〈pg−1, L

′ | pg〉). The same
reasoning holds for p0 and pm, except their improved outcomes
are 〈ql | τ1〉 and 〈τm | q0〉 respectively.

Importantly, the outcome improvements in the above para-
graph are possible only if all the vertices in D′′ together
switch their outcomes as described in the above paragraph.
This would correspond to choosing a subgraph H that strictly
dominates G (namely the cycle given in (2)). We now show
this subgraph H cannot exist, by way of contradiction. Suppose
such a subgraph H that strictly dominates G does exist. Since
H strictly dominates G, and all vertices must improve together,
we know every vertex v ∈ H strictly improves their outcome
from DEALGv . We focus on the outcome improvements made
by the term vertices τ1...τm. Let us fix some term vertex τg
and let x̃i be the unique x-literal of τg .

As described above, τg can improves its outcome in one
of two ways, depending on DEALGτg ; specifically whether or
not (x̃i, τg) ∈ G. If (x̃i, τg) ∈ G, then τg can improve its
outcome from DEALGτg by simply “switching”. Otherwise, if
(x̃i, τg) 6∈ G, then τg can only switch to an improved outcome
if it receives an arc from any of its y-literals in H. In other
words, each τg must have either received its incoming arc from
its x-literal in G or received an incoming arc from any of its

y-literals in H.
Recall though that τg receives an arc from one of its literals

only if that literal is set to false. This implies that each term τg
is killed, either by its x-literal or one of its y-literals, depending
on how it improves its outcome. However, if each term is killed
under the assignments x 7→ φ and y 7→ ψ, we know β(φ,ψ)
is false, contradicting our original assumption.

We show this more formally, starting with the terms being
killed by the assignment of the x variables. In graph G, for each
variable xi, if φ(xi) = 1, then for each term τg that contains
x̄i, (x̄i, τg) ∈ G. On the other hand, if φ(xi) = 0, then for
each term τg that contains xi, (xi, τg) ∈ G. In both cases, τg
is killed. Within the swap system, this is signified by vertex
τg’s preference to switch from DEALGτg to 〈pg−1, L | pg〉.

Now we address the terms survived by the assignment x 7→
φ. The surviving term vertices are those that did not receive
their incoming arcs from their x-literals in G. Since we know
each surviving term vertex τg strictly improves their outcome
in H, the only remaining option is that each τg has an incoming
arc from one of their y-literals in H.

We use this to construct the assignment y 7→ ψ so that
β(φ,ψ) is false. This is quite simple: for each y-literal ỹj that
has an outgoing arc to a surviving term vertex in H, we assign
ψ(ỹj) = 0. We know that ψ must be a consistent assignment,
i.e. it cannot be the case that ỹj and ¯̃yj are both assigned to
true/false. This is because only either ỹj or ¯̃yj are in H, by
design of the preference posets of vertices qj−1 and qj . Thus,
since we can construct a consistent assignment y 7→ ψ, given
the assignment x 7→ φ, so that every term is killed, we know
that β(φ,ψ) is false, contradicting our original assumption.

(⇐) Assume now that D has a spanning subgraph G that
satisfies properties (c.1) and (c.2). From G we will construct
an assignment φ for the x-variables that makes ∀yβ(φ,y)
true. Condition (c.1) implies that G cannot have any arcs
(a, x̃i) nor (a, z̃i), so vertices {a, a′} will form one strongly
connected component of G. As before, let D′ = D \ {a, a′}
and G′ = G \ {a, a′}. We focus on G′.

We first argue that G′ is in fact strongly connected and it
contains b. This is quite simple. Condition (c.2) states that
the outcome of b in G is at least as good as its outcome in
D, so G′ must contain all incoming arcs of b. On the other
hand, each vertex v ∈ G′ \ {b} does not have an outcome
better than DEALDv that includes outgoing arc (v, b) but does
not include incoming arc (b, v). Thus, G′ must also contain
all outgoing arcs of b, which is already sufficient to make G′
strongly connected.

For each literal vertex x̃i, we will refer to any outcome that
contains T (x̃i) in its set of outgoing arcs as a 0-outcome of
x̃i, and to the exact outcome 〈b, ¯̃xi | b, z̃i〉 as the 1-outcome x̃i.
We start with the following claim:

Claim 1: For each i and each literal x̃i ∈ {xi, x̄i}, outcome
DEALGx̃i

is either a 0-outcome or the 1-outcome of x̃i. Further,
for at least one of xi and x̄i this outcome is a 0-outcome.

Proof. Let us fix a single ∃-gadget. We first show that for literal
x̃i ∈ {xi, x̄i}, the outcome DEALGx̃i

is either a 0-outcome or the



1-outcome of x̃i. Firstly, we know the incoming and outgoing
arcs between x̃i and vertex b are included in G′. Next, consider
any term vertex τg in which term τg contains literal x̃i. If we
examine the generators of vertex τg, limiting ourselves only
to the outcomes that include the arcs to and from vertex b, we
see that τg must receive either an arc from x̃i or z̃i in order
to satisfy condition (c.2).

We now have two cases: when τg receives an arc from x̃i
and when τg receives an arc from z̃i. We start with the latter
case. If τg receives arc (z̃i, τg), then by z̃i’s generators, we
know that z̃i must have received arc (x̃i, z̃i). This then implies
that x̃i received arc (¯̃xi, x̃i). At this point, x̃i is exactly in
the 1-outcome. We reason similarly about ¯̃xi: starting from
some vertex τg for which term τg contains ¯̃xi, we know that τg
must receive either an arc from ¯̃xi or ¯̃zi. We know τg cannot
receive an arc from ¯̃zi because for ¯̃zi to pay arc (¯̃zi, τg), it
must receive arc (¯̃xi, ¯̃zi). However, there is no outcome for ¯̃xi
that satisfies condition (c.2) in which ¯̃xi pays both arcs (¯̃xi, x̃i)
and (¯̃xi, ¯̃zi). Thus, we can conclude that ¯̃xi is the one to pay
τg . We can reason about each τg ∈ T (¯̃xi) in the same manner,
implying that ¯̃xi in fact pays every τg ∈ T (¯̃xi). This allows
us to conclude that ¯̃xi is in a 0-outcome.

We move on to the former case, when τg receives an arc from
x̃i. It is easy to see that if x̃i pays any term vertex τg ∈ T (x̃i),
it must pay all term vertices in T (x̃i). This is because each
term vertex τg ∈ T (x̃i) must receive an arc from either x̃i or
z̃i, as previously stated. However, there is no outcome for x̃i
that satisfies condition (c.2) in which x̃i pays τg and z̃i, thus
x̃i is responsible for paying all term vertices τg ∈ T (x̃i). This
is sufficient to show that x̃i is in a 0-outcome. We move onto
vertex ¯̃xi. Unlike the previous case, the outcome of ¯̃xi is not
directly influenced by the outcome of x̃i. When we consider
some term vertex τg ∈ T (¯̃xi), it is possible for τg to receive an
arc from either ¯̃xi or ¯̃zi. We show that ¯̃xi ends in a 0-outcome
or the 1-outcome, respectively. The first possibility is that τg
receives arc (¯̃xi, τg). We apply the same reasoning as we did
for x̃i: if any τg ∈ T (¯̃xi) receives its arc from ¯̃xi, then every
τg ∈ T (¯̃xi) also receives its arc from ¯̃xi. This is again sufficient
to show that ¯̃xi is in a 0-outcome. The second possibility is
that τg receives arc (¯̃zi, τg). For ¯̃zi to pay this arc, it must
receive arc (¯̃xi, ¯̃zi). For ¯̃xi to pay this arc, it must receive arc
(x̃i, ¯̃xi). However, this is exactly the 1-outcome for ¯̃xi. We note
that this requires x̃i to pay arc (x̃i, ¯̃xi), changing the outcome
of x̃i. Importantly though, x̃i remains in a 0-outcome and still
satisfies condition (c.2) as DEALx̃i ≺ 〈b | b, ¯̃xi, T (x̃i)〉

It is easy to see that these two cases are exhaustive by
inspection of the preference posets of τg. With this, we have
shown both parts of claim (1): firstly, for each i, x̃i and ¯̃xi
are either in a 0-outcome or the 1-outcome, and secondly, at
least one of x̃i or ¯̃xi are in a 0-outcome, regardless of which
case.

For convenience, we now introduce the concept of a pseudo-
truth assignment. A pseudo-truth assignment is an assignment ξ
of boolean values to the x-literals (not just variables) such that
for each variable xi at most one of ξ(xi) and ξ(x̄i) is 1. The

value of ∀yβ(ξ,y), for such a pseudo-truth assignment ξ, can
be computed just like for standard truth assignments. If α has a
satisfying pseudo-truth assignment ξ then it also has a satisfying
standard truth assignment φ: simply let φ(xi) = ξ(xi) for all
i. This works because if a term τg of β is not killed by ξ then
it is also not killed by φ.

Thus it suffices to show how we can convert G into a pseudo-
truth assignment ξ for the x-variables that satisfies α. We
define ξ as follows: for each i, if DEALGx̃i

is a 0-outcome then
ξ(x̃i) = 0, and if DEALGx̃i

is the 1-outcome then ξ(x̃i) = 1.

Claim 2: ξ is a satisfying pseudo-truth assignment for the
x-variables that satisfies α.

Proof. We begin by supposing the pseudo-truth assignment
ξ is not a satisfying assignment for α, towards contradiction.
This would mean that ∀yβ(ξ,y) is false. We fix an assignment
of the y-variables ψ such that β(ξ,ψ) is false. The idea is to
now take ψ and construct a subgraph H that strictly dominates
G, contradicting our original assumption. Actually, H will be
a subgraph of the ∀-gadget of the form given in (2), as before.

We now construct H as follows: add all vertices v ∈
{pg}mg=0 ∪ {qj}

l
j=0 ∪ {τg}

m
g=1 to H. For each j, if ψ(yj) = 1,

add ȳj , otherwise, if ψ(yj) = 0, add yj (we include the literal
that is false). Now that we have all the vertices, we must define
the arcs. Again, H will have the form of the cycle given in (2).
For each ỹj ∈ H, add arcs (qj−1, ỹj) and (ỹj , qj). Add arcs
(ql, p0) and (pm, q0). For each τg ∈ H, add arcs (pg−1, τg)
and (τg, pg). Lastly, for each ỹj ∈ H, add arcs (ỹj , τg) for
τg ∈ T (ỹj).

The next step is to show thatH indeed strictly dominates G. It
is easy to see that for vertices v ∈ {pg}mg=0∪{ỹj}

l
j=1∪{qj}

l
j=0,

DEALGv ≺ DEALHv holds by simple inspection of each vertex’s
preference poset. Thus, we focus on the term vertices τ1, .., τm.
For each term vertex τg , outcome DEALHτg is an improvement
in comparison to DEALGτg only if (at least) one of the two
following conditions are satisfied: (1) τg received its incoming
arc from its x-literal in G, or (2) τg receives an incoming arc
from any of its y-literals in H.

We claim that one of these two conditions holds for every
term τg. Suppose this is not true, towards contradiction, and
there is a term vertex τg that does not satisfy either condition.
Specifically, τg does not receive its incoming arc from its x-
literal in G, nor does τg receive any of its incoming arcs from
any of its y-literals in H. If this were the case, then τg is
actually true, contradicting the fact that β(ξ,ψ) is false. Let x̃i
be the x-literal of τg . If (x̃i, τg) 6∈ G, then DEALGx̃i

is actually
the 1-outcome for x̃i. This implies that ξ(x̃i) = 1. Since τg
does not satisfy the second condition, we know it does not
receive a single arc from any of its y-literals. However, recall
how we used ψ to construct H; a y-literal is added to H only
if that literal is false in ψ. This means each of these y-literals
of τg are actually true in the original assignment of ψ. This
implies that the term τg is actually true, contradicting β(ξ,ψ)
being false.



This contradiction gives us the fact that every term vertex
τg indeed improves their outcome from DEALGτg . With this,
we have proven every vertex v ∈ H improves their outcome
from DEALGv , meaning H strictly dominates G. However, the
existence of such anH contradicts our condition (c.3), implying
claim (2), that the pseudo-truth assignment ξ is indeed a
satisfying assignment of the x-variables for α.

With the truth assignment φ defined, we need to show that
the non-existence of an H that strictly dominates G implies that
the expression ∀yβ(φ,y) is true. For this, it’s easier to show
the contrapositive, namely if there existed some assignment
ψ for the y-variables for which ∀yβ(φ,ψ) is false, we could
convert ψ into a subgraph H that strictly dominates G.

We simply employ the exact same argument we saw in
the proof for claim (2). We convert the assignment ψ in the
exact same manner: for each yj , if ψ(yj) = 1, add ȳj to
H, otherwise, if ψ(yj) = 0, add yj . The remainder of H is
constructed in the exact same way as previously described.
Likewise, the proof that H indeed strictly dominates G is the
same. Since this contradicts condition (c.3), we know that the
expression ∀yβ(φ, y) is in fact true.

X. ANOTHER PROOF OF NP-HARDNESS

In this section we give a proof of NP-hardness of
SwapAtomic that is simpler than the one in Section V.

Theorem 7. SwapAtomic is NP-hard. It remains NP-hard
even for strongly connected digraphs.

Proof. The proof is by showing a polynomial-time reduction
from CNF. Recall that in CNF we are given a boolean
expression α in conjunctive normal form, and the objective is
to determine whether there is a truth assignment that satisfies α.
In our reduction we convert α into a swap system S = (D,P)
such that α is satisfiable if and only if S has an atomic swap
protocol.

Let x1, x2, ..., xn be the variables in α. The negation of xi
is denoted x̄i. We will use notation x̃i for an unspecified literal
of variable xi, that is x̃i ∈ {xi, x̄i}. Let α = c1 ∨ c2 ∨ ...∨ cm,
where each cj is a clause. Without loss of generality we assume
that each literal appears in at least one clause and that in each
clause no two literals are equal or are negations of each other.

We first describe a reduction that uses a digraph D that is
not strongly connected. Later we will show how to modify
our construction to make D strongly connected. Digraph D is
constructed as follows (see Figure 11) :
— For i = 1, ..., n, create vertices xi and x̄i, connected by

arcs (xi, x̄i) and (x̄i, xi).
— Create two vertices a, a′ with arcs (a, a′), (a′, a), and

(a, xi), (a, x̄i) for all i = 1, ..., n.
— For j = 1, ...,m, create vertices cj . For each clause cj and

each literal x̃i in cj , create arc (x̃i, cj).
— Create three vertices d, d′, d′′ with arcs (d, d′), (d′, d),

(d, d′′), (d′′, d), (d′, d′′) and (d′′, d′). Create also arcs
(cj , d) for all j = 1, ...,m.

— Create vertex b, with arcs (cj , b) for all j = 1, ...,m and
(b, xi), (b, x̄i) for all i = 1, ..., n.

Next, we describe the preference posets Pv , for each vertex
v in D. As explained in Section II, an outcome 〈ωin |ωout〉 of
a vertex v is specified by lists ωin and ωout of its in-neighbors
and out-neighbors. The preference posets of the vertices in D
are specified by their generators:
— Vertices a,a′, and b do not have any generators.
— For each literal x̃i, its generators are DEALx̃i ≺
〈b, ¯̃xi |C(x̃i)〉 and DEALx̃i ≺ 〈b | ¯̃xi〉, where ¯̃xi is the
negation of x̃i and C(x̃i) is the set of clauses that contain
literal x̃i.

— For each j, the generators of cj are DEALcj ≺ 〈x̃i | b〉 for
each literal x̃i in cj .

— Vertices d, d′, d′′ have one generator each: DEALd ≺
〈d′′ | d′〉, DEALd′ ≺ 〈d | d′′〉, DEALd′′ ≺ 〈d′ | d〉.

The construction of S clearly takes time that is polynomial
in the size of α.

Applying Theorem 3, it remains to show that α is satisfiable
if and only if D has a spanning subgraph G with the following
properties: (c.1) G is piece-wise strongly connected and has no
isolated vertices, (c.2) G dominates D, and (c.3) no subgraph
H of D strictly dominates G.

(⇒) Suppose that α is satisfiable, and fix some satisfying
assignment for α. Using this assignment, we construct a
spanning subgraph G of D that satisfies conditions (c.1)-(c.3).

Digraph G will contain all vertices of D. For vertices a and
a′ it will include arcs (a, a′) and (a′, a). For vertex b, it will
include all arcs (b, xi), (b, x̄i) and all arcs (cj , b). Vertices
d, d′, d′′ are connected by arcs (d, d′), (d′, d′′) and (d′′, d).
The remaining arcs are determined based on the satisfying
assignment. Suppose that literal x̃i is true. Then G includes
the arcs: (¯̃xi, x̃i) and (x̃i, cj) for all clauses cj that contain
literal x̃i. (Intuitively, the truth assignment corresponds to the
direction of the arc between xi and x̄i in G.)

Digraph G is spanning and has three strongly connected
components: one is the cycle a → a′ → a, another one
is the cycle d → d′ → d′′ → d, and the third consists of
all other vertices. This third component is indeed strongly
connected because each clause cj has a true literal, say x̃i,
so its corresponding vertex has incoming edge (x̃i, cj). We
then have arcs from all vertices cj to b and from b to each
pair xi and x̄i. For each i, among xi and x̄i, the true literal
x̃i is connected to all clauses where it appears (and it must
appear at least once, by our assumption), and its negation ¯̃xi
is connected to x̃i. So (c.1) holds.

Condition (c.2) can be verified by inspection, namely
checking that DEALDv � DEALGv holds for each vertex v. For
example, consider some variable xi and assume that xi is true
(the case when xi is false is symmetric). Then DEALGxi

=
〈b, x̄i |C(xi)〉 � DEALDxi

, and DEALGx̄i
= 〈b |xi〉 � DEALDx̄i

.
Next, consider some clause cj . Since our truth assignment
satisfies cj , cj has some true literal x̃i. Then G will have arc
(x̃i, cj). Denoting by T (cj) the set of true literals in cj , we then
have DEALGcj = 〈T (cj) | b〉 � 〈x̃i | b〉 � DEALDcj . Checking
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Fig. 11. The variable and clause gadgets in the proof of Theorem 7.

that DEALDv � DEALGv holds for v ∈ {a, a′, b, d, d′, d′′} is
straighforward. Thus, condition (c.2) is verified.

To establish condition (c.3), let H be a subgraph of D that
dominates G, that is DEALHv � DEALGv for each vertex v ∈ H.
We claim that then in fact we must have H = G, which
will imply (c.3). This claim follows from the following two
observations: (i) For each arc (u, v) ∈ G, vertex v does not
have any outcome that does not include incoming arc (u, v)
and is better than DEALGv . (ii) For each arc (u, v) ∈ D \ G,
vertex u does not have any outcome that includes outgoing arc
(u, v) and is better than DEALGu .

These observations can be verified by inspection. Starting
with a, for each literal x̃i, there is no outcome of a that is better
than DEALGa that includes arc (a, x̃i) or does not include arc
(a′, a). For a′, there is no outcome better than DEALGa = 〈a | a〉
that does not include arc (a, a′). Consider some xi, and suppose
that xi is true in our truth assignment. There is no outcome of
xi better than DEALGxi

= 〈b, x̄i |C(xi)〉 that does not include
arcs (b, xi) and (x̄i, xi), or that includes arc (xi, x̄i). Regarding
x̄i, there is no outcome of x̄i better than DEALGx̄i

that does not
have arc (b, x̄i) or that has any arc (x̄i, cj), for some clause cj .
Next, consider arcs between literals and clauses. For a clause
cj we have DEALGcj = 〈T (cj) | b〉. There is no outcome of cj
that misses one of the arcs from T (cj) or includes arc (cj , d)
and is better than 〈T (cj) | b〉. (And we have already showed
that in H, vertex cj cannot have arcs from its false literals.)
There is also no outcome of b without arc (cj , b) better than
DEALGb . The verification of the two observations for the arcs
between d, d′ and d′′ can be carried out in the same manner.

(⇐) Assume now that D has a spanning subgraph G that
satisfies properties (c.1) and (c.2). (We will not use (c.3) for
now). From G we will construct a satisfying assignment for
α. Condition (c.1) implies that G cannot have any arcs (a, x̃i),
so vertices a, a′ will form one strongly connected component
of G. Similarly, G cannot have any arcs (cj , d), so vertices
d, d′, d′′ will also form a strongly connected component. In
the rest of the argument we focus on the remaining vertices.

For each literal x̃i, since DEALGx̃i
� DEALDx̃i

, and also using
the preferences of x̃i, we obtain that G must have arc (b, x̃i).
Similarly, using the preferences of b, G must contain all arcs
(cj , b). (This also follows from the fact that cj’s cannot be
singleton strongly connected components of G.) This means that
all vertices b, x̃i and cj are in the same connected component

of G which, by property (c.1), must be strongly connected.
From the above paragraph, by strong connectivity, for each

i either xi or x̄i must have an arc to some clause vertex. Also,
since DEALGxi

� DEALDxi
, if xi has an arc to a clause vertex

then G must have arc (x̄i, xi) and G cannot have arc (xi, x̄i).
In turn, since DEALGx̄i

� DEALDx̄i
, x̄i has no arcs in G to any

clause vertices. Summarizing, we have this: exactly one of arcs
(xi, x̄i) or (x̄i, xi) is in G, and if (x̃i, ¯̃xi) is in G then x̃i does
not have any arcs to clause vertices. This allows us to define
a satisfying assignment, as follows. If G has arc (x̄i, xi), set
xi to true, and if G has arc (xi, x̄i), then set xi to false.

Using condition (c.1), in G each vertex cj must have at least
one incoming arc from some literal x̃i in cj . By the previous
paragraph, this literal is true in our truth assignment, so it
satisfies cj . This establishes that all clauses are satisfied.

To prove the second statement in the lemma, we modify
our construction. Note that in the above proof we did not
use property (c.3) in the (⇐) implication. If D is strongly
connected, then it’s itself a candidate for G, so the modified
construction will need to rely on property (c.3) somehow.

This modification is in fact quite simple. Add arcs from all
literal vertices x̃i to a, and set the preferences of a so that it
prefers to drop the arcs to and from these literal vertices to
form a coalition with a′. We apply the same trick to vertex d:
it will have arcs going back to all cj’s, but it will be happy
to drop these arcs, as well as the arc from d′′, in exchange
for dropping the arc to d′. Then in the proof for implication
(⇐) we use condition (c.3) to argue that the arcs from a to all
x̃i’s will not be in G, for otherwise a subgraph D consisting
of a, a′ and the arcs between them would strictly dominate
G. For the same reason, G will not have arcs from d to any
cj .

Comment: The NP-hardness result in Theorem 7 holds even
if we require that preference posets are specified by listing
all preference pairs (including the generic ones). This can be
shown by modifying the construction so that all vertices in D
have constant degree, and thus all preference posets will have
constant size. To this end, we can use a variant of CNF where
each clause has three literals and each variable appears at most
three times. Then the only vertices of unbounded degree will be
a, b, and d. For a, its set of outgoing arcs can be replaced by a



chain of vertices each with one outgiong arc to one outneighbor
of a. The same trick applies to the arcs of b and d.

XI. EXPERIMENTS

To further study the complexity of SwapAtomic (i.e., given
a swap system S = (D,P), decide whether it has an atomic
protocol), we programmed a simple implementation in C++. We
note that this algorithm would be run by the party assembling
the swap system, preceding any interaction with any blockchain.
This would normally be a market clearing service.

The algorithm runs in three phases. Each phase is a filter for
a condition in Theorem 3. We start with every possible graph
G, and pass each of them through the three filters. If there is a
graph remaining, then we decide yes, otherwise we decide no.
The first condition is that G is spanning, piece-wise strongly
connected, and contains no isolated vertices. We first check that
G contains every vertex, each with at least one incoming and
outgoing arc. If so, we find the strongly connected components
of G using Kosaraju’s algorithm [31]. We then check for every
arc (u, v) in G that u and v are in the same component. If
so, then G is piece-wise strongly connected, and we pass this
graph to the second phase.

The second condition is that G dominates D, the original
digraph. That is, for every vertex v, DEALDv � DEALGv ,
where DEALDv is the outcome for v if every arc in D were
triggered, and DEALGv is the outcome for v if every arc in
G were triggered. This is simple. We say DEALDv � DEALGv
if (1) they are the same outcome, (2) DEALGv is inclusively
monotone of DEALDv , or (3) DEALDv � DEALGv by a non-
generic generator (and transitivity). If this holds for every
vertex, then G dominates D and we pass G to the third phase.

The last condition is that there is no subgraph H of D
that strictly dominates G. To verify this, we generate every
possible subgraph H. Then, for every vertex v in H, we see
if DEALGv � DEALHv and at least one vertex where DEALGv ≺
DEALHv . If not, then H does not strictly dominate G. If no H
strictly dominates G, then we decide yes. However, if after all
three phases no graph remains, we decide no.

Results and Assessment. We ran this program on the
example swap systems presented in this paper. The program
was written in C++11 and compiled with g++ 12.2.0. It
was ran on a Windows 10 machine with a Intel Core
i5-11400F 6-Core 2.6GHz CPU and 16 GB RAM. We list
the mean of ten runs of each swap system. We provide three
additional datapoints: (1) number of arcs in the digraph, (2)
number of non-generic preferences generators, and (3) whether
or not the swap system ended up permitting an atomic protocol.

Results
Swap System Runtime Arcs Preferences Protocol?
S1 0.0567s 6 5 Yes
S2 0.016s 6 2 No
S3 123.116s 14 14 Yes
S4 61.851s 14 12 No
S5 328.904s 17 14 No

Swap system S1 is the system defined in Example 1. Swap
system S2 is the system defined in Figure 3. Swap system S3

is the system defined in Example 4. Swap system S4 is S3,
except the two preference generators DEALt1 ≺ 〈t2 | t2〉 and
DEALt2 ≺ 〈t1 | t1〉 are removed. Swap system S5 is S3, except
we add a new party s1 and arcs (u1, s1), (u2, s1), and (s1, t1).
Non-generic preferences are not changed.

As we can see in S1 and S2, it is feasible to compute
SwapAtomic for small swap systems, as expected. The runtimes
are less than a second. We next look at larger graphs and
highlight the difficulty of SwapAtomic. We observe that S3

and S4 have higher runtimes. Further, their runtimes are not in
the same ballpark although they have the same number of arcs.
Firstly, because piece-wise strong connectivity is a requirement,
one might suspect that the cause is the number of arcs or the
degree of the vertices. However, the digraphs for both swap
systems are exactly the same. The natural reaction is to look
at the preference posets. We removed two generators from
S3 to S4. This made it so the swap system no longer had an
atomic protocol, which reduced the runtime. This is because
in phase three, the program halts as soon as it finds an H for
every G (that passed phases one and two). On the other hand,
when the system does permit a protocol, the entirety of phase
three needs to finish. That is, it needs to check all possible
H to verify G has no strictly dominating subgraphs. Lastly,
from S3 to S5, we added one party and three arcs, but no
non-generic preferences were changed. Although S5 ended up
not permitting a protocol, it scaled poorly with respect to S3.

In practice, the runtimes may not be predictable, as is the
case with NP-Hard problems. Needless to say, an increase in
the number of arcs will generally increase the running time as
there are more rounds of Kosaraju’s algorithm in phase one.
Additionally, if one is to believe the swap system does indeed
permit a protocol, then one should expect a long runtime as
well, as the program needs to verify every subgraph in phase
three.


