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Abstract
This paper introduces BioScript, a domain-specific language 
(DSL) for programmable biochemistry that executes on 
emerging microfluidic platforms. The goal of this research 
is to provide a simple, intuitive, and type-safe DSL that is 
accessible to life science practitioners. The novel feature of 
the language is its syntax, which aims to optimize human 
readability; the technical contribution of the paper is the 
BioScript type system. The type system ensures that certain 
types of errors, specific to biochemistry, do not occur, such 
as the interaction of chemicals that may be unsafe. Results 
are obtained using a custom-built compiler that imple-
ments the BioScript language and type system.

1. INTRODUCTION
The last two decades have witnessed the emergence of 
software-programmable laboratory-on-a-chip (pLoC) tech-
nology, enabled by technological advances in microfab-
rication and coupled with scientific understanding of 
microfluidics, the fundamental science of fluid behavior 
at the micro- to nanoliter scale. The net result of these col-
lective advancements is that many experimental labora-
tory procedures have been miniaturized, accelerated, and 
automated, similar in principle to how the world’s earliest 
computers automated tedious mathematical calculations 
that were previously performed by hand. Although the vast 
majority of microfluidic devices are effectively application-
specific integrated circuits (ASICs), a variety of programma-
ble LoCs have been demonstrated.16, 18

With a handful of exceptions, research on programming 
languages and compiler design for programmable LoCs has 
lagged behind their silicon counterparts. To address this 
need, this paper presents a domain-specific programming 
language (DSL) and type system for a specific class of pLoC 
that manipulate discrete droplets of liquid on a two-dimensional 
grid. The basic principles of the language and type system 
readily generalize to programmable LoCs, realized across a 
wide variety of microfluidic technologies.

The presented language, BioScript, offers a user-friendly 
syntax that reads like a cookbook recipe. BioScript features 
a combination of fluidic/chemical variables and operations 
that can be interleaved seamlessly with computation, if 
desired. Its intended user base is not traditional software 
developers, but life science practitioners, who are likely to 
balk at a language that has a steep learning curve.

BioScript’s type system ensures that each fluid is never 
consumed more than once, and that unsafe combinations 
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of chemicals—those belonging to conflicting reactivity 
groups, as determined by appropriately qualified govern-
ment agencies—never interact on-chip; BioScript’s type sys-
tem is based on union types and was designed to ensure that 
type inference is decidable. This will set the stage for future 
research on formal validation of biochemical programs.

The BioScript language and type system are evaluated using 
a set of benchmark applications obtained from scientific liter-
ature. We use a microfluidic simulator to assess performance 
under ideal operating conditions and also execute them on a 
real device, which is much smaller and supports a subset of 
BioScript’s operational capabilities. This result establishes the 
feasibility of high-level programming language and compiler 
design for programmable chemistry, and opens up future 
avenues for research in type systems and formal verification 
techniques within this nontraditional computing domain.

1.1. Digital microfluidic biochips (DMFBs)
This paper targets a specific class of programmable LoCs 
that manipulate discrete droplets of fluid via electrostatic 
actuation. Figure 1a illustrates the electrowetting principle: 
applying an electrostatic potential to a droplet modifies the 
shape of the droplet and its contact angle with the surface.10, 13  
As shown in Figure 1b, droplet transport can be induced by 
activating and deactivating a sequence of electrodes adja-
cent to the droplet; the ground electrode, on top of the array, 
improves the fidelity of droplet motion and reduces the volt-
age required to induce droplet transport.

Figure 2a depicts a programmable 2D electrowetting 
array, called a digital microfluidic biochip (DMFB). A DMFB 
can support five basic operations, as shown in Figure 2b: 
transport (move a droplet from position (x, y) to (x′, y′)), split 
(create two smaller droplets from one larger droplet), merge 
(combine two droplets into 1), mix (rotate a merged droplet 
in a rectangular region around one or more pivots), and stor-
age (place a droplet at position (x, y) for later use). A DMFB 
is reconfigurable, as these operations can be performed any-
where on the array, and any given electrode can be used to 
perform different operations at different times. Droplet I/O 
is performed using reservoirs on the perimeter of the chip, 
which are not depicted in Figure 2.

The DMFB instruction-set architecture (ISA) can be 
extended by integrating sensors, optical detectors, or 
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online video monitoring capabilities. Sensors and actua-
tors create a “cyber-physical” feedback loop between the 
host PC controller and the DMFB. The ability to perform 
sensing, computation, and actuation based on the results 
of the computation adds control flow to the instruction set 
of the DMFB. Prior work has applied feedback control for 
precise droplet positioning and online error detection and 
recovery11, 12, 19 efforts to leverage these capabilities to pro-
vide control flow constructs at the language syntax level 
have been far more limited.

2. OVERVIEW
BioScript Syntax and Semantics. BioScript is a language for 
programmable microfluidics whose syntax aims to be pal-
atable to life science practitioners, most of whom are not 
experienced programmers. The BioScript syntax and seman-
tics were designed to enable scientists to express operations 
in a manner that closely resembles plain English. To keep 
the language small, we do not include operations in the lan-
guage syntax that can automatically be inferred by the com-
piler and/or execution engine. For example, the compiler 
can automatically infer implicit fluid transfers for a mix 
operation. BioScript features a semantics that targets pLoC 
technologies. The syntax and semantics of BioScript’s type 
system are formally described in Section 3.

We begin with a self-contained example to illustrate the 
expressive capabilities of BioScript.
Example: PCR with Droplet Replenishment. Figure 3 pres-
ents a BioScript program for a DMFB-compatible implemen-
tation of the polymerase chain reaction (PCR), used to amplify 
DNA.14 PCR involves thermocycling (repeatedly heating and 
then cooling) a droplet containing the DNA mixture under-
going amplification [lines 5–17]. In this implementation, 
thermocycling may cause excess droplet evaporation. This 
implementation uses a weight sensor to detect the droplet 

volume after each iteration [line 8]; if too much evaporation 
occurs [line 9], the algorithm injects a new droplet to replen-
ish the sample volume [line 10–11], preheating a template 
solution [line 12] to ensure that replenishment does not 
affect the temperature of the DNA.

Type Systems and Safety. The Environmental Protection 
Agency (EPA) and National Oceanic and Atmospheric 
Administration (NOAA) have categorized 9800 chemicals 
into 68 reactivity groups,7 defined by common physical 
properties of discrete chemicals. It is known that mixing 
materials from certain reactivity groups can produce mate-
rials from other reactivity groups; for example, mixing acids 
and bases induces a strong reaction that produces salt and 
water. BioScript’s type system models reactivity groups as 
types. As a material can belong to multiple reactivity groups, 
a union type is associated with a material. Using standard 
reaction corpora, we calculate the type signature of the mix 
operation, which is fundamental throughout chemistry, as 
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(a) The electrowetting principle:10, 13 applying an electro-
static potential to a droplet at rest reduces the contact angle with 
the surface, thereby increasing the surface area in contact with the 
droplet

(b) A droplet is transported from control electrode CE2 to neighboring 
electrode CE3 by activating CE3, and then deactivating CE2 (white: 
activated electrode; black: deactivated electrode).

Figure 1. The electrowetting principle (a) enables droplet transport (b).
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(a) Left: A DMFB is a planar array of electrodes.15 Right: Cross- 
sectional view.

(b) The DMFB ISA supports five basic operations: transporting, 
merging, splitting, mixing and storage, in addition to I/O on the 
perimeter of the array.

Figure 2. A DMFB (a) and its reconfigurable instruction set (b).

1 // Initialization omitted. PCRMasterMix is a
2 // commercially available pre -mixed solution
3 // used to perform PCR.
4 PCRMix = mix PCRMasterMix with Template for 1s
5 repeat 50 times {
6 heat PCRMix at 95C for 20s
7 volumeWeight = detect Weight on PCRMix
8 if (volumeWeight <= 50uL) {
9 replacement = mix 25uL of PCRMasterMix

10 with 25uL of Template for 5s
11 heat replacement at 95C for 45s
12 PCRMix = mix PCRMix with replacement for 5s
13 }
14 heat PCRMix at 68C for 30s
15 heat PCRMix at 95C for 45s
16 }
17 heat PCRMix at 68C for 5min
18 save PCRMix

Figure 3. PCR with droplet replenishment.9 It uses the target-specific 
save instruction.
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the values of the variables. As terms are side effect-free, a 
term does not alter σ. A term can take one of many forms: a 
variable, a math operation, a detection of a physical property 
on a material, or a concrete value.

Unlike terms, instructions are not side effect-free; they 
alter memory. BioScript supports traditional assignment of 
terms to variables, manipulation of variables, and control-
flow constructs.

BioScript utilizes a conservative type system capable of 
analyzing how chemical interactions work in a cyber-physical 
context. Mixing chemicals during experiments yields a 
new chemical, functionally expiring the input chemicals. 
However, not all of the input chemicals participate in the 
reaction, and trace amounts of the input chemicals are 
present in the new chemical. For instance, mixing an acid 
and base yields salt water. There are still acid and base mol-
ecules that have not reacted in the salt water. To model this, 
BioScript employs union types that allow variables to belong 
to multiple types (see Definition 2). In other words, a vari-
able can store any combination of scalar types in the union 
type. As usual, the typing environment Γ represents a map-
ping from variables to their types.

Operational Semantics:
The operational semantics describe how a program is exe
cuted as a sequence of computational steps. It is represented 
as inference rules that define valid steps. Inference rules are 
comprised of premises and conclusions, whereby all the 
premises must be met for the conclusion to hold. As shown 
in Figures 4 and 5, the inference rules represent the premises 
above the line and conclusion below the line.

Definition 1

3.2. Operational Semantics for Assay Execution
We model execution of BioScript assays on a DMFB as an 
operational semantics. When execution of an instruction 
occurs, for example, a mix, the model must use the appro-
priate rules to “step” or handle the change of state. All the 
premises of a stepping rule must be satisfied. If no rule can 
step, the program is stuck and cannot continue execution.

We highlight two sets of rules that showcase some inter-
esting challenges BioScript faces and discuss how they are 
overcome. We begin with variable assignment. It is syntax:  
x := t allows a variable x to be assigned some term t. To model 
execution, we define E-AssignR, E-Assign, and E-Assign′, 
represented in Figure 4a.

The rule E-AssignR evaluates the right-hand side term, t 
(if it is not a variable); the rule E-Assign assigns the reduced 
value to the variable in σ, the store. The rule E-Assign′ trans-
fers a material from the right-hand side variable to the left-
hand side variable; preventing aliasing.

In traditional computing, variable assignment is an ele-
mentary operation that most computer scientists do not even 
bother thinking about. However, when modeling assignment 
in the physical world, things are not so simple. In BioScript, the 
value of a chemical variable is consumed when it is assigned 
to another variable, restricting variable aliasing. In other words, 

a table of abstract reactions between pairs of types, which 
results in a union of types.

At the same time, reactions vary in terms of safety. The 
EPA/NOAA categorization assigns one of three outcomes 
to the combination of chemicals: Incompatible, Caution, or 
Compatible. If the union type resulting from a mix operation 
includes a hazardous type, then the corresponding cell in the 
table is marked as being unsafe. Any biochemical procedure, 
or assay, specified in BioScript is allowed to execute only if it 
is safe. The signature of the mix operation does not include 
unsafe abstract reactions, which correspond to unsafe table 
cells. Therefore, the type system exclusively type-checks mix 
statements that do not produce hazardous materials. This is 
fundamental to the soundness of BioScript’s type system: it 
only type-checks assays that do not produce unsafe materials.

BioScript allows, but does not require, type annotations, 
saving the programmer from the burden of annotating pro-
grams with overly complicated union types. The assay speci-
fications presented in Figure 3 do not use type annotations. 
BioScript’s type inference system can automatically infer 
types. As the EPA/NOAA classification begins with a finite 
set of material types, type inference can be reduced to effi-
ciently decidable theories. Type inference is sound: if a typ-
ing assignment is inferred, it can be used to type-check the 
assay; it is also complete: if there is a typing assignment with 
which the assay can be type-checked, the inference will dis-
cover it. Otherwise, the assay is rejected and marked as a 
potential hazard if no typing assignment can be inferred for 
it. Our experiments show that the type system is expressive 
enough to reject hazardous assays and accept those that are 
safe. Proofs for these attributes can be found in Ott et al.15 and 
its supplemental material.

3. TYPE SYSTEM
This section presents interesting aspects of the core BioScript 
language. We begin by presenting the simple, yet robust, 
BioScript syntax. Next, we describe the novel aspects of the oper-
ational semantics—or mathematical model—describing the 
runtime execution of assays on pLoC devices (Definition 1).  
We then provide technical details on how BioScript’s type 
system prevents unsafe operations from occurring. Unsafe 
operations include the interaction of materials that may 
cause an explosion or create noxious gasses, as well as access 
materials that have already been consumed. We explore the 
syntax, operational semantics, and type system using two 
statements: variable assignment and mix semantics in great 
detail. The full BioScript language, operational semantics, 
and type system are described in Ott et al.15 and its supple-
mental material.

3.1. Syntax
BioScript’s set of instructions is modeled after the ISA dis-
cussed in Section 1.1. BioScript supports heat and detect 
instructions but omits move and store instructions, as they 
are inferred from data-flow analysis. The BioScript language 
is imperative and a statement is a sequence of effectful 
instructions that involve side effect-free terms. To model 
state, or memory, we define σ, a mapping of variables to their 
values. A side effect, in this context, is changing σ—updating 
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the BioScript program x = mat; y = x; z = x is stuck at the third 
assignment as the second assignment consumes x. This restric-
tion is necessary for material variables, but can be easily lifted 
for numeric variables.

Mixing is a frequent activity that chemists and biologists 
employ in their discipline. BioScript’s syntax for mixing is 
simple and intuitive: x := mix x1 with x2 for t. A mix instruction 
takes two variables (x1 and x2), mixes them for some time t 
and stores the resulting chemical in the new variable x. To 
model execution of the mix instruction, we define E-MixR 
and E-Mix, defined in Figure 4b.

E-MixR first evaluates the time term of a mix instruction, 
eventually reducing it to a real number, r. After the time term 
has been reduced, E-Mix is evaluated. E-Mix prescribes that 
both x1 and x2 in σ must be materials. The variables x1 and x2 
must also be safe to interact; the function interact determines 
safety at run time. interact returns the resulting material if mix-
ing is safe; otherwise, interact returns  — the mixture is unsafe. 
When a scientist mixes two chemicals together in a flask, 
the two distinct chemicals no longer exist; to model this, the 
used variables x1 and x2 are removed from σ and the variable 
x is mapped to the resulting material. The evaluation of a mix 
instruction is stuck if either of the two variables are not material 
values, any of the variables are already used and removed from 
the store, or the interaction of the materials is unsafe ( ).

The full runtime model, detailing all terms and instruc-
tions, is available in the supplemental material.

3.3. Type Checking and Inference
Similar to modeling execution, inference rules describe how 
BioScript’s type system type-checks a program. Again, we focus 
on the interesting typing rules that BioScript defines to keep sci-
entists safe while writing and executing assays on DMFB devices.

We begin with typing assignment instructions, defined in 
Figure 5a. The rule T-Assign-1 types an assignment of a value 
to a variable and adds the variable to the set of available vari-
ables. Rule T-Assign-2 strictly prevents aliasing by consuming 
the right-hand side while adding the left-hand side variable 
to the set of available variables. (At the cost of brevity, the rule 
can be easily relaxed to not remove numeric variables from 
the available set.) Finally, rule T-Assign-3 addresses typing for 
numeric terms. It allows assigning numeric terms to variables.

In spite of a scientist’s training regarding safe and unsafe 
chemical interactions, countless incidents occur involving 
chemical interactions that result in explosions or noxious 
gasses, causing harm to the laboratory or worse, the scien-
tist. To help prevent incidents, BioScript defines the typing 
rule T-Mix, described in Figure 5b, which helps ensure that 
no chemical interaction exhibits adverse reactions as well 
as guaranteeing no chemical is used more than once.

To guarantee safety during a mix instruction, x1 and x2 must 
be a union of material types, that is, Γ, X  x1:  and Γ,  
X  x2 : , respectively. Similarly, the time term of the mix 
instruction must be a real number (Γ, X  t: R, which is to say 
that the value of the term t must be in the set of real numbers).

Union Types:
A typing convention allows a variable to assume a set of 
types. We differentiate between scalar types, denoted by 
S, and union types, denoted by ; a union type is a set of 
scalar types. In the context of BioScript, scalar types are 
the material types Mat1 |..| Matn. A union of material types 
can then be expressed as .

Definition 2

T-ASSIGN-1
x : T ∈ Γ Γ, X       v : T ′ T ′ ⊆ T

T-ASSIGN-2
x : T ∈ Γ Γ, X x ′ : T ′ T ′ ⊆ T

Γ, X x := x ′ , X \ { x ′ } ∪ { x }

T-ASSIGN-3
x : T ∈ Γ t ∪∉

Γ, X t : T ′ T ′ = ∨ T ′ = T ′ ⊆ T

Γ, X x := t, X ∪ { x }

(a)

T-MIX

Γ, X x 1 : ∪Mat i Γ, X x 2 : ∪Mat j Γ, X t :
interact-abs (Mat i , Mat j ) ⊆ Γ(x ) for each i and j

Γ, X

⊥

⊥

⊥

⊥

⊥

⊥
⊥

Γ, X       x := v, X ∪ {x}

⊥

⊥ ⊥

x := mix x 1 with x 2 for t, X \ { x 1 , x 2 } ∪ {x }

(b)

Figure 5. a and b depict the typing rules for only variable assignment 
and mixing in BioScript.

E-ASSIGNR
(σ, t) → t′ t ∈

(σ, x := t; s) → (σ, x := t′ ; s)

E-ASSIGN

(σ, x := v ; s) →
(σ[x v], s )

E-ASSIGN′

σ′ = (σ \ {x ′})[x → σ (x ′)]

(σ, x := x′ ; s) → (σ′ , s )

(a)

E-MIXR
(σ, t) → t′

(σ, x :=
(σ, x :=

mix  x1  with  x2  for  t;  s) →
mix  x1  with  x2  for  t′;  s) 

mix  x1  with  x2  for r ;  s) → (σ′, s)

E-MIX

σ(x 1 ) ∈ Mat σ (x 2 ) ∈ Mat
interact (σ(x 1 ) , σ (x 2 ) , r )

σ′ = (σ \ { x 1 , x 2 } )[x interact (σ(x 1 ) , σ (x 2 ) , r )]

(σ, x :=

(b)

Figure 4. a and b depict the operational semantics for only variable 
assignment and mixing in BioScript.
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4. IMPLEMENTATION
This section describes the underlying implementation 
details of the BioScript language and its type system.

BioScript. The BioScript language was implemented as 
described in Section 2. As DMFBs do not offer external flu-
idic storage, there is no possibility to implement a stack 
or heap of substantial size. For these reasons, BioScript 
provides inline functions exclusively and does not support 
recursion; similarly, BioScript does not support arrays, even 
of constant size, as doing so would significantly inhibit por-
tability. We hope to address these issues in greater detail in 
a future publication. BioScript handles variable assignment 
implicitly, for example, Figure 8d. However, the scientist 
declares a manifest of chemicals that is used through-
out the assay (“blood” and “water,” for this assay) and the 
BioScript compiler infers the dispense and move operations.

The Type System. BioScript’s type system utilizes static 
type checking, which runs during compilation. The type 
system automatically infers types using an abstract interac-
tion function that is a conservative overapproximation of the 
resulting chemical types of each interaction. The type sys-
tem uses the 68 EPA/NOAA reactivity groups as the material 
types  that together with natural N, and real R numbers, 
constitute the set of scalar types S.

We calculate the abstract interaction function interact-
abs (defined in Section 3.3) as a table that is indexed by 
two material types and stores union types. Each reactivity 
group or type Mati comprises a nonempty set of chemicals 
Ci. Abstract mixing of a pair of material types Mati and Matj 
effectively mixes each pair of chemicals (ci, cj) in the cross 
product Ci × Cj. If any interaction is Incompatible, the table 
entry for (Mati, Matj) is marked as hazardous (or undefined, 
as modeled in Section 3). Otherwise, if the mix operation 
yields a new chemical ck, we use a ChemAxon,4 an industry-
standard computational chemistry library to assign a union 
type  to ck, which is added to the union type of the 
cell for Mati and Matj. In practice, molecules of ci and cj will 
remain after mixing ci and cj, even if a reaction occurs, and 
the presence of extra molecules at the microliter scale, or 
smaller, may have a nonnegligible impact on the underlying 
chemistry or biology. To account for this fact, Mati and Matj 
are also added to the cell. As type assignment to concrete 
chemicals is conservative and we include the input types in 
the resulting union type, the types in the table represent an 
overapproximation of the chemicals that can result from 
concrete interactions.

There may be instances where scientists need to create 
hazardous reactions, which the type system would correctly 
reject. In this case, the type system generates all relevant 
errors and warnings, but allows the programmer to override 
the type system in order to finish compilation and execute 
the assay.

Execution. BioScript targets a real-world DMFB platform 
called DropBot,8 as shown in Figure 6. Although DropBot 
features real-time object tracking, it does not, at pres-
ent, support execution of assays that feature control flow. 
BioScript can produce a DropBot-compatible electrode acti-
vation sequence, in the form of a JSON file, to execute on the 
chip depicted in Figure 6.

For a mix instruction to type-check, the interaction of the 
input materials must be safe. To determine this, we define 
the function interact-abs, which accepts two scalar material 
types as arguments and returns a union type of materials  

. The abstract interaction interact-abs is conservative 
with respect to the concrete interaction function: interact. If 
two material values mati and matj are members of two mate-
rial types Mati and Matj, and the concrete interaction of mati 
and matj is unsafe, then the abstract interaction of Mati and 
Matj is undefined, rendering the program unable to type-
check. Otherwise, the result of the concrete interaction is a 
member of the type resulting from the abstract interaction of 
Mati and Matj. If the interaction of all such pairs of materials 
mati and matj is safe, then the abstract interaction of Mati and 
Matj is safe. A full discussion of how the interact-abs function 
is used is presented in Section 4.

Finally, the result of the mix is assigned to x, whose type in Γ 
should be a superset of the resulting material types. In the physi-
cal world, mixing chemicals uses those chemicals—they no longer 
exist. To model this, the materials represented by x1 and x2 are con-
sumed and replaced by x in the set of available variables.

We proved that the BioScript type system is sound. All 
type-checked programs are correct, that is, never get stuck 
during execution; conversely, incorrect programs cannot 
type-check. As explained for the operational semantics, 
there is no inference rule for unsafe operations; that is, incor-
rect programs are stuck. The soundness is proved as tan-
dem progress and preservation lemmas (see Definition 3).  
The progress lemma states that well-typed programs are not 
stuck; that is, they can take a step. More precisely, if a statement 
is typed, then it is either the terminal statement or it can make 
a step. The preservation lemma states that if a well-typed pro-
gram steps, the resulting program is also well-typed.

BioScript features a type inference system. Type inference 
helps the biologists and chemists by lifting the burden of man-
ually annotating assays with union types. The rules for type 
inference match the corresponding type-checking rules but 
restate the conditions as constraints. After the type inference sys-
tem derives the constraints for a program, a satisfying model for 
the constraints yields types for the variables of the program. We 
proved that the type inference system infers types for a program 
if it is typeable. This is proved as a pair of soundness and com-
pleteness lemmas for the type inference system. The soundness 
lemma states that, if the type inference system infers types for a 
program, then with the inferred types, the type-checking system 
can type-check the program. The completeness lemma states 
that if, for a program, there exist types for variables under which 
the type-checking system can type-check the program, then the 
type inference system can infer those types.

We provide a full discussion of the above theorems in the 
supplemental materials for the interested reader.

Progress:
A well-typed program is not stuck: that is, it can take a step.
Preservation:
If a well-typed term takes a step, the resulting term is also 
well-typed.

Definition 3
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First, we compare BioScript’s syntax to three other lan-
guages: the AquaCore Instruction Set (AIS), a target-specific 
assembly-like language;2 Antha, a language for cloud-based 
laboratory automation;17 and BioCoder, a C++ library that 
has been previously specialized for DMFBs.5 Our compari-
son uses a set of compact, yet representative, bioassays taken 
from published literature. As an illustrative example, Figure 8  
shows a simple assay (a Mix followed by a Heat instruc-
tion) in all four languages; BioScript, by far, has the shortest 
description and is easier to read.

Figure 7 compares the number of lines of code required 
to specify seven representative bioassays using the four lan-
guages; three of the seven assays were not compatible with 
AIS (which is tethered to a specific pLoC2) and Antha (which 
is tethered to a cloud laboratory), so we only report four 
assays for those languages. We do not count empty lines 
(for spacing/aesthetic purposes) or lines that contain com-
ments. We wrote each assay based on our notion of human 
readability, which generally meant one statement/operation 
per line for AIS, BioCoder, and Antha. As shown in Figure 8d, 
the mixture statement in BioScript succinctly encompasses 
two implicit variable declarations with fluid type and vol-
ume information.

Across the four compatible assays, BioScript required 68% 
fewer lines of code than AIS and 73% fewer lines of code than 
Antha. Across all seven assays, BioScript required 65% fewer 
lines of code than BioCoder, which can target DMFBs, unlike 
AIS and Antha. Although these results do not account for 
subjective experience, we believe that they convey the same 
basic sentiments as shown in Figure 8: BioScript has an intu-
itive syntax and will be far easier for scientists to learn and 
use compared to existing languages in this space. Source 
code for all implementations of the bioassays reported in 
Figure 7 is included in our supplementary materials.

5. EVALUATION
The objectives of BioScript are to reduce the time and cost of 
scientific research and to provide a safe execution environ-
ment for chemists and biologists with respect to chemical 
interactions. As noted earlier, BioScript is a DSL that enables 
high-level programming and direct execution of bioassay on 
pLoCs. These objectives inform our selection of metrics to 
evaluate BioScript.

Language. Compared to other languages, BioScript offers 
an intuitive and readable syntax and a type system. We do 
not claim that BioScript offers any performance advantages 
over other languages; performance primarily depends on 
the algorithms implemented in the compiler back-end and 
execution engine, which are compatible, in principle, with 
any language and front-end. Hence, our evaluation empha-
sizes qualitative metrics of the language.

Figure 6. A DMFB chip used by DropBot devices.
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Figure 8. Example assay specified using BioCoder (a), Antha (b), AIS 
(c), and BioScript (d). We omit initialization for all examples.

1 b.first_step();
2 b.measure_fluid(blood , tube);
3 b.measure_fluid(water , tube);
4 b.next_step();
5 b.tap(tube , tenSec);
6 b.next_step();
7 b.incubate(tube , 100, tenSec);
8 b.end_protocol();

(a)

1 smpl:= make([]*wtype.LHComponent , 0)
2 Bld := mixer.SampleForTotalVolume(Blood , BldVol)
3 smpl = append(smpl , Bld)
4 Wtr := mixer.Sample(Water , WtrVol)
5 smpl = append(smpl , Wtr)
6 rctn := MixInto(OutPlate , "", smpl...)
7 r1 := Incubate(rctn , mltTemp , InitDenatime , false)

(b)

1 input s1, ip1
2 input s2, ip2
3 move mixer1 , s1;
4 move mixer1 , s2;
5 mix mixer1 , 10;
6 move heater1 , mixer1;
7 incubate heater1 , 100, 10;

(c)

1 mixture = mix water with blood for 10s
2 heat mixture at 100C for 10s

(d)

Benchmark
Compile  
time (s)

Type check  
time (s) Total types

AIHA 1† 0.012 0.936 70
AIHA 2† 0.012 1.648 68
AIHA 3† 0.014 1.214 17
Broad spectrum opiate 0.011 0.887 11
Ciprofloxacin 0.023 1.722 14
Diazepam 0.024 1.007 14
Dilution 0.014 0.892 9
Fentanyl 0.018 0.900 13
Full morphine 0.048 4.188 19
Glucose detection 0.012 1.633 14
Heroine 0.020 1.553 13
Image probe synthesis 0.015 2.181 13
Morphine 0.018 1.026 13
Mustard gas† 0.015 1.433 83
Oxycodone 0.026 0.959 13
PCR 0.032 3.534 8
Safety zone† 0.013 1.341 76

Table 1. Compile time and the number of constraints gathered

†Real-world instances that resulted in damages to equipment or personnel 
that the type system was correctly able to identify as dangerous.

Type System Evaluation. BioScript’s type system’s main 
purpose is to prevent inadvertent production of hazardous 
chemicals. We evaluate its ability to detect hazardous mix-
ing in BioScript descriptions of five reported real-world inci-
dents.1, 3 To the best of our understanding, BioScript’s type 
system is first-of-its-kind, so there are no prior type systems 
for biochemistry to compare against.

Table 1 summarizes the results of our experiments. The 
results denoted by the † are real-world situations in which 
safety precautions were ignored while carrying out experi-
ments. The first three are incidents documented by the 
American Industrial Hygiene Association (AIHA).1 Mustard gas 
refers to a documented situation where an individual mixed 
two common reagents used to clean swimming pools, 
inadvertently creating mustard gas. SafetyZone refers to a 
documented explosion where a student mixed a sulfuric 
acid/hydrogen peroxide mixture with acetone6 (it remains 
unknown whether this explosion was intentional or acci-
dental). The type system correctly identified the presence of 
safety hazards in all of these cases.

We also tested the type system on 14 assays that were 
known to be safe; BioScript’s type system successfully 
inferred types in all of these cases. These assays, listed in 
Table 1, are currently used in the physical sciences today.

Compilation Time. We compiled the safe and unsafe 
assays described here, targeting the DropBot platform, 
which is a 4×15 array (not including I/O reservoirs which 
reside on the perimeter of the device), assuming the default 
electrode actuation time of 750 ms. The experiments were 

run on a 2.7 GHz Intel™ Core i7 processor, 8 GB RAM, machine 
running macOS™. Construction of the type system’s abstract 
interaction table took 31 min running on a 2.53 GHz Intel™ 
Xeon™ processor, with 24 GB RAM, running CentOS 5.

Table 1 reports the compilation time, constraint solv-
ing time, and number of constraints gathered. The unsafe, 
real-world, assays were correctly identified as unsafe by 
BioScript. On average, each material defined in the bench-
marks belonged to 3.015 distinct reactive groups; average 
benchmark compilation time was 0.0190 s; and the average 
time spent solving constraints was 1.594 s. We must note 
that these programs are significantly smaller than typical 
software programs today.

BioScript assays, along with additional synthetic bench-
marks, are made available in the supplemental materials.

6. CONCLUSION AND FUTURE WORK
BioScript enables scientists to express assays in a com-
fortable manner, similar in principle to laboratory note-
books. Its type system, which defines the operational 
semantics of BioScript, can provide safety guarantees for 
chemicals used. BioScript is extensible, allowing it to tar-
get pLoC compilation and LoC synthesis across multiple 
technologies. BioScript and its software stack pave the 
way for many life science subdisciplines to increase pro-
ductivity due to automation and programmability. This 
paper reports a full system implementation, which can 
compile and type-check a high-level language program 
and execute it on the real-world DropBot platform by 
transmitting commands (electrode actuation sequences) 
via the DropBot software interface.

Being nascent, BioScript’s type system statically type-
checks only chemical reactivity groups. Extending the type 
system, introducing dependent types to account for proper-
ties such as temperature, pH, volume, or concentration is a 
natural next step.
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In the long term, this type system could be generalized 
into a generic type system for cyber-physical systems, tran-
scending even pLoC-based biochemistry. In the future, 
we hope to extend the BioScript language with support for 
noninlined functions, arrays, SIMD operations, and some 
notion akin to processes or threads. We view the type system 
as a starting point for a much deeper foray into formal veri-
fication, for example, to ensure that biological media always 
experience physical properties such as temperature or pH 
levels within a user-specified range.
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