
FEBRUARY 2021 | VOL. 64 | NO. 2 | COMMUNICATIONS OF THE ACM 97

BioScript: Programming
Safe Chemistry on
Laboratories-on-a-Chip
By Jason Ott, Tyson Loveless, Chris Curtis, Mohsen Lesani, and Philip Brisk

DOI:10.1145/3441686

Abstract
This paper introduces BioScript, a domain-specific language
(DSL) for programmable biochemistry that executes on
emerging microfluidic platforms. The goal of this research
is to provide a simple, intuitive, and type-safe DSL that is
accessible to life science practitioners. The novel feature of
the language is its syntax, which aims to optimize human
readability; the technical contribution of the paper is the
BioScript type system. The type system ensures that certain
types of errors, specific to biochemistry, do not occur, such
as the interaction of chemicals that may be unsafe. Results
are obtained using a custom-built compiler that imple-
ments the BioScript language and type system.

1. INTRODUCTION
The last two decades have witnessed the emergence of
software-programmable laboratory-on-a-chip (pLoC) tech-
nology, enabled by technological advances in microfab-
rication and coupled with scientific understanding of
microfluidics, the fundamental science of fluid behavior
at the micro- to nanoliter scale. The net result of these col-
lective advancements is that many experimental labora-
tory procedures have been miniaturized, accelerated, and
automated, similar in principle to how the world’s earliest
computers automated tedious mathematical calculations
that were previously performed by hand. Although the vast
majority of microfluidic devices are effectively application-
specific integrated circuits (ASICs), a variety of programma-
ble LoCs have been demonstrated.16, 18

With a handful of exceptions, research on programming
languages and compiler design for programmable LoCs has
lagged behind their silicon counterparts. To address this
need, this paper presents a domain-specific programming
language (DSL) and type system for a specific class of pLoC
that manipulate discrete droplets of liquid on a two-dimensional
grid. The basic principles of the language and type system
readily generalize to programmable LoCs, realized across a
wide variety of microfluidic technologies.

The presented language, BioScript, offers a user-friendly
syntax that reads like a cookbook recipe. BioScript features
a combination of fluidic/chemical variables and operations
that can be interleaved seamlessly with computation, if
desired. Its intended user base is not traditional software
developers, but life science practitioners, who are likely to
balk at a language that has a steep learning curve.

BioScript’s type system ensures that each fluid is never
consumed more than once, and that unsafe combinations

The original version of this paper was published in
the Proceedings of OOPSLA '18 (Boston, MA, Nov. 2018),
Article 128.

of chemicals—those belonging to conflicting reactivity
groups, as determined by appropriately qualified govern-
ment agencies—never interact on-chip; BioScript’s type sys-
tem is based on union types and was designed to ensure that
type inference is decidable. This will set the stage for future
research on formal validation of biochemical programs.

The BioScript language and type system are evaluated using
a set of benchmark applications obtained from scientific liter-
ature. We use a microfluidic simulator to assess performance
under ideal operating conditions and also execute them on a
real device, which is much smaller and supports a subset of
BioScript’s operational capabilities. This result establishes the
feasibility of high-level programming language and compiler
design for programmable chemistry, and opens up future
avenues for research in type systems and formal verification
techniques within this nontraditional computing domain.

1.1. Digital microfluidic biochips (DMFBs)
This paper targets a specific class of programmable LoCs
that manipulate discrete droplets of fluid via electrostatic
actuation. Figure 1a illustrates the electrowetting principle:
applying an electrostatic potential to a droplet modifies the
shape of the droplet and its contact angle with the surface.10, 13
As shown in Figure 1b, droplet transport can be induced by
activating and deactivating a sequence of electrodes adja-
cent to the droplet; the ground electrode, on top of the array,
improves the fidelity of droplet motion and reduces the volt-
age required to induce droplet transport.

Figure 2a depicts a programmable 2D electrowetting
array, called a digital microfluidic biochip (DMFB). A DMFB
can support five basic operations, as shown in Figure 2b:
transport (move a droplet from position (x, y) to (x′, y′)), split
(create two smaller droplets from one larger droplet), merge
(combine two droplets into 1), mix (rotate a merged droplet
in a rectangular region around one or more pivots), and stor-
age (place a droplet at position (x, y) for later use). A DMFB
is reconfigurable, as these operations can be performed any-
where on the array, and any given electrode can be used to
perform different operations at different times. Droplet I/O
is performed using reservoirs on the perimeter of the chip,
which are not depicted in Figure 2.

The DMFB instruction-set architecture (ISA) can be
extended by integrating sensors, optical detectors, or

http://dx.doi.org/10.1145/3441686

research highlights

98 COMMUNICATIONS OF THE ACM | FEBRUARY 2021 | VOL. 64 | NO. 2

online video monitoring capabilities. Sensors and actua-
tors create a “cyber-physical” feedback loop between the
host PC controller and the DMFB. The ability to perform
sensing, computation, and actuation based on the results
of the computation adds control flow to the instruction set
of the DMFB. Prior work has applied feedback control for
precise droplet positioning and online error detection and
recovery11, 12, 19 efforts to leverage these capabilities to pro-
vide control flow constructs at the language syntax level
have been far more limited.

2. OVERVIEW
BioScript Syntax and Semantics. BioScript is a language for
programmable microfluidics whose syntax aims to be pal-
atable to life science practitioners, most of whom are not
experienced programmers. The BioScript syntax and seman-
tics were designed to enable scientists to express operations
in a manner that closely resembles plain English. To keep
the language small, we do not include operations in the lan-
guage syntax that can automatically be inferred by the com-
piler and/or execution engine. For example, the compiler
can automatically infer implicit fluid transfers for a mix
operation. BioScript features a semantics that targets pLoC
technologies. The syntax and semantics of BioScript’s type
system are formally described in Section 3.

We begin with a self-contained example to illustrate the
expressive capabilities of BioScript.
Example: PCR with Droplet Replenishment. Figure 3 pres-
ents a BioScript program for a DMFB-compatible implemen-
tation of the polymerase chain reaction (PCR), used to amplify
DNA.14 PCR involves thermocycling (repeatedly heating and
then cooling) a droplet containing the DNA mixture under-
going amplification [lines 5–17]. In this implementation,
thermocycling may cause excess droplet evaporation. This
implementation uses a weight sensor to detect the droplet

volume after each iteration [line 8]; if too much evaporation
occurs [line 9], the algorithm injects a new droplet to replen-
ish the sample volume [line 10–11], preheating a template
solution [line 12] to ensure that replenishment does not
affect the temperature of the DNA.

Type Systems and Safety. The Environmental Protection
Agency (EPA) and National Oceanic and Atmospheric
Administration (NOAA) have categorized 9800 chemicals
into 68 reactivity groups,7 defined by common physical
properties of discrete chemicals. It is known that mixing
materials from certain reactivity groups can produce mate-
rials from other reactivity groups; for example, mixing acids
and bases induces a strong reaction that produces salt and
water. BioScript’s type system models reactivity groups as
types. As a material can belong to multiple reactivity groups,
a union type is associated with a material. Using standard
reaction corpora, we calculate the type signature of the mix
operation, which is fundamental throughout chemistry, as

Wetted Area

Hydrophobic
Layer

Bottom
Plate

Wetted Area

Con
ta

ct
 a

ng
le

Contact angle

Droplet

Control Electrodes
TIME

Droplet

Ground Electrode

Droplet

CE1 CE2 CE3 CE1 CE2 CE3 CE1 CE2 CE3

Droplet Droplet

Ground Electrode Ground Electrode

OFF OFF OFF OFF OFFON

(a) The electrowetting principle:10, 13 applying an electro-
static potential to a droplet at rest reduces the contact angle with
the surface, thereby increasing the surface area in contact with the
droplet

(b) A droplet is transported from control electrode CE2 to neighboring
electrode CE3 by activating CE3, and then deactivating CE2 (white:
activated electrode; black: deactivated electrode).

Figure 1. The electrowetting principle (a) enables droplet transport (b).

Top
Plate

Hydrophobic
Layer

Ground Electrode

Droplet

S
pl

itt
in

g

Mixing

StorageTransporting
Control Electrodes

M
erging

Bottom
Plate

CE1 CE2 CE3

(a) Left: A DMFB is a planar array of electrodes.15 Right: Cross-
sectional view.

(b) The DMFB ISA supports five basic operations: transporting,
merging, splitting, mixing and storage, in addition to I/O on the
perimeter of the array.

Figure 2. A DMFB (a) and its reconfigurable instruction set (b).

1 // Initialization omitted. PCRMasterMix is a
2 // commercially available pre -mixed solution
3 // used to perform PCR.
4 PCRMix = mix PCRMasterMix with Template for 1s
5 repeat 50 times {
6 heat PCRMix at 95C for 20s
7 volumeWeight = detect Weight on PCRMix
8 if (volumeWeight <= 50uL) {
9 replacement = mix 25uL of PCRMasterMix

10 with 25uL of Template for 5s
11 heat replacement at 95C for 45s
12 PCRMix = mix PCRMix with replacement for 5s
13 }
14 heat PCRMix at 68C for 30s
15 heat PCRMix at 95C for 45s
16 }
17 heat PCRMix at 68C for 5min
18 save PCRMix

Figure 3. PCR with droplet replenishment.9 It uses the target-specific
save instruction.

FEBRUARY 2021 | VOL. 64 | NO. 2 | COMMUNICATIONS OF THE ACM 99

the values of the variables. As terms are side effect-free, a
term does not alter σ. A term can take one of many forms: a
variable, a math operation, a detection of a physical property
on a material, or a concrete value.

Unlike terms, instructions are not side effect-free; they
alter memory. BioScript supports traditional assignment of
terms to variables, manipulation of variables, and control-
flow constructs.

BioScript utilizes a conservative type system capable of
analyzing how chemical interactions work in a cyber-physical
context. Mixing chemicals during experiments yields a
new chemical, functionally expiring the input chemicals.
However, not all of the input chemicals participate in the
reaction, and trace amounts of the input chemicals are
present in the new chemical. For instance, mixing an acid
and base yields salt water. There are still acid and base mol-
ecules that have not reacted in the salt water. To model this,
BioScript employs union types that allow variables to belong
to multiple types (see Definition 2). In other words, a vari-
able can store any combination of scalar types in the union
type. As usual, the typing environment Γ represents a map-
ping from variables to their types.

Operational Semantics:
The operational semantics describe how a program is exe
cuted as a sequence of computational steps. It is represented
as inference rules that define valid steps. Inference rules are
comprised of premises and conclusions, whereby all the
premises must be met for the conclusion to hold. As shown
in Figures 4 and 5, the inference rules represent the premises
above the line and conclusion below the line.

Definition 1

3.2. Operational Semantics for Assay Execution
We model execution of BioScript assays on a DMFB as an
operational semantics. When execution of an instruction
occurs, for example, a mix, the model must use the appro-
priate rules to “step” or handle the change of state. All the
premises of a stepping rule must be satisfied. If no rule can
step, the program is stuck and cannot continue execution.

We highlight two sets of rules that showcase some inter-
esting challenges BioScript faces and discuss how they are
overcome. We begin with variable assignment. It is syntax:
x := t allows a variable x to be assigned some term t. To model
execution, we define E-AssignR, E-Assign, and E-Assign′,
represented in Figure 4a.

The rule E-AssignR evaluates the right-hand side term, t
(if it is not a variable); the rule E-Assign assigns the reduced
value to the variable in σ, the store. The rule E-Assign′ trans-
fers a material from the right-hand side variable to the left-
hand side variable; preventing aliasing.

In traditional computing, variable assignment is an ele-
mentary operation that most computer scientists do not even
bother thinking about. However, when modeling assignment
in the physical world, things are not so simple. In BioScript, the
value of a chemical variable is consumed when it is assigned
to another variable, restricting variable aliasing. In other words,

a table of abstract reactions between pairs of types, which
results in a union of types.

At the same time, reactions vary in terms of safety. The
EPA/NOAA categorization assigns one of three outcomes
to the combination of chemicals: Incompatible, Caution, or
Compatible. If the union type resulting from a mix operation
includes a hazardous type, then the corresponding cell in the
table is marked as being unsafe. Any biochemical procedure,
or assay, specified in BioScript is allowed to execute only if it
is safe. The signature of the mix operation does not include
unsafe abstract reactions, which correspond to unsafe table
cells. Therefore, the type system exclusively type-checks mix
statements that do not produce hazardous materials. This is
fundamental to the soundness of BioScript’s type system: it
only type-checks assays that do not produce unsafe materials.

BioScript allows, but does not require, type annotations,
saving the programmer from the burden of annotating pro-
grams with overly complicated union types. The assay speci-
fications presented in Figure 3 do not use type annotations.
BioScript’s type inference system can automatically infer
types. As the EPA/NOAA classification begins with a finite
set of material types, type inference can be reduced to effi-
ciently decidable theories. Type inference is sound: if a typ-
ing assignment is inferred, it can be used to type-check the
assay; it is also complete: if there is a typing assignment with
which the assay can be type-checked, the inference will dis-
cover it. Otherwise, the assay is rejected and marked as a
potential hazard if no typing assignment can be inferred for
it. Our experiments show that the type system is expressive
enough to reject hazardous assays and accept those that are
safe. Proofs for these attributes can be found in Ott et al.15 and
its supplemental material.

3. TYPE SYSTEM
This section presents interesting aspects of the core BioScript
language. We begin by presenting the simple, yet robust,
BioScript syntax. Next, we describe the novel aspects of the oper-
ational semantics—or mathematical model—describing the
runtime execution of assays on pLoC devices (Definition 1).
We then provide technical details on how BioScript’s type
system prevents unsafe operations from occurring. Unsafe
operations include the interaction of materials that may
cause an explosion or create noxious gasses, as well as access
materials that have already been consumed. We explore the
syntax, operational semantics, and type system using two
statements: variable assignment and mix semantics in great
detail. The full BioScript language, operational semantics,
and type system are described in Ott et al.15 and its supple-
mental material.

3.1. Syntax
BioScript’s set of instructions is modeled after the ISA dis-
cussed in Section 1.1. BioScript supports heat and detect
instructions but omits move and store instructions, as they
are inferred from data-flow analysis. The BioScript language
is imperative and a statement is a sequence of effectful
instructions that involve side effect-free terms. To model
state, or memory, we define σ, a mapping of variables to their
values. A side effect, in this context, is changing σ—updating

research highlights

100 COMMUNICATIONS OF THE ACM | FEBRUARY 2021 | VOL. 64 | NO. 2

the BioScript program x = mat; y = x; z = x is stuck at the third
assignment as the second assignment consumes x. This restric-
tion is necessary for material variables, but can be easily lifted
for numeric variables.

Mixing is a frequent activity that chemists and biologists
employ in their discipline. BioScript’s syntax for mixing is
simple and intuitive: x := mix x1 with x2 for t. A mix instruction
takes two variables (x1 and x2), mixes them for some time t
and stores the resulting chemical in the new variable x. To
model execution of the mix instruction, we define E-MixR
and E-Mix, defined in Figure 4b.

E-MixR first evaluates the time term of a mix instruction,
eventually reducing it to a real number, r. After the time term
has been reduced, E-Mix is evaluated. E-Mix prescribes that
both x1 and x2 in σ must be materials. The variables x1 and x2
must also be safe to interact; the function interact determines
safety at run time. interact returns the resulting material if mix-
ing is safe; otherwise, interact returns — the mixture is unsafe.
When a scientist mixes two chemicals together in a flask,
the two distinct chemicals no longer exist; to model this, the
used variables x1 and x2 are removed from σ and the variable
x is mapped to the resulting material. The evaluation of a mix
instruction is stuck if either of the two variables are not material
values, any of the variables are already used and removed from
the store, or the interaction of the materials is unsafe ().

The full runtime model, detailing all terms and instruc-
tions, is available in the supplemental material.

3.3. Type Checking and Inference
Similar to modeling execution, inference rules describe how
BioScript’s type system type-checks a program. Again, we focus
on the interesting typing rules that BioScript defines to keep sci-
entists safe while writing and executing assays on DMFB devices.

We begin with typing assignment instructions, defined in
Figure 5a. The rule T-Assign-1 types an assignment of a value
to a variable and adds the variable to the set of available vari-
ables. Rule T-Assign-2 strictly prevents aliasing by consuming
the right-hand side while adding the left-hand side variable
to the set of available variables. (At the cost of brevity, the rule
can be easily relaxed to not remove numeric variables from
the available set.) Finally, rule T-Assign-3 addresses typing for
numeric terms. It allows assigning numeric terms to variables.

In spite of a scientist’s training regarding safe and unsafe
chemical interactions, countless incidents occur involving
chemical interactions that result in explosions or noxious
gasses, causing harm to the laboratory or worse, the scien-
tist. To help prevent incidents, BioScript defines the typing
rule T-Mix, described in Figure 5b, which helps ensure that
no chemical interaction exhibits adverse reactions as well
as guaranteeing no chemical is used more than once.

To guarantee safety during a mix instruction, x1 and x2 must
be a union of material types, that is, Γ, X  x1: and Γ,
X  x2 : , respectively. Similarly, the time term of the mix
instruction must be a real number (Γ, X  t: R, which is to say
that the value of the term t must be in the set of real numbers).

Union Types:
A typing convention allows a variable to assume a set of
types. We differentiate between scalar types, denoted by
S, and union types, denoted by ; a union type is a set of
scalar types. In the context of BioScript, scalar types are
the material types Mat1 |..| Matn. A union of material types
can then be expressed as .

Definition 2

T-ASSIGN-1
x : T ∈ Γ Γ, X v : T ′ T ′ ⊆ T

T-ASSIGN-2
x : T ∈ Γ Γ, X x ′ : T ′ T ′ ⊆ T

Γ, X x := x ′ , X \ { x ′ } ∪ { x }

T-ASSIGN-3
x : T ∈ Γ t ∪∉

Γ, X t : T ′ T ′ = ∨ T ′ = T ′ ⊆ T

Γ, X x := t, X ∪ { x }

(a)

T-MIX

Γ, X x 1 : ∪Mat i Γ, X x 2 : ∪Mat j Γ, X t :
interact-abs (Mat i , Mat j) ⊆ Γ(x) for each i and j

Γ, X

⊥

⊥

⊥

⊥

⊥

⊥
⊥

Γ, X x := v, X ∪ {x}

⊥

⊥ ⊥

x := mix x 1 with x 2 for t, X \ { x 1 , x 2 } ∪ {x }

(b)

Figure 5. a and b depict the typing rules for only variable assignment
and mixing in BioScript.

E-ASSIGNR
(σ, t) → t′ t ∈

(σ, x := t; s) → (σ, x := t′ ; s)

E-ASSIGN

(σ, x := v ; s) →
(σ[x v], s)

E-ASSIGN′

σ′ = (σ \ {x ′})[x → σ (x ′)]

(σ, x := x′ ; s) → (σ′ , s)

(a)

E-MIXR
(σ, t) → t′

(σ, x :=
(σ, x :=

mix x1 with x2 for t; s) →
mix x1 with x2 for t′; s)

mix x1 with x2 for r ; s) → (σ′, s)

E-MIX

σ(x 1) ∈ Mat σ (x 2) ∈ Mat
interact (σ(x 1) , σ (x 2) , r)

σ′ = (σ \ { x 1 , x 2 })[x interact (σ(x 1) , σ (x 2) , r)]

(σ, x :=

(b)

Figure 4. a and b depict the operational semantics for only variable
assignment and mixing in BioScript.

FEBRUARY 2021 | VOL. 64 | NO. 2 | COMMUNICATIONS OF THE ACM 101

4. IMPLEMENTATION
This section describes the underlying implementation
details of the BioScript language and its type system.

BioScript. The BioScript language was implemented as
described in Section 2. As DMFBs do not offer external flu-
idic storage, there is no possibility to implement a stack
or heap of substantial size. For these reasons, BioScript
provides inline functions exclusively and does not support
recursion; similarly, BioScript does not support arrays, even
of constant size, as doing so would significantly inhibit por-
tability. We hope to address these issues in greater detail in
a future publication. BioScript handles variable assignment
implicitly, for example, Figure 8d. However, the scientist
declares a manifest of chemicals that is used through-
out the assay (“blood” and “water,” for this assay) and the
BioScript compiler infers the dispense and move operations.

The Type System. BioScript’s type system utilizes static
type checking, which runs during compilation. The type
system automatically infers types using an abstract interac-
tion function that is a conservative overapproximation of the
resulting chemical types of each interaction. The type sys-
tem uses the 68 EPA/NOAA reactivity groups as the material
types that together with natural N, and real R numbers,
constitute the set of scalar types S.

We calculate the abstract interaction function interact-
abs (defined in Section 3.3) as a table that is indexed by
two material types and stores union types. Each reactivity
group or type Mati comprises a nonempty set of chemicals
Ci. Abstract mixing of a pair of material types Mati and Matj
effectively mixes each pair of chemicals (ci, cj) in the cross
product Ci × Cj. If any interaction is Incompatible, the table
entry for (Mati, Matj) is marked as hazardous (or undefined,
as modeled in Section 3). Otherwise, if the mix operation
yields a new chemical ck, we use a ChemAxon,4 an industry-
standard computational chemistry library to assign a union
type to ck, which is added to the union type of the
cell for Mati and Matj. In practice, molecules of ci and cj will
remain after mixing ci and cj, even if a reaction occurs, and
the presence of extra molecules at the microliter scale, or
smaller, may have a nonnegligible impact on the underlying
chemistry or biology. To account for this fact, Mati and Matj
are also added to the cell. As type assignment to concrete
chemicals is conservative and we include the input types in
the resulting union type, the types in the table represent an
overapproximation of the chemicals that can result from
concrete interactions.

There may be instances where scientists need to create
hazardous reactions, which the type system would correctly
reject. In this case, the type system generates all relevant
errors and warnings, but allows the programmer to override
the type system in order to finish compilation and execute
the assay.

Execution. BioScript targets a real-world DMFB platform
called DropBot,8 as shown in Figure 6. Although DropBot
features real-time object tracking, it does not, at pres-
ent, support execution of assays that feature control flow.
BioScript can produce a DropBot-compatible electrode acti-
vation sequence, in the form of a JSON file, to execute on the
chip depicted in Figure 6.

For a mix instruction to type-check, the interaction of the
input materials must be safe. To determine this, we define
the function interact-abs, which accepts two scalar material
types as arguments and returns a union type of materials

. The abstract interaction interact-abs is conservative
with respect to the concrete interaction function: interact. If
two material values mati and matj are members of two mate-
rial types Mati and Matj, and the concrete interaction of mati
and matj is unsafe, then the abstract interaction of Mati and
Matj is undefined, rendering the program unable to type-
check. Otherwise, the result of the concrete interaction is a
member of the type resulting from the abstract interaction of
Mati and Matj. If the interaction of all such pairs of materials
mati and matj is safe, then the abstract interaction of Mati and
Matj is safe. A full discussion of how the interact-abs function
is used is presented in Section 4.

Finally, the result of the mix is assigned to x, whose type in Γ
should be a superset of the resulting material types. In the physi-
cal world, mixing chemicals uses those chemicals—they no longer
exist. To model this, the materials represented by x1 and x2 are con-
sumed and replaced by x in the set of available variables.

We proved that the BioScript type system is sound. All
type-checked programs are correct, that is, never get stuck
during execution; conversely, incorrect programs cannot
type-check. As explained for the operational semantics,
there is no inference rule for unsafe operations; that is, incor-
rect programs are stuck. The soundness is proved as tan-
dem progress and preservation lemmas (see Definition 3).
The progress lemma states that well-typed programs are not
stuck; that is, they can take a step. More precisely, if a statement
is typed, then it is either the terminal statement or it can make
a step. The preservation lemma states that if a well-typed pro-
gram steps, the resulting program is also well-typed.

BioScript features a type inference system. Type inference
helps the biologists and chemists by lifting the burden of man-
ually annotating assays with union types. The rules for type
inference match the corresponding type-checking rules but
restate the conditions as constraints. After the type inference sys-
tem derives the constraints for a program, a satisfying model for
the constraints yields types for the variables of the program. We
proved that the type inference system infers types for a program
if it is typeable. This is proved as a pair of soundness and com-
pleteness lemmas for the type inference system. The soundness
lemma states that, if the type inference system infers types for a
program, then with the inferred types, the type-checking system
can type-check the program. The completeness lemma states
that if, for a program, there exist types for variables under which
the type-checking system can type-check the program, then the
type inference system can infer those types.

We provide a full discussion of the above theorems in the
supplemental materials for the interested reader.

Progress:
A well-typed program is not stuck: that is, it can take a step.
Preservation:
If a well-typed term takes a step, the resulting term is also
well-typed.

Definition 3

research highlights

102 COMMUNICATIONS OF THE ACM | FEBRUARY 2021 | VOL. 64 | NO. 2

First, we compare BioScript’s syntax to three other lan-
guages: the AquaCore Instruction Set (AIS), a target-specific
assembly-like language;2 Antha, a language for cloud-based
laboratory automation;17 and BioCoder, a C++ library that
has been previously specialized for DMFBs.5 Our compari-
son uses a set of compact, yet representative, bioassays taken
from published literature. As an illustrative example, Figure 8
shows a simple assay (a Mix followed by a Heat instruc-
tion) in all four languages; BioScript, by far, has the shortest
description and is easier to read.

Figure 7 compares the number of lines of code required
to specify seven representative bioassays using the four lan-
guages; three of the seven assays were not compatible with
AIS (which is tethered to a specific pLoC2) and Antha (which
is tethered to a cloud laboratory), so we only report four
assays for those languages. We do not count empty lines
(for spacing/aesthetic purposes) or lines that contain com-
ments. We wrote each assay based on our notion of human
readability, which generally meant one statement/operation
per line for AIS, BioCoder, and Antha. As shown in Figure 8d,
the mixture statement in BioScript succinctly encompasses
two implicit variable declarations with fluid type and vol-
ume information.

Across the four compatible assays, BioScript required 68%
fewer lines of code than AIS and 73% fewer lines of code than
Antha. Across all seven assays, BioScript required 65% fewer
lines of code than BioCoder, which can target DMFBs, unlike
AIS and Antha. Although these results do not account for
subjective experience, we believe that they convey the same
basic sentiments as shown in Figure 8: BioScript has an intu-
itive syntax and will be far easier for scientists to learn and
use compared to existing languages in this space. Source
code for all implementations of the bioassays reported in
Figure 7 is included in our supplementary materials.

5. EVALUATION
The objectives of BioScript are to reduce the time and cost of
scientific research and to provide a safe execution environ-
ment for chemists and biologists with respect to chemical
interactions. As noted earlier, BioScript is a DSL that enables
high-level programming and direct execution of bioassay on
pLoCs. These objectives inform our selection of metrics to
evaluate BioScript.

Language. Compared to other languages, BioScript offers
an intuitive and readable syntax and a type system. We do
not claim that BioScript offers any performance advantages
over other languages; performance primarily depends on
the algorithms implemented in the compiler back-end and
execution engine, which are compatible, in principle, with
any language and front-end. Hence, our evaluation empha-
sizes qualitative metrics of the language.

Figure 6. A DMFB chip used by DropBot devices.

60
(280)

50

40

30

20

10

0
Image Probe

Synthesis

Li
ne

s
of

 C
od

e

Glucose
Detection

Neuro-
transmitter

Sensing

Biological DSL Comparison: Code Complexity

Probabilistic
PCR

PCR
w/ Droplet

Replenisment

Opiate
Detection

PCR

AIS Antha BioCoder BioScript

Figure 7. The number of lines of code to specify image probe synthesis, glucose detection, neurotransmitter sensing, PCR, probabilistic PCR,
PCR w/ droplet replacement, and opiate detection in AIS, BioCoder, Antha, and BioScript. We were unable to specify the latter three assays in
AIS and Antha.

FEBRUARY 2021 | VOL. 64 | NO. 2 | COMMUNICATIONS OF THE ACM 103

Figure 8. Example assay specified using BioCoder (a), Antha (b), AIS
(c), and BioScript (d). We omit initialization for all examples.

1 b.first_step();
2 b.measure_fluid(blood , tube);
3 b.measure_fluid(water , tube);
4 b.next_step();
5 b.tap(tube , tenSec);
6 b.next_step();
7 b.incubate(tube , 100, tenSec);
8 b.end_protocol();

(a)

1 smpl:= make([]*wtype.LHComponent , 0)
2 Bld := mixer.SampleForTotalVolume(Blood , BldVol)
3 smpl = append(smpl , Bld)
4 Wtr := mixer.Sample(Water , WtrVol)
5 smpl = append(smpl , Wtr)
6 rctn := MixInto(OutPlate , "", smpl...)
7 r1 := Incubate(rctn , mltTemp , InitDenatime , false)

(b)

1 input s1, ip1
2 input s2, ip2
3 move mixer1 , s1;
4 move mixer1 , s2;
5 mix mixer1 , 10;
6 move heater1 , mixer1;
7 incubate heater1 , 100, 10;

(c)

1 mixture = mix water with blood for 10s
2 heat mixture at 100C for 10s

(d)

Benchmark
Compile
time (s)

Type check
time (s) Total types

AIHA 1† 0.012 0.936 70
AIHA 2† 0.012 1.648 68
AIHA 3† 0.014 1.214 17
Broad spectrum opiate 0.011 0.887 11
Ciprofloxacin 0.023 1.722 14
Diazepam 0.024 1.007 14
Dilution 0.014 0.892 9
Fentanyl 0.018 0.900 13
Full morphine 0.048 4.188 19
Glucose detection 0.012 1.633 14
Heroine 0.020 1.553 13
Image probe synthesis 0.015 2.181 13
Morphine 0.018 1.026 13
Mustard gas† 0.015 1.433 83
Oxycodone 0.026 0.959 13
PCR 0.032 3.534 8
Safety zone† 0.013 1.341 76

Table 1. Compile time and the number of constraints gathered

†Real-world instances that resulted in damages to equipment or personnel
that the type system was correctly able to identify as dangerous.

Type System Evaluation. BioScript’s type system’s main
purpose is to prevent inadvertent production of hazardous
chemicals. We evaluate its ability to detect hazardous mix-
ing in BioScript descriptions of five reported real-world inci-
dents.1, 3 To the best of our understanding, BioScript’s type
system is first-of-its-kind, so there are no prior type systems
for biochemistry to compare against.

Table 1 summarizes the results of our experiments. The
results denoted by the † are real-world situations in which
safety precautions were ignored while carrying out experi-
ments. The first three are incidents documented by the
American Industrial Hygiene Association (AIHA).1 Mustard gas
refers to a documented situation where an individual mixed
two common reagents used to clean swimming pools,
inadvertently creating mustard gas. SafetyZone refers to a
documented explosion where a student mixed a sulfuric
acid/hydrogen peroxide mixture with acetone6 (it remains
unknown whether this explosion was intentional or acci-
dental). The type system correctly identified the presence of
safety hazards in all of these cases.

We also tested the type system on 14 assays that were
known to be safe; BioScript’s type system successfully
inferred types in all of these cases. These assays, listed in
Table 1, are currently used in the physical sciences today.

Compilation Time. We compiled the safe and unsafe
assays described here, targeting the DropBot platform,
which is a 4×15 array (not including I/O reservoirs which
reside on the perimeter of the device), assuming the default
electrode actuation time of 750 ms. The experiments were

run on a 2.7 GHz Intel™ Core i7 processor, 8 GB RAM, machine
running macOS™. Construction of the type system’s abstract
interaction table took 31 min running on a 2.53 GHz Intel™
Xeon™ processor, with 24 GB RAM, running CentOS 5.

Table 1 reports the compilation time, constraint solv-
ing time, and number of constraints gathered. The unsafe,
real-world, assays were correctly identified as unsafe by
BioScript. On average, each material defined in the bench-
marks belonged to 3.015 distinct reactive groups; average
benchmark compilation time was 0.0190 s; and the average
time spent solving constraints was 1.594 s. We must note
that these programs are significantly smaller than typical
software programs today.

BioScript assays, along with additional synthetic bench-
marks, are made available in the supplemental materials.

6. CONCLUSION AND FUTURE WORK
BioScript enables scientists to express assays in a com-
fortable manner, similar in principle to laboratory note-
books. Its type system, which defines the operational
semantics of BioScript, can provide safety guarantees for
chemicals used. BioScript is extensible, allowing it to tar-
get pLoC compilation and LoC synthesis across multiple
technologies. BioScript and its software stack pave the
way for many life science subdisciplines to increase pro-
ductivity due to automation and programmability. This
paper reports a full system implementation, which can
compile and type-check a high-level language program
and execute it on the real-world DropBot platform by
transmitting commands (electrode actuation sequences)
via the DropBot software interface.

Being nascent, BioScript’s type system statically type-
checks only chemical reactivity groups. Extending the type
system, introducing dependent types to account for proper-
ties such as temperature, pH, volume, or concentration is a
natural next step.

research highlights

104 COMMUNICATIONS OF THE ACM | FEBRUARY 2021 | VOL. 64 | NO. 2

measurement. Appl. Phys. Lett. 19,
102 (2013).

	 9.	 Jebrail, M.J., Renzi, R.F., Sinha, A.,
Van De Vreugde, J., Gondhalekar, C.,
Ambriz, C., Meagher, R.J., Branda, S.S.
A solvent replenishment solution for
managing evaporation of biochemical
reactions in air-matrix digital
microfluidics devices. Lab Chip 15,
(2015), 151–158.

	10.	 Lippmann, G. Relations entre
les phénomènes électriques et
capillaires. Gauthier-Villars. 1875.

	11.	 Luo, Y., Chakrabarty, K., Ho, T. Error
recovery in cyberphysical digital
microfluidic biochips. IEEE Trans.
CAD Integr. Circuits Sys. (1), 32
(2013), 59–72.

	12.	 Luo, Y., Chakrabarty, K., Ho, T. Real-
time error recovery in cyberphysical
digital-microfluidic biochips using a
compact dictionary. IEEE Trans. CAD
Integr. Circuits Sys (12), 32 (2013),
1839–1852.

	13.	 Mugele, F., Baret, J. Electrowetting:
From basics to applications. J. Phys.:
Condens. Matter, 17 (2005), 705–R774.

	14.	 Mullis, K.B., Erlich, H.A., Arnheim, N.,

Horn, G.T., Saiki, R.K., Scharf, S.J.
Process for amplifying, detecting,
and/or-cloning nucleic acid
sequences. US Patent 4,683,195;
July 28 1987.

	15.	 Ott, J., Loveless, T., Curtis, C., Lesani, M.,
Brisk, P. BioScript: Programming
safe chemistry on laboratories-on-a-
chip. In Proceedings of OOPSLA '18
(Boston, MA, USA, Nov. 7–9, 2018),
Article 124.

	16.	 Pollack, M.G., Shenderov, A.D., Fair,
R.B. Electrowetting-based
actuation of droplets for integrated
microfluidics. Lab on a Chip (2), 2
(2002), 96–101.

	17.	 Synthace. Antha-lang, coding biology.
2016. https://www.antha-lang.org.
[Accessed: 2016-11-01].

	18.	 Urbanski, J.P., Thies, W., Rhodes, C.,
Amarasinghe, S., Thorsen, T. Digital
microfluidics using soft lithography.
Lab Chip, 6 (2006), 96–104.

	19.	 Zhao, Y., Xu, T., Chakrabarty, K.
Integrated control-path design
and error recovery in the synthesis
of digital microfluidic lab-on-
chip. JETC (3), 6 (2010), 11:1–11:28.

In the long term, this type system could be generalized
into a generic type system for cyber-physical systems, tran-
scending even pLoC-based biochemistry. In the future,
we hope to extend the BioScript language with support for
noninlined functions, arrays, SIMD operations, and some
notion akin to processes or threads. We view the type system
as a starting point for a much deeper foray into formal veri-
fication, for example, to ensure that biological media always
experience physical properties such as temperature or pH
levels within a user-specified range.

Acknowledgments
We would like to thank Philipp Haller for his feedback and
insight on elements of this work.�

Jason Ott, Tyson Loveless, Chris Curtis,
Mohsen Lesani, and Philip Brisk
({jott002, tlove004, ccurt002}@ucr.edu,

{lesani, philip}@cs.ucr.edu), University of
California, Riverside, CA, USA.

References
	 1.	 American Industrial Hygiene

Association. 2016. http://bit.
ly/2eZtf1m. [Accessed: 2016-11-08].

	 2.	 Amin, A.M., Thottethodi, M.,
Vijaykumar, T.N., Wereley, S.,
Jacobson, S.C. Aquacore: A
programmable architecture for
microfluidics. In D.M. Tullsen, and
B. Calder, eds. Proceedings of the
34th International Symposium
on Computer Architecture (ISCA
2007), June 9–13, 2007, San Diego,
California, USA, ACM, 2007. pp.
254–265

	 3.	 Blog SPH. Swimming pool chemical
incident. 2016. http://bit.ly/2gghGZI.
[Accessed: 2016-11-01].

	 4.	 ChemAxon. 2016. http://www.
chemaxon.com. Marvin was used for
characterizing chemical structures,

substructures and reactions. Marvin
16.10.3.

	 5.	 Curtis, C., Brisk, P. Simulation of
feedback-driven PCR assays on
a 2d electrowetting array using
a domain-specific high-level
biological programming language.
Microelectronic Engineering 148,
(2015), 110–116.

	 6.	 Dobbs, D.A., Bergman, R.G.,
Theopold, K.H. Piranha solution
explosion. 1990.

	 7.	 Environmental Protection Agency &
National Oceanic and Atmospheric
Administration. 2016. https://
cameochemicals.noaa.gov/.

	 8.	 Fobel R, Fobel C, Wheeler AR.
Dropbot: An open-source digital
microfluidic control system with
precise control of electrostatic driving
force and instantaneous drop velocity © 2021 ACM 0001-0782/21/2 $15.00

Open for
Submissions

Digital Threats:
Research and Practice (DTRAP)

A peer-reviewed journal that targets the prevention,
identification, mitigation, and elimination of digital threats

Digital Threats: Research and Practice (DTRAP) is a peer-reviewed
journal that targets the prevention, identification, mitigation, and
elimination of digital threats. DTRAP aims to bridge the gap between
academic research and industry practice. Accordingly, the journal
welcomes manuscripts that address extant digital threats, rather than
laboratory models of potential threats, and presents reproducible
results pertaining to real-world threats.

For further information and to submit
your manuscript, visit dtrap.acm.org

