

11

Appendix

8. Interaction Equivalence

The Program Translation is defined in Figure 12. The basic definitions are depicted in Figure 13. The configuration translation is defined in
Figure 14.

The translation removes sharing and translates automatic updates to pure message passing. The translation function 	24, maps a
program 4 ³ (that potentially uses sharing) to 4 ́ that does not use sharing (EQ. 42). We call 4 ³ and 4 ́ sharing and pure programs
respectively. The sharing library ��7 ³ is translated to the pure library ��7 ́ � ��7 ³ , 	24� ��7 ³ �, �	24� ��7 ³ � (EQ. 43). The functions 	24
(EQ. 44 - EQ. 53) and �	24 (EQ. 54 - EQ. 56) translate each behavior 7�� in ��7 ³ to 7��? and 7��@ respectively. (7��? and 7��@ are just

 	24: , f , 	24�program���3�4��56�	�	: v, �����6�
	: j,
�7���8: ��7 ³ , �3�5�	:
�m < �m���m�o, *�		�'�	:
�m� (*m���m�n,
program���3�4��56�	�	: v, �����6�
	: j,
�7���8: ��7 ́ , �3�5�	:
�m < �m���m�o,_Z}
_��G�� ,
�m < �	24��m , 1����m�o,_ZC�� , �? < 	24��? , 1�, *�		�'�	:
�m� (*m���m�n, 	:���6': �

 	:���6': >�?, @A�� � @ " Y�@Z[\..]^
 EQ. 42

Where
 ��7 ́ � ��7 ³ , 	24� ��7 ³ �, �	24� ��7 ³ � EQ. 43
 	24T7�:;��U � 	24�7�:;��� EQ. 44 	24Tbehavior ����� *��:5�;��U � behavior ��?��, 3?� 	24�*��:5�;��� EQ. 45 	24�method �����#enable �& ��� � method �����#enable 	24���& 	24���� EQ. 46 	24���. �� � ��. 	24��� EQ. 47 	24��� ��� � 	24���� 	24���� EQ. 48 	24�� (#�&� � 	24��� (� 	24���� EQ. 49 	24 b����8T7�:�����Uc �
��
� � ��
�� µ�m� � �@Z (e4���� ¶4��� 3? ����. ����8 b7�:��@T�, �63�3?�Uc·¸m��..¹ ���	:��m��m��..¹ ����8 b7�:��?T�, �63�3?�Uc

 EQ. 50

 	24�self� � self EQ. 51 	24��� � � � C N EQ. 52 	24��� � � � C $ EQ. 53

 �	24T7�:;��U � �	24�7�:;��� EQ. 54 �	24Tbehavior ����� *��:5�;��U � behavior ��@��, 3@� �	24�*��:5�;��� �!��:5� EQ. 55 �!��:5� � method e4������� #enable " ��	� �� 3@& �	6� �� ���. �) EQ. 56 �	24�method �����#enable �& ��� � method �����#enable �	24���& �	24���� EQ. 57 �	24���. �� � ��. �	24��� EQ. 58 �	24��� ��� � �	24���� �	24���� EQ. 59 �	24�� (#�&� � �	24��� (��	24���� EQ. 60 �	24 b����8T7�:�����Uc � ����8T7�:��@��, 3@�U EQ. 61 �	24�self� � self EQ. 62 �	24��� � � � C N EQ. 63 �	24��� � � � C $ EQ. 64

Figure 12. Program Translation

12

new names for behaviors that are obtained from translation of 7��.) Let �? be the writer actor and @ be the set of reader actors in 4 ³ . The
behavior of the writer actor �? is translated to use 7��? behaviors and the behavior of each reader actor �@ C @ is translated to use 7��@
behaviors.

The interesting part of translation is the translation of ����8 for the writer (EQ. 50) and the addition of �!��:5� to behaviors for the
readers (EQ. 55 and EQ. 56). The reduction of ����8 for �? (EQ. 13), installs the new behavior for �? and stores it at the tail of the update
store � of each �@. Later, in �4������@� transitions (EQ. 15), the behavior at the head of � is taken and installed as the current behavior of �@. To process updates in order, new behaviors are added at the tail and removed from the head of the update store. The translation
simulates the update mechanism with message passing. A ����8 expression of �? is translated to sending e4���� messages to reader
actors �@ and then installing the new behavior for �? (EQ. 50). e4���� messages contain the new behavior for the reader actors. �!��:5�
receives e4���� messages at the reader actors. To preserve the order of updates, the update messages should be processed in the same
order as they are sent. The translation adds a counter parameter to the definition of the writer and readers behaviors (EQ. 45 and EQ. 55).
The writer actor maintains a counter 3? that holds the number of the next update to send and each reader actor �@ maintains the number of
the next update message to receive 3@. The selective receive feature of the language is used to check the number of the messages. The e4���� messages that �? sends contain a pair of expressions. The first element of the pair is the number of the update message and the
second element is a thunk holding the new behavior. The �!��:5� (EQ. 56) is defined to check the equality of the first element of the pair
(that is the number of the message) to 3@ (that is the number of the next update message to receive). If the check succeeds, the second
element of the pair is applied to a dummy value. The application results in opening the thunk and getting the ����8 expression that installs
the new behavior. 3? and 3@ are initialized to 1 for the writer actor and all the reader actors (EQ. 42). The translation of ����8 for �? (EQ.
50) passes the value �63�3?� for the parameter 3? of the new behavior 7�:��? that is installed for �? and also passes �63�3?� as the 3@
parameter of the new behavior 7�:��@ that it sends to �@s. This essentially increments the number of the next message to be sent by �? and
sets the number of the next message to be received by �@s.

���� � ���. � ��
	� � ���. � º � �7. 7 ��
	� ���� w � �73. 7 3 ��
	� 4��� � ��	7. � 	 7 �	� � �4. 4 ���� 	6� � �4. 4 ��
	�

0 � �	». » 1 � �	». 	�»� 2 � �	». 	T	�»�U

	�33 � �6	». 	�6 	 »� 4
�	 � �*6	». * 	 �6 	 »� �63 � �*	». 4
�	 * 1 	 » �	»��5 � �*. * ���. ��
	�� ���� »» � 4��� 0 0 		 � �4. 4��� �	6� 4� T	�33 �	6� 4�U 4��� � �*. �	� �* 		 »»� ª� ��8. �	»��5 �� 4��� 8� "� ��8.w �ª �8��ª 8��

Figure 13. Basic Definitions

13

The configuration translation is defined in Figure 14. To reason about intermediate configurations, we lift the definition of translations to
the behaviors component 9 of actor states in a configuration.

�	24�>�, ��, �����A, 3@� " >�	24��, 3@�, �	24���, 3@�, �	24������, 3@�A �	24���. �, 3@� � ��. �	24��, 3@� �	24��� ��, 3@� � �	24���, 3@� �	24��� , 3@� �	24�� (#�&, 3@� � �	24��, 3@� (��	24��, 3@�� �	24T����8T7�:�����U, 3@U � ����8T7�:��@��, 3@�U �	24�self, 3@� � self �	24��, 3@� � � � C N �	24��, 3@� � � � C $

 	24�>�, ��, �����A, 3?� " > 	24��, 3@�, 	24���, 3@�, 	24������, 3?�A 	24���. �, 3?� � ��. 	24��, 3?� 	24��� ��, 3?� � 	24���, 3?� 	24���, 3?� 	24�� (#�&, 3?� � 	24��, 3?� (� 	24��, 3?��

 	24�self, 3?� � self 	24��, 3?� � � � C N 	24��, 3?� � � � C $

�	24�� �, 3@� � � � ¼½¾¿�� �, À¼� � � �

�	24������, 3@� � ��@��, 3@� EQ. 65

 	24T����8T7�:�����U, 3?U �
��
� � ��
�� µ�m� � �@Z (e4���� ¶4��� 3? ����. ����8 b7�:��@T�, �63�3?�Uc·¸m��..¹ ���	:��m��m��..¹ ����8 b7�:��?T�, �63�3?�Uc

 EQ. 66

 	24������, 3?� � ��?��, 3?� EQ. 67

Figure 14. Configuration Translation

14

LEMMA 1: �	24�����, 3@� " �	24��, 3@���	24��, 3@��

LEMMA 2: 	24�����, 3?� " 	24��, 3?�� 	24��, 3?��

THEOREM 1: B4 C ,: �	�*��4�� " �	�*��	24�4���

PROOF:
We want to prove the interaction equivalence of every program and its translated program that is B4 C ,: �	�*��4�� " �	�*��	24�4���.
Consider an arbitrary program 4 ³ (potentially using sharing) and its translation 4 ́ " 	24� 4 ³ � that does not use sharing. We call 4 ³ and 4 ́
sharing and pure programs respectively. The configurations corresponding to 4 ³ and 4 ́ are � 4 ³ � and � 4 ́ �. We need to show that � 4 ³ � and � 4 ́ � are interaction equivalent. We show that the interaction semantics set of each is included in the other. For the sake of simplicity, first,
we concentrate on the transition correspondence and then show the fairness.

For the forward direction, we need to show that for every computation path ¢ ³ starting from � 4 ³ �, there is a computation path ¢ ́
starting from � 4 ́ � with the same interaction semantics. For each ¢ ³ , we construct a path ¢ ́ inductively. We define an invariant that holds
between the initial configurations � 4 ³ � and � 4 ́ �. Assuming the invariant between � ³ � and � ́ �, for each step ¢m Á " � ³ � f � ³ �, we
introduce a multi-step ¢ ́ m " � ́ � f% � ́ n such that the invariant between � ³ � and � ́ n is preserved. The invariant between � ³ and � ́
ensures that there is a correspondence between the actors of � ³ and � ́ such that if a transition is possible from � ³ , a corresponding
transition is possible from � ́ specifically if �4������@� is enabled in � ³ , the selective receive condition is enabled for the corresponding e4���� message in � ́ . The invariant states that: If the state of the writer actor �? is #7, x& in � ³ , there exists 3? such that the state of �?
is # 	24�7, 3?�, x& in � ́ . If the state of a reader actor �@ is #7, x, �& in � ³ , there exists 3@ such that the state of �@ is #�	24�7, 3@�, x& in � ́ .

If the element at position � C
0. . 6� of � of �@ is 7��m��� in � ³ , there is a message e4���� ¶4��� 3 ��. ����8 b7��m@T�, �63�3�Uc· in � ́

such that 3 " 4
�	 3@ �. If there is a message in � ³ , the same message is in � ́ . In addition, 3? " 4
�	 3@ |�|.
Let us look at the corresponding transition sequences. The interesting cases are transitions with labels ����8��?� and �4������@�.

There is a one-to-one mapping for other transitions.
Consider Figure 15. If ¢ ³ " � ³ � f � ³ � has the label ����8��?� (EQ. 13), 7����� is backed up at the tail of the update list of each �@.

The behavior component of �? is ��readyT7�����U� in � ³ �, thus, by the invariant, there exists 3? such that the behavior of �? is 	24T��readyT7�����U�, 3?U in � ́ �. Thus, by LEMMA 2, the behavior of �? is 	24��, 3?���� where � is defined by EQ. 66. By 	�6���?� transitions, an e4���� message is sent to each �@ and finally a ����8��?� transition installs the new behavior.
The resulting behavior of �? in � ́ n is 7��?T�, �63�3?�U. By EQ. 67, 7��?T�, �63�3?�U is equal to 	24T7�����, �63�3?�U. Thus, the

resulting behavior of �? in � ́ n is 	24T7�����, �63�3?�U. The new counter of �? is 3?� " �63�3?�.

`��readyT7�����U�, x{a_� , #7, x, �&_�Z[\..]
@�_~Â�_��ÃÄÄÄÄÄÄÅ #7�����, >x{ , # &A&_� , #7, x, � � 7�����&_�Z[\..]

` 	24T��readyT7�����U�, 3?U, x{a_�

"

� "
�� µ�m� � �@Z (e4���� ¶4��� 3? ����. ready b7��@T�, �63�3?�Uc·¸m��..¹ ready b7��?T�, �63�3?�Uc T³�n~�_��,³�t�_��U%ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅ � 	24��, 3?� Æready b7��?T�, �63�3?�UcÇ , x{�_� ,
�@Z (e4���� ¶4��� 3? ����. ready b7��@T�, �63�3?�Uc·m��..¹ @�_~Â�_��ÃÄÄÄÄÄÄÅ `7��?T�, �63�3?�U, x{a_� , �@Z (e4���� ¶4��� 3? ����. ready b7��@T�, �63�3?�Uc·m��..¹ " ` 	24T7�����, �63�3?�U, x{a_� , �@Z (e4���� ¶4��� 3? ����. ready b7��@T�, �63�3?�Uc·m��..¹

# 	24��, 3?����, x{&_� where

Figure 15. ÈÉÊËÌ�Ê¼�

15

An element 7����� is added at position |�| of each reader in � ³ �. The sent message is e4���� ¶4��� 3? ��. ����8 b7��T�, �63�3?�Uc·. By the invariant, we have 3? " 4
�	 3@ |�|. Thus, there is a message e4���� ¶4��� 3 ��. ����8 b7��T�, �63�3�Uc· where 3 " 4
�	 3@ |�| in � ́ n.

By the invariant, we have 3? " 4
�	 3@ |�|. The new update list of �@Z is � � 7�����. We need to show that the invariant is preserved
that is 3?� " 4
�	 3@ |� � 7�����|. This is obvious from 3?� " �63�3?� and |� � 7�����| " �63�|�|�. The interaction semantics of the two
paths are equivalent as there is no �6 or 5�� labels in any of them.

Consider Figure 16. If ¢ ³ " � ³ � f � ³ � has the label �4������@� (EQ. 15), the behavior 7����� at the head of the update list � is

installed as the current behavior. By the invariant, there is a message e4���� ¶4��� 3¥ ��. ����8 b7��@T�, �63�3¥�Uc· in �� ́ such that 3¥ " 4
�	 3@ 0. This means that e4���� ¶4��� 3@ ��. ����8 b7��@T�, �63�3@�Uc· is in �� ́ . The e4���� message can be delivered and

processed by ��
������@� and ������	���� transitions. The selective receive clause of �!��:5� (EQ. 56) checks equality of 3@ with the
first element of the pair contained in the e4���� message (that is 3@). By a sequence of 3:�3���@� transitions, the selective receive
expression is evaluated to true and so the �6�7
���@� rule can install the body of �!��:5�. By the sequence of a 	�x��@� and then a ����8��@� transition, The body of �!��:5� is reduced to 7��@T�, �63�3�U. By EQ. 65, 7��@T�, �63�3�U is equivalent to �	24T7�����, �63�3@�U. The new counter for �@ is 3@� " �63�3@�.

By the invariant, we have 3? " 4
�	 3@ |7����� � �|. We need to show that 3? " 4
�	 3@� |�|. This is obvious from 3@� " �63�3@� and |7����� � �| " �63�|�|�. The interaction semantics of the two paths are equivalent as there is no �6 or 5�� labels in any of them.
For the reverse direction, we need to show that for every computation path ¢ ́ that is resulted starting from � 4 ́ �, there is a computation

path ¢ ³ starting from � 4 ³ � such that �	�*� ¢ ³ � " �	�*� ¢ ́ �.
For every path ¢ ́ , there is a path ¢ ́ � where the selective receive guards for e4���� messages are never disabled and �	�*� ¢ ́ �� "�	�*� ¢ ́ �. The path ¢ ́ � can be constructed from ¢ ́ by removing all the e4���� message delivery and failed guard evaluations from ¢ ́

and delivering each e4���� message just before its successful guard evaluation in ¢ ́ . Thus, in the rest of the proof, it is assumed that no
selective receive guard for e4���� messages is disabled in ¢ ́ .

We define a big-step transformation on ¢ ́ that results in the equivalent big-step path ¢ ́ Í.
The translation function 	24 translates each ����8T7�:�����U expression for �? to the following expression (EQ. 66):
�� µ�m� � �@Z (e4���� ¶4��� 3? ����. ����8 b7�:��@T�, �63�3�Uc·¸m��..¹ ���	:��m��m��..¹ ����8 b7�:��?T�, �63�3?�Uc

The big-step transformation takes back each transition of the expression above just after its preceding transition. In the big step form,
transitions of the expression above are in sequence.

The translation function �	24 adds �!5�:5� to behavior definitions (EQ. 55). �!��:5� is defined (EQ. 56) as follows: �!��:5� � mehod e4������� #enable " ��	� �� 3@& �	6� �� ���. �)
Consider the delivery ��
������@ , *�, traverse ������	���@�, constraint check 3:�3���@�% �6�7
���@� and body transitions 	�x��@� ����8��@� of �!��:5� for an e4���� message. The big-step transformation moves left each of these transitions to the right of

its preceding transition.
Each of the two above sequences of transitions and each other transition is a step in the big-step path.
We show that the transitions that are moved commute to the left. Each transition is moved to the left until it reaches its preceding

transition by the same actor. All the transitions that are passed are on other actors. Thus, condition of EQ. 38 is satisfied. The only transition

#7, ># &, x@A, 7����� � �&_�
{´~_|�T_�,�m~�Î�UÃÄÄÄÄÄÄÄÄÄÄÄÄÅ #7�����, >x@ , # &A, �&_�

* " e4����� 4��� 3@ ����. ready b7��@T�, �63�3@�Uc �

#�	24�7, 3@�, ># &, x@A&_� , �@ (* where

~�lmÎ�@�_�,o�ÃÄÄÄÄÄÄÄÄÄÅ #�	24�7, 3@�, >#*&, x@A&_� |@_Î�@³��_��ÃÄÄÄÄÄÄÄÄÅ #>" ��	� *� 3@ , �	6� *� ���. ��, �	24�7, 3@�A, >*, # &, x@A&_� sÏ�sÐ�_��%ÃÄÄÄÄÄÄÅ #>" 3@ 3@ , �	6� *� ���. ��, �	24�7, 3@�A, >*, # &, x@A&_� sÏ�sÐ�_��ÃÄÄÄÄÄÅ #>true, �	6� *� ���. ��, �	24�7, 3@�A, >*, # &, x@A&_� �n_�l��_��ÃÄÄÄÄÄÄÅ #�	6� *� ���. ��, x@&_� ³�t�_��ÃÄÄÄÄÅ �ready b7��@T�, �63�3@�Uc , x@�_�
@�_~Â�_��ÃÄÄÄÄÄÄÅ `7��@T�, �63�3@�U, >x@ , # &Aa_� " `�	24T7�����, �63�3@�U, >x@ , # &Aa_�

Figure 16. Ñ¿ËÊÒÉ�ÊÈ�

16

in the transitions above that consumes a message is ��
������� that is the first transition in the sequence of receiving an e4���� message.
The transitions that move to the left consume no messages. Thus, EQ. 39 is satisfied. All the above transitions are silent transitions. Thus,
EQ. 40 is satisfied. Therefore, the moved transitions commute. Thus, the big-step path ¢ ́ Í is equal to ¢ ́ . Thus, for every path ¢ ́ , there
exists a path ¢ ́ Í where �	�*T ¢ ́ ÍU " �	�*� ¢ ́ �.

Now, we show that for every big-step path ¢ ́ Í starting from � 4 ́ �, there is a path ¢ ³ starting from � 4 ³ � such that �	�*� ¢ ³ � "�	�*T ¢ ́ ÍU. Similar to the forward direction, for each path ¢ ́ , we construct a path ¢ ³ inductively. We define an invariant that holds
between the initial configurations � 4 ́ � and � 4 ³ �. Assuming the invariant between � ́ � and � ³ �, for each big-step ¢ ́ m " � ́ � f% � ́ n, we
introduce a step ¢m Á " � ³ � f � ³ � such that the invariant between � ́ n and � ³ � is preserved.

The invariant between � ́ and � ³ ensures that there is a correspondence between the actors of � ́ and � ³ such that if a big-step is
possible from � ́ , a corresponding transition is possible from � ³ specifically if an e4���� message is received by �@ in � ́ , then the label �4������@� is enabled in � ³ and the first element of the update list of �@ in � ³ corresponds to the e4���� message. The invariant states
that: If the state of the writer actor �? is #7�, x& in � ́ , there exists 7 and 3? such that 7� " 	24�7, 3?� and the state of �? is #7, x& in � ³ .
If the state of a reader actor �@ is #7�, x& in � ́ , there exists 7, 3@ and � such that 7� " �	24�7, 3@� and the state of �@ is #7, x, �& in � ³ .

There exists 6 such that the set of update messages for �@ in � ́ is e4���� ¶4��� 3m ��. ����8 b7��m @T�, �63�3m�Uc·m�¥..nu� such that 3m " 4
�	 3@ � and the element at position � C
0. . 6 Ó 1� of � of �@ is 7��m��� in � ³ . If there is a message other than e4���� messages in � ́ , the same message is in � ³ . In addition, 3? " 4
�	 3@ |�|.
The interesting cases are the two big steps for installing a new behavior of the writer and receiving an e4���� message. There is a one-

to-one mapping for other transitions.
We consider the case that ¢ ́ m " � ́ � f% � ́ n is the big step for installing a new behavior for the writer actor. Consider Figure 15, row

2. The result of the transitions is ` 	24T7�����, �63�3?�U, x{a_� , �@Z (e4���� ¶4��� 3? ����. ready b7��@T�, �63�3?�Uc·m��..¹. From the

invariant, we have that the set of update messages for �@ is e4���� ¶4��� 3m ��. ����8 b7��m @T�, �63�3m�Uc·m�¥..nu� in � ́ �. From the

invariant, we have 3? " 4
�	 3@ |�| that is 3? " 4
�	 3@ 6. The new e4���� message for each �@ is e4���� ¶4��� 3? ����. ready b7��@T�, �63�3?�Uc·. Thus, we have that the new e4���� message for each �@ is e4���� ¶4��� 3n ����. ready b7��@T�, �63�3n�Uc· where 3n " 4
�	 3@ 6. Thus, the set of update messages for �@ in � ́ n is e4���� ¶4��� 3m ��. ready b7��m@T�, �63�3m�Uc·m�¥..n where 7��n " 7��. By the invariant, as the writer is of the form ` 	24T��readyT7�����U�, 3?U, x{a_� in � ́ �, it is of the form ̀��readyT7�����U�, x{a_� in � ³ �. Let � ³ � f � ³ � be the transition by label ����8��?�. By ����8��?� rule, shown in Figure 15, row 1, the writer becomes #7�����, >x{, # &A&_� and each reader �@ becomes #7, x, ��&_� where �� " � � 7�����. Now, the element at location 6 of �� is 7�����. As we defined 7��n " 7��, the element at location 6 of �� is 7��n���. From the invariant we have, 3? " 4
�	 3@ |�|. The new counter 3?� of the writer �? is 3?� " �63�3?� and |��| " �63�|�|�.
Thus, we have 3?� " 4
�	 3@ |��|. The interaction semantics of the two paths are equivalent as all the transitions are internal.

We consider the case that ¢ ́ m " � ́ � f% � ́ n is the big step for receiving an e4���� message. Consider Figure 16, row 2. By the

invariant, the set of update messages in � ́ � is e4���� ¶4��� 3m ��. ����8 b7��m@T�, �63�3m�Uc·m�¥..nu� such that 3m " 4
�	 3@ �. The first e4���� message from this sequence is consumed. The result of the transitions is `�	24T7��¥���, �63�3@�U, >x@ , # &Aa_�. The new counter 3@�
of �@ is �63�3@�. The set of messages in � ́ n is e4���� ¶4��� 3m ��. ����8 b7��m@T�, �63�3m�Uc·m��..nu� such that 3m " 4
�	 3@ �. From

3@� " �63�3@� we have, the set of messages in � ́ n is e4���� ¶4��� 3m ��. ����8 b7��m@T�, �63�3m�Uc·m�¥..ou� such that 3m " 4
�	 3@� � and * " 6 Ó 1. By the invariant, as #�	24�7, 3@�, ># &, x@A&_� is the state of �@ in � ́ �, its state is #7, ># &, x@A, �&_� in � ³ � where the element at
position 0 of � is 7��¥��� i.e. � " 7��¥��� � ��. Let � ³ � f � ³ � be the transition by label �4������@�. As Figure 16, row 1 shows an �4������@� transition takes �@ to state #7��¥���, >x@ , # &A, ��&_�. By the invariant, we have that the element at position � C
0. . 6 Ó 1� of �
is 7��m . It is trivial that the element at position � C
1. . 6 Ó 1� of � is 7��m that is the element at position � C
0. . 6 Ó 2� of �� is 7��m . Thus,
the element at position � C
0. . * Ó 1� of �� (where * " 6 Ó 1) is 7��m.
8.1. Fairness

To reason about fairness, we need to show correspondence between enabled and fired labels of the sharing and translated pure programs.
To have a correspondence, we need to have counter values in the labels of the original semantics. Consider the following transition rules
that only add dummy counters for the number of reductions of ready expressions for each actor and the number of updates that reader
actors have installed.
The state of actor is augmented with a number at the end to count the number of ����8 reductions. e is augmented with a expression to
count the number of installed updates. e is a pair of a number and a sequence of updates for a reader actor. The first element of the pair is
the number of the past updates and the second one is the waiting updates. � " 9, d, = G 9, d, e, =

17

e " >=, ��T$U%A
 ��
������, *� #7�����, ># &, x@A, 3&_, � (* g #7�����, >#*&, x@A, 3&_ EQ. 68 ������	����

#7�����, >* � x{, x@A, 3&_ g #>�s, �� , 7�����A, >*, x{, x@A, 3&_ �� *��:!��3:���7, 7��, �, *� " >�s , ��A EQ. 69

3:�3����
� f_ ��#>�, �� , 7�����A, >*, x{, x@A, 3&_ g #>��, �� , 7�����A, >*, x{, x@A, 3&_ EQ. 70

��	�7
���� #>�, �� , 7�����A, >*, x{, x@A, 3&_ g #7�����, >x{, x@ � *A, 3&_ �� � � true EQ. 71 �6�7
���� #>true, �� , 7�����A, >*, x{ , x@A, 3&_ g #��, x{. x@ , 3&_ EQ. 72

	�x��� � f_ ��#�, x{, 3&_ g #�, x{, 3&_ EQ. 73

	�6���, 3, *��#�&� #��� (*��#�&�, x{, 3&_ g #��0�, x{, 3&_, � (*��#�& �� � C EQ. 74 ����8��� `��readyT7�����U�, x{, 3a_ g #7�����, >x{, # &A, 3&_ �� 7�:!��3:���7, 7��, �� �6� � � �? EQ. 75

The added rules are:

����8��?�
`��readyT7�����U�, x{a_� , #7, x, >3, �A, 3&_�Z[\..� g #7�����, >x{ , # &A&_� , #7, x, >3, � � 7�����A, �63�3�&_�Z[\..�

�� 7�:!��3:���7, 7��, �� EQ. 76

: #7, x, 3&_ g #7�, x�, 3&_#7, x, �, 3&_ g #7�, x�, �, 3&_ EQ. 77

�4����T�@, 3, 7�����U
`7���T��U, ># &, x@A, >3, 7����� � �A, 3�a_� g #7�����, >x@ , # &A, >�63�3�, �A, 3�&_� EQ. 78

It is trivial to see the equivalence of the original semantics and this semantics.

A slight modification is needed in the definition of enabled �4���� labels (adding the counter):
A label
 is enabled in � if
 C � G 5��� , !� and � has a transition with label
� where
� is the same as
 up to choice of names for new actors or � has a transition with label
� " �4������@ , 3@ , 7�����¥� and #7, x, 7�����m�¥..n&_� C � and
 " �4������@ , 3@ Ô �, 7�����m�, � "1. . 6. =6�7
���¢, �� is the set of labels that are enabled in the source �m of ¢���.

To show the equivalence of the sharing and translated pure programs, the same correspondence of transitions that was explained above can
be built here. Now, the counter 3? is the value of the last element of the state of the writer actor #7, x, 3?&_� and for each reader actor, the
counter 3@ is the value of the first element of the update component #7, x, >3@ , �A, 3&_�. We define the following to correspondence functions
on the labels:

42	�
� "
	24u��
� "
���
���4����T�@ , 3@ , 7�����U �� ¶
 " ��
���� b�@ , e4����T4��� 3@ ��. ����8 7�����Uc·

����8T�?, 3? , 7�����U �� ¶
 " 	�6� b�?, e4����T4��� 3? ��. ����8 7�����Uc·
 �
	�
¡ EQ. 79

	24�
� "
42	u��
� " Õ
 " ��
���� b�@ , e4����T4��� 3@ ��. ����8 7�����Uc �� b�4����T�@ , 3@ , 7�����Uc
 " 	�6� b�?, e4����T4��� 3? ��. ����8 7�����Uc �� b����8T�?, 3?, 7�����Uc
 �
	�
¡ EQ. 80

It is obvious that
42	�
,
�� w
	24�
�,
��� g
 "
�� EQ. 81
	24�
,
�� w
42	�
�,
��� g
 "
�� EQ. 82

For the forward direction, we add the following to the invariant between the two configurations � ³ and � ́ : B
 C =6�7
��� � ́ � g
42	�
� C =6�7
��� � ³ � EQ. 83 B
 C ¦����� � ³ � g
	24�
� C ¦����� � ́ � EQ. 84
For the reverse direction, we add the following to the invariant between the two configurations � ́ and � ³ : B
 C =6�7
��� � ³ � g
	24�
� C =6�7
��� � ́ � EQ. 85 B
 C ¦����� � ́ � g
42	�
� C ¦����� � ³ � EQ. 86

18

For the forward direction, the premise is that ¢ ³ is fair, we show that the constructed ¢ ́ is fair. To show that ¢ ́ is fair, we assume an
enabled label
 in configuration � ́ of the path ¢ ́ and show that
 is either eventually fired or permanently disabled in ¢ ́ . If � ́ is a
configuration in the middle of multi-steps of ¢ ́ (consider multi-step transitions of Figure 15 and Figure 16.), then
 is either just fired in
the transition following � ́ or
 is still enabled in the last configuration of the multi-step. Case:
 is just fired at � ́ . We trivially have the
conclusion. Case:
 is enabled in the last configuration of the multi-step. Consider Figure 17. As
 is enabled in � ́ , by the invariant (EQ.
83), a corresponding label
� "
42	�
� is enabled in a configuration � ³ of the path ¢ ³ . As ¢ ³ is fair,
� is either eventually fired or is
permanently disabled in ¢ ³ . Case:
� is eventually fired in configuration � ³ � of ¢ ³ . By the invariant (EQ. 84), the corresponding label
�� "
	24�
� is eventually fired in a configuration � ́ � of ¢ ́ . From EQ. 81 on
42	�
,
�� and
	24�
�,
���, we have
 "
��. This means that
 is eventually fired in ¢ ́ . Thus, we have the first disjunct of the conclusion. Case:
� is permanently disabled in ¢ ³ : There is a
configuration � ³ � in ¢ ³ where
� is not enabled in configurations following � ³ � in ¢ ³ . By the invariant (the contra-positive of EQ. 83),
there is a configuration � ́ � in ¢ ́ where
�� "
42	u��
�� is not enabled in configurations following � ́ � in ¢ ́ . From
� "
42	�
� and
�� "
42	u��
��, we have
 "
��. Thus, there is a configuration � ́ � in ¢ ́ where
 is not enabled in configurations following � ́ � in ¢ ́ .
This means that
 is permanently disabled in ¢ ́ . Thus, we have the second disjunct of the conclusion.

For the reverse direction, we defined two transformations. The first transformation transforms the original path ¢ ́ to the path ¢ ́ � by
removing all the e4���� message delivery and failed guard evaluations from ¢ ́ and delivering each e4���� message just before its
successful guard evaluation in ¢ ́ . It is assume that ¢ ́ is fair and we show that the path ¢ ́ � is fair. From the transformation, we have that ¢ ́ � is fair for any label other than ��
���� labels for e4���� messages that their selective receive condition is never satisfied in ¢ ́ .
Consider the recipient actor of these e4���� messages. This actor should have been stuck; otherwise, the e4���� message with the next

Figure 17. Correspondence of Labels for the Forward Direction

Figure 18. Correspondence of Labels for the Reverse Direction

�4����T�@ , 3@ , 7�����U

��
���� b�@ , e4����T4��� 3@ ��. ����8 7�����Uc

�4����T�@ , 3@ , 7�����U

��
���� b�@ , e4����T4��� 3@ ��. ����8 7�����Uc

=6�7
�� ¦���� 65� =6�7
��

����8T�?, 3? , 7�����U

	�6� b�?, e4����T4��� 3? ��. ����8 7�����Uc

����8T�? , 3?, 7�����U

	�6� b�?, e4����T4��� 3? ��. ����8 7�����Uc

=6�7
�� ¦���� 65� =6�7
��

�4����T�@ , 3@ , 7�����U

��
���� b�@ , e4����T4��� 3@ ��. ����8 7�����Uc

�4����T�@ , 3@ , 7�����U

��
���� b�@ , e4����T4��� 3@ ��. ����8 7�����Uc

=6�7
�� ¦���� 65� =6�7
��

����8T�?, 3? , 7�����U

	�6� b�?, e4����T4��� 3? ��. ����8 7�����Uc

����8T�? , 3?, 7�����U

	�6� b�?, e4����T4��� 3? ��. ����8 7�����Uc

=6�7
�� ¦���� 65� =6�7
��

19

expected counter value will eventually be processed and satisfy the selective receive condition. As the actor is stuck, the ��
���� labels for
these e4���� messages are permanently disabled in ¢ ́ . Every label that is permanently disabled in ¢ ́ , is also permanently disabled in ¢ ́ �. Thus, the ��
���� labels for these e4���� messages are permanently disabled in ¢ ́ �. This means that ¢ ́ � is fair to these e4����
messages too.

The big-step transformation transforms the path ¢ ́ to the big-step path ¢ ́ Í by taking some of the internal transitions to the left. It is
assumed that ¢ ́ is fair and we show that ¢ ́ Í is fair. As “the enabledness conditions on transitions are preserved by the transformation and
that ¢ ́ Í has exactly the same transitions as ¢ ́ ” [16], ¢ ́ Í is fair.

Now, we assume that ¢ ́ is a fair big-step pure path and prove that the constructed sharing path ¢ ³ is fair. To show that ¢ ³ is fair, we
assume an enabled label
 in configuration � ³ of the path ¢ ³ and show that
 is either eventually fired or permanently disabled in ¢ ³ .
Consider Figure 18. As
 is enabled in � ³ , by the invariant (EQ. 85), a corresponding label
� "
	24�
� is enabled in a configuration � ́ of
the path ¢ ́ (where � ́ is at the end of a multi-step of ¢ ́). As ¢ ́ is fair,
� is either eventually fired or is permanently disabled in ¢ ́ . Case:
� is eventually fired in configuration � ́ � of ¢ ́ . (As ¢ ́ is in the big-step form,
� is enabled in � ́ and fired in � ́ � and � ́ is at the end of
a multi-step, � ́ � is also at the end of a multi-step.) By the invariant (EQ. 86), the corresponding label
�� "
42	�
� is eventually fired in a
configuration � ³ � of ¢ ³ . From EQ. 82 on
	24�
,
�� and
42	�
�,
���, we have
 "
��. This means that
 is eventually fired in ¢ ³ . Thus, we
have the first disjunct of the conclusion. Case:
� is permanently disabled in ¢ ́ : There is a configuration � ́ � in ¢ ́ where
� is not enabled
in configurations following � ́ � in ¢ ́ . By the invariant (the contra-positive of EQ. 85), there is a configuration � ³ � in ¢ ³ where
�� "
	24u��
�� is not enabled in configurations following � ³ � in ¢ ³ . From
� "
	24�
� and
�� "
	24u��
��, we have
 "
��. Thus, there is a
configuration � ³ � in ¢ ³ where
 is not enabled in configurations following � ³ � in ¢ ³ . This means that
 is permanently disabled in ¢ ³ . Thus,
we have the second disjunct of the conclusion.

