Appendix
8. Interaction Equivalence

The Program Translation is defined in Figure 12 Bhsic definitions are depicted in Figure 13. Ttefiguration translation is defined in
Figure 14.

The translation removes sharing and translatesmaiio updates to pure message passing. The transkainction s2p, maps a
programSp (that potentially uses sharing) fp that does not use sharingg(E42). We callp and Pp sharing and pure programs
respectively. The sharing libraff.ib is translated to the pure librafyib = SLib, ws2p(°Lib), rs2p(°Lib) (EQ.43). The functionsvs2p
(EQ. 44 - K. 53) andrs2p (EQ. 54 - K. 56) translate each behavibid in *Lib to bid,, andbid,. respectively. kid,, andbid, are just

s2p:P > P
s2p(program(receptionists: p, externals: X,
library: SLib,
actors:{a; » e;}1<i<m
messages: {a; < M;}1<i<n,
sharing:{a,, A,))) = Ar = {ari=1,.R}
program(receptionists: p, externals: X, EQ.42
library: PLib,
actors: {a; = e;}1<ismaefa,}ua,
{a; » rs2p(e;, 1)}1sism,ai€Arv
a,, » ws2p(ey, 1),
messages: {a; < M;}1<i<n,
sharing: )
Where

PLib £ SLib,ws2p(5Lib), rs2p(°Lib) EqQ.43

ws2p(behDef) 2 ws2p(behDef) EQ.44
WsZp(behavior id(x) methodDef) 2 behavior idy, (x, ¢,,) ws2p(methodDef) EQ.45
ws2p(method id(x)[enable e] e') = method id(x)[enable ws2p(e)] ws2p(e’) EQ. 46
ws2p(Ax.e) £ Ax.ws2p(e) EQ.47
ws2p(e; e;) = ws2p(e;) ws2p(e,) EQ.48
ws2p(e < [e]) 2 ws2p(e) < [WsZp(e)] EQ.49
ws2p (ready(behld(?))) 2
let {x =e}
let {xl’ =a,, 2 Update (pair Cw /-{xr'_ready (behldr (f, inc(cw))))} fTesh(xl.’)i:l"R EQ.50
i=1.R
ready (behldw (% inc(cw)))

ws2p(self) £ self EQ.51
ws2p(x) 2x x€X EQ.52
ws2p(w)2v veV EQ.53
rs2p(behDef) 2 rs2p(behDef) Eq.54
rs2p(behavior id(x) methodDef) 2 behavior id, (%, ¢,) rs2p(methodDef) uMethod EQ.55
uMethod £ method Update(x) [enable = (fst x) ¢,] (snd x) (Ax.x) EQ.56
rs2p(method id(x)[enable e] e’) & method id(x)[enable rs2p(e)] rs2p(e’) EQ.57
rs2p(Ax.e) = Ax.rs2p(e) EQ.58
rs2p(e, e;) 2 rs2p(ey) rs2p(ey) EQ.59
rs2p(e < [e]) £ rs2p(e) < [rsZp(e)] EQ.60
rs2p (ready(behld(?))) 2 ready(behldr (e, c,)) EQ.61
rs2p(self) £ self EQ.62
rs2p(x) 2x x€X EQ.63
rs2p(v) 2v veV EQ.64

Figure 12. Program Trandation
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true & Atf.t succ £ Ansz.s(ns z)

false 2 Atf. f plus 2 Amnsz.ms (n s z)
-2 Ab.b false true inc £ Aimsz.plusm1sz
N2 Abc.b ¢ false iszero &
pair 2 Afsb.fsb Am.m (Ax. false) true
fst 2 Ap.p true zz 2 pair 00
snd £ Ap.p false ss &
Ap.pair (snd p) (succ (snd p))
0 £ Asz.z pred £ Am. fst (m ss zz)
12 Asz.5(z) >2 Axy.iszero (x pred y)
2 2 )sz. s(s(z)) =2 Axy.A (= xy) (= yx)

Figure13. Basic Definitions

new names for behaviors that are obtained fromskasion ofbid.) Leta,, be the writer actor and, be the set of reader actorsim The
behavior of the writer actar,, is translated to uskid,, behaviors and the behavior of each reader agt@ A, is translated to uskid,
behaviors.

The interesting part of translation is the transtabf ready for the writer (. 50) and the addition afMethod to behaviors for the
readers (B. 55 and B©. 56). The reduction ofeady for a,, (EQ. 13), installs the new behavior fay, and stores it at the tail of the update
storeu of eacha,. Later, inupdate(a,) transitions (B. 15), the behavior at the headwfs taken and installed as the current behavior of
a,. To process updates in order, new behaviors aledadt the tail and removed from the head of thaatg store. The translation
simulates the update mechanism with message pagsingady expression ofi,, is translated to sendindpdate messages to reader
actorsa, and then installing the new behavior &gy (EQ. 50). Update messages contain the new behavior for the reatlersauMethod
receivesUpdate messages at the reader actors. To preserve the afrdipdates, the update messages should be pedcasthe same
order as they are sent. The translation adds at@oparameter to the definition of the writer aedders behaviors €45 and B. 55).
The writer actor maintains a countgy that holds the number of the next update to seddeach reader actay maintains the number of
the next update message to recaiveThe selective receive feature of the languageses to check the number of the messages. The
Update messages that, sends contain a pair of expressions. The firshete of the pair is the number of the update messag the
second element is a thunk holding the new behaVieeuMethod (EQ. 56) is defined to check the equality of the filgmeent of the pair
(that is the number of the message)tdthat is the number of the next update messagedeive). If the check succeeds, the second
element of the pair is applied to a dummy valuee &pplication results in opening the thunk andingtheready expression that installs
the new behavior,, andc, are initialized tal for the writer actor and all the reader actorg. @). The translation afeady for a,, (EQ.

50) passes the valuec(c,,) for the parameter,, of the new behaviabehld,, that is installed for,, and also passéac(c,,) as thec,
parameter of the new behavigzhld, that it sends ta,.s. This essentially increments the number of the message to be sent by, and
sets the number of the next message to be recejves.
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The configuration translation is defined in Figd#e To reason about intermediate configurationsl|ifivthe definition of translations to
the behaviors componeatof actor states in a configuration.

rs2p((e,e’, id(@)), ¢,) = (rs2p(e, c,.),rs2p(e’, ¢;), rs2p(id(v), c,))
rs2p(Ax.e, c,.) = Ax.rs2p(e, c;)
rs2p(e; ey, ¢,) 2 rs2p(ey, c,) rs2p(ey, cy)
rs2p(e < [el,c¢,) 2 rs2p(e,c;) < [rsZp(e, cr)]
rsZp(ready(behld(E)), cr) 2 ready(behldr (e, c,))
rs2p(self,c,) £ self
rs2p(x,c,) 2x x€X
rs2p(v,c,)2v veEV
rs2p(id(v), c,) £ id, (v, c,) EQ. 65

ws2p(e, e’,id()), ¢y,) = (ws2p(e, c,),ws2p(e’, c,),ws2p(id(¥), ¢,))
ws2p(Ax.e, c,,) = Ax.ws2p(e,cy,)

ws2p(e; ey, c,,) = ws2p(eq, cy) ws2p(ey, cy)

ws2p(e < [e], c,) 2 ws2p(e,c,) < [WsZp(e, Cw)]

wsZp(ready(behld(E)), cw) S
let {x =e}
let {xl’ = a,, < Update (pair ¢y Ax".ready (behldr (% inc(cw))))} fresh(x])iz1.r EQ.66
R

i=1..
ready (behldw (E, inc(cw)))
ws2p(self, ¢,,) £ self
ws2p(x,c,) 2x x€X
ws2p(v,c,) 2v vEV
ws2p(id(),c,,) = id,, (v, c,,) EqQ.67

rs2p([1.¢) = [1
ws2p([].cy) = [1

Figure 14. Configuration Trandlation
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ready(a,,)
R|ready(bid(@))|, q ,[byq,u]q,. =’. — o
[Rlready(tid@)} al,, “riesn [bid @), {qu [ Da, [0, 4w bid@)]a,
[ws2p(R, cw)lel, qula, where
e =let {xl’ = a,, < Update (pair ¢y Ax''.ready (bidr(ﬁ inc(cw))))}
i=1.R
ready (bidw (@, inc(cw)))
(send(aw),seq(aw))*
)
[WsZp(R, Cw) [[ready (bidw (@, inc(cw)))]] , qu]aw,
[ws2p(R[ready(bid(™))], cy), qu]aw ay, < Update (pair cw Ax'' . ready (bidr (@, inc(cw)))) N
ready(ay) =R
[bidw (5, inc(cw)), qu]aw,
a,, < Update (pair cw Ax" . ready (bidr (3, inc(cw))))
i=1.R
[WsZp(bid ), inc(cw)), qu]aw,
a,, < Update (pair ¢y Ax" . ready (bidr (@, inc(cw))))
i=1.R

Figure15. ready(a,,)

LEMMA 1:
rs2p(Rlel, ¢;) = rs2p(R, c,)[rs2p(e, c;)]

LEMMA 2:
ws2p(Rel, cw,) = ws2p(R, ¢y, )Iws2p(e, cy,)]

THEOREM1:
Vp € P: Isem([p]) = Isem([s2p(p)])

PROOFR

We want to prove the interaction equivalence ofrgypeogram and its translated program thatpse P: Isem([p]) = Isem([s2p(p)]).
Consider an arbitrary prografp (potentially using sharing) and its translatign= s2p(*p) that does not use sharing. We calland?p
sharing and pure programs respectively. The cordtgans corresponding tpy and?Pp are[*p] and[Pp]. We need to show thafp] and
[Pp] are interaction equivalent. We show that the adon semantics set of each is included in theroffor the sake of simplicity, first,
we concentrate on the transition correspondencétemdshow the fairness.

For the forward direction, we need to show thatdwery computation patfrr starting from[*p]], there is a computation patx
starting from[Pp] with the same interaction semantics. For €aghwe construct a pathr inductively. We define an invariant that holds
between the initial configurationgp] and [Pp]. Assuming the invariant betwedk; andPK;, for each stegn; = K; — SK,, we
introduce a multi-stefr; = PK; —»* PK, such that the invariant betweék, and?K,, is preserved. The invariant betwedt andPK
ensures that there is a correspondence betweeactbess of K andPK such that if a transition is possible froi, a corresponding
transition is possible frofiK specifically ifupdate(a,) is enabled irfK, the selective receive condition is enabled fer¢brresponding
Update message ifK. The invariant states that: If the state of thgewmractora,, is [b, q] in °K, there exists,, such that the state af,
is [ws2p(b, c,,), q] in PK. If the state of a reader actoris [b, q,u] in 5K, there exists,. such that the state af. is [rs2p(b, c,),q] in PK.

If the element at positione {0..n} of u of a,. is bid;(v) in °K, there is a messad&date (pair ¢ Ax.ready (bidir(ﬁ, inc(c)))) in PK

such that = plus ¢, i. If there is a message i, the same message isPii. In addition,c,, = plus ¢, |u].

Let us look at the corresponding transition seqaenghe interesting cases are transitions withidateady(a,,) andupdate(a,).
There is a one-to-one mapping for other transitions

Consider Figure 15. ffr = K; — K, has the labeteady(a,,) (EQ. 13), bid (v) is backed up at the tail of the update list ofheac
The behavior component @f,, is R[[ready(bid(f))]] in SK;, thus, by the invariant, there existg such that the behavior af, is
ws2p(R[ready(bid(®))], c,) in PK,. Thus, by [EMMA 2, the behavior ot is ws2p(R,c,)[e] wheree is defined by B. 66. By
send(a,,) transitions, alpdate message is sent to eachand finally aready(a,,) transition installs the new behavior.

The resulting behavior af,, in PK,, is bid,, (7, inc(cy)). By EQ. 67, bid,, (v, inc(c,)) is equal taws2p(bid (), inc(cy,)). Thus, the
resulting behavior of,, in PK,, is ws2p(bid(v), inc(c,)). The new counter af,, is c;, = inc(cy).
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An element bid(v) is added at position |[u| of each reader in SK,. The sent message s
Update(paircwAx.ready(bid(ﬁ,inc(cw)))). By the invariant, we havec, =plusc, |u|. Thus, there is a message

Update (pair ¢ Ax.ready (bid(ﬁ inc(c)))) wherec = plus ¢, |u| in PK,,.

By the invariant, we have, = plus c, |u|. The new update list af,, isu :: bid(v). We need to show that the invariant is preserved
that iscy, = plus ¢, |u :: bid(v)|. This is obvious from,, = inc(c,) and|u :: bid(v)| = inc(Ju|). The interaction semantics of the two
paths are equivalent as there isin@r out labels in any of them.

Consider Figure 16. Ifr = SK; — 5K, has the labelipdate(a,) (EQ. 15), the behaviobid(v) at the head of the update listis

installed as the current behavior. By the invariéinére is a messadédate (pair co Ax.ready (bidr(i, inc(co)))) in PK; such that

co = plus ¢, 0. This means that/pdate (pair ¢, Ax.ready (bidr(ﬁ, inc(cr)))) is in PK;. The Update message can be delivered and

processed byleliver(a,) andtraverse(a) transitions. The selective receive clauseiMfethod (EQ. 56) checks equality af, with the
first element of the pair contained in th@date message (that is.). By a sequence afheck(a,) transitions, the selective receive
expression is evaluated toue and so theenable(a,) rule can install the body afMethod. By the sequence of seq(a,) and then a
ready(a,) transition, The body ofuMethod is reduced tobid,(v,inc(c)). By EQ. 65, bid,(7,inc(c)) is equivalent to
rsZp(bid(F), inc(cr)). The new counter fat,. is ¢, = inc(c,).

By the invariant, we have,, = plus ¢, |bid(¥) :: u|. We need to show thaf, = plus ¢, |u|. This is obvious fronz, = inc(c,) and
|bid() :: u| = inc(Ju|). The interaction semantics of the two paths atevedent as there is nim or out labels in any of them.

For the reverse direction, we need to show thag¥ery computation pathr that is resulted starting frofi#p], there is a computation
path’w starting from[*p] such thaisem(*r) = Isem(Pm).

For every patt?w, there is a patfin’ where the selective receive guards igrdate messages are never disabled Anan(Pn’) =
Isem(Pm). The pathPr’ can be constructed frofr by removing all thé/pdate message delivery and failed guard evaluations ftam
and delivering eachipdate message just before its successful guard evatuati®r. Thus, in the rest of the proof, it is assumed e
selective receive guard féipdate messages is disabledAn.

We define a big-step transformation ®mnthat results in the equivalent big-step patii.

The translation functiows2p translates ead‘eady(behld(ﬁ)) expression fow,, to the following expression (E66):

let {X£ = a,, < Update (pair ¢y Ax". ready (behId, @, inc(c))))} fresh(x])icr
i=1.R
ready (behldW (5, inc(cw)))

The big-step transformation takes back each tiansdf the expression above just after its preagdiansition. In the big step form,
transitions of the expression above are in sequence

The translation functions2p addsuMothod to behavior definitions (& 55).uMethod is defined (8. 56) as follows:

uMethod £ mehod Update(x) [enable = (fst x) ¢,] (snd x) (Ax.x)

Consider the deliverydeliver(a,,m), traversetraverse(a,), constraint checkcheck(a,)* enable(a,) and body transitions
seq(a,) ready(a,) of uMethod for anUpdate message. The big-step transformation moves left efithese transitions to the right of
its preceding transition.

Each of the two above sequences of transitionsanl other transition is a step in the big-step.pat

We show that the transitions that are moved comrtwte left. Each transition is moved to the lefiil it reaches its preceding
transition by the same actor. All the transitiomattare passed are on other actors. Thus, conditiBq. 38 is satisfied. The only transition

[b,([1,q,), bid(®) ] update(a,bid([))
ALL ar), bid(@) = ulg, —_—
[bid (), (. [ 1),
deliver(a,,m)
[rs2p(b, c;),{[m], q;)]a, %
check(a,)*
[rs2p(b, ¢;),{[ ], G- )a,, ar < m where [(= (fst m) ¢y, (snd m) (Ax.x),rs2p(b, c,)), (m, [1,4,)]a, (ay)
m = Update( (= ¢, ¢y, (snd m) (Ax.x),752p(b, c,)), {m, [ ], g )a, check(ar)
pair enable(a,)
Cr [(true, (snd m) (Ax.x),7s2p(b, c;)),{m,[],qr)]a,
2x".veady (bid, (7, inc(c,)) ) [(snd m) (Ax. ), 4,1, o2
) [ready (bid, (,inc(c,))). av] Leadytan)
[bidr (5' inc(cr)), (qr. [ ])]ar =
[rs2p(bid(@), inc(c,)), {4y, [])]ar

Figure 16. update(a,)
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in the transitions above that consumes a messatigiizer(a) that is the first transition in the sequence okreéing anUpdate message.
The transitions that move to the left consume nesages. Thus,39 is satisfied. All the above transitions arergtileansitions. Thus,
EQ. 40 is satisfied. Therefore, the moved transitioosimute. Thus, the big-step path' is equal toPz. Thus, for every pathr, there
exists a pat®r’ wherelsem(pnT) = Isem(Pm).

Now, we show that for every big-step pdtht starting from[Pp], there is a patiin starting from[p] such thatlsem(*m) =
Isem(pn’f). Similar to the forward direction, for each pdth, we construct a patfir inductively. We define an invariant that holds
between the initial configuratiod®p] and[Sp]. Assuming the invariant betweék; and®K;, for each big-stefn; = PK, -* PK,,, we
introduce a steprr; = SK; — °K, such that the invariant betwe®kK,, and*K, is preserved.

The invariant betweeRK and“K ensures that there is a correspondence betweesctbes ofPK and*K such that if a big-step is
possible fronPK, a corresponding transition is possible frékhspecifically if anUpdate message is received by in PK, then the label
update(a,) is enabled ifK and the first element of the update listapfin K corresponds to thEpdate message. The invariant states
that: If the state of the writer actay, is [b’, q] in PK, there existd andc,, such thab’ = ws2p(b, c,,) and the state af,, is [b, q] in °K.

If the state of a reader actey is [b’, q] in PK, there existd, ¢, andu such that’ = rs2p(b, ¢,) and the state of, is [b, q,u] in K.

There exists1 such that the set of update messagesifoin PK is Update (pair c; Ax.ready (bidir(v, inc(ci)))) such that
i=0.n-1

¢; = plus ¢, i and the element at positiéore {0..n — 1} of u of a,. is bid; (V) in °K. If there is a message other tHipdate messages in

PK, the same message is°. In addition,c,, = plus ¢, |u|.

The interesting cases are the two big steps feallimgy a new behavior of the writer and receivargUpdate message. There is a one-
to-one mapping for other transitions.

We consider the case that; = PK; —»* PK,, is the big step for installing a new behavior ttoe writer actor. Consider Figure 15, row

2. The result of the transitions [iws2p (bid (¥), inc(cw)),qu]a ,ay, < Update (pair ¢,y Ax". ready (bid,(?, inc(cw)))) _From the
w R

i=1..

invariant, we have that the set of update messtmes, is Update (pair ¢; Ax.ready (bidir(ﬁ inc(ci)))) in PK;. From the
i=0.n-1

invariant, we havec, = plusc.|u|l that is ¢, = plusc,n. The new Update message for eacha, is

Update (paircwAx”.ready(bidr(ﬁinc(cw)))). Thus, we have that the newUpdate message for eacha, is

Update (paircnAx”.ready(bidr(ﬁinc(cn)))) where ¢, = plusc,n. Thus, the set of update messages #gr in PK, is

Update(paircl-Ax.ready(bidir(ﬁ,inc(ci)))) where bid, = bid. By the invariant, as the writer is of the form

[ws2p(R[ready(bid(@))], cw), qu], in Ky, it is of the form[R [ready(bid(¥))], qu], in°K;. Let*K; — °K, be the transition by label
ready(a,). By ready(a,) rule, shown in Figure 15, row 1, the writer becenikid(v),(qu, [])]a, and each readet, becomes
[b,q,u'],, whereu' = u :: bid(v). Now, the element at locationof u’ is bid(v). As we definedid,, = bid, the element at location of
u' is bid,,(v). From the invariant we have,, = plus ¢, |u|. The new countet;, of the writera,, is c;, = inc(c,,) and|u’| = inc(Ju|).
Thus, we have,;, = plus c, |u'|. The interaction semantics of the two paths atévedent as all the transitions are internal.

We consider the case thét; = PK, - PK,, is the big step for receiving dfpdate message. Consider Figure 16, row 2. By the
invariant, the set of update message®Knp is Update (pair ¢; Ax.ready (bidir(ﬁ inc(ci)))) such that; = plus c, i. The first

i=0.n—1
Update message from this sequence is consumed. The oéghtt transitions irs2p(bid, (9), inc(c,)), {qr, [ )] , - The new counter;

of a, is inc(c,). The set of messages Tk, is Update (pair c; Ax.ready (bidir(ﬁ inc(ci)))) such that; = plus ¢, i. From

i=1.n-1

¢; = inc(c,) we have, the set of message# i is Update (pair ¢; Ax.ready (bidir(ﬁ inc(ci)))) such that; = plus ¢} i and
1

m =n — 1. By the invariant, afrs2p(b, c;), ([ ], g-)]a, is the state o, in PK,, its state is{b,([],qlr)(,)'i;r]lar in K; where the element at
position 0 of u is bidy(v) i.e. u = bidy(v) :: u'. Let 5K; — 5K, be the transition by labelpdate(a,). As Figure 16, row 1 shows an
update(a,) transition takes, to state{bidy(v), (q,, [ ]),u']q,. By the invariant, we have that the element attjposi € {0..n — 1} of u

is bid;. It is trivial that the element at positiore {1..n — 1} of u is bid; that is the element at positiore {0..n — 2} of u’ is bid;. Thus,
the element at positiane {0..m — 1} of u’ (wherem = n — 1) is bid;.

8.1. Fairness

To reason about fairness, we need to show corregpae between enabled and fired labels of therghand translated pure programs.
To have a correspondence, we need to have coualteesvin the labels of the original semantics. @tmrsthe following transition rules
that only add dummy counters for the number of cddns of ready expressions for each actor anchtimeber of updates that reader
actors have installed.

The state of actor is augmented with a numbereetid to count the number ©fady reductionsU is augmented with a expression to
count the number of installed updat&sis a pair of a number and a sequence of updatesreader actor. The first element of the pair is
the number of the past updates and the second dhe waiting updates.

S= B,0,EUB,Q,U,E
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U=(E1d(V))

deliver(a, m) [(bid(¥),{[ ], qr), cla,a @ m = [bid(V),{[m], q;), ¢, Eq.68
[bid(V),{m 3 qu,qyr), Clq =

traverse(a) [{ec, ey, bid (D)), (M, qy, qr), cla if methMatch(Lib, bid,v,m) = (e, ep) EQ.69

heck(a) ¢ 2a? EQ.70

check(a - - -
[(e, ep, bid(V)), (m, qu, qr), cla = [(e’, &y, bid(V)), (M, qu, qr), clq

disable(a) [(v, ey, bid (D)), (M, qy, q), clq = [bid(V),{qy, qr * M), c]l, if v # true EQ.71

enable(a) [{true, e,, bid(V)),{m, qy, qr), cla = [€p, Qu-Ari Cla EQ.72

e—oge
seq(a) EQ.73
1 le,qu,cla = [e,qu. cla
send(a,c,mid[v]) [RI[v < mid[v]],qu, cls = [RIO], gy, cla, v <@ mid[v] ifveA EQ.74
ready(a) [R[ready(bid())], qu, ], = [bid(@),{qu, [1),cla  if behMatch(Lib, bid, ) and a # a,, EQ.75

The added rules are:
[72 [[ready(bid(ﬁ))]], qu]aw, [b,q,{c,u), C]ari=1..n =

ready(a,,) [6id @), (G, [ D], [b.q, (c,u = bid(@)), inc(c)]an:m if behMatch(Lib, bid, v) EQ.76
l L:1b,q,cla = 6,4, la .77
[b,q,u,cle = [b',q' u,clq
bid'(v')A[ 1, qr) (c, bid(@) = u),c’] =
update(ay, ¢, bid (v)) [bic (v7) ([ 1. ) (e, bid ) i< ), ]ar EQ.78

[bid(¥),{qy, [ 1) (inc(c), u), c'lq,
It is trivial to see the equivalence of the origisamantics and this semantics.

A slight modification is needed in the definitiohemabledupdate labels (adding the counter):

Alabell is enabled irK if | € L U out(4, M) and
K has a transition with labé&l wherel’ is the same asup to choice of names for new actors or
K has a transition with labdl = update(a,,c,, bid(v),) and [b,q, bid(¥);=o.nla, € K andl = update(a,,c. + i,bid(v);), i =
1..n.

Enabled(m, i) is the set of labels that are enabled in the satirof 7(i).

To show the equivalence of the sharing and tragdlptire programs, the same correspondence ofttoarssihat was explained above can
be built here. Now, the countey, is the value of the last element of the statenefwiriter actor(b, q,c,]4, and for each reader actor, the
counterc, is the value of the first element of the updategonentb, g, {c., u), c],,. We define the following to correspondence funaio
on the labels:

(update(ar, Cr, bid(?)) if (l = deliver (ar, Update(pair c, Ax.ready bid(?))))

Ip2s(D) = Is2p~* (D) = Eq.79

ready(aw, Cuw» bid(ﬁ)) if (l = send (aw, Update(pair cw Ax.Tready bid(?))))

l else
| = deliver (ar, Update(pair c, Ax.ready bid(ﬁ))) if (update(ar, Cr, bid(?)))

Is2p(D) = lp2s™' (D) = l = send (aw, Update(pair ¢y Ax.ready bid(?))) if (ready(aw, Cu» bid@)) Ee. 80

1 else
It is obvious that
p2s(, ) Als2pl', ") =>1=1" Eq.81
Is2p(L, 1) Alp2s(U', ") =>1=1" EqQ.82

For the forward direction, we add the followinghe invariant between the two configuratidiisand?K:
Vvl € Enabled(PK) = Ip2s(l) € Enabled (°K) EqQ.83
vl € Fired(°K) = Is2p(l) € Fired(PK) Ec.84

For the reverse direction, we add the followinghte invariant between the two configuratidtié and*K:
vl € Enabled(°K) = ls2p(l) € Enabled (PK) EQ.85
Vvl € Fired(PK) = lp2s(l) € Fired(°K) EQ. 86
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ready(a,, ¢, bid(D)) e > ready(ay, c,, bid(@))

A
Enabled Fired not Enabled
send (awr Update (pair cw Ax.ready bid(?))) send (aw, Update (pair ¢y Ax.ready bid(?)))
update(ay, ¢, bid(v)) update(ay, ¢, bid(@))
A
Enabled Fired not Enabled
deliver (ar' Update(pair ¢, x.ready bid (5))) deliver (ar, Update(pair ¢, Ax.ready bid@))

Figure 17. Correspondence of L abelsfor the Forward Direction

For the forward direction, the premise is tPatis fair, we show that the constructed is fair. To show tha®r is fair, we assume an
enabled label in configuration?K of the path?r and show that is either eventually fired or permanently disabied’z. If PK is a
configuration in the middle of multi-steps &k (consider multi-step transitions of Figure 15 &iglure 16.), therd is either just fired in
the transition following’K or [ is still enabled in the last configuration of tmeilti-step. Casel is just fired at’K. We trivially have the
conclusion. Casd: is enabled in the last configuration of the matép. Consider Figure 17. Ads enabled iPK, by the invariant (B.
83), a corresponding labél = Ip2s(l) is enabled in a configuratiotk of the path’w. As *x is fair, I’ is either eventually fired or is
permanently disabled ifir. Case:l’ is eventually fired in configuratiofiK’ of Sm. By the invariant (B. 84), the corresponding label
1" = Is2p(l) is eventually fired in a configuratidtk’ of Pz. From K. 81 onlp2s(l,1") andls2p(l’,1""), we havd = I"". This means that
1 is eventually fired inPm. Thus, we have the first disjunct of the conclasi€ase:l’ is permanently disabled ifwt: There is a
configuration*K’ in St wherel’ is not enabled in configurations followirig’ in *z. By the invariant (the contra-positive ofQEB3),
there is a configuratioAK’ in P wherel” = Ip2s~1(l") is not enabled in configurations followitK’ in Pr. From!’ = Ip2s(l) and
" =Ip2s~1(l"), we havel = I". Thus, there is a configuratidtk’ in P wherel is not enabled in configurations followifd’ in Pm.
This means thatis permanently disabled fr. Thus, we have the second disjunct of the conmfusi

For the reverse direction, we defined two transtdfoms. The first transformation transforms thegioal pathP= to the patiPz’ by
removing all theUpdate message delivery and failed guard evaluations ffanand delivering eaclypdate message just before its
successful guard evaluationfn. It is assume thdtr is fair and we show that the path’ is fair. From the transformation, we have that
P’ is fair for any label other thadeliver labels forUpdate messages that their selective receive conditiameiger satisfied ifr.
Consider the recipient actor of thddpdate messages. This actor should have been stuckyotfeertheUpdate message with the next

ready(a,, ¢y, bid(?)) ready(a,, cy, bid(?))
Enabled Fired not Enabled
send (aw, Update(pair ¢y Ax.ready bid(?))) ----------------- » send (aw, Update(pair c,, Ax.ready bidﬁ)))
update(ay, c,, bid(v)) update(a,, ¢, bid(¥))
Enabled Fired not Enabled
A
deliver (ar, Update(pair c, Ax.ready bid(ﬁ))) """"""""""" » deliver (ar, Update(pair ¢, Ax.ready bid(?)))

Figure 18. Correspondence of L abelsfor the Reverse Direction

18



expected counter value will eventually be processetisatisfy the selective receive condition. Asdhtor is stuck, théeliver labels for
theseUpdate messages are permanently disable@rinEvery label that is permanently disabled’iry is also permanently disabled in
Pr'. Thus, thedeliver labels for thes&/pdate messages are permanently disable#inih This means thatr’ is fair to thesd/pdate
messages too.

The big-step transformation transforms the pathto the big-step pathrt by taking some of the internal transitions to fife It is
assumed thatr is fair and we show th&rt is fair. As “the enabledness conditions on trémsé are preserved by the transformation and
that?rt has exactly the same transition®a$[16], Pr ' is fair.

Now, we assume thdtr is a fair big-step pure path and prove that thestacted sharing pathr is fair. To show thatr is fair, we
assume an enabled labein configuration*K of the path®m and show that is either eventually fired or permanently disabied.
Consider Figure 18. Akis enabled irfK, by the invariant (B. 85), a corresponding labEl= Is2p(l) is enabled in a configuratidtk of
the pathPw (wherePK is at the end of a multi-step &k). As Px is fair, !’ is either eventually fired or is permanently disdhbin Pr. Case:

" is eventually fired in configuratioPK' of Pr. (AsPrx is in the big-step form, is enabled iPK and fired inPK' andPK is at the end of
a multi-stepPK’ is also at the end of a multi-step.) By the inamati(. 86), the corresponding labBl = Ip2s(l) is eventually fired in a
configurationsK' of Sm. From E. 82 onls2p(l,1") andlp2s(l’,l'""), we havel = [". This means thdtis eventually fired ifr. Thus, we
have the first disjunct of the conclusion. Cd$és permanently disabled frc: There is a configuratiohK’ in P wherel’ is not enabled
in configurations following’K’ in Pm. By the invariant (the contra-positive of QEB5), there is a configuratiofK’ in m wherel’" =
Is2p~1(1") is not enabled in configurations followiig ' in $m. Froml’ = Is2p(l) andl” = Is2p~1(l’), we havd = I". Thus, there is a
configuration®K' in ST wherel is not enabled in configurations followidg"’ in St. This means thdtis permanently disabled fx. Thus,
we have the second disjunct of the conclusion.
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